
DRAFT

Published by:

DRAFTIntroduction to Coalgebra.
Towards Mathematics of States and Observations

Bart Jacobs

Institute for Computing and Information Sciences,

Radboud University Nijmegen,

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

bart@cs.ru.nl http://www.cs.ru.nl/∼bart

Draft Copy.

Comments / bugs / improvements etc. are welcome at bart@cs.ru.nl

(Please check the latest version on the web first,

to see if the issue you wish to report has already been adderessed)

Version 2.00, September 27, 2012

DRAFT

iiiiii

DRAFT
Preface

Mathematics is about the formal structures underlying counting, measuring, transforming
etc. It has developed fundamental notions like number systems, groups, vector spaces,
see e.g. [316], and has studied their properties. In more recent decades also “dynamical”
features have become a subject of research. The emergence of computers has contributed to
this development. Typically, dynamics involves a “state of affairs”, which can possibly be
observed and modified. For instance, the contents of a tape of a Turing machine contribute
to its state. Such a machine may thus have many possible states, and can move from one
state to another. Also, the combined contents of all memory cells of a computer can be
understood as the computers state. A user can observe part of this state via the screen
(or via the printer), and modify this state by typing commands. In reaction, the computer
can display certain behaviour. Describing the behaviour of such a computer system is a
non-trivial matter. However, formal descriptions of such complicated systems are needed
if we wish to reason formally about their behaviour. Such reasoning is required for the
correctness or security of these systems. It involves a specification describing the required
behaviour, together with a correctness proof demonstrating that a given implementation
satisfies the specification.

Mathematicians and computer scientists have introduced various formal structures to
capture the essence of state-based dynamics, such as automata (in various forms), transi-
tion systems, Petri nets, event systems, etc. The area of coalgebras1 has emerged within
theoretical computer science with a unifying claim. It aims to be the mathematics of com-
putational dynamics. It combines notions and ideas from the mathematical theory of dy-
namical systems and from the theory of state-based computation. The area of coalgebra
is still in its infancy, but promises a perspective on uniting, say, the theory of differential
equations with automata and process theory and with biological and quantum computing,
by providing an appropriate semantical basis with associated logic. The theory of coalge-
bras may be seen as one of the original contributions stemming from the area of theoretical
computer science. The span of applications of coalgebras is still fairly limited, but may in
the future be extended to include dynamical phenomena in areas like physics, biology or
economics—based for instance on the claim of Adleman (the father of DNA-computing)
that biological life can be equated with computation [31]; or on [331] which gives a coal-
gebraic description of type spaces used in economics [197]; or on [52] describing network
dynamics that is common to all these areas; or on [433] using coalgebras in biological
modelling; or on [6, 235] where coalgebras are introduced in quantum computing.

Coalgebras are of surprising simplicity. They consist of a state space, or set of states,
say X , together with a structure map of the form X → F (X). The symbol F describes
some expression involving X (a functor), capturing the possible outcomes of the structure
map applied to a state. The map X → F (X) captures the dynamics in the form of a
function acting on states. For instance, one can have F as powerset in F (X) = P(X)
for non-deterministic computation X → P(X), or F (X) = {⊥} ∪ X for possibly non-

1We should immediately add that coalgebras in this context are defined with respect to a functor. They are
more general than coalgebras as used in linear algebra, namely as dual of a monoid: a vector space V , say over
K, with two linear maps V → V ⊗ V, V → K satisfying appropriate equations, see e.g. [82]. Such a structure
forms an example of a coalgebra (as used in this book) for the functor X 7→ K × (X ⊗X).

iii

DRAFT

iviviv

terminating computations X → {⊥} ∪ X . At this level of generality, algebras are de-
scribed as the duals of coalgebras (or the other way round), namely as maps of the form
F (X) → X . One of the appealing aspects of this abstract view is the duality between
structure (algebras) and behaviour (coalgebras).

Computer science is about generated behaviour

What is the essence of computing? What is the topic of the discipline of computer sci-
ence? Answers that are often heard are ‘data processing’ or ‘symbol manipulation’. Here
we follow a more behaviouristic approach and describe the subject of computer science
as generated behaviour. This is the behaviour that can be observed on the outside of a
computer, for instance via a screen or printer. It arises in interaction with the environment,
as a result of the computer executing instructions, laid down in a computer program. The
aim of computer programming is to make a computer do certain things, i.e. to generate be-
haviour. By executing a program a computer displays behaviour that is ultimately produced
by humans, as programmers.

This behaviouristic view allows us to understand the relation between computer science
and the natural sciences: biology is about “spontaneous” behaviour, and physics concen-
trates on lifeless natural phenomena, without autonomous behaviour. Behaviour of a sys-
tem in biology or physics is often described as evolution, where evolutions in physics are
transformational changes according to the laws of physics. Evolutions in biology seem to
lack inherent directionality and predictability [163]. Does this mean that behaviour is de-
terministic in (classical) physics, and non-deterministic in biology? And that coalgebras of
corresponding kinds capture the situation? At this stage the coalgebraic theory of modelling
has not yet demonstrated its usefulness in those areas. Therefore this text concentrates on
coalgebras in mathematics and computer science.

The behaviouristic view does help in answering questions like: can a computer think?
Or: does a computer feel pain? All a computer can do is display thinking behaviour, or
pain behaviour, and that is it. But it is good enough in interactions—think of the famous
Turing test—because in the end we never know for sure if other people actually feel pain.
We only see pain behaviour, and are conditioned to associate such behaviour with certain
internal states. But this association may not always work, for instance not in a different
culture: in Japan it is common to touch ones ear after burning a finger; for Europeans this
is non-standard pain behaviour. This issue of external behaviour versus internal states is
nicely demonstrated in [321] where it turns out to be surprisingly difficult for a human to
kill a “Mark III Beast” robot once it starts displaying desperate survival behaviour with
corresponding sounds, so that people easily attribute feelings to the machine and start to
feel pity.

These wide-ranging considerations form the background for a theory about computa-
tional behaviour in which the relation between observables and internal states is of central
importance.

The generated behaviour that we claim to be the subject of computer science arises by
a computer executing a program according to strict operational rules. The behaviour is
typically observed via the computer’s input & output (I/O). More technically, the program
can be understood as an element in an inductively defined set P of terms. This set forms
a suitable (initial) algebra F (P) → P , where the expression (or functor) F captures the
signature of the operations for forming programs. The operational rules for the behaviour of
programs are described by a coalgebra P → G(P), where the functor G captures the kind
of behaviour that can be displayed—such as deterministic, or with exceptions. In abstract
form, generated computer behaviour amounts to the repeated evaluation of an (inductively
defined) coalgebra structure on an algebra of terms. Hence the algebras (structure) and
coalgebras (behaviour) that are studied systematically in this text form the basic matter at
the heart of computer science.

One of the big challenges of computer science is to develop techniques for effectively

DRAFT

vvv

establishing properties of generated behaviour. Often such properties are formulated pos-
itively as wanted, functional behaviour. But these properties may also be negative, like in
computer security, where unwanted behaviour must be excluded. However, an elaborate
logical view about actual program properties within the combined algebraic/coalgebraic
setting has not been fully elaborated yet.

Algebras and coalgebras

The duality with algebras forms a source of inspiration and of opposition: there is a “hate-
love” relationship between algebra and coalgebra. First, there is a fundamental divide.
Think of the difference between an inductively defined data type in a functional program-
ming language (an algebra) and a class in an object-oriented programming language (a
coalgebra). The data type is completely determined by its “constructors”: algebraic oper-
ations of the form F (X) → X going into the data type. The class however involves an
internal state, given by the values of all the public and private fields of the class. This state
can be observed (via the public fields) and can be modified (via the public methods). These
operations of a class act on a state (or object) and are naturally described as “destructors”
pointing out of the class: they are of the coalgebraic form X → F (X).

Next, besides these differences between algebras and coalgebras there are also many
correspondences, analogies, and dualities, for instance between bisimulations and congru-
ences, or between initiality and finality. Whenever possible, these connections will be made
explicit and will be exploited in the course of this work.

As already mentioned, ultimately, stripped to its bare minimum, a programming lan-
guage involves both a coalgebra and an algebra. A program is a structured element of the
algebra that arises (as so-called initial algebra) from the programming language that is be-
ing used. Each language construct corresponds to certain dynamics (behaviour), captured
via a coalgebra. The program’s behaviour is thus described by a coalgebra acting on the
state space of the computer. This is the view underlying the so-called structural operational
semantics. Coalgebraic behaviour is generated by an algebraically structured program.
This is a simple, clear and appealing view. It turns out that this approach requires a cer-
tain level of compatibility between the algebras and coalgebras involved. It is expressed in
terms of so-called distributive laws connecting algebra-coalgebra pairs. These laws appear
in Chapter 5.

Coalgebras have a black box state space

Coalgebra is thus the study of states and their operations and properties. The set of states
is best seen as a black box, to which one has limited access—like with the states of a com-
puter mentioned above. As already mentioned, the tension between what is actually inside
and what can be observed externally is at the heart of the theory of coalgebras. Such tension
also arises for instance in quantum mechanics where the relation between observables and
states is a crucial issue [334]. Similarly, it is an essential element of cryptography that parts
of data are not observable—via encryption or hashing. In a coalgebra it may very well be
the case that two states are internally different, but are indistinguishable as far as one can
see with the available operations. In that case one calls the two states bisimilar or obser-
vationally equivalent. Bisimilarity is indeed one of the fundamental notions of the theory
of coalgebras, see Chapter 3. Also important are invariant properties of states: once such a
property holds, it continues to hold no matter which of the available operations is applied,
see Chapter 6. Safety properties of systems are typically expressed as invariants. Finally,
specifications of the behaviour of systems are conveniently expressed using assertions and
modal operators like: for all direct successor states (nexttime), for all future states (hence-
forth), for some future state (eventually), see also Chapter 6. This text describes these basic
elements of the theory of coalgebras—bisimilarity, invariants and assertions. It is meant as
an introduction to this new and fascinating field within theoretical computer science. The

DRAFT

vivivi

text is too limited in both size and aims to justify the grand unifying claims mentioned
above. But hopefully, it does inspire and generate much further research in the area.

Brief historical perspective

Coalgebra does not come out of the blue. Below we shall sketch several, relatively in-
dependent, developments during the last few decades that appeared to have a common
coalgebraic basis, and that have contributed to the area of coalgebra as it stands today. This
short sketch is of course far from complete.

1. The categorical approach to mathematical system theory. During the 1970s Ar-
bib, Manes and Goguen, and also Adámek, analysed Kalman’s [263] work on linear
dynamical systems, in relation to automata theory. They realised that linearity does
not really play a role in Kalman’s famous results about minimal realisation and du-
ality, and that these results could be reformulated and proved more abstractly using
elementary categorical constructions. Their aim was “to place sequential machines
and control systems in a unified framework” (abstract of [39]), by developing a no-
tion of “machine in a category” (see also [12, 13]). This led to general notions of
state, behaviour, reachability, observability, and realisation of behaviour. However,
the notion of coalgebra did not emerge explicitly in this approach, probably because
the setting of modules and vector spaces from which this work arose provided too
little categorical infrastructure (especially: no cartesian closure) to express these re-
sults purely coalgebraically.

2. Non-well-founded sets. Aczel [8] formed a next crucial step with his special set
theory that allows infinitely descending ∈-chains, because it used coalgebraic termi-
nology right from the beginning. The development of this theory was motivated by
the desire to provide meaning to Milner’s theory CCS of concurrent processes with
potentially infinite behaviour. Therefore, the notion of bisimulation from process
theory played a crucial role. An important contribution of Aczel is that he showed
how to treat bisimulation in a coalgebraic setting, especially by establishing the first
link between proofs by bisimulations and finality of coalgebras, see also [11, 9].

3. Data types of infinite objects. The first systematic approach to data types in com-
puting [155] relied on initiality of algebras. The elements of such algebraic structures
are finitely generated objects. However, many data types of interest in computer sci-
ence (and mathematics) consist of infinite objects, like infinite lists or trees (or even
real numbers). The use of (final) coalgebras in [423, 40, 181, 347] to capture such
structures provided a next important step. Such infinite structures can be represented
in functional programming languages (typically with lazy evaluation) or in logical
programming languages [396, 178, 179].

4. Initial and final semantics. In the semantics of program and process languages it
appeared that the relevant semantical domains carry the structure of a final coalgebra
(sometimes in combination with an initial algebra structure [135, 123]). Especially
in the metric space based tradition (see e.g. [50]) this insight was combined with
Aczel’s techniques by Rutten and Turi. It culminated in the recognition that “com-
patible” algebra-coalgebra pairs (called bialgebras) are highly relevant structures, de-
scribed via distributive laws. The basic observation of [413, 412], further elaborated
in [59], is that such laws correspond to specification formats for operational rules on
(inductively defined) programs (see also [274]). These bialgebras satisfy elementary
properties like: observational equivalence (i.e. bisimulation wrt. the coalgebra) is a
congruence (wrt. the algebra).

5. Behavioural approaches in specification. Reichel [364] was the first to use so-
called behavioural validity of equations in the specification of algebraic structures

DRAFT

viiviivii

that are computationally relevant. The basic idea is to divide ones types (also called
sorts) into ‘visible’ and ‘hidden’ ones. The latter are supposed to capture states, and
are not directly accessible. Equality is only used for the “observable” elements of
visible types. For elements of hidden types (or states) one uses behavioural equal-
ity instead: two elements x1 and x2 of hidden type are behaviourally equivalent if
t(x1) = t(x2) for each term t of visible type. This means that they are equal as far as
can be observed. The idea is further elaborated in what has become known as hidden
algebra [154], see for instance also [142, 384, 69], and has been applied to describe
classes in object-oriented programming languages, which have an encapsulated state
space. But it was later realised that behavioural equality is essentially bisimilarity in
a coalgebraic context (see e.g. [311]), and it was again Reichel [366] who first used
coalgebras for the semantics of object-oriented languages. Later on they have been
applied also to actual programming languages like Java [244].

6. Modal logic. A more recent development is the connection between coalgebras and
modal logics. In general, such logics qualify the truth conditions of statements, con-
cerning knowledge, belief and time. In computer science such logics are used to
reason about the way programs behave, and to express dynamical properties of tran-
sitions between states. Temporal logic is a part of modal logic which is particularly
suitable for reasoning about (reactive) state-based systems, as argued for example
in [356, 357], via its nexttime and lasttime operators. Since coalgebras give ab-
stract formalisations of such state-based systems one expects a connection. It was
Moss [328] who first associated a suitable modal logic to coalgebras—which in-
spired much subsequent work [370, 371, 294, 216, 229, 343, 289], see [290] for a
recent overview. The idea is that the role of equational formulas in algebra is played
by modal formulas in coalgebra.

Position of this text

There are several recent texts presenting a synthesis of several of the developments in the
area of coalgebra [246, 414, 165, 378, 292, 344, 167, 15, 249]. This text is a first systematic
presentation of the subject in the form of a book. Key phrases are: coalgebras are general
dynamical systems, final coalgebras describe behaviour of such systems (often as infinite
objects) in which states and observations coincide, bisimilarity expresses observational
indistinguishability, the natural logic of coalgebras is modal logic, etc.

During the last decade a “coalgebraic community” has emerged, centered around the
workshops Coalgebraic Methods in Computer Science, see the proceedings [240, 247, 367,
100, 330, 169, 21, 141, 18, 242, 386], the conferences Coalgebra and Algebra in Computer
Science (CALCO), see [121, 332, 297, 99], and the associated special journal issues [241,
248, 101, 170, 22, 19, 243]. This text is specifically not focused on that community, but tries
to reach a wider audience. This means that the emphasis lies—certainly in the beginning—
on explaining the theory via concrete examples, and on motivation rather than on generality
and (categorical) abstraction.

Coalgebra and category theory

Category theory if a modern, abstract mathematical formalism that emerged in the 1940s
and 1950s in algebraic topology. It has become the preferred formalism in the area of se-
mantics of datatypes and programming languages since it adequately captures the relevant
phenomena and makes it possible to express similarities between different structures (like
sets, domains and metric spaces). The field of coalgebra requires the theory of categories
already in the definition of the notion of coalgebra itself—since it requires the concept
of a functor. However, the reader is not assumed to know category theory: in this text
the intention is not to describe the theory of coalgebras in its highest form of generality,

DRAFT

viiiviiiviii

making systematic use of category theory right from the beginning. After all, this is only
an introduction. Rather, the text starts from concrete examples and introduces the basics
of category theory as it proceeds. Categories will thus be introduced gradually, without
making it a proper subject matter. Hopefully, readers unfamiliar with category theory can
thus pick up the basics along the way, seeing directly how it is used. Anyway, most of the
examples that are discussed live in the familiar standard setting of sets and functions, so
that it should be relatively easy to see the underlying categorical structures in a concrete
setting. Thus, more or less familiar set-theoretic language is used most of the time, but
with a perspective on the greater generality offered by the theory of categories. In this way
we hope to serve the readers without background in category theory, and at the same time
offer the more experienced cognoscienti an idea of what is going on at a more abstract
level—which they can find to a limited extent in the exercises, but to a greater extent in
the literature. Clearly, this is a compromise which runs the risk of satisfying no-one: the
description may be too abstract for some, and too concrete for others. The hope is that it
does have something to offer for everyone.

In the first half of the book (Chapters 1 – 3) the formalism of categories will not be
very prominent, for instance, in the restriction to so-called polynomial functors which can
be handled rather concretely. This is motivated by our wish to produce an introduction that
is accessible to non-specialists. Certainly, the general perspective is always right around
the corner, and will hopefully be appreciated once this more introductory material has been
digested. Certainly in the second half of the book, starting from Chapter 4, the language of
category theory will be inescapable.

Often the theory of categories is seen as a very abstract part of mathematics, that is not
very accessible. However, it is essential in this text, for several good reasons.

1. It greatly helps to properly organise the relevant material on coalgebras.

2. Only by using categorical language the duality between coalgebra and algebra can
be fully seen—and exploited.

3. Almost all of the literature on coalgebra uses category theory in one way or another.
Therefore, an introductory text that wishes to properly prepare the reader for further
study cannot avoid the language of categories.

4. Category helps you to structure your thinking and to ask relevant questions: ah, this
is mapping is a functor! What structure does it preserve? Does it have an adjoint?

In the end, we think that coalgebras form a very basic and natural mathematical concept,
and that their identification is real step forward. Many people seem to be using coalgebras
in various situations, without being aware of it. Hopefully this text can make them aware,
and can contribute to a better understanding and exploitation of these situations. And hope-
fully many more such application areas will be identified, further enriching the theory of
coalgebras.

Intended audience

This text is written for everyone with an interest in the mathematical aspects of compu-
tational behaviour. This probably includes primarily mathematicians, logicians and (the-
oretical) computer scientists, but hopefully also an audience with a different background
such as for instance mathematical physics or biology, or even economics. A basic level of
mathematical maturity is assumed, for instance via familiarity with elementary set theory
and logic (and its notation). The examples in the text are taken from various areas. Each
section is accompanied by a series of exercises, to facilitate teaching—typically at a late
bachelor or early master level—and for testing ones own understanding in self-study.

DRAFT

ixixix

Acknowledgements

An earlier version of this book has been on the web for quite some time. This generated
useful feedback from many people. In fact, there are too many of them to mention them
individually here. Therefore I would like to thank everyone in the coalgebra community
(and beyond) for their cooperation, feedback, help, advice, wisdom, insight, support and
encouragement.

DRAFT

xxx

DRAFT
Contents

Preface iii

1 Motivation 1
1.1 Naturalness of coalgebraic representations 2
1.2 The power of the coinduction . 5
1.3 Generality of temporal logic of coalgebras 13

1.3.1 Temporal operators for sequences 13
1.3.2 Temporal operators for classes . 16

1.4 Abstractness of the coalgebraic notions 18

2 Coalgebras of Polynomial Functors 25
2.1 Constructions on sets . 25
2.2 Polynomial functors and their coalgebras 36

2.2.1 Statements and sequences . 39
2.2.2 Trees . 39
2.2.3 Deterministic automata . 40
2.2.4 Non-deterministic automata and transition systems 43
2.2.5 Context-free grammars . 45
2.2.6 Turing-style machines . 45
2.2.7 Non-well-founded sets . 46

2.3 Final coalgebras . 49
2.3.1 Beyond sets . 53

2.4 Algebras . 56
2.4.1 Bialgebras . 65
2.4.2 Bialgebras . 65
2.4.3 Hidden algebras . 65
2.4.4 Coalgebras as algebras . 66

2.5 Adjunctions, cofree coalgebras, behaviour-realisation 67

3 Bisimulations 83
3.1 Relation lifting, bisimulations and congruences 83
3.2 Properties of bisimulations . 89
3.3 Bisimulations as spans and cospans . 96

3.3.1 Comparing definitions of bisimulation 100
3.3.2 Congruences and spans . 101

3.4 Bisimulations and the coinduction proof principle 104
3.5 Process semantics . 109

3.5.1 Process descriptions . 110
3.5.2 A simple process algebra . 113

xi

DRAFT

xii Contentsxii Contentsxii Contents

4 Logic, Lifting, and Finality 117
4.1 Multiset and distribution functors . 117

4.1.1 Mappings between collection functors 121
4.2 Weak pullbacks . 125
4.3 Predicates and relations . 135
4.4 Relation lifting, categorically . 148
4.5 Logical bisimulations . 156

4.5.1 Logical formulations of induction and coinduction 161
4.6 Existence of final coalgebras . 164
4.7 Polynomial and analytical functors . 171

5 Monads, comonads and distributive laws 181
5.1 Monads and comonads: definition and examples 181

5.1.1 Comonads . 189
5.2 Kleisli categories and distributive laws . 192
5.3 Trace semantics via finality in Kleisli categories 204
5.4 Eilenberg-Moore categories and distributive laws 216
5.5 Bialgebras and operational semantics . 230

6 Invariants and Assertions 243
6.1 Predicate lifting . 244

6.1.1 Predicate lowering as liftings left adjoint 247
6.1.2 Predicate lifting, categorically . 249

6.2 Invariants . 253
6.2.1 Invariants, categorically . 256

6.3 Greatest invariants and limits of coalgebras 258
6.3.1 Greatest invariants and subcoalgebras, categorically 262

6.4 Temporal logic for coalgebras . 265
6.4.1 Backward reasoning . 272

6.5 Modal logic for coalgebras . 276
6.5.1 Coalgebraic modal logic, more abstractly 281
6.5.2 Modal logic based on relation lifting 284

6.6 Algebras and terms . 286
6.7 Algebras and assertions . 294
6.8 Coalgebras and assertions . 307
6.9 Coalgebraic class specifications . 319

6.9.1 Bakery algorithm . 322

References 327

Subject Index 354

Definition and Symbol Index 364
DRAFT

Chapter 1

Motivation

This chapter tries to explain why coalgebras are interesting structures in mathematics and
computer science. It does so via several examples. The notation used for these examples
will be explained informally, as we proceed. The emphasis at this stage is not so much
on precision in explanation, but on transfer of ideas and intuitions. Therefore, for the time
being we define a coalgebra—very informally—to be a function of the form:

S
c // · · · S · · · (1.1)

What we mean is: a coalgebra is given by a set S and a function c with S as domain and
with a “structured” codomain (result, output, the box · · ·), in which the domain S may
occur again. The precise form of these codomain boxes is not of immediate concern.

Some terminology: We often call S the state space or set of states, and say that the
coalgebra acts on S. The function c is sometimes called the transition function or also
transition structure. The idea that will be developed is that coalgebras describe general
“state-based systems” provided with “dynamics” given by the function c. For a state x ∈ S,
the result c(x) tells us what the successor states of x are, if any. The codomain · · · is often
called the type or interface of the coalgebra. Later we shall see that it is a functor.

A simple example of a coalgebra is the function,

Z
n 7→ (n− 1, n+ 1)

// Z× Z

with state space Z occurring twice on the right hand side. Thus the box or type of this
coalgebra is: (−)× (−) . The transition function n 7→ (n− 1, n+ 1) may also be written
using λ-notation as λn. (n− 1, n+ 1) or as λn ∈ Z. (n− 1, n+ 1).

Another example of a coalgebra, this time with state space the setAN of functions from
N to some given set A, is:

AN
σ 7→ (σ(0), λn. σ(n+ 1))

// A×AN

In this case the box is A× (−) . If we write σ as an infinite sequence (σn)n∈N we may
write this coalgebra as a pair of functions 〈head, tail〉 where

head
(
(σn)n∈N

)
= σ0 and tail

(
(σn)n∈N

)
= (σn+1)n∈N.

Many more examples of coalgebras will occur throughout this text.
This chapter is devoted to “selling” and “promoting” coalgebras. It does so by focusing

on the following topics.

1

DRAFT

2 Chapter 1. Motivation2 Chapter 1. Motivation2 Chapter 1. Motivation

1. A representation as a coalgebra (1.1) is often very natural, from the perspective of
state-based computation.

2. There are powerful “coinductive” definition and proof principles for coalgebras.

3. There is a very natural (and general) temporal logic associated with coalgebras.

4. The coalgebraic notions are on a suitable level of abstraction, so that they can be
recognised and used in various settings.

Full appreciation of this last point requires some familiarity with basic category theory. It
will be provided in Section 1.4.

1.0.1. Remark. Readers with a mathematical background may be familiar with the notion
of coalgebra as comonoid in vector spaces, dual to an algebra as a monoid. In that case one
has a “counit” map V → K, from the carrier space V to the underlying field K, together
with a “comultiplication” V → V ⊗ V . These two maps can be combined into a single
map V → K × (V ⊗ V) of the form (1.1), forming a coalgebra in the present sense. The
notion of coalgebra used here is thus much more general than the purely mathematical one.

1.1 Naturalness of coalgebraic representations

We turn to a first area where coalgebraic representations as in (1.1) occur naturally and may
be useful, namely programming languages—used for writing computer programs. What are
programs, and what do they do? Well, programs are lists of instructions telling a computer
what to do. Fair enough. But what are programs from a mathematical point of view? Put
differently, what do programs mean1? One view is that programs are certain functions that
take an input and use it to compute a certain result. This view does not cover all programs:
certain programs, often called processes, are meant to be running forever, like operating
systems, without really producing a result. But we shall follow the view of programs as
functions for now. The programs we have in mind do not only work on input, but also on
what is usually called a state, for example for storing intermediate results. The effect of a
program on a state is not immediately visible, and is therefore often called the side-effect
of the program. One may think of the state as given by the contents of the memory in the
computer that is executing the program. This is not directly observable.

Our programs should thus be able to modify a state, typically via an assignment like
i = 5 in a so-called imperative programming language2. Such an assignment statement
is interpreted as a function that turns a state x into a new, successor state x′ in which the
value of the identifier i is equal to 5. Statements in such languages are thus described via
suitable “state transformer” functions. In simplest form, ignoring input and output, they
map a state to a successor state, as in:

S
stat // S, (1.2)

where we have written S for the set of states. Its precise structure is not relevant. Often the
set S of states is considered to be a “black box” to which we do not have direct access, so
that we can only observe certain aspects. For instance via a function i : S → Z representing
the above integer i. The value i(x′) should be 5 in the result state x′ after evaluating the
assignment i = 5, considered as a function S → S, like in (1.2).

This description of statements as functions S → S is fine as first approximation, but
one quickly realises that statements do not always terminate normally and produce a suc-
cessor state. Sometimes they can “hang” and continue to compute without ever producing a

1This question comes up frequently when confronted with two programs—one possibly as a transformation
from the other—which perform the same task in a different manner, and which could thus be seen as the same
program. But how can one make precise that they are the same?

2Thus, purely functional programming languages are not included in our investigations.

DRAFT

1.1. Naturalness of coalgebraic representations 31.1. Naturalness of coalgebraic representations 31.1. Naturalness of coalgebraic representations 3

successor state. This typically happens because of an infinite loop, for example in a while
statement, or because of a recursive call without exit.

There are two obvious ways to incorporate such non-termination.

1. Adjust the state space. In this case one extends the state space S to a space S⊥
def
=

{⊥} ∪ S, where ⊥ is a new “bottom” element not occurring in S that is especially
used to signal non-termination. Statements then become functions:

S⊥
stat // S⊥ with the requirement stat(⊥) = ⊥.

The side-condition expresses the idea that once a statement hangs it will continue to
hang.

The disadvantage of this approach is that the state space becomes more complicated,
and that we have to make sure that all statements satisfy the side-condition, namely
that they preserve the bottom element ⊥. But the advantage is that composition of
statements is just function composition.

2. Adjust the codomain. The second approach keeps the state space S as it is, but
adapts the codomain of statements, as in:

S
stat // S⊥ where, recall, S⊥ = {⊥} ∪ S.

In this representation we easily see that in each state x ∈ S the statement can either
hang, when stat(x) = ⊥, or terminate normally, namely when stat(x) = x′ for some
successor state x′ ∈ S. What is good is that there are no side-conditions anymore.
But composition of statements cannot be defined via function composition, because
the types do not match. Thus the types force us to deal explicitly with the propagation
of non-termination: for these kind of statements s1, s2 : S → S⊥ the composition
s1 ; s2, as a function S → S⊥, is defined via a case distinction (or pattern match) as:

s1 ; s2 = λx ∈ S.
{
⊥ if s1(x) = ⊥
s2(x′) if s1(x) = x′

This definition is more difficult than function composition (as used in 1. above), but
it explicitly deals with the case distinction that is of interest, namely between non-
termination and normal termination. Hence being forced to make these distinctions
explicitly is maybe not so bad at all.

We push these same ideas a bit further. In many programming languages (like Java [43])
programs may not only hang, but may also terminate “abruptly” because of an exception.
An exception arises when some constraint is violated, such as a division by zero or an
access a[i] in an array a which is a null-reference. Abrupt termination is fundamentally
different from non-termination: non-termination is definitive and irrevocable, whereas a
program can recover from abrupt termination via a suitable exception handler that restores
normal termination. In Java this is done via a try-catch statement, see for instance [43,
162, 226].

Let us write E for the set of exceptions that can be thrown. Then there are again two
obvious representations of statements that can terminate normally or abruptly, or can hang.

1. Adjust the state space. Statements then remain endofunctions3 on an extended state
space:

(
{⊥} ∪ S ∪ (S × E)

) stat //

(
{⊥} ∪ S ∪ (S × E)

)

3An endofunction is a function A→ A from a set A to itself.

DRAFT

4 Chapter 1. Motivation4 Chapter 1. Motivation4 Chapter 1. Motivation

The entire state space clearly becomes complicated now. But also the side-conditions
are becoming non-trivial: we still want stat(⊥) = ⊥, and also stat(x, e) = (x, e),
for x ∈ S and e ∈ E, but the latter only for non-catch statements. Keeping track of
such side-conditions may easily lead to mistakes. But on the positive side, composi-
tion of statements is still function composition in this representation.

2. Adjust the codomain. The alternative approach is again to keep the state space S as
it is, but to adapt the codomain type of statements, namely as:

S
stat //

(
{⊥} ∪ S ∪ (S × E)

)
(1.3)

Now we do not have side-conditions and we can clearly distinguish the three pos-
sible termination modes of statements. This structured output type in fact forces us
to make these distinctions in the definition of the composition s1 ; s2 of two such
statements s1, s2 : S → {⊥} ∪ S ∪ (S × E), as in:

s1 ; s2 = λx ∈ S.

⊥ if s1(x) = ⊥
s2(x′) if s1(x) = x′

(x′, e) if s1(x) = (x′, e).

Thus, if s1 hangs or terminates abruptly, then the subsequent statement s2 is not
executed. This is very clear in this second coalgebraic representation.

When such a coalgebraic representation is formalised within the typed language of a
theorem prover (like in [245]), the type checker of the theorem prover will make sure
that appropriate case distinctions are made, according to the output type as in (1.3).
See also [226] where Java’s exception mechanism is described via such case distinc-
tions, closely following the official language definition [162].

These examples illustrate that coalgebras as functions with structured codomains · · · ,
like in (1.1), arise naturally, and that the structure of the codomain indicates the kind of
computations that can be performed. This idea will be developed further, and applied to
various forms of computation. For instance, non-deterministic statements may be repre-
sented via the powerset P as coalgebraic state transformers S → P(S) with multiple result
states. But there are many more such examples, involving for instance probability distribu-
tions on states.

(Readers familiar with computational monads [326] may recognise similarities. Indeed,
in a computational setting there is a close connection between coalgebraic and monadic rep-
resentations. Briefly, the monad introduces the computational structure, like composition
and extension, whereas the coalgebraic view leads to an appropriate program logic. This is
elaborated for Java in [244].)

Exercises

1.1.1. (i) Prove that the composition operation ; as defined for coalgebras S → {⊥} ∪ S is as-
sociative, i.e. satisfies s1 ;(s2 ; s3) = (s1 ; s2) ; s3, for all statements s1, s2, s3 : S →
{⊥} ∪ S.
Define a statement skip : S → {⊥} ∪ S which is a unit for composition ; i.e. which
satisfies (skip ; s) = s = (s ; skip), for all s : S → {⊥} ∪ S.

(ii) Do the same for ; defined on coalgebras S → {⊥} ∪ S ∪ (S × E).
[In both cases, statements with an associative composition operation and a unit element
form a monoid.]

1.1.2. Define also a composition monoid (skip, ;) for coalgebras S → P(S).

DRAFT

1.2. The power of the coinduction 51.2. The power of the coinduction 51.2. The power of the coinduction 5

1.2 The power of the coinduction

In this section we shall look at sequences—or lists, or words, as they are also called. Se-
quences are basic data structures, both in mathematics and in computer science. One can
distinguish finite sequences 〈a1, . . . , an〉 and infinite 〈a1, a2, . . .〉 ones. The mathematical
theory of finite sequences is well-understood, and a fundamental part of computer science,
used in many programs (notably in the language LISP). Definition and reasoning with finite
lists is commonly done with induction. As we shall see, infinite lists require coinduction.
Infinite sequences can arise in computing as the observable outcomes of a program that
runs forever. Also, in functional programming, they can occur as so-called lazy lists, like
in the languages Haskell [72] or Clean [350]. Modern extensions of logical programming
languages have support for infinite sequences [396, 178].

In the remainder of this section we shall use an arbitrary but fixed set A, and wish to
look at both finite 〈a1, . . . , an〉 and infinite 〈a1, a2, . . .〉 sequences of elements ai of A.
The set A may be understood as a parameter, and our sequences are thus parametrised by
A, or, put differently, are polymorphic in A.

We shall develop a slightly unusual and abstract perspective on sequences. It does not
treat sequences as completely given at once, but as arising in a local, step-by-step manner.
This coalgebraic approach relies on the following basic fact. It turns out that the set of
both finite and infinite sequences enjoys a certain “universal” property, namely that it is a
final coalgebra (of suitable type). We shall explain what this means, and how this special
property can be exploited to define various operations on sequences and to prove properties
about them. A special feature of this universality of the final coalgebra of sequences is that
it avoids making the (global) distinction between finiteness and infiniteness for sequences.

First some notation. We write A? for the set of finite sequences 〈a1, . . . , an〉 (or lists
or words) of elements ai ∈ A, and AN for the set of infinite ones: 〈a1, a2, . . .〉. The latter
may also be described as functions a(−) : N→ A, which explains the exponent notation in
AN. Sometimes, the infinite sequences in AN are called streams. Finally, the set of both
finite and infinite sequences A∞ is then the (disjoint) union A? ∪ AN.

The set of sequences A∞ carries a coalgebra or transition structure, which we simply
call next. It tries to decompose a sequence into its head and tail, if any. Hence one may
understand next as a partial function. But we describe it as a total function which possibly
outputs a special element ⊥ for undefined.

A∞
next // {⊥} ∪

(
A×A∞

)

σ � //

{
⊥ if σ is the empty sequence 〈〉
(a, σ′) if σ = a · σ′ with “head” a ∈ A and “tail” σ′ ∈ A∞.

(1.4)

The type of the coalgebra is thus {⊥} ∪ (A× (−)) , like in (1.1), with A∞ as state space
that is plugged in the hole (−) in the box. The successor of a state σ ∈ A∞, if any, is its
tail sequence, obtained by removing the head.

The function next captures the external view on sequences: it tells what can be observed
about a sequence σ, namely whether or not it is empty, and if not, what its head is. By
repeated application of the function next all observable elements of the sequence appear.
This “observational” approach is fundamental in coalgebra.

A first point to note is that this function next is an isomorphism: its inverse next−1

sends ⊥ to the empty sequence 〈〉, and a pair (a, τ) ∈ A × A∞ to the sequence a · τ
obtained by prefixing a to τ .

The following result describes a crucial “finality” property of sequences that can be
used to identify the set A∞. Indeed, as we shall see later in Lemma 2.3.3, final coalgebras
are unique, up-to-isomorphism.

DRAFT

6 Chapter 1. Motivation6 Chapter 1. Motivation6 Chapter 1. Motivation

1.2.1. Proposition (Finality of sequences). The coalgebra next : A∞ → {⊥} ∪ A × A∞
from (1.4) is final among coalgebras of this type: for an arbitrary coalgebra c : S →
{⊥} ∪ (A× S) on a set S there is a unique “behaviour” function behc : S → A∞ which
is a homomorphism of coalgebras. That is, for each x ∈ S, both:

• if c(x) = ⊥, then next(behc(x)) = ⊥.

• if c(x) = (a, x′), then next(behc(x)) = (a,behc(x
′)).

Both these two points can be combined in a commuting diagram, namely as,

{⊥} ∪ (A× S) //_________
id ∪ (id × behc) {⊥} ∪ (A×A∞)

S

c

OO

//_______________
behc

A∞

∼= next
OO

where the function id ∪ (id × behc) on top maps ⊥ to ⊥ and (a, x) to (a,behc(x)).

In the course of this chapter we shall see that a general notion of homomorphism be-
tween coalgebras (of the same type) can be defined by such commuting diagrams.

Proof. The idea is to obtain the required behaviour function behc : S → A∞ via repeated
application of the given coalgebra c as follows.

behc(x) =

〈〉 if c(x) = ⊥
〈a〉 if c(x) = (a, x′) ∧ c(x′) = ⊥
〈a, a′〉 if c(x) = (a, x′) ∧ c(x′) = (a′, x′′) ∧ c(x′′) = ⊥

...

Doing this formally requires some care. We define for n ∈ N an iterated version cn : S →
{⊥} ∪ A× S of c as:

c0(x) = c(x)

cn+1(x) =

{
⊥ if cn(x) = ⊥
c(y) if cn(x) = (a, y)

Obviously, cn(x) 6= ⊥ implies cm(x) 6= ⊥, for m < n. Thus we can define:

behc(x) =

〈a0, a1, a2, . . .〉 if ∀n ∈ N. cn(x) 6= ⊥, and ci(x) = (ai, xi)

〈a0, . . . , am−1〉 if m ∈ N is the least number with cm(x) = ⊥,
and ci(x) = (ai, xi), for i < m

We check the two conditions for homomorphism from the proposition above.

• If c(x) = ⊥, then the least m with cm(x) = ⊥ is 0, so that behc(x) = 〈〉, and thus
also next(behc(x)) = ⊥.

• If c(x) = (a, x′), then we distinguish two cases:

– If ∀n ∈ N. cn(x) 6= ⊥, then ∀n ∈ N. cn(x′) 6= ⊥, and ci+1(x) = ci(x′). Let
ci(x′) = (ai, xi), then

next(behc(x)) = next(〈a, a0, a1, . . .〉)
= (a, 〈a0, a1, . . .〉)
= (a,behc(x

′)).

DRAFT

1.2. The power of the coinduction 71.2. The power of the coinduction 71.2. The power of the coinduction 7

– If m is least with cm(x) = ⊥, then m > 0 and m − 1 is the least k with
ck(x′) = ⊥. For i < m − 1 we have ci+1(x) = ci(x′), and thus by writing
ci(x′) = (ai, xi), we get as before:

next(behc(x)) = next(〈a, a0, a1, . . . , am−2〉)
= (a, 〈a0, a1, . . . , am−2〉)
= (a,behc(x

′)).

Finally, we still need to prove that this behaviour function behc is the unique homo-
morphism from c to next. Thus, assume also g : S → A∞ is such that c(x) = ⊥ ⇒
next(g(x)) = ⊥ and c(x) = (a, x′)⇒ next(g(x)) = (a, g(x′)). We then distinguish:

• g(x) is infinite, say 〈a0, a1, . . .〉. Then one shows by induction that for all n ∈ N,
cn(x) = (an, xn), for some xn. This yields behc(x) = 〈a0, a1, . . .〉 = g(x).

• g(x) is finite, say 〈a0, . . . , am−1〉. Then one proves that for all n < m, cn(x) =
(an, xn), for some xn, and cm(x) = ⊥. So also now, behc(x) = 〈a0, . . . , am−1〉 =
g(x).

Before exploiting this finality result we illustrate the behaviour function.

1.2.2. Example (Decimal representations as behaviour). So far we have considered sequen-
ce coalgebras parametrised by an arbitrary set A. In this example we take a special choice,
namely A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, the set of decimal digits. We wish to define a coal-
gebra (or machine) which generates decimal representations of real numbers in the unit
interval [0, 1) ⊆ R. Notice that this may give rise to both finite sequences (1

8 should
yield the sequence 〈1, 2, 5〉, for 0.125) and infinite ones (1

3 should give 〈3, 3, 3, . . .〉 for
0.333 . . .).

The coalgebra we are looking for computes the first decimal of a real number r ∈ [0, 1).
Hence it should be of the form,

[0, 1)
nextdec // {⊥} ∪

(
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} × [0, 1)

)

with state space [0, 1). How to define nextdec? Especially, when does it stop (i.e. return
⊥), so that a finite sequence is generated? Well, a decimal representation like 0.125 may
be identified with 0.12500000 . . . with a tail of infinitely many zeros. Clearly, we wish to
map such infinitely many zeros to ⊥. Fair enough, but it does have as consequence that the
real number 0 ∈ [0, 1) gets represented as the empty sequence.

A little thought brings us to the following:

nextdec(r) =

{
⊥ if r = 0

(d, 10r − d) otherwise, where d ∈ A is such that d ≤ 10r < d+ 1.

Notice that this function is well-defined, because in the second case the successor state
10r − d is within the interval [0, 1).

According to the previous proposition, this nextdec coalgebra gives rise to a behaviour
function:

[0, 1)
behnextdec //

(
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

)∞

In order to understand what it does, i.e. which sequences are generated by nextdec, we
consider two examples.

DRAFT

8 Chapter 1. Motivation8 Chapter 1. Motivation8 Chapter 1. Motivation

Starting from 1
8 ∈ [0, 1) we get:

nextdec(1
8) = (1, 1

4) because 1 ≤ 10
8 < 2 and 10

8 − 1 = 1
4

nextdec(1
4) = (2, 1

2) because 2 ≤ 10
4 < 3 and 10

4 − 2 = 1
2

nextdec(1
2) = (5, 0) because 5 ≤ 10

2 < 6 and 10
2 − 5 = 0

nextdec(0) = ⊥.

Thus the resulting nextdec-behaviour on 1
8 is indeed 〈1, 2, 5〉, i.e. behnextdec(1

8) = 〈1, 2, 5〉.
Indeed, in decimal notation we write 1

8 = 0.125.
Next, when we run nextdec on 1

9 ∈ [0, 1) we see that:

nextdec(1
9) = (1, 1

9) because 1 ≤ 10
9 < 2 and 10

9 − 1 = 1
9 .

Thus nextdec immediately loops on 1
9 , and we get an infinite sequence 〈1, 1, 1, . . .〉 as

behaviour. This corresponds to the fact that we can identify 1
9 with the infinite decimal

representation 0.11111 · · · .

One sees in the proof of Proposition 1.2.1 that manipulating sequences via their ele-
ments is cumbersome and requires us to distinguish between finite and infinite sequences.
However, the nice thing about the finality property ofA∞ is that we do not have to work this
way anymore. This property states two important aspects, namely existence and unique-
ness of a homomorphism S → A∞ into the set of sequences, provided we have a coalgebra
structure on S. These two aspects give us two principles:

• A coinductive definition principle. The existence aspect tells us how to obtain
functions S → A∞ into A∞. If ‘recursion’ is the appropriate term for definition by
induction, then the existence property at hand may be called ‘corecursion’.

• A coinductive proof principle. The uniqueness aspect tells us how to prove that
two functions f, g : S → A∞ are equal, namely by showing that they are both ho-
momorphisms from a single coalgebra c : S → {⊥} ∪ (A×S) to the final coalgebra
next : A∞ → {⊥} ∪ (A×A∞).

Coinduction is thus the use of finality—just like induction is the use of initiality, as will be
illustrated in Section 2.4 in the next Chapter. We shall see several examples of the use of
these definition and proof principles for sequences in the remainder of this section.

Notation. One thing the previous proposition shows us is that coalgebras c : S → {⊥} ∪
(A× S) can be understood as generators of sequences, namely via the resulting behaviour
function behc : S → A∞. Alternatively, these coalgebras can be understood as certain
automata. The behaviour of a state x ∈ S of this automaton is then the resulting sequence
behc(x) ∈ A∞. These sequences behc(x) only show the external behaviour, and need not
tell everything about states.

Given this behaviour-generating perspective on coalgebras, it will be convenient to use
a transition style notation. For a state x ∈ S of an arbitrary coalgebra c : S → {⊥} ∪
(A× S) we shall often write

x9 if c(x) = ⊥ and x
a−→ x′ if c(x) = (a, x′). (1.5)

In the first case there is no transition starting from the state x: the automaton c halts imme-
diately at x. In the second case one can do a c-computation starting with x; it produces an
observable element a ∈ A and results in a successor state x′.

This transition notation applies in particular to the final coalgebra next : A∞ → {⊥} ∪
(A × A∞). In that case, for σ ∈ A∞, σ 9 means that the sequence σ is empty. In the

DRAFT

1.2. The power of the coinduction 91.2. The power of the coinduction 91.2. The power of the coinduction 9

second case σ a−→ σ′ expresses that the sequence σ can do an a-step to σ′, and hence that
σ = a · σ′.

Given this new notation we can reformulate the two homomorphism requirements from
Proposition 1.2.1 as two implications:

• x9=⇒ behc(x) 9 ;

• x a−→ x′ =⇒ behc(x)
a−→ behc(x

′).

In the tradition of operational semantics, such implications can also be formulated as rules:

x9

behc(x) 9
x

a−→ x′

behc(x)
a−→ behc(x

′)
(1.6)

Such rules thus describe implications: (the conjunction of) what is above the line implies
what is below.

In the remainder or this section we consider examples of the use of coinductive defini-
tion and proof principles for sequences.

Evenly listed elements from a sequence

Our first aim is to take a sequence σ ∈ A∞ and turn it into a new sequence evens(σ) ∈ A∞
consisting only of the elements of σ at even positions. Step-by-step we will show how such
a function evens : A∞ → A∞ can be defined within a coalgebraic framework, using
finality.

Our informal description of evens(σ) can be turned into three requirements:

• If σ 9 then evens(σ) 9 , i.e. if σ is empty, then evens(σ) should also be empty.

• If σ a−→ σ′ and σ′ 9 , then evens(σ)
a−→ σ′. Thus if σ is the singleton sequence

〈a〉, then also evens(σ) = 〈a〉. Notice that by the previous point we could equiva-
lently require evens(σ)

a−→ evens(σ′) in this case.

• If σ a−→ σ′ and σ′ a′−→ σ′′, then evens(σ)
a−→ evens(σ′′). This means that if σ

has head a and tail σ′, which in its turn has head a′ and tail σ′′, i.e. if σ = a · a′ · σ′′,
then evens(σ) should have head a and tail evens(σ′′), i.e. then evens(σ) = a ·
evens(σ′′). Thus, the intermediate head at odd position is skipped. And this is
repeated “coinductively”: as long as needed.

Like in (1.6) above we can write these three requirements as rules:

σ 9

evens(σ) 9
σ

a−→ σ′ σ′ 9

evens(σ)
a−→ evens(σ′)

σ
a−→ σ′ σ′

a′−→ σ′′

evens(σ)
a−→ evens(σ′′)

(1.7)

One could say that these rules give an “observational description” of the sequence evens(σ):
they describe what we can observe about evens(σ) in terms of what we can observe about
σ. For example, if σ = 〈a0, a1, a2, a3, a4〉 we can compute:

evens(σ) = a0 · evens(〈a2, a3, a4〉)
= a0 · a2 · evens(〈a4〉)
= a0 · a2 · a4 · 〈〉
= 〈a0, a2, a4〉.

Now that we have a reasonably understanding of the function evens : A∞ → A∞

we will see how it arises within a coalgebraic setting. In order to define it coinductively,

DRAFT

10 Chapter 1. Motivation10 Chapter 1. Motivation10 Chapter 1. Motivation

following the finality mechanism of Proposition 1.2.1, we need to have a suitable coalgebra
structure e on the domain A∞ of the function evens, like in a diagram:

{⊥} ∪ (A×A∞) //_________
id ∪ (id × behe) {⊥} ∪ (A×A∞)

A∞

e

OO

//_______________
evens = behe

A∞

∼= next
OO

That is, for σ ∈ A∞,

• if e(σ) = ⊥, then evens(σ) 9 ;

• if e(σ) = (a, σ′), then evens(σ)
a−→ evens(σ′).

Combining these two points with the above three rules (1.7) we see that the coalgebra e
must be:

e(σ) =

⊥ if σ 9
(a, σ′) if σ a−→ σ′ with σ′ 9

(a, σ′′) if σ a−→ σ′ ∧ σ′ a′−→ σ′′.

This function e thus tells what can be observed immediately, if anything, and what will be
used in the recursion (or co-recursion, if you like). It contains the same information as the
above three rules. In the terminology used earlier: the coalgebra or automaton e generates
the behaviour of evens.

1.2.3. Remark. The coalgebra e : A∞ → {⊥} ∪ (A × A∞) illustrates the difference be-
tween states and observables. Consider an arbitrary sequence σ ∈ A∞ and write σ1 =
a · a1 · σ and σ2 = a · a2 · σ, where a, a1, a2 ∈ A with a1 6= a2. These σ1, σ2 ∈ A∞

are clearly different states of the coalgebra e : A∞ → {⊥} ∪ (A × A∞), but they have
the same behaviour: evens(σ1) = a · evens(σ) = evens(σ2), where evens = behe.
Such observational indistinguishability of the states σ1, σ2 is called bisimilarity, written as
σ1 ↔ σ2, and will be studied systematically in Chapter 3.

Oddly listed elements from a sequence

Next we would like to have a similar function odds : A∞ → A∞ which extracts the el-
ements at odd positions. We leave formulation of the appropriate rules to the reader, and
claim this function odds can be defined coinductively via the behaviour-generating coal-
gebra o : A∞ → {⊥} ∪ (A×A∞) given by:

o(σ) =

{
⊥ if σ 9 or σ a−→ σ′ with σ′ 9

(a′, σ′′) if σ a−→ σ′ ∧ σ′ a′−→ σ′′.
(1.8)

Thus, we take odds = beho to be the behaviour function resulting from o following the
finality principle of Proposition 1.2.1. Hence o(σ) = ⊥ ⇒ odds(σ) 9 and o(σ) =

(a, σ′)⇒ odds(σ)
a−→ odds(σ′). This allows us to compute:

odds(〈a0, a1, a2, a3, a4〉) = a1 · odds(〈a2, a3, a4〉)
since o(〈a0, a1, a2, a3, a4〉) = (a1, 〈a2, a3, a4〉)

= a1 · a3 · odds(〈a4〉)
since o(〈a2, a3, a4〉) = (a3, 〈a4〉)

= a1 · a3 · 〈〉
since o(〈a4〉) = 〈〉

= 〈a1, a3〉.

DRAFT

1.2. The power of the coinduction 111.2. The power of the coinduction 111.2. The power of the coinduction 11

At this point the reader may wonder: why not define odds via evens, using an appro-
priate tail function? We shall prove that this gives the same outcome, using coinduction.

1.2.4. Lemma. One has
odds = evens ◦ tail,

where the function tail : A∞ → A∞ is given by:

tail(σ) =

{
σ if σ 9
σ′ if σ a−→ σ′.

Proof. In order to prove that the two functions odds,evens ◦ tail : A∞ → A∞ are equal
one needs to show by Proposition 1.2.1 that they are both homomorphisms for the same
coalgebra structure on A∞. Since odds arises by definition from the function o in (1.8), it
suffices to show that evens ◦ tail is also a homomorphism from o to next. This involves
two points:

• If o(σ) = ⊥, there are two subcases, both yielding the same result:

– If σ 9 then evens(tail(σ)) = evens(σ) 9 .

– If σ a−→ σ′ and σ′ 9 , then evens(tail(σ)) = evens(σ′) 9 .

• Otherwise, if o(σ) = (a′, σ′′), because σ a−→ σ′ and σ′ a′−→ σ′′, then we have

evens(tail(σ)) = evens(σ′)
a′−→ evens(tail(σ′′)) since:

– If σ′′ 9 , then evens(σ′)
a′−→ evens(σ′′) = evens(tail(σ′′)).

– And if σ′′ a′′−→ σ′′′, then evens(σ′)
a′−→ evens(σ′′′) = evens(tail(σ′′)).

Such equality proofs using uniqueness may be a bit puzzling at first. But they are
very common in category theory, and in many other areas of mathematics dealing with
universal properties. Later, in Section 3.4 we shall see that such proofs can also be done
via bisimulations. This is a common proof technique in process theory—and in coalgebra,
of course.

Merging sequences

In order to further familiarise the reader with the way the “coinductive game” is played, we
consider merging two sequences, via a binary operation merge : A∞ × A∞ → A∞. We
want merge(σ, τ) to alternatingly take one element from σ and from τ , starting with σ. In
terms of rules:

σ 9 τ 9

merge(σ, τ) 9
σ 9 τ

a−→ τ ′

merge(σ, τ)
a−→ merge(σ, τ ′)

σ
a−→ σ′

merge(σ, τ)
a−→ merge(τ, σ′)

Notice the crucial reversal of arguments in the last rule.
Thus, the function merge : A∞×A∞ → A∞ is defined coinductively as the behaviour

behm of the coalgebra

(
A∞ ×A∞

) m // {⊥} ∪
(
A×

(
A∞ ×A∞

))

given by:

m(σ, τ) =

⊥ if σ 9∧ τ 9
(a, (σ, τ ′)) if σ 9∧ τ a−→ τ ′

(a, (τ, σ′)) if σ a−→ σ′.

DRAFT

12 Chapter 1. Motivation12 Chapter 1. Motivation12 Chapter 1. Motivation

At this stage we can combine all of the coinductively defined functions so far in the
following result. It says that the merge of the evenly listed and oddly listed elements in a
sequence is equal to the original sequence. At first, this may seem obvious, but recall that
our sequences may be finite or infinite, so there is some work to do. The proof is again an
exercise in coinductive reasoning using uniqueness. It does not involve a global distinction
between finite and infinite, but proceeds by local, single step reasoning.

1.2.5. Lemma. For each sequence σ ∈ A∞,

merge(evens(σ),odds(σ)) = σ.

Proof. Let us write f : A∞ → A∞ as short hand for f(σ) = merge(evens(σ),odds(σ)).
We need to show that f is the identity function. Since the identity function idA∞ : A∞ →
A∞ is a homomorphisms from next to next—i.e. idA∞ = behnext—it suffices to show
that also f is such a homomorphism next→ next. This involves two points:

• If σ 9 , then evens(σ) 9 and odds(σ) 9 , so that merge(evens(σ),odds(σ)) 9
and thus f(σ) 9 .

• If σ a−→ σ′, then we distinguish two cases, and prove f(σ)
a−→ f(σ′) in both, using

Lemma 1.2.4.

– If σ′ 9 then evens(σ)
a−→ evens(σ′) and thus

f(σ) = merge(evens(σ),odds(σ))
a−→ merge(odds(σ),evens(σ′))

= merge(evens(tail(σ)),evens(tail(σ′)))

= merge(evens(σ′),odds(σ′))

= f(σ′).

– If σ′ a′−→ σ′′, then evens(σ)
a−→ evens(σ′′), and one can compute f(σ)

a−→
f(σ′) as before.

We have seen sequences of elements of an arbitrary set A. Things become more inter-
esting when the setA has some algebraic structure, for instance addition, or (also) multipli-
cation. Such structure can then be transferred via coinductive definitions to final coalgebras
of sequences, leading to what may be called stream calculus, see [379].

This completes our introduction to coinduction for sequences. What we have empha-
sised is that the coalgebraic approach using finality does not consider sequences as a whole
via their elements, but concentrates on the local, one-step behaviour via head and tail (if
any). This makes definitions and reasoning easier—even though the reader may need to see
more examples and get more experience to fully appreciate this point. But there is already
a clear analogy with induction, which also uses single steps instead of global ones. The
formal analogy between induction and coinduction will appear in Section 2.4.

More coinductively defined functions for sequences can be found in [202].

Exercises

1.2.1. Compute the nextdec-behaviour of 1
7
∈ [0, 1) like in Example 1.2.2.

1.2.2. Formulate appropriate rules for the function odds : A∞ → A∞ in analogy with the rules (1.7)
for evens.

1.2.3. Define the empty sequence 〈〉 ∈ A∞ by coinduction as a map 〈〉 : {⊥} → A∞.
Fix an element a ∈ A, and the define similarly the infinite sequence ~a : {⊥} → A∞

consisting only of a’s.

DRAFT

1.3. Generality of temporal logic of coalgebras 131.3. Generality of temporal logic of coalgebras 131.3. Generality of temporal logic of coalgebras 13

1.2.4. Compute the outcome of merge(〈a0, a1, a2〉, 〈b0, b1, b2, b3〉).

1.2.5. Is merge associative, i.e. is merge(σ,merge(τ, ρ)) the same as merge(merge(σ, τ), ρ)?
Give a proof or a counterexample. Is there is neutral element for merge?

1.2.6. Show how to define an alternative merge function which alternatingly takes two elements
from its argument sequences.

1.2.7. (i) Define three functions exi : A∞ → A∞, for i = 0, 1, 2, which extract the elements at
positions 3n+ i.

(ii) Define merge3 : A∞×A∞×A∞ → A∞ with merge3(ex0(σ), ex1(σ), ex2(σ)) =
σ, for all σ ∈ A∞.

1.2.8. Consider the sequential composition function comp : A∞ × A∞ → A∞ for sequences,
described by the rules:

σ 9 τ 9

comp(σ, τ) 9
σ 9 τ

a−→ τ ′

comp(σ, τ)
a−→ comp(σ, τ ′)

σ
a−→ σ′

comp(σ, τ)
a−→ comp(σ′, τ)

(i) Show by coinduction that the empty sequence 〈〉 = next−1(⊥) ∈ A∞ is a unit
element for comp, i.e. that comp(〈〉, σ) = σ = comp(σ, 〈〉).

(ii) Prove also by coinduction that comp is associative, and thus that sequences carry a
monoid structure.

1.2.9. Consider two sets A,B with a function f : A → B between them. Use finality to define a
function f∞ : A∞ → B∞ that applies f elementwise.
Use uniqueness to show that this mapping f 7→ f∞ is “functorial” in the sense that
(idA)∞ = idA∞ and (g ◦ f)∞ = g∞ ◦ f∞.

1.2.10. Use finality to define a map st : A∞×B → (A×B)∞ that maps a sequence σ ∈ A∞ and
an element b ∈ B to a new sequence in (A×B)∞ by adding this b at every position in σ.
[This is an example of a “strength” map, see Exercise 2.5.4.]

1.3 Generality of temporal logic of coalgebras

This section will illustrate the important coalgebraic notion of invariant, and use it to in-
troduce temporal operators like � for henceforth, and ♦ for eventually. These operators
are useful for expressing various interesting properties about states of a coalgebra. As we
shall see later in Section 6.4, they can be defined for general coalgebras. But here we shall
introduce them in more concrete situations—although we try to suggest the more general
perspective. First, the sequences from the previous section 1.2 will be reconsidered, and
next, the statements from the first section 1.1 will be used to form a rudimentary notion
of class, with associated temporal operators � and ♦ for expressing safety and liveness
properties.

1.3.1 Temporal operators for sequences

Consider a fixed set A, and an arbitrary “A-sequence” coalgebra c : S → {⊥} ∪ (A × S)
with state space S. We will be interested in properties of states, expressed via predi-
cates/subsets P ⊆ S. For a state x ∈ S we shall often write P (x) for x ∈ P , and
then say that the predicate P holds for x. Such a property P (x) may for instance be: “the
behaviour of x is an infinite sequence”.

For an arbitrary predicate P ⊆ S we shall define several new predicates, namely
©P ⊆ S for “nexttime” P , and �P ⊆ S for “henceforth” P , and ♦P ⊆ S for “even-
tually” P . These temporal operators ©, �, ♦ are all defined with respect to an arbitrary
coalgebra c : S → {⊥} ∪ (A × S) as above. In order to make this dependence on the
coalgebra c explicit we could write©c P , �c P and ♦c P . But usually it is clear from the
context which coalgebra is meant.

All these temporal operators©, �, ♦ talk about future states obtained via transitions
to successor states, i.e. via successive applications of the coalgebra. The nexttime operator

DRAFT

14 Chapter 1. Motivation14 Chapter 1. Motivation14 Chapter 1. Motivation

© is most fundamental because it talks about single transitions. The other two, � and
♦, involve multiple steps (zero or more), and are defined in terms of ©. For a sequence
coalgebra c : S → {⊥} ∪ (A × S) with a predicate P ⊆ S on its state space we define a
new predicate©P ⊆ S, for “nexttime P ”, as:

(
©P

)
(x) ⇐⇒ ∀a ∈ A.∀x′ ∈ S. c(x) = (a, x′)⇒ P (x′)

⇐⇒ ∀a ∈ A.∀x′ ∈ S. x a−→ x′ ⇒ P (x′).
(1.9)

In words:

The predicate©P holds for those states x, all of whose successor states x′, if
any, satisfy P . Thus, (©P)(x) indeed means that nexttime after x, P holds.

This simple operator© turns out to be fundamental. For example in defining the following
notion.

1.3.1. Definition. A predicate P is a (sequence) invariant if P ⊆ ©P .

An invariant P is thus a predicate such that if P holds for a state x, then also©P holds
of x. The latter means that P holds in successor states of x. Hence, if P holds for x, it
holds for successors of x. This means that once P holds, P will continue to hold, no matter
which transitions are taken. Or, once inside P , one cannot get out.

In general, invariants are important predicates in the study of state-based systems. They
often express certain safety or data integrity properties which are implicit in the design
of a system, like: the pressure in a tank will not rise above a certain safety level. An
important aspect of formally establishing the safety of systems is to prove that certain
crucial predicates are actually invariants.

A concrete example of an invariant on the state space A∞ of the final sequence coalge-
bra next : A∞ ∼=−→ {⊥} ∪ (A×A∞) is the property “σ is a finite sequence”. Indeed, if σ
is finite, and σ a−→ σ′, then also σ′ is finite.

Certain predicates Q ⊆ S on the state space of a coalgebra are thus invariants. Given
an arbitrary predicate P ⊆ S, we can consider those subsets Q ⊆ P which are invariants.
The greatest among these subsets plays a special role.

1.3.2. Definition. Let P ⊆ S be an arbitrary predicate on the state space S of a sequence
coalgebra.

(i) We define a new predicate �P ⊆ S, for henceforth P , to be the greatest invariant
contained in P . That is:

(
�P

)
(x) ⇐⇒ ∃Q ⊆ S.Q is an invariant ∧ Q ⊆ P ∧ Q(x).

More concretely, (�P)(x) means that all successor states of x satisfy P .
(ii) And ♦P ⊆ S, for eventually P , is defined as:

♦P = ¬�¬P,

where, for an arbitrary predicate U ⊆ S, the negation ¬U ⊆ S is {x ∈ S | x 6∈ U}. Hence:

(
♦P

)
(x) ⇐⇒ ∀Q ⊆ S.

(
Q is an invariant ∧ Q ⊆ ¬P

)
⇒ ¬Q(x).

Thus, (♦P)(x) says that some successor state of x satisfies P .

The way these temporal operators � and ♦ are defined may seem somewhat compli-
cated at first, but will turn out to be at the right level of abstraction: as we shall see later
in Section 6.4, the same formulation in terms of invariants works much more generally,

DRAFT

1.3. Generality of temporal logic of coalgebras 151.3. Generality of temporal logic of coalgebras 151.3. Generality of temporal logic of coalgebras 15

for coalgebras of different types (and not just for sequence coalgebras): the definition is
“generic” or “polytypic”.

In order to show that the abstract formulations in the definition indeed capture the in-
tended meaning of � and ♦ as “for all future states” and “for some future state”, we prove
the following result.

1.3.3. Lemma. For an arbitrary sequence coalgebra c : S → {⊥} ∪ (A×S), consider its
iterations cn : S → {⊥} ∪ (A×S), for n ∈ N, as defined in the proof of Proposition 1.2.1.
Then, for P ⊆ S and x ∈ S,

(�P)(x) ⇐⇒ P (x) ∧ (∀n ∈ N.∀a ∈ A.∀y ∈ S. cn(x) = (a, y)⇒ P (y))

(♦P)(x) ⇐⇒ P (x) ∨ (∃n ∈ N.∃a ∈ A.∃y ∈ S. cn(x) = (a, y) ∧ P (y)).

Proof. Since the second equivalence follows by purely logical manipulations from the first
one, we shall only prove the first.

(⇒) Assume (�P)(x), i.e. Q(x) for some invariant Q ⊆ P . By induction on n ∈ N
one gets cn(x) = (a, y)⇒ Q(y). But then also P (y), for all such y in cn(x) = (a, y).

(⇐) The predicate {x ∈ S | P (x) ∧ ∀n ∈ N.∀a ∈ A.∀y ∈ S. cn(x) = (a, y) ⇒
P (y)} is an invariant contained in P . Hence it is contained in �P .

1.3.4. Example. Consider an arbitrary sequence coalgebra c : S → {⊥} ∪ (A × S). We
give three illustrations of the use of temporal operators � and ♦ to express certain proper-
ties about states x ∈ S of this coalgebra c.

(i) Recall the termination predicate (−) 9 introduced in (1.5): x9 means c(x) = ⊥.
Now consider the predicate ♦((−) 9) ⊆ S. It holds for those states which are eventually
mapped to ⊥, i.e. for those states whose behaviour is a finite sequence in A? ⊆ A∞.

(ii) In a similar way we can express that an element a ∈ A occurs in the behaviour of a
state x ∈ S. This is done as:

Occ(a) = ♦({y ∈ S | ∃y′ ∈ S. c(y) = (a, y′)})
= ♦({y ∈ S | ∃y′ ∈ S. y a−→ y′}).

One may wish to write a ∈ x as a more intuitive notation for x ∈ Occ(a). It means that
there is a future state of x which can do an a-step, i.e. that a occurs somewhere in the
behaviour sequence of the state x.

(iii) Now assume our set A carries an order ≤. Consider the predicate

LocOrd(x)

⇐⇒ ∀a, a′ ∈ A.∀x′, x′′ ∈ S. c(x) = (a, x′) ∧ c(x′) = (a′, x′′)⇒ a ≤ a′

⇐⇒ ∀a, a′ ∈ A.∀x′, x′′ ∈ S. x a−→ x′ ∧ x′ a′−→ x′′ ⇒ a ≤ a′.

Thus, LocOrd holds for x if the first two elements of the behaviour of x, if any, are related
by ≤. Then,

GlobOrd = �LocOrd.

holds for those states whose behaviour is an ordered sequence: the elements appear in
increasing order.

Next we wish to illustrate how to reason with these temporal operators. We show that
an element occurs in the merge of two sequences if and only if it occurs in at least one
of the two sequences. Intuitively this is clear, but technically it is not entirely trivial. The
proof makes essential use of invariants.

DRAFT

16 Chapter 1. Motivation16 Chapter 1. Motivation16 Chapter 1. Motivation

1.3.5. Lemma. Consider for an element a ∈ A the occurrence predicate a ∈ (−) =

Occ(a) ⊆ A∞ from the previous example, for the final coalgebra next : A∞ ∼=−→ {⊥} ∪
(A×A∞) from Proposition 1.2.1. Then, for sequences σ, τ ∈ A∞,

a ∈ merge(σ, τ) ⇐⇒ a ∈ σ ∨ a ∈ τ,

where merge : A∞×A∞ → A∞ is the merge operator introduced in the previous section.

Proof. (⇒) Assume a ∈ merge(σ, τ) but neither a ∈ σ nor a ∈ τ . The latter yields
two invariants P,Q ⊆ A∞ with P (σ), Q(τ) and P,Q ⊆ ¬{ρ | ∃ρ′. ρ a−→ ρ′}. These
inclusions mean that sequences in P or Q cannot do an a-step.

In order to derive a contradiction we form a new predicate

R = {merge(α, β) | α, β ∈ P ∪ Q}.

Clearly, R(merge(σ, τ)). Note that the only transitions a sequence merge(α, β) ∈ R can
do are:

1. merge(α, β)
b−→ merge(α, β′) because α9 and β b−→ β′.

2. merge(α, β)
b−→ merge(β, α′) because α b−→ α′.

In both cases the successor state is again in R, so that R is an invariant. Also, sequences in
R cannot do an a-step. The predicate R thus disproves the assumption a ∈ merge(σ, τ).

(⇐) Assume, without loss of generality, a ∈ σ but not a ∈ merge(σ, τ). Thus there is
an invariant P ⊆ ¬{ρ | ∃ρ′. ρ a−→ ρ′} with P (merge(σ, τ)). We now take:

Q = {α | ∃β. P (merge(α, β)) ∨ P (merge(β, α))}.

Clearly Q(σ). In order to show that Q is an invariant, assume an element α ∈ Q with a
transition α b−→ α′. There are then several cases.

1. If P (merge(α, β)) for some β, then merge(α, β)
b−→ merge(β, α′), so that α′ ∈

Q, because P (merge(β, α′)), and also b 6= a.

2. If P (merge(β, α)) for some β, then there are two further cases:

(a) If β 9 , then merge(β, α)
b−→ merge(β, α′), so that α′ ∈ Q, and b 6= a.

(b) If β c−→ β′, then merge(β, α)
c−→ merge(α, β′)

b−→ merge(α′, β′). Thus
P (merge(α′, β′)), so that α′ ∈ Q, and also b 6= a.

These cases also show that Q is contained in ¬{ρ | ∃ρ′. ρ a−→ ρ′}. This contradicts the
assumption that a ∈ σ.

This concludes our first look at temporal operators for sequences, from a coalgebraic
perspective.

1.3.2 Temporal operators for classes

A class in an object-oriented programming language encapsulates data with associated op-
erations, called methods in this setting. They can be used to access and manipulate the data.
These data values are contained in so-called fields or attributes. Using the representation of

DRAFT

1.3. Generality of temporal logic of coalgebras 171.3. Generality of temporal logic of coalgebras 171.3. Generality of temporal logic of coalgebras 17

methods as statements with exceptionsE like in Section 1.1 we can describe the operations
of a class as a collection of attributes and methods, acting on a state space S:

at1 : S −→ D1

...

atn : S −→ Dn

meth1 : S −→ {⊥} ∪ S ∪ (S × E)
...

methm : S −→ {⊥} ∪ S ∪ (S × E)

(1.10)

These attributes ati give the data value ati(x) ∈ Di in each state x ∈ S. Similarly,
each method methj can produce a successor state, either normally or exceptionally, in
which the attributes have possibly different values. Objects, in the sense of object-oriented
programming (not of category theory), are thus identified with states.

For such classes, like for sequences, coalgebraic temporal logic provides a tailor-made
nexttime operator©. For a predicate P ⊆ S, we have©P ⊆ S, defined on x ∈ S as:

(©P)(x) ⇐⇒ ∀j ≤ m. (∀y ∈ S.methj(x) = y ⇒ P (y)) ∧
(∀y ∈ S.∀e ∈ E.methj(x) = (y, e)⇒ P (y))

Thus, (©P)(x) means that P holds in each possible successor state of x, resulting from
normal or abnormal termination.

From this point on we can follow the pattern used above for sequences. A predicate
P ⊆ S is a class invariant if P ⊆ ©P . Also: �P is the greatest invariant contained
in P , and ♦P = ¬�¬P . Predicates of the form �P are so-called safety properties
expressing that “nothing bad will happen”: P holds in all future states. And predicates
♦P are liveness properties saying that “something good will happen”: P holds in some
future state.

A typical example of a safety property is: this integer field i will always be non-zero
(so that it is safe to divide by i), or: this array a will always be a non-null reference and
have length greater than 1 (so that we can safely access a[0] and a[1]).

Such temporal properties are extremely useful for reasoning about classes. As we have
tried to indicate, they arise quite naturally and uniformly in a coalgebraic setting.

Exercises

1.3.1. The nexttime operator © introduced in (1.9) is the so-called weak nexttime. There is an
associated strong nexttime, given by ¬©¬. See the difference between weak and strong
nexttime for sequences.

1.3.2. Prove that the “truth” predicate that always holds is a (sequence) invariant. And, if P1 and
P2 are invariants, then so is the intersection P1 ∩ P2. Finally, if P is an invariant, then so
is©P .

1.3.3. (i) Show that � is an interior operator, i.e. satisfies: �P ⊆ P , �P ⊆ ��P , and
P ⊆ Q⇒ �P ⊆ �Q.

(ii) Prove that a predicate P is an invariant if and only if P = �P .

1.3.4. Prove that the finite behaviour predicate ♦(− 9) from Example 1.3.4 (i) is an invariant:
♦(−9) ⊆ ©♦(−9).
[Hint. For an invariant Q, consider the predicate Q′ = (¬(−) 9) ∩ (©Q).]

1.3.5. Let (A,≤) be a complete lattice, i.e. a poset in which each subset U ⊆ A has a join∨
U ∈ A. It is well-known that each subset U ⊆ A then also has a meet

∧
U ∈ A, given

by
∧
U =

∨{a ∈ A | ∀b ∈ U. a ≤ b}.

DRAFT

18 Chapter 1. Motivation18 Chapter 1. Motivation18 Chapter 1. Motivation

Let f : A → A be a monotone function: a ≤ b implies f(a) ≤ f(b). Recall, e.g.
from [110, Chapter 4] that such a monotone f has both a least fixed point µf ∈ A and
a greatest fixed point νf ∈ A given by the formulas:

µf =
∧{a ∈ A | f(a) ≤ a} νf =

∨{a ∈ A | a ≤ f(a)}.

Now let c : S → {⊥} ∪ (A × S) be an arbitrary sequence coalgebra, with associated
nexttime operator©.
(i) Prove that © is a monotone function P(S) → P(S), i.e. that P ⊆ Q implies
©P ⊆ ©Q, for all P,Q ⊆ S.

(ii) Check that �P ∈ P(S) is the greatest fixed point of the function P(S) → P(S)
given by U 7→ P ∩ ©U .

(iii) Define for P,Q ⊆ S a new predicate P U Q ⊆ S, for “P until Q” as the least fixed
point of U 7→ Q ∪ (P ∩ ¬©¬U). Check that “until” is indeed a good name for
P U Q, since it can be described explicitly as:

P U Q = {x ∈ S | ∃n ∈ N. ∃x0, x1, . . . , xn ∈ S.
x0 = x ∧ (∀i < n.∃a. xi a−→ xi+1) ∧ Q(xn)

∧ ∀i < n. P (xi)}

[Hint. Don’t use the fixed point definition µ, but first show that this subset is a fixed
point, and then that it is contained in an arbitrary fixed point.]

[These fixed point definitions are standard in temporal logic, see e.g. [119, 3.24-25]. What
we describe is the “strong” until. The “weak” one does not have the negations ¬ in its fixed
point description in (iii).]

1.4 Abstractness of the coalgebraic notions

In this final section of this first chapter we wish to consider the different settings in which
coalgebras can be studied. Proper appreciation of the level of generality of coalgebras
requires a certain familiarity with the theory of categories. Category theory is a special
area that studies the fundamental structures used within mathematics. It is based on the
very simple notion of an arrow between objects. Category theory is sometimes described as
abstract nonsense, but it is often useful because it provides an abstract framework in which
similarities between seemingly different notions become apparent. It has become a standard
tool in theoretical computer science, especially in the semantics of programming languages.
In particular, the categorical description of fixed points, both of recursive functions and of
recursive types, captures the relevant “universal” properties that are used in programming
and reasoning with these constructs. This categorical approach to fixed points forms one of
the starting points for the use of category theory in the study of algebras and coalgebras.

For this reason we need to introduce the fundamental notions of category and functor,
simply because a bit of category theory helps enormously in presenting the theory of coal-
gebras, and in recognising the common structure underlying many examples. Readers who
wish to learn more about categories may consider introductory texts like [46, 36, 104, 422,
348, 57, 303], or more advanced ones such as [315, 78, 317, 225, 406].

In the beginning of this chapter we have described a coalgebra in (1.1) as a function
of the form α : S → · · · S · · · with a structured output type in which the state space S
may occur. Here we shall describe such a result type as an expression F (S) = · · · S · · ·
involving S. Shortly we shall see that F is a functor. A coalgebra is then a map of the
form α : S → F (S). It can thus be described in an arrow-theoretic setting, as given by a
category.

1.4.1. Definition. A category is a mathematical structure consisting of objects with arrows
between them, that can be composed.

More formally, a category C consists of a collection Obj(C) of objects and a collection
Arr(C) of arrows (also called maps, or morphisms). Usually we write X ∈ C for X ∈

DRAFT

1.4. Abstractness of the coalgebraic notions 191.4. Abstractness of the coalgebraic notions 191.4. Abstractness of the coalgebraic notions 19

Obj(C). Each arrow in C, written as X
f→ Y or as f : X → Y , has a domain object

X ∈ C and a codomain object Y ∈ C. These objects and arrows carry a composition
structure.

1. For each pair of maps f : X → Y and g : Y → Z there is a composition map
g ◦ f : X → Z. This composition operation ◦ is associative: if h : Z → W , then
h ◦ (g ◦ f) = (h ◦ g) ◦ f .

2. For each objectX ∈ C there is an identity map idX : X → X , such that id is neutral
element for composition ◦: for f : X → Y one has f ◦ idX = f = idY ◦ f . Often,
the subscript X in idX is omitted when it is clear from the context. Sometimes the
object X itself is written for the identity map idX on X .

Ordinary sets with functions between them form an obvious example of a category, for
which we shall write Sets. Although Sets is a standard example, it is important to realise
that a category may be a very different structure. In particular, an arrow in a category need
not be a function.

We give several standard examples, and leave it to the reader to check that the require-
ments of a category hold for all of them.

1.4.2. Examples. (i) Consider a monoid M with composition operation + and unit ele-
ment 0 ∈ M . This M can also be described as a category with one object, say ?, and
with arrows ? → ? given by elements m ∈ M . The identity arrow is then 0 ∈ M , and
composition of arrows m1 : ?→ ? and m2 : ?→ ? is m1 +m2 : ?→ ?. The associativity
and identity requirements required for a category are precisely the associativity and identity
laws of the monoid.

(ii) Here is another degenerate example: a preorder consists of a set D with a reflexive
and transitive order relation ≤. It corresponds to a category in which there is at most one
arrow between each pair of object. Indeed, the preorder (D,≤) can be seen as a category
with elements d ∈ D as objects, and with an arrow d1 → d2 if and only if d1 ≤ d2.

(iii) Many examples of categories have certain mathematical structures as objects, and
structure preserving functions between them as morphisms. Examples are:

(1) Mon, the category of monoids with monoid homomorphisms (preserving compo-
sition and unit).

(2) Grp, the category of groups with group homomorphisms (preserving composition
and unit, and thereby also inverses).

(3) PreOrd, the category of preorders with monotone functions (preserving the or-
der). Similarly, there is a category PoSets with posets as objects, and also with monotone
functions as morphisms.

(4) Dcpo, the category of directed complete partial orders (dcpos) with continuous
functions between them (preserving the order and directed joins

∨
).

(5) Sp, the category of topological spaces with continuous functions (whose inverse
image preserves open subsets).

(6) Met, the category of metric spaces with non-expansive functions between them.
Consider two objects (M1, d1) and (M2, d2) in Met, where di : Mi ×Mi → [0,∞) is a
distance function on the set Mi. A morphism (M1, d1)→ (M2, d2) in Met is defined as a
function f : M1 → M2 between the underlying sets satisfying d2(f(x), f(y)) ≤ d1(x, y),
for all x, y ∈M1.

(iv) An example that we shall use now and then is the category SetsRel of sets and
relations. Its objects are ordinary sets, and its morphisms X → Y are relations R ⊆
X × Y . Composition of R : X → Y and S : Y → Z in SetsRel is given by relational
composition:

S ◦ R = {(x, z) ∈ X × Z | ∃y ∈ Y.R(x, y) ∧ S(y, z)}. (1.11)

DRAFT

20 Chapter 1. Motivation20 Chapter 1. Motivation20 Chapter 1. Motivation

The identity morphism X → X in SetsRel is the equality relation (also called diagonal
or identity relation) Eq(X) ⊆ X ×X given by Eq(X) = {(x, x) | x ∈ X}.

A category is thus a very general mathematical structure, with many possible instances.
In the language of categories one can discuss standard mathematical notions, like mono-
/epi-/iso-morphism, product, limit, etc. For example, an isomorphism in a category C is a
morphism f : X → Y for which there is a (necessarily unique) morphism g : Y → X in
the opposite direction with f ◦ g = idY and g ◦ f = idX . If there is such an isomorphism,
one often writes X ∼= Y . Such general categorical definitions then have meaning in every
example of a category. For instance, it yields a notion of isomorphism for groups, posets,
topological spaces, etc.

In a category a morphism from an object to itself, that is, a morphism of the form
f : X → X will be called an endomorphism or simply an endomap. For instance, a
relation R ⊆ X × X on a single set X—instead of a relation S ⊆ X × Y on two sets
X,Y—will be called an endorelation, since it forms an endomap X → X in the above
category SetsRel.

Categorical properties are expressed in terms of morphisms, often drawn as diagrams.
Two fundamental aspects are commutation and uniqueness.

• Commutation: An equation in category theory usually has the form f1 ◦ · · · ◦ fn =
g1 ◦ · · · ◦ gm, for certain morphisms fi, gj . Such an equation can be expressed in a
commuting diagram, like:

V1

f2
// · · · fn−1

// Vn−1 fn

&&NNNNNNN

X

f1
99sssssss

g1 %%KKKKKK Y

W1 g2

// · · ·
gm−1

// Wm−1

gm

88ppppppp

Extracting such an equation from a commuting diagram by following two paths is an
example of what is called diagram chasing.

• Uniqueness: A frequently occurring formulation is: for every +++ there is a unique
morphism f : X → Y satisfying ***. Such uniqueness is often expressed by writing
a dashed arrow f : X //___ Y , especially in a diagram.

As we have already seen in Section 1.2, uniqueness is a powerful reasoning principle:
one can derive an equality f1 = f2 for two morphisms f1, f2 : X → Y by showing
that they both satisfy ***. Often, this property *** can be established via diagram
chasing, i.e. by following paths in a diagram (both for f1 and for f2).

Both commutation and uniqueness will be frequently used in the course of this book.
For future use we mention two ways to construct new categories from old.

• Given a category C, one can form what is called the opposite category Cop which
has the same objects as C, but the arrows reversed. Thus f : X → Y in Cop if and
only if f : Y → X in C. Composition g ◦ f in Cop is then f ◦ g in C.

• Given two categories C and D, we can form the product category C×D. Its objects
are pairs of objects (X,Y) with X ∈ C and Y ∈ D. A morphism (X,Y) →
(X ′, Y ′) in C×D consists of a pair of morphisms X → X ′ in C and Y → Y ′ in D.
Identities and compositions are obtained componentwise.

The above example categories of monoids, groups, etc. indicate that structure preserv-
ing mappings are important in category theory. There is also a notion of such a mapping
between categories, called functor. It preserves the relevant structure.

DRAFT

1.4. Abstractness of the coalgebraic notions 211.4. Abstractness of the coalgebraic notions 211.4. Abstractness of the coalgebraic notions 21

1.4.3. Definition. Consider two categories C and D. A functor F : C → D consists of
two mappings Obj(C)→ Obj(D) and Arr(C)→ Arr(D), both written as F , such that:

(i) F preserves domains and codomains: if f : X → Y in C, then F (f) : F (X) →
F (Y) in D.

(ii) F preserves identities: F (idX) = idF (X) for each X ∈ C.
(iii) F preserves composition: F (g ◦ f) = F (g) ◦ F (f), for all maps f : X → Y and

g : Y → Z in C.

For each category C there is a trivial “identity” functor idC : C→ C, mapping X 7→ X
and f 7→ f . Also, for each object A ∈ C there are functors which map everything to A.
They can be defined as functors A : D → C, for an arbitrary category D. This constant
functor maps any object X ∈ D to A, and any morphism f in D to the identity map
idA : A→ A.

Further, given two functors F : C → D and G : D → E, there is a composite functor
G ◦ F : C→ E. It is given by X 7→ G(F (X)) and f 7→ G(F (f)). Often we simply write
GF = G ◦ F , and similarly GF (X) = G(F (X)).

1.4.4. Examples. (i) Consider two monoids (M,+, 0) and (N, ·, 1) as categories, like in
Example 1.4.2 (i). A functor f : M → N is then the same as a monoid homomorphism: it
preserves the composition operation and unit element.

(ii) Similarly, consider two preorders (D,≤) and (E,v) as categories, like in Exam-
ple 1.4.2 (ii). A functor f : D → E is then nothing but a monotone function: x ≤ y implies
f(x) v f(y).

(iii) Frequently occurring examples of functors are so-called forgetful functors. They
forget part of the structure of their domain. For instance, there is a forgetful functor
Mon → Sets mapping a monoid (M,+, 0) to its underlying set M , and mapping a
monoid homomorphism f to f , considered as a function between sets. Similarly, there is
a forgetful functor Grp → Mon mapping groups to monoids by forgetting their inverse
operation.

(iv) There is a “graph” functor Sets → SetsRel. It maps a set X to X itself, and a
function f : X → Y to the corresponding graph relation Graph(f) ⊆ X × Y given by
Graph(f) = {(x, y) | f(x) = y}.

(v) Recall from Section 1.2 that sequence coalgebras were described as functions of
the form c : S → {⊥} ∪ (A × S). Their codomain can be described via a functor
Seq : Sets → Sets. It maps a set X to the set {⊥} ∪ (A ×X). And it sends a function
f : X → Y to a function {⊥} ∪ (A×X)→ {⊥} ∪ (A× Y) given by:

⊥ 7−→ ⊥ and (a, x) 7−→ (a, f(x)).

We leave it to the reader to check that Seq preserves compositions and identities. We
do note that the requirement that the behaviour function behc : S → A∞ from Proposi-
tion 1.2.1 is a homomorphism of coalgebras can now be described via commutation of the
following diagram.

Seq(S) //_________
Seq(behc)

Seq(A∞)

S

c

OO

//___________
behc

A∞

∼= next
OO

In this book we shall be especially interested in endofunctors, i.e. in functors C → C
from a category C to itself. In many cases this category C will simply be Sets, the category
of sets and functions. Often we say that a mapping A 7→ G(A) of sets to sets is functorial
if it can be extended in a more or less obvious way to a mapping f 7→ G(f) on functions

DRAFT

22 Chapter 1. Motivation22 Chapter 1. Motivation22 Chapter 1. Motivation

such that G becomes a functor G : Sets→ Sets. We shall see many examples in the next
chapter.

We can now introduce coalgebras in full generality.

1.4.5. Definition. Let C be an arbitrary category, with an endofunctor F : C→ C.
(i) An F -coalgebra, or just a coalgebra when F is understood, consists of an object

X ∈ C together with a morphism c : X → F (X). As before, we often call X the state
space, or the carrier of the coalgebra, and c the transition or coalgebra structure.

(ii) A homomorphism of coalgebras, or a map of coalgebras, or a coalgebra map,
from one coalgebra c : X → F (X) to another coalgebra d : Y → F (Y) consists of a
morphism f : X → Y in C which commutes with the structures, in the sense that the
following diagram commutes.

F (X)
F (f)

// F (Y)

X

c

OO

f
// Y

d

OO

(iii) F -coalgebras with homomorphisms between them form a category, which we shall
write as CoAlg(F). It comes with a forgetful functor CoAlg(F) → C, mapping a
coalgebra X → F (X) to its state space X , and a coalgebra homomorphism f to f .

The abstractness of the notion of coalgebra lies in the fact that it can be expressed in any
category. So we need not only talk about coalgebras in Sets, as we have done so far, but
we can also consider coalgebras in other categories. For instance, one can have coalgebras
in PreOrd, the category of preorders. In that case, the state space is a preorder, and the
coalgebra structure is a monotone function. Similarly, a coalgebra in the category Mon of
monoids has a monoid as state space, and a structure which preserves this monoid structure.
We can even have a coalgebra in a category CoAlg(F) of coalgebras. We briefly mention
some examples, without going into details.

• Real numbers (and also Baire and Cantor space) are described in [347, Theorem 5.1]
as final coalgebras (via continued fractions, see also [335]) of an endofunctor on the
category PoSets.

• So-called descriptive general frames (special models of modal logic) appear in [288]
as coalgebras of the Vietoris functor on the category of Stone spaces.

• At several places in this book we shall see coalgebra of endofunctors other than sets.
For instance, Exercise 1.4.6 mentions invariants as coalgebras of endofunctors on
poset categories, and Example 2.3.10 and Exercise 2.3.7 describe streams with their
topology as final coalgebra in the category of topological spaces. Section 5.3 intro-
duces traces of suitable coalgebras via coalgebra homomorphism to a final coalgebra
in the category SetsRel of sets with relations as morphisms.

In the next few chapters we shall concentrate on coalgebras in Sets, but occasionally
this more abstract perspective will be useful.

Exercises

1.4.1. Let (M,+, 0) be a monoid, considered as a category. Check that a functor F : M → Sets
can be identified with a monoid action: a set X together with a function µ : X ×M → X
with µ(x, 0) = x and µ(x,m1 +m2) = µ(µ(x,m2),m1).

1.4.2. Check in detail that the opposite Cop and product C× D are indeed categories.

DRAFT

1.4. Abstractness of the coalgebraic notions 231.4. Abstractness of the coalgebraic notions 231.4. Abstractness of the coalgebraic notions 23

1.4.3. Assume an arbitrary category C with an object I ∈ C. We form a new category C/I , the
so-called slice category over I , with:

objects maps f : X → I with codomain I in C

morphisms from X
f−→ I to Y

g−→ I are morphisms h : X → Y in C for which the
following diagram commutes.

X

f ��
@@@@
h // Y

g������

I

(i) Describe identities and composition in C/I , and verify that C/I is a category.
(ii) Check that taking domains yields a functor dom: C/I → C.
(iii) Verify that for C = Sets, a map f : X → I may be identified with an I-indexed

family of sets (Xi)i∈I , namely where Xi = f−1(i). What do morphisms in C/I
correspond to, in terms of such indexed families?

1.4.4. Recall that for an arbitrary set A we write A? for the set of finite sequences 〈a0, . . . , an〉
of elements ai ∈ A.
(i) Check that A? carries a monoid structure given by concatenation of sequences, with

the empty sequence 〈〉 as neutral element.
(ii) Check that the assignment A 7→ A? yields a functor Sets → Mon by mapping a

function f : A→ B between sets to the function f? : A? → B? given by 〈a0, . . . , an〉 7→
〈f(a0), . . . , f(an)〉.
[Be aware of what needs to be checked: f? must be a monoid homomorphism, and
(−)? must preserve composition of functions and identity functions.]

(iii) Prove that A? is the free monoid on A: there is the singleton-sequence insertion map
η : A → A? which is universal among all mappings of A into a monoid: for each
monoid (M, 0,+) and function f : A→M there is a unique monoid homomorphism
g : A? →M with g ◦ η = f .

1.4.5. Recall from (1.3) the statements with exceptions of the form S → {⊥} ∪ S ∪ (S×E).
(i) Prove that the assignmentX 7→ {⊥} ∪ X ∪ (X×E) is functorial, so that statements

are coalgebras for this functor.
(ii) Show that all the operations at1, . . . , atn,meth1, . . . ,methm of a class as in (1.10)

can also be described as a single coalgebra, namely of the functor:

X 7−→ D1 × · · ·Dn × ({⊥} ∪ X ∪ (X × E))× · · · × ({⊥} ∪ X ∪ (X × E))︸ ︷︷ ︸
m times

1.4.6. Recall the nexttime operator © for a sequence coalgebra c : S → Seq(S) = {⊥} ∪
(A × S) from the previous section. Exercise 1.3.5 (i) says that it forms a monotone func-
tion P(S) → P(S)—with respect to the inclusion order—and thus a functor. Check that
invariants are precisely the©-coalgebras!

DRAFT

24 Chapter 1. Motivation24 Chapter 1. Motivation24 Chapter 1. Motivation

DRAFT
Chapter 2

Coalgebras of Polynomial
Functors

The previous chapter has introduced several examples of coalgebras, and has illustrated
basic coalgebraic notions like behaviour and invariance (for those examples). This chap-
ter will go deeper into the study of the area of coalgebra, introducing some basic notions,
definitions, and terminology. It will first discuss several fundamental set theoretic construc-
tions, like products, coproducts, exponents and powerset in a suitably abstract (categorical)
language. These constructs are used to define a collection of elementary functors, the so-
called polynomial functors. As will be shown in Section 2.2, this class of functors is rich
enough to capture many examples of interesting coalgebras, including deterministic and
non-deterministic automata. One of the attractive features of polynomial functors is that
almost all of them have a final coalgebra—except when the (non-finite) powerset occurs.
The unique map into a final coalgebra will appear as behaviour morphism, mapping a state
to its behaviour. The two last sections of this chapter, 2.4 and 2.5, provide additional back-
ground information, namely on algebras (as duals of coalgebras) and on adjunctions. The
latter form a fundamental categorical notion describing back-and-forth translations that oc-
cur throughout mathematics.

2.1 Constructions on sets

This section describes familiar constructions on sets, like products, coproducts (disjoint
unions), exponents and powersets. It does so in order to fix notation, and also to show that
these operations are functorial, i.e. give rise to functors. This latter aspect is maybe not
so familiar. Functoriality is essential for properly developing the theory of coalgebras, see
Definition 1.4.5.

These basic constructions on sets are instances of more general constructions in cate-
gories. We shall give a perspective on these categorical formulations, but we do not overem-
phasise this point. Readers without much familiarity with the theory of categories may then
still follow the development, and readers who are quite comfortable with categories will
recognise this wider perspective anyway.

Products

We recall that for two arbitrary sets X,Y the product X × Y is the set of pairs

X × Y = {(x, y) | x ∈ X ∧ y ∈ Y }.

There are then obvious projection functions π1 : X × Y → X and π2 : X × Y → Y by
π1(x, y) = x and π2(x, y) = y. Also, for functions f : Z → X and g : Z → Y there is a

25

DRAFT

26 Chapter 2. Coalgebras of Polynomial Functors26 Chapter 2. Coalgebras of Polynomial Functors26 Chapter 2. Coalgebras of Polynomial Functors

tuple (or pairing) function 〈f, g〉 : Z → X×Y given by 〈f, g〉(z) = (f(z), g(z)) ∈ X×Y
for z ∈ Z. Here are some basic equations which are useful in computations.

π1 ◦ 〈f, g〉 = f

π2 ◦ 〈f, g〉 = g

〈π1, π2〉 = idX×Y

〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉.

(2.1)

The latter equation holds for functions h : W → Z.
Given these equations it is not hard to see that the product operation gives rise to a

bijective correspondence between pairs of functions Z → X , Z → Y on the one hand,
and functions Z → X × Y into the product on the other. Indeed, given two functions
Z → X , Z → Y one can form their pair Z → X × Y . And in the reverse direction, given
a function Z → X × Y , one can post-compose with the two projections π1 and π2 to get
two functions Z → X , Z → Y . The above equations help to see that these operations
are each other’s inverses. Such a bijective correspondence is conveniently expressed by a
“double rule”, working in two directions:

Z // X Z // Y

Z // X × Y
(2.2)

Interestingly, the product operation (X,Y) 7→ X × Y does not only apply to sets, but
also to functions: for functions f : X → X ′ and g : Y → Y ′ we can define a function f×g
namely:

X × Y
f × g

// X ′ × Y ′ given by (x, y) 7−→ (f(x), g(y)) (2.3)

Notice that the symbol × is overloaded: it is used both on sets and on functions. This
product function f ×g can also be described in terms of projections and pairing as f ×g =
〈f ◦ π1, g ◦ π2〉. It is easily verified that the operation × on functions satisfies

idX × idY = idX×Y and (f ◦ h)× (g ◦ k) = (f × g) ◦ (h× k).

These equations express that the product × is functorial: it does not only apply to sets,
but also to functions; and it does so in such a way that identity maps and compositions are
preserved (see Definition 1.4.3). The product operation × is a functor Sets × Sets →
Sets, from the product category Sets× Sets of Sets with itself, to Sets.

Products of sets form an instance of the following general notion of product in a cate-
gory.

2.1.1. Definition. Let C be a category. The product of two objects X,Y ∈ C is a new
object X × Y ∈ C with two projection morphisms

X X × Yπ1oo
π2 // Y

which are universal: for each pair of maps f : Z → X and g : Z → Y in C there is a
unique tuple morphism 〈f, g〉 : Z → X×Y in C, making the following diagram commute.

X X × Yπ1oo
π2 // Y

Z

f

eeKKKKKKKKKKKKKKKK

OO�
�
�
�

〈f, g〉

�
�

g

99ssssssssssssssss

DRAFT

2.1. Constructions on sets 272.1. Constructions on sets 272.1. Constructions on sets 27

The first two equations from (2.1) clearly hold for this abstract definition of product.
The other two equations in (2.1)follow by using the uniqueness property of the tuple.

Products need not exist in a category, but if they exist they are determined up-to-
isomorphism: if there is another object with projections X

p1←− X ⊗ Y p2−→ Y satisfying
the above universal property, then there is a unique isomorphism X × Y ∼=−→ X ⊗ Y com-
muting with the projections. Similar results can be proven for the other constructs in this
section.

What we have described is the product X × Y of two sets / objects X,Y . For a given
X , we shall write Xn = X × · · · ×X for the n-fold product (also known as power). The
special case where n = 0 involves the empty product X0, called a final or terminal object.

2.1.2. Definition. A final object in a category C is an object, usually written as 1 ∈ C,
such that for each object X ∈ C there is a unique morphism !X : X → 1 in C.

Not every category needs to have a final object, but Sets does. Any singleton set is
final. We choose one, and write it as 1 = {∗}. Notice then that elements of a set X can
be identified with functions 1 → X . Hence we could forget about membership ∈ and talk
only about arrows.

When a category has binary products × and a final object 1, one says that the category
has finite products: for each finite list X1, . . . , Xn of objects one can form the product
X1 × · · · ×Xn. The precise bracketing in this expression is not relevant, because products
are associative (up-to-isomorphism), see Exercise 2.1.8 below.

One can generalise these finite products to arbitrary, set-indexed products. For an
index set I , and a collection (Xi)i∈I of I-indexed objects there is a notion of I-indexed
product. It is an object X =

∏
i∈I Xi with projections πi : X → Xi, for i ∈ I , which

are universal like in Definition 2.1.1: for an arbitrary object Y and an I-indexed collection
fi : Y → Xi of morphisms there is a unique map f = 〈fi〉i∈I : Y → X with πi ◦ f = fi,
for each i ∈ I . In the category Sets such products exist and may be described as:

∏
i∈I Xi = {t : I → ⋃

i∈I Xi | ∀i ∈ I. t(i) ∈ Xi}. (2.4)

Coproducts

The next construction we consider is the coproduct (or disjoint union, or sum) +. For sets
X,Y we write their coproduct as X + Y . It is defined as:

X + Y = {(x, 1) | x ∈ X} ∪ {(y, 2) | y ∈ Y }.

The components 1 and 2 serve to force this union to be disjoint. These “tags” enables us
to recognise the elements of X and of Y inside X + Y . Instead of projections as above
we now have “coprojections” κ1 : X → X + Y and κ2 : Y → X + Y going in the
other direction. One puts κ1(x) = (x, 1) and κ2(y) = (y, 2). And instead of tupling we
now have “cotupling” (sometimes called “source tupling”): for functions f : X → Z and
g : Y → Z there is a cotuple function [f, g] : X + Y → Z going out of the coproduct,
defined by case distinction:

[f, g](w) =

{
f(x) if w = (x, 1)

g(y) if w = (y, 2).

There are standard equations for coproducts, similar to those (2.1) for products:

[f, g] ◦ κ1 = f

[f, g] ◦ κ2 = g

[κ1, κ2] = idX+Y

h ◦ [f, g] = [h ◦ f, h ◦ g].

(2.5)

DRAFT

28 Chapter 2. Coalgebras of Polynomial Functors28 Chapter 2. Coalgebras of Polynomial Functors28 Chapter 2. Coalgebras of Polynomial Functors

Earlier we described the essence of products in a bijective correspondence (2.2). There
is a similar correspondence for coproducts, but with all arrows reversed:

X // Z Y // Z

X + Y // Z
(2.6)

This duality between products and coproducts can be made precise in categorical language,
see Exercise 2.1.3 below.

So far we have described the coproduct X+Y on sets. We can extend it to functions in
the following way. For f : X → X ′ and g : Y → Y ′ there is a function f + g : X + Y →
X ′ + Y ′ by

(f + g)(w) =

{
(f(x), 1) if w = (x, 1)

(g(y), 2) if w = (y, 2).
(2.7)

Equivalently, we could have defined: f + g = [κ1 ◦ f, κ2 ◦ g]. This operation + on
functions preserves identities and composition:

idX + idY = idX+Y and (f ◦ h) + (g ◦ k) = (f + g) ◦ (h+ k).

Thus, coproducts yield a functor +: Sets× Sets→ Sets, like products.
Coproducts in Sets satisfy some additional properties. For example, the coproduct is

disjoint, in the sense that κ1(x) 6= κ2(y), for all x, y. Also, the coprojections cover the
coproduct: every element of a coproduct is either of the form κ1(x) or κ1(y). Further,
products distribute over coproducts, see Exercise 2.1.7 below.

We should emphasise that a coproduct + is very different from ordinary union ∪. For
example, ∪ is idempotent: X ∪ X = X , but there is not even an isomorphism between
X + X and X (if X 6= ∅). Union is an operation on subsets, whereas coproduct is an
operation on sets.

Also the coproduct + in Sets is an instance of a more general categorical notion of
coproduct.

2.1.3. Definition. The coproduct of two objects X,Y in a category C is a new object
X + Y ∈ C with two coprojection morphisms

X
κ1 // X + Y Y

κ2oo

satisfying a universal property: for each pair of maps f : X → Z and g : Y → Z in C there
is a unique cotuple morphism [f, g] : X + Y → Z in C, making the following diagram
commute.

X

f
%%KKKKKKKKKKKKKKKK

κ1 // X + Y

��
�
�
�
�

[f, g]
�
�

Y
κ2oo

g

yyssssssssssssssss

Z

Like for products, the equation (2.5) can be derived. Also, there is a notion of empty
coproduct.

2.1.4. Definition. An initial object 0 in a category C has the property that for each object
X ∈ C there a unique morphism !X : 0→ X in C.

The exclamation mark ! is often used to describe uniqueness, like in unique existence
∃!. Hence we use it both to describe maps 0 → X out of initial objects and maps X → 1
into final objects (see Definition 2.1.2). Usually this does not lead to confusion.

DRAFT

2.1. Constructions on sets 292.1. Constructions on sets 292.1. Constructions on sets 29

In Sets the empty set 0 is initial: for each set X there is precisely one function 0 →
X , namely the empty function (the function with the empty graph). In Sets one has the
additional property that each function X → 0 is an isomorphism. This makes 0 ∈ Sets a
so-called strict initial object.

Like for products, one says that a category has finite coproducts when it has binary
coproducts + together with an initial object 0. In that case one can form coproducts X1 +
· · · + Xn for any finite list of objects Xi. Taking the n-fold coproduct of the same object
X yields what is called the copower, written as n ·X = X + · · ·+X . Also, a set-indexed
coproduct, for a set I and a collection (Xi)i∈I of I-indexed objects may exist. If so, it is
an object X =

∐
i∈I Xi with coprojections κi : Xi → X , for i ∈ I , which are universal:

for an arbitrary object Y and a collection of maps fi : Xi → Y there is a unique morphism
f = [fi]i∈I : X → Y with f ◦ κi = fi, for each i ∈ I . In the category Sets such
coproducts are disjoint unions, like finite coproducts, but with tags from I , as in:

∐
i∈I Xi = {(i, x) | i ∈ I ∧ x ∈ Xi}. (2.8)

Whereas products are very familiar, coproducts are relatively unknown. From a purely
categorical perspective, they are not more difficult than products, because they are their
duals (see Exercise 2.1.3 below). But in a non-categorical setting the cotuple [f, g] is a bit
complicated, because it involves variable binding and pattern matching: in a term calculus
one can write [f, g](z) for instance as:

CASES z OF

κ1(x) 7−→ f(x)

κ2(y) 7−→ g(y)

Notice that the variables x and y are bound: they are mere place-holders, and their names
are not relevant. Functional programmers are quite used to such cotuple definitions by
pattern matching.

Another reason why coproducts are not so standard in mathematics is probably that
in many algebraic structures coproducts coincide with products; in that case one speaks
of biproducts. This is for instance the case for (commutative) monoids/groups and vector
spaces and complete lattices, see Exercise 2.1.6. Additionally, in many continuous struc-
tures coproducts do not exist (like in categories of domains).

However, within the theory of coalgebras coproducts play an important role. They
occur in many functors F used to describe coalgebras (namely as F -coalgebras, see Defi-
nition 1.4.5), in order to capture different output options, like normal and abnormal termi-
nation in Section 1.1. But additionally, one can form new coalgebras from existing ones via
coproducts. This will be illustrated next. It will be our first purely categorical construction.
Therefore, it is elaborated in some detail.

2.1.5. Proposition. Let C be a category with finite coproducts (0,+), and let F be an
arbitrary endofunctor C → C. The category CoAlg(F) of F -coalgebras then also has
finite coproducts, given by:

initial coalgebra:

(
F (0)
↑ !
0

)
coproduct coalgebra:

(
F (X + Y)
↑

X + Y

)
(2.9)

where the map X + Y → F (X + Y) on the right is the cotuple [F (κ1) ◦ c, F (κ2) ◦ d],

assuming coalgebras X c−→ F (X) and Y d−→ F (Y).

This result generalises to arbitrary (set-indexed) coproducts
∐
i∈I Xi, see Exercise 2.1.13,

and also to coequalisers, see Exercise 2.1.14 (and thus to all colimits).

DRAFT

30 Chapter 2. Coalgebras of Polynomial Functors30 Chapter 2. Coalgebras of Polynomial Functors30 Chapter 2. Coalgebras of Polynomial Functors

Proof. It is important to distinguish between reasoning in the two different categories at
hand, namely C and CoAlg(F). For the above map 0 → F (0) to be an initial object
in CoAlg(F) we have to show that there is a unique map to any object in CoAlg(F).
This means, for an arbitrary coalgebra c : X → F (X) there must be a unique map f in
CoAlg(F) of the form:

F (0)
F (f)

// F (X)

0

!

OO

f
// X

c

OO

Since this map f must also be a map 0 → X in C, by initiality of 0 ∈ C, it can only
be the unique map f = !: 0 → X . We still have to show that for f = ! the above
diagram commutes. But this follows again by initiality of 0: there can only be a single map
0→ F (X) in C. Hence both composites c ◦ f and F (f) ◦ ! must be the same.

Next, in order to see that the coalgebra on the right in (2.9) is a coproduct in CoAlg(F)
we precisely follow Definition 2.1.3. We have to have two coprojections in CoAlg(F),
for which we take:

F (X)
F (κ1)

// F (X + Y) F (Y)
F (κ2)

oo

X

c

OO

κ1

// X + Y

[F (κ1) ◦ c, F (κ2) ◦ d]

OO

Yκ2

oo

d

OO

It is almost immediately clear that these κ1, κ2 are indeed homomorphisms of coalgebras.
Next, according to Definition 2.1.3 we must show that one can do cotupling in CoAlg(F).
So assume two homomorphisms f, g of coalgebras:

F (X) F (W)
F (f)

oo
F (g)

// F (Y)

X

c

OO

W

e

OO

g
//

f
oo Y

d

OO

These f, g are by definition also morphisms W → X,W → Y in C. Hence we can take
their cotuple [f, g] : X + Y → W in C, since by assumption C has coproducts. What we
need to show is that this cotuple [f, g] is also a map in CoAlg(F), in:

F (X + Y)
F ([f, g])

// F (W)

X + Y

[F (κ1) ◦ c, F (κ2) ◦ d]

OO

[f, g]
// W

e

OO

This follows by using the coproduct equations (2.5):

F ([f, g]) ◦ [F (κ1) ◦ c, F (κ2) ◦ d]

=
[
F ([f, g]) ◦ F (κ1) ◦ c, F ([f, g]) ◦ F (κ2) ◦ d

]
see (2.5)

=
[
F ([f, g] ◦ κ1) ◦ c, F ([f, g] ◦ κ2) ◦ d

]
since F is a functor

=
[
F (f) ◦ c, F (g) ◦ d

]
by (2.5)

=
[
e ◦ f, e ◦ g

]
since c, d are coalgebra maps

= e ◦ [f, g] see (2.5).

DRAFT

2.1. Constructions on sets 312.1. Constructions on sets 312.1. Constructions on sets 31

Now we know that [f, g] is a map in CoAlg(F). Clearly it satisfies [f, g] ◦ κ1 = f and
[f, g] ◦ κ2 = g in CoAlg(F) because composition in CoAlg(F) is the same as in C.
Finally, Definition 2.1.3 requires that this [f, g] is the unique map in CoAlg(F) with this
property. But this follows because [f, g] is the unique such map in C.

Thus, coproducts form an important construct in the setting of coalgebras.

Exponents

Given two setsX and Y one can consider the set Y X = {f | f is a total function X → Y }.
This set Y X is sometimes called the function space, or exponent ofX and Y . Like products
and coproducts, it comes equipped with some basic operations. There is an evaluation
function ev : Y X ×X → Y , which sends the pair (f, x) to the function application f(x).
And for a function f : Z×X → Y there is an abstraction function Λ(f) : Z → Y X , which
maps z ∈ Z to the function x 7→ f(z, x) that maps x ∈ X to f(z, x) ∈ Y . Some basic
equations are:

ev ◦
(
Λ(f)× idX

)
= f

Λ(ev) = idY X

Λ(f) ◦ h = Λ
(
f ◦ (h× idX)

)
.

(2.10)

Again, the essence of this construction can be summarised concisely in the form of a
bijective correspondence, sometimes called Currying.

Z ×X // Y

Z // Y X
(2.11)

We have seen that both the product× and the coproduct + give rise to functors Sets×
Sets → Sets. The situation for exponents is more subtle, because of the so-called con-
travariance in the first argument. This leads to an exponent functor Setsop×Sets→ Sets,
involving an opposite category for its first argument. We will show how this works.

For two maps k : X → U in Setsop and h : Y → V in Sets we need to define a
function hk : Y X → V U between exponents. The fact that k : X → U is a morphism in
Setsop means that it really is a function k : U → X . Therefore we can define hk on a
function f ∈ Y X as

hk(f) = h ◦ f ◦ k. (2.12)

This yields indeed a function in V U . Functoriality also means that identities and composi-
tions must be preserved. For identities this is easy:

(
idid

)
(f) = id ◦ f ◦ id = f.

But for preservation of composition we have to remember that composition in an opposite
category is reversed:

(
hk22 ◦ hk11

)
(f) = hk22

(
hk11 (f)

)
= hk22

(
h1 ◦ f ◦ k1

)

= h2 ◦ h1 ◦ f ◦ k1 ◦ k2

= (h2 ◦ h1)(k1◦k2)(f)

= (h2 ◦C h1)(k2 ◦Cop k1)(f).

We conclude this discussion of exponents with the categorical formulation.

DRAFT

32 Chapter 2. Coalgebras of Polynomial Functors32 Chapter 2. Coalgebras of Polynomial Functors32 Chapter 2. Coalgebras of Polynomial Functors

2.1.6. Definition. Let C be a category with products ×. The exponent of two objects
X,Y ∈ C is a new object Y X ∈ C with an evaluation morphism

Y X ×X ev // Y

such that: for each map f : Z × X → Y in C there is a unique abstraction morphism
Λ(f) : Z → Y X in C, making the following diagram commute.

Y X ×X ev // Y

Z ×X

f

99ssssssssssssssss

OO�
�
�
�

Λ(f)× idX

The following notions are often useful. A cartesian closed category, or CCC for short,
is a category with finite products and exponents. And a bicartesian closed category, or
BiCCC is a CCC with finite coproducts. As we have seen, Sets is a BiCCC.

Powersets

For a set X we write P(X) = {U | U ⊆ X} for the set of (all) subsets of X . In more
categorical style we shall also write U ↪→ X or U � X for U ⊆ X . These subsets will
also be called predicates. Therefore, we sometimes write U(x) for x ∈ U , and say in that
case that U holds for x. The powerset P(X) is naturally ordered by inclusion: U ⊆ V iff
∀x ∈ X.x ∈ U ⇒ x ∈ V . This yields a poset (P(X),⊆), with (arbitrary) meets given by
intersection

⋂
i∈I Ui = {x ∈ X | ∀i ∈ I. x ∈ Ui}, (arbitrary) joins by unions

⋃
i∈I Ui =

{x ∈ X | ∃i ∈ I. x ∈ Ui}, and negation by complement ¬U = {x ∈ X | x 6∈ U}. In
brief, (P(X),⊆) is a complete Boolean algebra. Of special interest is the truth predicate
>X = (X ⊆ X) which always holds, and the falsity predicate ⊥X = (∅ ⊆ X) which
never holds. The 2-element set {⊥,>} of Booleans is thus the powerset P(1) of the final
object 1.

Relations may be seen as special cases of predicates. For example, a (binary) relationR
on sets X and Y is a subset R ⊆ X × Y of the product set, i.e. an element of the powerset
P(X × Y). We shall use the following notations interchangeably:

R(x, y), (x, y) ∈ R, xRy.

Relations, like predicates, can be ordered by inclusion. The resulting poset (P(X×Y),⊆)
is again a complete Boolean algebra. It also contains a truth relation >X×Y ⊆ X × Y
which always holds, and a falsity relation ⊥X×Y ⊆ X × Y which never holds.

Reversal and composition are two basic constructions on relations. For a relation R ⊆
X × Y we shall write R† ⊆ Y ×X for the reverse relation given by yR†x iff xRy. If we
have another relation S ⊆ Y × Z we can describe the composition of relations S ◦ R as a
new relation (S ◦ R) ⊆ X × Z, via: x(S ◦ R)z iff ∃y ∈ Y.R(x, y) ∧ S(y, z), as already
described in (1.11).

Often we are interested in relations R ⊆ X ×X on a single set X . Of special interest
then is the equality relation Eq(X) ⊆ X ×X given by Eq(X) = {(x, y) ∈ X ×X | x =
y} = {(x, x) | x ∈ X}. As we saw in Example 1.4.2 (iv), sets and relations form a category
SetsRel, with equality relations as identity maps. The reversal operation (−)† yields a
functor SetsRelop → SetsRel that is the identity on objects and satisfies R†† = R.
It makes SetsRel into what is called a dagger category. Such categories are used for
reversible computations, like in quantum computing, see e.g. [7].

DRAFT

2.1. Constructions on sets 332.1. Constructions on sets 332.1. Constructions on sets 33

The powerset operation X 7→ P(X) is also functorial. For a function f : X → Y there
is a function P(f) : P(X)→ P(Y) given by so-called direct image: for U ⊆ X ,

P(f)(U) = {f(x) | x ∈ U}
= {y ∈ Y | ∃x ∈ X. f(x) = y ∧ x ∈ U}.

(2.13)

Alternative notation for this direct image is f [U] or
∐
f (U). In this way we may describe

the powerset as a functor P(−) : Sets→ Sets.
It turns out that one can also describe powerset as a functor P(−) : Setsop → Sets

with the opposite of the category of sets as domain. In that case a function f : X → Y
yields a map f−1 : P(Y)→ P(X), which is commonly called inverse image: for U ⊆ Y ,

f−1(U) = {x | f(x) ∈ U}. (2.14)

The powerset operation with this inverse image action on morphisms is sometimes called
the contravariant powerset. But standardly we shall consider the “covariant”powersets with
direct images, as functor Sets → Sets. We shall frequently encounter these direct

∐
f

and inverse f−1 images. They are related by a Galois connection:
∐
f (U) ⊆ V

U ⊆ f−1(V)
(2.15)

See also in Exercise 2.1.12 below.
We have seen bijective correspondences characterising products, coproducts, exponents

and images. There is also such a correspondence for powersets:

X // P(Y)

relations ⊆ Y ×X
(2.16)

This leads to a more systematic description of a powerset as a so-called relation classi-
fier. There is a special inhabitation ∈⊆ Y × P(Y), given by ∈ (y, U) ⇔ y ∈ U . For
any relation R ⊆ Y × X there is then a relation classifier, or characteristic function,
char(R) : X → P(Y) mapping x ∈ X to {y ∈ Y | R(y, x)}. This map char(R) is the
unique function f : X → P(Y) with ∈ (y, f(x))⇔ R(y, x), i.e. with (id×f)−1(∈) = R.

This formalisation of this special property in categorical language yields so-called
power objects. The presence of such objects is a key feature of “toposes”. The latter
are categorical set-like universes, with constructive logic. They form a topic that goes be-
yond the introductory material covered in this text. The interested reader is referred to the
extensive literature on toposes [255, 257, 156, 56, 317, 78].

Finally, we shall often need the finite powerset Pfin(X) = {U ∈ P(X) | U is finite}.
It also forms a functor Sets→ Sets.

Injections and surjections (in Sets)

A function f : X → Y is called injective (or an injection, or monomorphism, or just
mono, for short) if f(x) = f(x′) implies x = x′. In that case we often write f : X �
Y , or f : X ↪→ Y in case X is a subset of Y . A surjection, (or surjective function, or
epimorphism, or just epi) is a map written as f : X � Y such that for each y ∈ Y there
is an x ∈ X with f(x) = y. Injectivity and surjectivity can be formulated categorically,
see Exercise 2.5.8 later on, and then appear as dual notions. In the category Sets these
functions have some special “splitting” properties that we shall describe explicitly because
they are used from time to time.

The standard formulation of the axiom of choice (AC) say that for each collection
(Xi)i∈I of non-empty sets there is a choice function c : I → ⋃

i∈I Xi with c(i) ∈ Xi for

DRAFT

34 Chapter 2. Coalgebras of Polynomial Functors34 Chapter 2. Coalgebras of Polynomial Functors34 Chapter 2. Coalgebras of Polynomial Functors

each i ∈ I . It is used for instance to see that the set-theoretic product
∏
i∈I Xi from (2.4)

is a non-empty set in case each Xi is non-empty.
An equivalent, more categorical, formulation of the axiom of choice is: every surjection

f : X � Y has a section (also called splitting): a function s : Y → X in the reverse
direction with f ◦ s = id. This s thus chooses an element s(y) in the non-empty set
f−1(y) = {x ∈ X | f(x) = y}. Notice that such a section is an injection.

For injections there is a comparable splitting result. Assume f : X � Y in Sets,
where X 6= ∅. Then there is a function g : Y → X with g ◦ f = id. This g is obtained as
follows. Since X 6= ∅ we may assume an element x0 ∈ X , and use it in:

g(y) =

{
x if there is a (necessarily unique) element x with f(x) = y

x0 otherwise.

Notice that this g is a surjection Y � X .
These observations will often be used in the following form.

2.1.7. Lemma. Let F : Sets→ Sets be an arbitrary functor.
(i) If f : X → Y is surjective, then so is F (f) : F (X)→ F (Y).

(ii) If f : X → Y is injective and X is non-empty, then F (f) is also injective.

Proof. (i) If f : X → Y is surjective, then, by the axiom of choice, there is a splitting
s : Y → X with f ◦ s = idY . Hence F (f) ◦ F (s) = F (f ◦ s) = F (idY) = idF (Y).
Thus F (f) has a splitting (right inverse), and is thus surjective.

(ii) In the same way, as we have seen, for injective functions f : X → Y with X 6= ∅,
there is a g : Y → X with g ◦ f = idX . Thus F (g) ◦ F (f) = idF (X), so that F (f) is
injective.

Exercises

2.1.1. Verify in detail the bijective correspondences (2.2), (2.6), (2.11) and (2.16).

2.1.2. Consider a poset (D,≤) as a category. Check that the product of two elements d, e ∈ D, if
it exists, is the meet d ∧ e. And a coproduct of d, e, if it exists, is the join d ∨ e.
Similarly, show that a final object is a top element > (with d ≤ >, for all d ∈ D), and that
an initial object is a bottom element ⊥ (with ⊥ ≤ d, for all d ∈ D).

2.1.3. Check that a product in a category C is the same as a coproduct in Cop.

2.1.4. Fix a set A and prove that assignments X 7→ A × X , X 7→ A + X and X 7→ XA are
functorial, and give rise to functors Sets→ Sets.

2.1.5. Prove that the category PoSets of partially ordered sets and monotone functions is a
BiCCC. The definitions on the underlying sets X of a poset (X,≤) are like for ordinary
sets, but should be equipped with appropriate orders.

2.1.6. Consider the category Mon of monoids with monoid homomorphisms between them.
(i) Check that the singleton monoid 1 is both an initial and a final object in Mon; this is

called a zero object.
(ii) Given two monoids (M1,+1, 01) and (M2,+2, 02), define a product monoid M1 ×

M2 with componentwise addition (x, y) + (x′, y′) = (x +1 x
′, y +2 y

′) and unit
(01, 02). Prove thatM1×M2 is again a monoid, which forms a product in the category
Mon with the standard projection maps M1

π1←−M1 ×M2
π2−→M2.

(iii) Note that there are also coprojections M1
κ1−→M1 ×M2

κ2←−M2, given by κ1(x) =
(x, 02) and κ2(y) = (01, y) which are monoid homomorphisms, and which make
M1 × M2 at the same time the coproduct of M1 and M2 in Mon (and hence a
biproduct).

[Hint. Define the cotuple [f, g] as x 7→ f(x) + g(x).]

DRAFT

2.1. Constructions on sets 352.1. Constructions on sets 352.1. Constructions on sets 35

2.1.7. Show that in Sets products distribute over coproducts, in the sense that the canonical maps

(X × Y) + (X × Z)
[idX × κ1, idX × κ2]

// X × (Y + Z)

0
! // X × 0

are isomorphisms. Categories in which this is the case are called distributive, see [93] for
more information on distributive categories in general, and see [171] for an investigation of
such distributivities in categories of coalgebras.

2.1.8. (i) Consider a category with finite products (×, 1). Prove that there are isomorphisms:

X × Y ∼= Y ×X (X × Y)× Z ∼= X × (Y × Z) 1×X ∼= X.

(ii) Similarly, show that in a category with finite coproducts (+, 0) one has:

X + Y ∼= Y +X (X + Y) + Z ∼= X + (Y + Z) 0 +X ∼= X.

[This means that both the finite product and coproduct structure in a category yields so-
called symmetric monoidal structure. See [315, 78] for more information.]
(iii) Next, assume that our category also has exponents. Prove that:

X0 ∼= 1 X1 ∼= X 1X ∼= 1.

And also that:

ZX+Y ∼= ZX × ZY ZX×Y ∼=
(
ZY
)X

(X × Y)Z ∼= XZ × Y Z .

2.1.9. Check that:
P(0) ∼= 1 P(X + Y) ∼= P(X)× P(Y).

And similarly for the finite powerset Pfin(−) instead of P(−). This property says that P()
and Pfin() are “additive”, see [102].

2.1.10. Show that the finite powerset also forms a functor Pfin(−) : Sets→ Sets.

2.1.11. Notice that a powerset P(X) can also be understood as exponent 2X , where 2 = {0, 1}.
Check that the exponent functoriality gives rise to the contravariant powerset Setsop →
Sets.

2.1.12. Consider a function f : X → Y . Prove that:
(i) the direct imageP(f) =

∐
f : P(X)→ P(Y) preserves all joins, and that the inverse

image f−1(−) : P(Y)→ P(X) preserves not only joins but also meets and negation
(i.e. all the Boolean structure);

(ii) there is a Galois connection
∐
f (U) ⊆ V ⇐⇒ U ⊆ f−1(V), as claimed in (2.15);

(iii) there is a product function
∏
f : P(X)→ P(Y) given by

∏
f (U) = {y ∈ Y | ∀x ∈

X. f(x) = y ⇒ x ∈ U}, with a Galois connection f−1(V) ⊆ U ⇐⇒ V ⊆∏f (U).

2.1.13. Assume a category C has arbitrary, set-indexed coproducts
∐
i∈I Xi. Show, like in the

proof of Proposition 2.1.5, that the category CoAlg(F) of coalgebras of a functorF : C→
C then also has such coproducts.

2.1.14. For two parallel maps f, g : X → Y between objects X,Y in an arbitrary category C a
coequaliser q : Y → Q is a map in a diagram,

X

f
//

g
// Y

q
// Q

with q ◦ f = q ◦ g in a “universal way”: for an arbitrary map h : Y → Z with h ◦ f =
h ◦ g there is a unique map k : Q→ Z with k ◦ q = h.
(i) An equaliser in a category C is a coequaliser in Cop. Formulate explicitly what an

equaliser of two parallel maps is.
(ii) Check that in the category Sets the set Q can be defined as the quotient Y/R, where

R ⊆ Y × Y is the least equivalence relation containing all pairs (f(x), g(x)) for
x ∈ X .

DRAFT

36 Chapter 2. Coalgebras of Polynomial Functors36 Chapter 2. Coalgebras of Polynomial Functors36 Chapter 2. Coalgebras of Polynomial Functors

(iii) Returning to the general case, assume a category C has coequalisers. Prove that for an
arbitrary functor F : C → C the associated category of coalgebras CoAlg(F) also
has coequalisers, as in C: for two parallel homomorphisms f, g : X → Y between
coalgebras c : X → F (X) and d : Y → F (Y) there is by universality an induced
coalgebra structure Q → F (Q) on the coequaliser Q of the underlying maps f, g,
yielding a diagram of coalgebras

(
F (X)
↑ c
X

) f
//

g
//

(
F (Y)
↑ d
Y

)
q

//

(
F (Q)
↑
Q

)

with the appropriate universal property in CoAlg(F): for each coalgebra e : Z →
F (Z) with homomorphism h : Y → Z satisfying h ◦ f = h ◦ g there is a unique
homomorphism of coalgebras k : Q→ Z with k ◦ q = h.

2.2 Polynomial functors and their coalgebras

Earlier in Definition 1.4.5 we have seen the general notion of a coalgebra as a map X →
F (X) in a category C, where F is a functor C→ C. Here, in this section and in much of the
rest of this text we shall concentrate on a more restricted situation: as category C we use the
category Sets of ordinary sets and functions. And as functors F : Sets → Sets we shall
use so-called polynomial functors, like F (X) = A+ (B ×X)C . These are functors built
up inductively from certain simple basic functors, using products, coproducts, exponents
and powersets for forming new functors. There are three reasons for this restriction to
polynomial functors.

1. Polynomial functors are concrete and easy to grasp.

2. Coalgebras of polynomial functors include many of the basic examples; they suffice
for the time being.

3. Polynomial functors allow definitions by induction, for many of the notions that we
shall be interested in—notably relation lifting and predicate lifting in the next two
chapters. These inductive definitions are easy to use, and can be introduced without
any categorical machinery.

This section contains the definition of polynomial functor, and also many examples of
such functors and of their coalgebras.

2.2.1. Definition. We define three collections of functors Sets → Sets, namely SPF,
EPF, and KPF, for simple, exponent and Kripke polynomial functors, as in:'

&

$

%

'

&

$

%

'

&

$

%

SPF EPF KPF

Simple
polynomial

Exponent
polynomial

Kripke
polynomial

functors Sets→ Sets

built with identity, constants

finite products, arbitrary coproducts

additionally:

(−)A with

infinite A

additionally:

powerset P
(or Pfin)

(i) The collection SPF of simple polynomial functors is the least class of functors Sets→
Sets satisfying the following four clauses.

(1) The identity functor Sets→ Sets is in SPF.

(2) For each set A, the constant functor A : Sets→ Sets is in SPF. Recall that it maps
every set X to A, and every function f to the identity idA on A.

DRAFT

2.2. Polynomial functors and their coalgebras 372.2. Polynomial functors and their coalgebras 372.2. Polynomial functors and their coalgebras 37

(3) If both F and G are in SPF, then so is the product functor F × G, defined as X 7→
F (X)×G(X). On functions it is defined as f 7→ F (f)×G(f), see (2.3).

(4) If we have a non-empty set I and an I-indexed collection of functors Fi in SPF, then
the set-indexed coproduct

∐
i∈I Fi is also in SPF. This new functor maps a set X to

the I-indexed coproduct
∐
i∈I Fi(X) = {(i, u) | i ∈ I ∧ u ∈ Fi(X)}. It maps a

function f : X → Y to the mapping (i, u) 7→ (i, Fi(f)(u)).

(ii) The collection EPF of exponent polynomial functors has the following four clauses,
and additionally:

(5) For each set A, if F in SPF, then so is the “constant” exponent FA defined as X 7→
F (X)A. It sends a function f : X → Y to the function F (f)A = F (f)idA which
maps h : A→ F (X) to F (f) ◦ h : A→ F (Y), see (2.12).

(iii) The class KPF of Kripke polynomial functors is the superset of SPF defined by
the above clauses (1)–(5), with ‘SPF’ replaced by ‘KPF’, plus one additional rule:

(6) If F is in KPF, then so is the powerset P(F), defined as X 7→ P(F (X)) on sets, and
as f 7→ P(F (f)) on functions, see (2.13).

Occasionally, we shall say that a functor F is a finite KPF. This means that all the powersets
P(−) occurring in F are actually finite powersets Pfin(−).

We notice that exponents (−)A for finite sets A are already included in simple polyno-
mial functors via iterated products F1 × · · · × Fn. The collection EPF is typically used to
capture coalgebras (or automata) with infinite sets of inputs, given as exponents, see Sub-
section 2.2.3 below. The collection KPF is used for non-deterministic computations via
powersets, see Subsection 2.2.4.

The above clauses yield a reasonable collection of functors to start from, but we could
of course have included some more constructions in our definition of polynomial functor—
like iterations via initial and final (co)algebras, see Exercise 2.3.8 and e.g. [201, 369, 253],
as used in the experimental programming language Charity [97, 95, 94]. There are thus
interesting functors which are out of the “polynomial scope”, see for instance the multiset
or probability distribution functors from Section 4.1, or ‘dependent’ polynomial functors in
Exercise 2.2.6. However, the above clauses suffice for many examples, for the time being.

The coproducts that are used to construct simple polynomial functors are arbitrary, set-
indexed coproducts. Frequently we shall use binary versions F1 + F2, for an index set
I = {1, 2}. But we like to go beyond such finite coproducts, for instance in defining the
list functor F ?, given as infinite coproduct of products:

F ? =
∐
n∈N F

n where Fn = F × · · · × F︸ ︷︷ ︸
n times

(2.17)

Thus, if F is the identity functor, then F ? maps a set X to the set of lists:

X? = 1 +X + (X ×X) + (X ×X ×X) + · · ·
The collection SPF of simple polynomial functors is reasonably stable in the sense

that it can be characterised in various ways. Below we give one such alternative charac-
terisation; the other one is formulated later on, in Theorem 4.7.8, in terms of preservation
properties. The characterisation below uses “arities” as commonly used in universal algebra
to capture the number of arguments in a primitive function symbol. For instance, addition
+ has arity 2, and minus − has arity 1. These arities will be used more systematically in
Section 6.6 to associate a term calculus with a simple polynomial functor.

2.2.2. Definition. An arity is given by a set I and a function #: I → N. It determines a
simple polynomial functor F# : Sets→ Sets, namely:

F#(X)
def
=
∐
i∈I X

#i

= {(i, ~x) | i ∈ I and ~x ∈ X#i}.
(2.18)

DRAFT

38 Chapter 2. Coalgebras of Polynomial Functors38 Chapter 2. Coalgebras of Polynomial Functors38 Chapter 2. Coalgebras of Polynomial Functors

We often call such an F# an arity functor.

In the style of universal algebra one describes the operations of a group via an index
set I = {s,m, z}, with symbols for sum, minus and zero, with obvious arities #(s) = 2,
#(m) = 1, #(z) = 0. The associated functor F# sends X to (X × X) + X + 1. In
general, these arity functors have a form that clearly ‘polynomial’.

2.2.3. Proposition. The collections of simple polynomial functors and arity functors coin-
cide.

Proof. By construction an arity functor F# =
∐
i∈I(−)#(i) is a simple polynomial func-

tor, so we concentrate on the converse. We show that each simple polynomial functor F is
an arity functor, with index set F (1), by induction on the structure of F .

• If F is the identity functor X 7→ X we take I = F (1) = 1 and # = 1: 1 → N.
Then F#(X) =

∐
i∈1X

#i ∼=
∐
i∈1X

1 ∼= X = F (X).

If F is a constant functor X 7→ A, then we choose as arity the map #: A → N
which is constantly 0. Then F#(X) =

∐
a∈AX

#a =
∐
a∈AX

0 ∼=
∐
a∈A 1 ∼= A =

F (X).

• If F is a product X 7→ F1(X) × F2(X) we may assume arities #j : Ij → N for
j ∈ {1, 2}. We now define #: I1 × I2 → N as #(i1, i2) = #1i1 + #2i2. Then:

F#(X) =
∐

(i1,i2)∈I1×I2 X
(#i1+#2i2)

∼=
∐
i1∈I1

∐
i2∈I2 X

#i1 ×X#2i2

∼=
∐
i1∈I1 X

#i1 ×∐i2∈I2 X
#2(i2)

since Y × (−) preserves coproducts, see also Exercise 2.1.7
(IH)∼= F1(X)× F2(X)

= F (X).

• If F is a coproduct X 7→ ∐
j∈J Fj(X) we may assume arities #j : Ij → N by the

induction hypothesis. The cotuple # = [#j]j∈J :
∐
j∈j Ij → N then does the job:

F#(X) =
∐

(j,i)∈∐j∈J Ij
X#(j,i)

∼=
∐
j∈J

∐
i∈Ij X

#j(i)

(IH)∼=
∐
j∈J Fj(X)

= F (X).

The arities #: I → N that we use here are single-sorted arities. The can be used to
capture operations of the form n → 1, with n inputs, all of the same sort, and a single
output, of this same sort. But multi-sorted (or multi-typed) operations like even : N →
Bool = {true, false} are out of scope. More generally, given a set of sorts/types S, one
can also consider multi-sorted arities as functions #: I → S+ = S∗ × S. A value #(i) =
(〈s1, . . . sn〉, t) then captures a function symbol with type s1 × · · · × sn → t, taking n
inputs of sort s1, . . . , sn to an output sort t. Notice that the (single-sorted) arities that we
use here are a special case, when the set of sorts S is a singleton 1 = {0}, since 1? ∼= N.

In the remainder of this section we shall see several instances of (simple, exponent
and Kripke) polynomial functors. This includes examples of fundamental mathematical
structures that arise as coalgebras of such functors.

DRAFT

2.2. Polynomial functors and their coalgebras 392.2. Polynomial functors and their coalgebras 392.2. Polynomial functors and their coalgebras 39

2.2.1 Statements and sequences

In the previous chapter we have used program statements (in Section 1.1) and sequences (in
Section 1.2) as motivating examples for the study of coalgebras. We briefly review these
examples using the latest terminology and notation.

Recall that statements were introduced as functions acting on a state space S, with dif-
ferent output types depending on whether these statements could hang or terminate abruptly
because of an exception. These two representations were written as:

S // {⊥} ∪ S S // {⊥} ∪ S ∪ (S × E)

Using the notation from the previous section we now write these as:

S // 1 + S S // 1 + S + (S × E)

And so we recognise these statements as coalgebras

S // F (S) S // G(S)

of the simple polynomial functors:

F = 1 + id

=
(
X 7−→ 1 +X

) and
G = 1 + id + (id × E)

=
(
X 7−→ 1 +X + (X × E)

)
.

Thus, these functors determine the kind of computations.
Sequence coalgebras, for a fixed set A, were described in Section 1.2 as functions:

S // {⊥} ∪ (A× S)

i.e. as coalgebras:
S // 1 + (A× S)

of the simple polynomial functor 1 + (A × id). This functor was called Seq in Exam-
ple 1.4.4 (v). Again, the functor determines the kind of computations: either fail, or pro-
duce an element in A together with a successor state. We could change this a bit and drop
the fail-option. In that case, each state yields an element in A with a successor state. This
different kind of computation is captured by a different polynomial functor, namely by
A× id. A coalgebra of this functor is a function:

S // A× S

as briefly mentioned in the introduction to Chapter 1 (before Section 1.1). Its behaviour
will be an infinite sequence of elements of A: since there is no fail-option, these behaviour
sequences do not terminate. In the next section we shall see how to formalise this as:
infinite sequences AN form the final coalgebra of this functor A× id.

2.2.2 Trees

We shall continue this game of capturing different kinds of computation via different poly-
nomial functors. Trees form a good illustration because they occur in various forms. Recall
that in computer science trees are usually written up-side-down.

Let us start by fixing an arbitrary set A, elements of which will be used as labels in
our trees. Binary trees are most common. They arise as outcomes of computations of
coalgebras:

S // A× S × S

DRAFT

40 Chapter 2. Coalgebras of Polynomial Functors40 Chapter 2. Coalgebras of Polynomial Functors40 Chapter 2. Coalgebras of Polynomial Functors

of the simple polynomial functor A × id × id. Indeed, given a state x ∈ S, a one-step
computation yields a triple (a0, x1, x2) of an element a0 ∈ A and two successor states
x1, x2 ∈ S. Continuing the computation with both x1 and x2 yields two more elements in
A, and four successor states, etc. This yields for each x ∈ S an infinite binary tree with
one label from A at each node:

a0

ooooo
OOOOO

a1

��� 999 a2

��� 999

...
...

...
...

In a next step we could consider ternary trees as behaviours of coalgebras:

S // A× S × S × S

of the simple polynomial functor A × id × id × id. By a similar extension one can get
quaternary trees, etc. These are all instances of finitely branching trees, arising from coal-
gebras:

S // A× S?

of the Kripke polynomial functor A× id?. Each state x ∈ S is now mapped to an element
in A with a finite sequence 〈x1, . . . xn〉 of successor states—with which one continues to
observe the behaviour of x.

We can ask if the behaviour trees should always be infinitely deep. Finiteness must
come from the possibility that a computation fails and yields no successor state. This can
be incorporated by considering coalgebras

S // 1 + (A× S × S)

of the simple polynomial functor 1 + (A × id × id). Notice that the resulting behaviour
trees may be finite in one branch, but infinite in the other. There is nothing in the shape of
the polynomial functor that will guarantee that the whole behaviour will actually be finite.

A minor variation is in replacing the set 1 for non-termination by another set B, in:

S // B + (A× S × S)

The resulting behaviour trees will have elements from A at their nodes and from B at the
leaves.

2.2.3 Deterministic automata

Automata are very basic structures in computing, used in various areas: language the-
ory, text processing, complexity theory, parallel and distributed computing, circuit theory,
etc. Their state-based, dynamical nature makes them canonical examples of coalgebras.
There are many versions of automata, but here we shall concentrate on the two most basic
ones: deterministic and non-deterministic. For more information on the extensive the-
ory of automata, see for example [42, 118, 382, 29], and on coalgebras and automata see
e.g. [379, 418, 291, 184].

A deterministic automaton is usually defined as consisting of a set S of states, a set A
of labels (or actions, or letters of an alphabet), a transition function δ : S × A → S, and
a set F ⊆ S of final states. Sometimes, also an initial state x0 ∈ S is considered part of
the structure, but here it is not. Such an automaton is called deterministic because for each
state x ∈ S, and input a ∈ A, there is precisely one successor state x′ = δ(x, a) ∈ S.

First, we shall massage these ingredients into coalgebraic shape. Via the bijective corre-
spondence (2.11) for exponents, the transition function S×A→ S can also be understood

DRAFT

2.2. Polynomial functors and their coalgebras 412.2. Polynomial functors and their coalgebras 412.2. Polynomial functors and their coalgebras 41

as a map S → SA. And the subset F ⊆ S of final states corresponds to a characteristic
function S → {0, 1}. These two functions S → SA and S → {0, 1} can be combined to a
single function,

S
〈δ, ε〉

// SA × {0, 1} (2.19)

using the product correspondences (2.2). Thus, deterministic automata with A as set of
labels are coalgebras of the exponent polynomial functor idA × {0, 1}. An example of
such an automaton with input set A = {0, 1} is:

GFED@ABC000

0
		

1 // GFED@ABC001
1 //

0
��

GFED@ABC011
0

""EEEEEEEEE
1 // GFED@ABC?>=<89:;111

1

		

0
��GFED@ABC?>=<89:;100

1
<<yyyyyyyyy

0

OO

GFED@ABC010
0oo

1
** GFED@ABC?>=<89:;101

0
oo

1

OO

GFED@ABC?>=<89:;110
1oo

0

ii

(2.20)

The states are the numbers 0, 1, . . . , 7 in binary notation, giving as state space:

S =
{

000,001,010,011,100,101,110,111
}
.

Using the standard convention, final states are doubly encircled. In our coalgebraic repre-
sentation (2.19) this is captured by the function ε : S → {0, 1} defined by:

ε(111) = ε(100) = ε(101) = ε(110) = 1

ε(000) = ε(001) = ε(011) = ε(010) = 0.

The transition function δ : S → S{0,1} is:

δ(000)(0) = 000 δ(001)(0) = 010 δ(011)(0) = 110 δ(111)(0) = 110

δ(000)(1) = 001 δ(001)(1) = 011 δ(011)(1) = 111 δ(111)(1) = 111

δ(100)(0) = 000 δ(010)(0) = 100 δ(101)(0) = 010 δ(110)(0) = 111

δ(100)(1) = 001 δ(010)(1) = 101 δ(101)(1) = 011 δ(110)(1) = 101.

It is clear that the graphical representation (2.20) is more pleasant to read than these listings.
Shortly we discuss what this automaton does.

First we shall stretch the representation (2.19) a little bit, and replace the set {0, 1} of
observable values by an arbitrary set B of outputs. Thus, what shall call a deterministic
automaton is a coalgebra:

S
〈δ, ε〉

// SA ×B (2.21)

of the exponent polynomial functor idA × B. We recall that if the set A of inputs is finite,
we have a simple polynomial functor.

This kind of coalgebra, or deterministic automaton, 〈δ, ε〉 : S → SA × B thus consists
of a transition function δ : S → SA, and an observation function ε : S → B. For such an
automaton, we shall frequently use a transition notation x a−→ x′ for x′ = δ(x)(a). Also,
we introduce a notation for observation: x ↓ b stands for ε(x) = b. Finally, a combined
notation is sometimes useful: (x ↓ b) a−→ (x′ ↓ b′) means three things at the same time:
x ↓ b and x a−→ x′ and x′ ↓ b′.

DRAFT

42 Chapter 2. Coalgebras of Polynomial Functors42 Chapter 2. Coalgebras of Polynomial Functors42 Chapter 2. Coalgebras of Polynomial Functors

Often one considers automata with a finite state space. This is not natural in a coal-
gebraic setting, because the state space is considered to be a black box, about which es-
sentially nothing is known—except what can be observed via the operations. Hence, in
general, we shall work with arbitrary state spaces, without assuming finiteness. But Sub-
section 2.2.6 illustrates how to model n-state systems, when the number of states is a known
number n.

Assume we have a state x ∈ S of such a coalgebra / deterministic automaton 〈δ, ε〉 : S →
SA × B. Applying the output function ε : S → B to x yields an immediate observation
ε(x) ∈ B. For each element a1 ∈ A we can produce a successor state δ(x)(a1) ∈ S; it also
gives rise to an immediate observation ε(δ(x)(a1)) ∈ B, and for each a2 ∈ A a successor
state δ(δ(x)(a1))(a2) ∈ S, etc. Thus, for each finite sequence 〈a1, . . . , an〉 ∈ A? we can
observe an element ε(δ(· · · δ(x)(a1) · · ·)(an)) ∈ B. Everything we can possibly observe
about the state x is obtained in this way, namely as a function A? → B. Such behaviours
will form the states of the final coalgebra, see Proposition 2.3.5 in the next section.

For future reference we shall be a bit more precise about lists of inputs. Behaviours can
best be described via an iterated transition function

S ×A? δ∗ // S defined as

{
δ∗(x, 〈〉) = x

δ∗(x, a · σ) = δ∗(δ(x)(a), σ)
(2.22)

This iterated transition function δ∗ gives rise to the multiple-step transition notation: x σ−→∗
y stands for y = δ∗(x, σ), and means that y is the (non-immediate) successor state of x
obtained by applying the inputs from the sequent σ ∈ A?, from left to right.

The behaviour beh(x) : A? → B of a state x ∈ S is then obtained as the function that
maps a finite sequence σ ∈ A? of inputs to the observable output

beh(x)
def
= ε(δ∗(x, σ)) ∈ B (2.23)

An element of the set BA
?

of all such behaviours can be depicted as a rooted tree with
elements from the set A of inputs as labels, and elements from the set B of outputs at
nodes. For example, a function ϕ ∈ BA?

can be described as an infinite tree:

b0

annnnnn

nnnnnn a′ a′′ · · ·
HHH

HHH

b1

a��

�� a′ a′′
AA

AA

b2

· · ·
b3 · · ·
· · ·

b b′ b′′ · · ·

where

ϕ(〈〉) = b0
ϕ(〈a〉) = b1
ϕ(〈a′〉) = b2
ϕ(〈a′′〉) = b3

etc.
ϕ(〈a, a〉) = b
ϕ(〈a, a′〉) = b′

ϕ(〈a, a′′〉) = b′′

etc.

If the behaviour beh(x) of a state x looks like this, then one can immediately observe
b0 = ε(x), observe b1 = ε(δ(x)(a)) after input a, observe b = ε(δ(δ(x)(a))(a)) =

ε(δ∗(x, 〈a, a〉)) after inputing a twice, etc. Thus, there is an edge b a−→ b′ in the tree
if and only if there are successor states y, y′ of x with (y ↓ b) a−→ (y′ ↓ b′). In the next
section we shall see (in Proposition 2.3.5) that these behaviours in BA

?

themselves carry
the structure of a deterministic automaton.

In the illustration (2.20) one has, for a list of inputs σ ∈ {0, 1}?:

beh(000)(σ) = 1 ⇐⇒ σ contains a 1 in the third position from its end.

In order to see this notice that the names of the states are chosen in such a way that their
bits represent the last three bits that have been consumed so far from the input string σ. In

DRAFT

2.2. Polynomial functors and their coalgebras 432.2. Polynomial functors and their coalgebras 432.2. Polynomial functors and their coalgebras 43

Corollary 2.3.6 (ii) we shall see more generally that these behaviour maps beh capture the
language accepted by the automaton.

Here is a very special way to obtain deterministic automata. A standard result (see
e.g. [208, 8.7]) in the theory of differential equations says that unique solutions to such
equations give rise to monoid actions, see Exercises 1.4.1 and 2.2.9. Such a monoid action
may be of the form X ×R≥0 → X , where X is the set of states and R≥0 is the set of non-
negative reals with monoid structure (+, 0) describing the input (which may be understood
as time). In this context monoid actions are sometimes called flows, motions, solutions or
trajectories, see Exercise 2.2.11 for an example.

Exercise 2.2.12 below contains an account of linear dynamical systems which is very
similar to the above approach to deterministic automata. It is based on the categorical
analysis by Arbib and Manes [34, 35, 38, 37, 39] of Kalman’s [263] module-theoretic
approach to linear systems.

Lemma 2.2.4 contains a description of what coalgebra homomorphisms are for au-
tomata as in (2.21).

2.2.4 Non-deterministic automata and transition systems

Deterministic automata have a transition function δ : S × A → S. For non-deterministic
automata one replaces this function by a relation. A state can then have multiple successor
states—which is the key aspect of non-determinism. There are several, equivalent, ways
to represent this. For example, one can replace the transition function S × A → S by a
function S ×A→ P(S), yielding for each state x ∈ S and input a ∈ A a set of successor
states. Of course, this function can also be written as S → P(S)A, using Currying. This is
the same as using a transition relation, commonly written as an arrow:→⊆ S×A×S. Or
alternatively, one can use a function S → P(A×S). All this amounts to the same, because
of the bijective correspondences from Section 2.1:

S −→ P(S)A

============= (2.11)
S ×A −→ P(S)

================== (2.16)
relations ⊆ (S ×A)× S

====================
relations ⊆ S × (A× S)
================== (2.16)

S −→ P(A× S)

We have a preference for the first representation, and will thus use functions δ : S →
P(S)A as non-deterministic transition structures.

(It should be noted that if we use the finite powerset Pfin(−) instead of the ordinary one
P(−), then there are no such bijective correspondences, and there is then a real choice of
representation.)

Standardly, non-deterministic automata are also considered with a subset F ⊆ S of
final states. As for deterministic automata, we like to generalise this subset to an obser-
vation function S → B. This leads us to the following definition. A non-deterministic
automaton is a coalgebra:

S
〈δ, ε〉

// P(S)A ×B (2.24)

of a Kripke polynomial functor P(id)A ×B, where A is the set of its inputs, and B the set
of its outputs or observations. Like before, the coalgebra consists of a transition function
δ : S → P(S)A, and an observation function ε : S → B.

As illustration we give a non-deterministic version of the (deterministic) automaton
in (2.20) trying to find a 1 in the third position from the end of the input string. As is often

DRAFT

44 Chapter 2. Coalgebras of Polynomial Functors44 Chapter 2. Coalgebras of Polynomial Functors44 Chapter 2. Coalgebras of Polynomial Functors

the case, the non-deterministic version is much simpler. We use as inputs A = {0, 1} and
outputs B = {0, 1}, for observing final states, in:

ONMLHIJKwait

0, 1

1 // GFED@ABCtry

0, 1
// ONMLHIJKstep

0, 1
// ONMLHIJKGFED@ABCstop

(2.25)

More formally, the state space is S =
{

wait, try, step, stop} and ε : S → {0, 1} outputs 1
only on the state stop. The transition function δ : S → P(S){0,1} is:

δ(wait)(0) = {wait} δ(try)(0) = {step} δ(step)(0) = {stop} δ(stop)(0) = ∅
δ(wait)(1) = {wait, try} δ(try)(1) = {step} δ(step)(1) = {stop} δ(stop)(1) = ∅.

Clearly, we need sets of states to properly describe this automaton coalgebraically.
For non-deterministic automata (2.24) we shall use the same notation as for determin-

istic ones: x a−→ x′ stands for x′ ∈ δ(x)(a), and x ↓ b means ε(x) = b. New notation is
x

a9 , which means δ(x)(a) = ∅, i.e. there is no successor state x′ such that x can do an
a-step x a−→ x′ to x′. In general, for a given x and a there may be multiple (many or no)
x′ with x a−→ x′, but there is precisely one b with x ↓ b. Also in the non-deterministic case
we use the combined notation (x ↓ b) a−→ (x′ ↓ b′) for: x ↓ b and x a−→ x′ and x′ ↓ b′.

Like for deterministic automata we wish to define the behaviour of a state from transi-
tions (x ↓ b) a−→ (x′ ↓ b′) by omitting the states and keeping the inputs and outputs. But in
the non-deterministic case things are not so easy because there may be multiple successor
states. More technically, there are no final coalgebras for functors P(id)A × B describ-
ing non-deterministic automata, see Proposition 2.3.8 and the discussion in the preceding
paragraph. However, if we restrict ourselves to the finite powerset Pfin, final coalgebras do
exist. For general non-deterministic automata (2.24), with the proper (non-finite) powerset,
one can consider other forms of behaviour, such as traces, see Section 5.3.

Now that we have some idea of what a non-deterministic automaton is, namely a coal-
gebra S → P(S)A ×B, we can introduce various transition systems as special cases.

• An unlabelled transition system (UTS) is a non-deterministic automaton with triv-
ial inputs and outputs: A = 1 and B = 1. It is thus nothing else but a relation
→⊆ S × S on a set of states. UTSs are very basic dynamical systems, but they are
important for instance as a basis for model checking: automatic state exploration for
proving or disproving properties about systems, see for instance [318, 119].

• A labelled transition system, (LTS) introduced in [352], is a non-deterministic
automaton with trivial output: B = 1. It can be identified with a relation →⊆
S × A × S. Labelled transition systems play an important role in the theory of
processes, see e.g. [68].

• A Kripke structure is a non-deterministic automaton S −→ P(S) × P(AtProp)
with trivial input (A = 1), and special output: B = P(AtProp), for a set AtProp
of atomic propositions. The transition function δ : S → P(S) thus corresponds
to an unlabelled transition system. And the observation function function ε : S →
P(AtProp) tells for each state which of the atomic propositions are true (in that
state). Such a function, when written as AtProp → P(S) is often called a valua-
tion. Kripke structures are fundamental in the semantics of modal logic, see e.g. [74]
or [120]. The latter reference describes Kripke structures for “multiple agents”, that
is, as coalgebras S −→ P(S) × · · · × P(S) × P(AtProp) with multiple transition
functions.

When we consider (non-)deterministic automata as coalgebras, we automatically get
an associated notion of (coalgebra) homomorphism. As we shall see next, such a homo-
morphism both preserves and reflects the transitions. The proofs are easy, and left to the
reader.

DRAFT

2.2. Polynomial functors and their coalgebras 452.2. Polynomial functors and their coalgebras 452.2. Polynomial functors and their coalgebras 45

2.2.4. Lemma. (i) Consider two deterministic automataX → XA×B and Y → Y A×B
as coalgebras. A function f : X → Y is then a homomorphism of coalgebras if and only if

(1) x ↓ b =⇒ f(x) ↓ b;
(2) x a−→ x′ =⇒ f(x)

a−→ f(x′).

(ii) Similarly, for two non-deterministic automataX → P(X)A×B and Y → P(Y)A×
B a function f : X → Y is a homomorphism of coalgebras if and only if

(1) x ↓ b =⇒ f(x) ↓ b;
(2) x a−→ x′ =⇒ f(x)

a−→ f(x′);

(3) f(x)
a−→ y =⇒ ∃x′ ∈ X. f(x′) = y ∧ x a−→ x′.

Such a function f is sometimes called a zig-zag morphism, see [64].

Note that the analogue of point (3) in (ii) trivially holds for deterministic automata.

2.2.5 Context-free grammars

A context free grammar is a basic tool in computer science to describe the syntax of pro-
gramming languages via so-called production rules. These rules are of the form v −→ σ,
where v is a non-terminal symbol and σ is a finite list of both terminal and non-terminal
symbols. If we write V for the set of non-terminals, andA for the terminals, then a context-
free grammar (CFG) is a coalgebra

V
g

// P
(
(V +A)?

)

of the polynomial functor X 7−→ P
(
(X + A)?

)
. It sends each non-terminal v to a set

g(v) ⊆ (V +A)? of right-hand-sides σ ∈ g(v) in productions v −→ σ.
A word τ ∈ A?—with terminals only—can be generated by a context-free grammar

g if there is a non-terminal v ∈ V from which τ arises by applying rules repeatedly. The
collection of all such strings is the language that is generated by the grammar.

A simple example is the grammar with V = {v}, A = {a, b} and g(v) = {〈〉, avb}. It
thus involves two productions v −→ 〈〉 and v −→ a · v · b. This grammar generates the
language of words anbn consisting of a number of a’s followed by an equal number of b’s.
Such a grammar is often written in “Backus Naur Form” (BNF) as v ::= 〈〉 | avb.

A derivation of a word imposes a structure on the word that is generated. This structure
may be recognised in an arbitrary word in a process called parsing. This is one of the very
first things a compiler does (after lexical analysis), see for instance [32]. Example 5.3.2
describes the parsed language associated with a CFG via a trace semantics defined by
coinduction.

2.2.6 Turing-style machines

Turing machines are paradigmatic models of computation that are of fundamental impor-
tance in the theory of computation (see e.g. [336]). Turing machines are special automata
involving a head moving over a type that can read and write symbols, following certain
rules determined by a finite state machine. Turing machines come in different flavours,
with different kinds of tapes or different kinds of computation (e.g. (non)deterministic or
probabilistic, or even of quantum kind). Here we give a sketch of how to describe them
coalgebraically, following [235].

The coalgebraic representation requires some care because a Turing machines involves
two kinds of states, namely “register” states given by the contents of the tape, and “steer-
ing” states in the finite state machine that controls the head. The register states may be
represented as an infinite list DN of data cells, on which certain operations (reading and

DRAFT

46 Chapter 2. Coalgebras of Polynomial Functors46 Chapter 2. Coalgebras of Polynomial Functors46 Chapter 2. Coalgebras of Polynomial Functors

writing) may be performed. We abstract from all this and represent it simply as a coalgebra
S → F (S), where S is the set of register states. In case we know that there are n steering
states, the resulting Turing-style machine can be represented as a coalgebra:

S //
(
F (n · S)

)n
(2.26)

Recall that Xn = X × · · · × X is the n-fold power and n · X = X + · · · + X is the n-
fold coproduct. This representation (2.26) gives for each steering state a separate coalgebra
S → F (n · S) telling how the machine moves to successor states (both of register and
steering kind).

We consider a concrete example of a non-deterministic Turing machine that accepts all
strings σ ∈ {a, b, c}? where σ contains a c that is preceded or followed by ab. It can be
described diagrammatically as:

2
aaR // 4 bbR

''NNNNNN

1

aaR

--

bbR

11

ccR 77pppppp

ccL ''NNNNNN 6

3
bbL

// 5 aaL

77pppppp

As usual, the label xyL means: if you read symbol x at the current location then write y
and move left. Similarly, xyR involves a move to the right.

We model such a machine with a tape with symbols from the alphabet Σ = {a, b, c}.
The tape stretches in 2 dimension, and so we use the integers Z (like in walks) as index.
Thus the type T of tapes is given by T = ΣZ × Z, consisting of pairs (t, p) where t : Z→
Σ = {a, b, c} is the tape itself and p ∈ Z the current position of the head.

Following the description (2.26) we represent the above non-deterministic Turing ma-
chine with six states as a coalgebra:

T //
(
P(6 · T)

)6
(2.27)

Below we describe this coalgebra explicitly by enumerating the input cases, where the six
coprojections κi : T→ 6 · T = T + T + T + T + T + T describe the successor states.

(t, p) 7−→

1 7−→ {κ1(t, p+ 1) | t(p) = a or t(p) = b} ∪
{κ2(t, p+ 1) | t(p) = c} ∪ {κ3(t, p− 1) | t(p) = c}

2 7−→ {κ4(t, p+ 1) | t(p) = a}
3 7−→ {κ5(t, p− 1) | t(p) = b}
4 7−→ {κ6(t, p+ 1) | t(p) = b}
5 7−→ {κ6(t, p− 1) | t(p) = a}
6 7−→ ∅.

(2.28)

Notice that we need the powerset P to capture the non-determinism (especially at state 1).
Later on, in Exercise 5.1.6, we shall see that the functor X 7→

(
P(6 · X)

)6
used

in (2.27) carries a monad structure that makes it possible to compose this Turing coalgebra
with itself, like in Exercise 1.1.2, so that transitions can be iterated.

2.2.7 Non-well-founded sets

Non-well-founded sets form a source of examples of coalgebras which has been of histori-
cal importance in the development of the area. Recall that in ordinary set theory there is a

DRAFT

2.2. Polynomial functors and their coalgebras 472.2. Polynomial functors and their coalgebras 472.2. Polynomial functors and their coalgebras 47

foundation axiom (see e.g. [132, Chapter II, §5]) stating that there are no infinite descend-
ing ∈-chains · · · ∈ x2 ∈ x1 ∈ x0. This foundation axiom is replaced by an anti-foundation
axiom in [131], and also in [8], allowing for non-well-founded sets. The second refer-
ence [8] received much attention; it formulated an anti-foundation axiom as: every graph
has a unique decoration. This can be reformulated easily in coalgebraic terms, stating that
the universe of non-well-founded sets is a final coalgebra for the (special) powerset functor
℘ on the category of classes and functions:

℘(X) = {U ⊆ X | U is a small set}.

Incidentally, the “initial algebra” (see Section 2.4) of this functor is the ordinary universe
of well-founded sets, see [414, 412] for details.

Aczel developed his non-well-founded set theory in order to provide a semantics for
Milner’s theory CCS [323] of concurrent processes. An important contribution of this work
is the link it established between the proof principle in process theory based on bisim-
ulations (going back to [323, 341]), and coinduction as proof principle in the theory of
coalgebras—which will be described here in Section 3.4. This work formed a source of
much inspiration in the semantics of programming languages [414] and also in logic [62].

Exercises

2.2.1. Check that a polynomial functor which does not contain the identity functor is constant.

2.2.2. Describe the kind of trees that can arise as behaviours of coalgebras:
(i) S −→ A+ (A× S)
(ii) S −→ A+ (A× S) + (A× S × S)

2.2.3. Check, using Exercise 2.1.9, that non-deterministic automata X → P(X)A× 2 can equiv-
alently be described as transition systems X → P(1 + (A×X)). Work out the correspon-
dence in detail.

2.2.4. Describe the arity # for the functors
(i) X 7→ B + (X ×A×X)
(ii) X 7→ A0 ×XA1 × (X ×X)A2 , for finite sets A1, A2.

2.2.5. Check that finite arity functors correspond to simple polynomial functors in the construction
of which all constant functors X 7→ A and exponents XA have finite sets A.

2.2.6. Consider an indexed collection of sets (Ai)i∈I , and define the associated “dependent” poly-
nomial functor Sets→ Sets by

X 7−→ ∐
i∈I X

Ai = {(i, f) | i ∈ I ∧ f : Ai → X}.

(i) Prove that we get a functor in this way; obviously, by Proposition 2.2.3, each polyno-
mial functor is of this form, for a finite set Ai.

(ii) Check that all simple polynomial functors are dependent—by finding suitable collec-
tions (Ai)i∈I for each of them.

[These functors are studied as “containers” in the context of so-called W-types in dependent
type theory for well-founded trees, see for instance [2, 1, 338].]

2.2.7. Recall from (2.13) and (2.14) that the powerset functor P can be described both as a covari-
ant functor Sets→ Sets and as a contravariant one 2(−) : Setsop → Sets. In the defini-
tion of Kripke polynomial functors we use the powerset P covariantly. An interesting—not
Kripke polynomial—functor N = PP : Sets → Sets is obtained by using the con-
travariant powerset functor twice (yielding a covariant functor). Coalgebras of this so-
called neighbourhood functor are used in [389, 327] as models of a special modal logic
(see also [182] for the explicitly coalgebraic view).
(i) Describe the actionN (f) : N (X)→ N (Y) of a function f : X → Y .
(ii) Try to see a coalgebra c : X → N (X) as the setting of a two-player game, with the

first player’s move in state x ∈ X given by a choice of a subset U ∈ c(x) and the
second player’s reply by a choice of successor state x′ ∈ U .

DRAFT

48 Chapter 2. Coalgebras of Polynomial Functors48 Chapter 2. Coalgebras of Polynomial Functors48 Chapter 2. Coalgebras of Polynomial Functors

2.2.8. (i) Notice that the behaviour function beh : S → BA
?

from (2.23) for a deterministic
automaton satisfies:

beh(x)(〈〉) = ε(x)

= b, where x ↓ b
beh(x)(a · σ) = beh(δ(x)(a))(σ)

= beh(x′)(σ), where x a−→ x′.

(ii) Consider a homomorphism f : X → Y of coalgebras / deterministic automata from
X → XA ×B and Y → Y A ×B, and prove that for all x ∈ X ,

beh2(f(x)) = beh1(x).

2.2.9. Check that the iterated transition function δ∗ : S × A? → S of a deterministic automaton
is a monoid action—see Exercise 1.4.1—for the free monoid structure on A? from Exer-
cise 1.4.4.

2.2.10. Note that the function spaces SS carries a monoid structure given by composition. Show
that the iterated transition function δ∗ for a deterministic automaton, considered as a monoid
homomorphism A? → SS , is actually obtained from δ by freeness of A?—as described in
Exercise 1.4.4.

2.2.11. Consider a very simple differential equation of the form df
dy

= −Cf , where C ∈ R is a
fixed positive constant. The solution is usually described as f(y) = f(0) · e−Cy . Check
that it can be described as a monoid action R× R≥0 → R, namely (x, y) 7→ xe−Cy .

2.2.12. Let Vect be the category with finite-dimensional vector spaces over the real numbers R (or
some other field) as objects, and with linear transformations between them as morphisms.
This exercise describes the basics of linear dynamical systems, in analogy with determinis-
tic automata. It does require some basic knowledge of vector spaces.
(i) Prove that the product V ×W of (the underlying sets of) two vector spaces V and W

is at the same time a product and a coproduct in Vect—the same phenomenon as in
the category of monoids, see Exercise 2.1.6. Show also that the singleton space 1 is
both an initial and a final object. And notice that an element x in a vector space V
may be identified with a linear map R→ V .

(ii) A linear dynamical system [263] consists of three vector spaces: S for the state space,
A for input, andB for output, together with three linear transformations: an input map
G : A → S, a dynamics F : S → S, and an output map H : S → B. Note how the
first two maps can be combined via cotupling into one transition function S×A→ S,
as used for deterministic automata. Because of the possibility of decomposing the
transition function in this linear case into two mapsA→ S and S → S, these systems
are called decomposable by Arbib and Manes [34].
[But this transition function S × A → S is not bilinear (i.e. linear in each argument
separately), so it does not give rise to a map S → SA to the vector space SA of linear
transformations from A to S. Hence we do not have a purely coalgebraic description
S → SA ×B in this linear setting.]

(iii) For a vector spaceA, consider, in the notation of [34], the subset of infinite sequences:

A§ = {α ∈ AN | only finitely many α(n) are non-zero}.

Equip the set A§ with a vector space structure, such that the insertion map in : A →
A§, defined as in(a) = (a, 0, 0, 0, . . .), and shift map sh : A§ → A§, given as
sh(α) = (0, α(0), α(1), . . .), are linear transformations.
[This vector space A§ may be understood as the space of polynomials over A in one
variable. It can be defined as the infinite coproduct

∐
n∈NA of N-copies ofA—which

is also called a copower, and written as N · A, see [315, III, 3]. It is the analogue in
Vect of the set of finite sequences B? for B ∈ Sets. This will be made precise in
Exercise 2.4.8.]

DRAFT

2.3. Final coalgebras 492.3. Final coalgebras 492.3. Final coalgebras 49

(iv) Consider a linear dynamical system A
G→ S

F→ S
H→ B as above, and show that the

analogue of the behaviour A? → B for deterministic automata (see also [36, 6.3]) is
the linear map A§ → B defined as

(a0, a2, . . . , an, 0, 0, . . .) 7−→
∑

i≤n
HF iGai

This is the standard behaviour formula for linear dynamical systems, see e.g. [263, 37].
[This behaviour map can be understood as starting from the “default” initial state 0 ∈
S. If one wishes to start from an arbitrary initial state x ∈ S, one gets the formula

(a0, a2, . . . , an, 0, 0, . . .) 7−→ HF (n+1)x+
∑

i≤n
HF iGai.]

It is obtained by consecutively modifying x with inputs an, an−1, . . . , a0.

2.3 Final coalgebras

In the previous chapter we have seen the special role that is played by the final coalgebra
A∞ → 1 + (A × A∞) of sequences, both for defining functions into sequences and for
reasoning about them—with “coinduction”. Here we shall define finality in general for
coalgebras, and investigate this notion more closely—which leads for example to language
acceptance by automata, see Corollary 2.3.6 (ii). This general definition will allow us to
use coinductive techniques for arbitrary final coalgebras. The underlying theme is that in
final coalgebras there is no difference between states and their behaviours.

In system-theoretic terms, final coalgebras are of interest because they form so-called
minimal representations: they are canonical realisations containing all the possible be-
haviours of a system. It is this idea that we have already tried to suggest in the previous
section when discussing various examples of coalgebras of polynomial functors.

Once we have a final coalgebra (for a certain functor), we can map a state from an
arbitrary coalgebra (of the same functor) to its behaviour. This induces a useful notion of
equivalence between states, namely equality of the associated behaviours. As we shall see
later (in Section 3.4), this is bisimilarity.

We shall start in full categorical generality—building on Definition 1.4.5—but we
quickly turn to concrete examples in the category of sets. Examples of final coalgebras in
other categories—like categories of domains or of metric spaces—may be found in many
places, like [134, 135, 136, 398, 4, 414, 124, 123, 205, 79], but also in Section 5.3.

2.3.1. Definition. Let C be an arbitrary category with an endofunctor F : C → C. A
final F -coalgebra is simply a final object in the associated category CoAlg(F) of F -
coalgebras. Thus, it is a coalgebra ζ : Z → F (Z) such that for any coalgebra c : X →
F (X) there is a unique homomorphism behc : X → Z of coalgebras, as in:

F (X)
↑ c
X

 behc //______

F (Z)
↑ ζ
Z

 i.e.

F (X) //______
F (behc)

F (Z)

X

c

OO

//_______
behc

Z

ζ

OO

The dashed notation is often used for uniqueness. What we call a behaviour map behc is
sometimes called an unfold or a coreduce of c.

A common mistake is to read in this definition “for any other coalgebra c : X → F (X)”
instead of “for any coalgebra c : X → F (X)”. It is important that we can take ζ for this c;
the resulting map behζ is then the identity, by uniqueness. This will for instance be used
in the proof of Lemma 2.3.3 below.

DRAFT

50 Chapter 2. Coalgebras of Polynomial Functors50 Chapter 2. Coalgebras of Polynomial Functors50 Chapter 2. Coalgebras of Polynomial Functors

Recall from Section 1.2 the discussion (after Example 1.2.2) about the two aspects
of unique existence of the homomorphism into the final coalgebra, namely (1) existence
(used as coinductive/corecursive definition principle), and (2) uniqueness (used as coin-
ductive proof principle). In the next section we shall see that ordinary induction—from a
categorical perspective—also involves such a unique existence property. At this level of
abstraction there is thus a perfect duality between induction and coinduction.

This unique existence is in fact all we need about final coalgebras. What these coalge-
bras precisely look like—what their elements are in Sets—is usually not relevant. Nev-
ertheless, in order to become more familiar with this topic of final coalgebras, we shall
describe several examples concretely. More general theory about the existence of final
coalgebras is developed in Section 4.6.

But first we shall look at two general properties of final coalgebras.

2.3.2. Lemma. A final coalgebra, if it exists, is determined up to isomorphism.

Proof. This is in fact a general property of final objects in a category: if 1 and 1′ are both
a final object in the same category, then there are unique maps f : 1 → 1′ and g : 1′ → 1
by finality. Thus we have two maps 1 → 1, namely the composition g ◦ f and of course
the identity id1. But then they must be equal by finality of 1. Similarly, by finality of 1′ we
get f ◦ g = id1′ . Therefore 1 ∼= 1′.

In view of this result we often talk about the final coalgebra of a functor, if it exists.
Earlier, in the beginning of Section 1.2 we have seen that the final coalgebra map

A∞ → 1 + (A × A∞) for sequences is an isomorphism. This turns out to be a gen-
eral phenomenon, as observed by Lambek [298]: a final F -coalgebra is a fixed point for
the functor F . The proof of this result is a nice exercise in diagrammatic reasoning.

2.3.3. Lemma. A final coalgebra ζ : Z → F (Z) is necessarily an isomorphism ζ : Z
∼=→

F (Z).

Proof. The first step towards constructing an inverse of ζ : Z → F (Z) is to apply the
functor F : C → C to the final coalgebra ζ : Z → F (Z), which yields again a coalgebra,
namely F (ζ) : F (Z)→ F (F (Z)). By finality we get a homomorphism f : F (Z)→ Z as
in:

F (F (Z)) //______
F (f)

F (Z)

F (Z)

F (ζ)

OO

//_______
f

Z

ζ

OO

The aim is to show that this f is the inverse of ζ. We first consider the composite f ◦
ζ : Z → Z, and show that it is the identity. We do so by first observing that the identity
Z → Z is the unique homomorphism ζ → ζ. Therefore, it suffices to show that f ◦ ζ is
also a homomorphism ζ → ζ. This follows from an easy diagram chase:

F (Z)
F (ζ)

// F (F (Z))
F (f)

// F (Z)

Z

ζ

OO

ζ
//

behζ = idZ

33F (Z)

F (ζ)

OO

f
// Z

ζ

OO

The rectangle on the right is the one defining f , and thus commutes by definition. And the
one on the left obviously commutes. Therefore the outer rectangle commutes. This says
that f ◦ ζ is a homomorphism ζ → ζ, and thus allows us to conclude that f ◦ ζ = idZ .

DRAFT

2.3. Final coalgebras 512.3. Final coalgebras 512.3. Final coalgebras 51

But now we are done since the reverse equation ζ ◦ f = idF (Z) follows from a simple
computation:

ζ ◦ f = F (f) ◦ F (ζ) by definition of f

= F (f ◦ ζ) by functoriality of F

= F (idZ) as we just proved

= idF (Z) because F is a functor.

An immediate negative consequence of this fixed point property of final coalgebras is
the following. It clearly shows that categories of coalgebras need not have a final object.

2.3.4. Corollary. The powerset functor P : Sets→ Sets does not have a final coalgebra.

Proof. A standard result of Cantor (proved by so-called diagonalisation, see e.g. [107,
Theorem 15.10] or [86, Theorem 1.10]) says that there cannot be an injection P(X) � X ,
for any set X . This excludes a final coalgebra X ∼=−→ P(X).

As we shall see later in this section, the finite powerset functor does have a final coal-
gebra. But first we shall look at some easier examples. The following result, occurring for
example in [41, 366, 223], is simple but often useful. It will be used in Section 4.6 to prove
more general existence results for final coalgebras.

2.3.5. Proposition. Fix two sets A and B, and consider the polynomial functor idA × B
whose coalgebras are deterministic automata. The final coalgebra of this functor is given
by the set of behaviour functions BA

?

, with structure:

BA
?

ζ = 〈ζ1, ζ2〉
//
(
BA

?)A ×B

given by:

ζ1(ϕ)(a) = λσ ∈ A?. ϕ(a · σ) and ζ2(ϕ) = ϕ(〈〉).
Proof. We have to show that for an arbitrary coalgebra / deterministic automaton 〈δ, ε〉 : X →
XA × B there is a unique homomorphism of coalgebras X → BA

?

. For this we take of
course the behaviour function beh : X → BA

?

from the previous section, defined in (2.23)
by beh(x) = λσ ∈ A?. ε(δ∗(x, σ)). We have to prove that it is the unique function making
the following diagram commute.

XA ×B
behidA × idB

//
(
BA

?)A ×B

X

〈δ, ε〉
OO

beh
// BA

?

ζ = 〈ζ1, ζ2〉
OO

We prove commutation first. It amounts to two points, see also Lemma 2.2.4 (i).
(
ζ1 ◦ beh

)
(x)(a) = ζ1(beh(x))(a)

= λσ. beh(x)(a · σ)

= λσ. beh
(
δ(x)(a)

)
(σ) see Exercise 2.2.8 (i)

= beh
(
δ(x)(a)

)

= behidA
(
δ(x)

)
(a)

=
(
behidA ◦ δ

)
(x)(a)

(ζ2 ◦ beh)(x) = beh(x)(〈〉)
= ε(δ∗(x, 〈〉))
= ε(x).

DRAFT

52 Chapter 2. Coalgebras of Polynomial Functors52 Chapter 2. Coalgebras of Polynomial Functors52 Chapter 2. Coalgebras of Polynomial Functors

Next we have to prove uniqueness. Assume that f : X → BA
?

is also a homomorphism
of coalgebras. Then one can show, by induction on σ ∈ A?, that for all x ∈ X one has
f(x)(σ) = beh(x)(σ):

f(x)(〈〉) = ζ2(f(x))

= ε(x) since f is a homomorphism

= beh(x)(〈〉)
f(x)(a · σ) = ζ1(f(x))(a)(σ)

= f
(
δ(x)(a)

)
(σ) since f is a homomorphism

= beh
(
δ(x)(a)

)
(σ) by induction hypothesis

= beh(x)(a · σ) see Exercise 2.2.8 (i).

There are two special cases of this general result that are worth mentioning explicitly.

2.3.6. Corollary. Consider the above final coalgebra BA
? ∼=−→

(
BA

?)A×B of the deter-
ministic automata functor idA ×B.

(i) When A = 1, so that A? = N, the resulting functor id × B captures stream coal-
gebras X → X × B. Its final coalgebra is the set BN of infinite sequences (streams) of
elements of B, with (tail,head) structure,

BN
∼= // BN ×B given by ϕ 7−→ (λn ∈ N. ϕ(n+ 1), ϕ(0))

as described briefly towards the end of the introduction to Chapter 1.
(ii) When B = 2 = {0, 1} describing final states of the automaton, the final coalgebra

BA
?

is the set P(A?) of languages over the alphabet A, with structure

P(A?)
∼= // P(A?)A × {0, 1}

given by:
L 7−→ (λa ∈ A.La, if 〈〉 ∈ L then 1 else 0),

where La is the so-called a-derivative, introduced by Brzozowski [83], and defined as:

La = {σ ∈ A? | a · σ ∈ L}.

Given an arbitrary automaton 〈δ, ε〉 : X → XA × {0, 1} of this type, the resulting
behaviour map beh〈δ,ε〉 : X → P(A?) thus describes the language beh〈δ,ε〉(x) ⊆ A?

accepted by this automaton with x ∈ X considered as initial state.

Both these final coalgebras AN and P(A?) are studied extensively by Rutten, see [377,
379, 380], see also Example 3.4.5 later on.

2.3.7. Example. The special case of (i) in the previous result is worth mentioning, whereB
is the set R of real numbers (and A = 1). We then get a final coalgebra RN ∼=−→ (RN)N×R
of streams of real numbers. Recall that a function f : R → R is called analytic if it
possesses derivatives of all orders and agrees with its Taylor series in the neighbourhood
of every point. Let us write A for the set of such analytic functions. It carries a coalgebra
structure:

A d // A× R
f � // (f ′, f(0)).

Here we write f ′ for the derivative of f . The induced coalgebra homomorphism behd : A →
RN maps an analytic function f to the stream of derivatives at 0, i.e. to Taylor(f) =

DRAFT

2.3. Final coalgebras 532.3. Final coalgebras 532.3. Final coalgebras 53

behd(f) = (f(0), f ′(0), f ′′(0), . . . , f (n)(0), . . .). The output values (in R) in this stream
are of course the coefficients in the Taylor series expansion of f in:

f(x) =
∞∑

n=0

f (n)(0)

n!
xn.

This shows that behd is an isomorphism—and thus that A can also be considered as the
final coalgebra of the functor (−)× R.

The source of this “coinductive view on calculus” is [345]. It contains a further elab-
oration of these ideas. Other coalgebraic “next” or “tail” operations are also studied as
derivatives in [379, 380], with the familiar derivative notation (−)′ to describe for instance
the tail of streams. We may then write Taylor(f)′ = Taylor(f ′), so that taking Taylor series
commutes with derivatives.

Corollary 2.3.4 implies that there is no final coalgebra for the non-deterministic au-
tomata functor P(id)A×B. However if we restrict ourselves to the finite powerset functor
Pfin(−) there is a final coalgebra. At this stage we shall be very brief, basically limiting
ourselves to the relevant statement. It is a special case of Theorem 2.3.9, the proof of which
will be given later, in Section 4.6.

2.3.8. Proposition (After [55]). Let A and B be arbitrary sets. Consider the finite Kripke
polynomial functor Pfin(id)A × B whose coalgebras are image finite non-deterministic
automata. This functor has a final coalgebra.

So far in this section we have seen several examples of final coalgebras. One might
wonder which polynomial functors possess a coalgebra. The following result gives an
answer. Its proof will be postponed until later in Section 4.6, because it requires some
notions that have not been introduced yet.

2.3.9. Theorem. Each finite Kripke polynomial functor Sets → Sets has a final coalge-
bra.

As argued before, one does not need to know what a final coalgebra looks like in order
to work with it. Its states coincide with its behaviours, so a purely behaviouristic view is
justified: unique existence properties are sufficiently strong to use it as a black box. See for
instance Exercise 2.3.4 below.

A good question raised explicitly in [378] is: which kind of functions can be defined
with coinduction? Put another way: is there, in analogy with the collection of recursively
defined functions (on the natural numbers), a reasonable collection of corecursively defined
functions? This question is still largely open.

2.3.1 Beyond sets

So far we have concentrated on functors F : Sets → Sets on the category of sets and
functions. Indeed, most of the examples in this book will arise from such functors. It is
important however to keep the broader (categorical) perspective in mind, and realise that
coalgebras are also of interest in other universes. Good examples appear in Section 5.3
where traces of suitable coalgebras are described via coalgebras in the category SetsRel
of sets with relations as morphisms. At this stage we shall consider a single example in the
category Sp of topological spaces and continuous functions between them.

2.3.10. Example. The set 2N = P(N), for 2 = {0, 1}, of infinite sequences of bits (or
subsets of N) carries a topology yielding the well-known “Cantor space”, see [397, Sub-
section 2.3]. Alternatively, this space can be represented as the intersection of a descending
chain of intervals (2n+1 separate pieces at stage n) of the real interval [0, 1], see below, (or
any textbook on topology, for instance [80]).

DRAFT

54 Chapter 2. Coalgebras of Polynomial Functors54 Chapter 2. Coalgebras of Polynomial Functors54 Chapter 2. Coalgebras of Polynomial Functors

Starting from the unit interval [0, 1] one keeps in step one the left and right thirds, given by
the closed subintervals [0, 1

3] and [2
3 , 1]. These can be described as ‘left’ and ‘right’, or as

‘0’ and ‘1’. In a next step one again keeps the left and right thirds, giving us four closed
intervals [0, 1

9], [2
9 ,

1
3], [2

3 ,
7
9] and [8

9 , 1]; they can be referred to via the two-bit words 00, 01,
10, 11 respectively. Etcetera. The Cantor set is then defined as the (countable) intersection
of all these intervals. It is a closed subspace of [0, 1], obtained as intersection of closed
subspaces. It is also totally disconnected.

Elements of the Cantor set can be identified with infinite streams 2N, seen as consecu-
tive ‘left’ or ‘right’ choices. The basic opens of 2N are the subsets ↑σ = {σ · τ | τ ∈ 2N}
of infinite sequences starting with σ, for σ ∈ 2? a finite sequence.

Recall that Sp is the category of topological spaces with continuous maps between
them. This category has coproducts, give as in Sets, with topology induced by the copro-
jections. In particular, for an arbitrary topological space X the coproduct X +X carries a
topology in which subsets U ⊆ X + X are open if and only if both κ−1

1 (U) and κ−1
2 (U)

are open in X . The Cantor space can then be characterised as the final coalgebra of the
endofunctor X 7→ X +X on Sp.

A brief argument goes as follows. Corollary 2.3.6 (i) tells that the set of streams 2N

is the final coalgebra of the endofunctor X 7→ X × 2 on Sets. There is an obvious
isomorphism X × 2 ∼= X + X of sets (see Exercise 2.1.7), which is actually also an
isomorphism of topological spaces if one considers the set 2 with the discrete topology (in
which every subset is open), see Exercise 2.3.7 for more details.

But one can of course also check the finality property explicitly in the category Sp of
topological spaces. The final coalgebra ζ : 2N

∼=−→ 2N + 2N is given on σ ∈ 2N by:

ζ(σ) =

{
κ1tail(σ) if head(σ) = 0

κ2tail(σ) if head(σ) = 1

It is not hard to see that both ζ and ζ−1 are continuous. For an arbitrary coalgebra c : X →
X +X in Sp we can describe the unique homomorphism of coalgebra behc : X → 2N on
x ∈ X and n ∈ N as:

behc(x)(n) =

{
0 if ∃y. c

(
([id, id] ◦ c)n(x)

)
= κ1y

1 if ∃y. c
(
([id, id] ◦ c)n(x)

)
= κ2y.

Again, this map is continuous. More examples and theory about coalgebras and such
fractal-like structure may be found in [304] and [192].

Exercises

2.3.1. Check that a final coalgebra of a monotone endofunction f : X → X on a poset X , con-
sidered as a functor, is nothing but a greatest fixed point. (See also Exercise 1.3.5).

2.3.2. For arbitrary sets A,B, consider the (simple polynomial) functor X 7→ (X × B)A. Coal-
gebras X → (X ×B)A of this functor are often called Mealy machines.
(i) Check that Mealy machines can equivalently be described as deterministic automata

X → XA × BA, and that the final Mealy machine is BA
+

, by Proposition 2.3.5,
where A+ ↪→ A? is the subset of non-empty finite sequences. Describe the final
coalgebra structure BA

+ →
(
BA

+ ×B
)A explicitly.

(ii) Consider the set Z of so-called causal stream functions, given by:

Z =
{
ψ : AN → BN

∣∣∣ ∀n ∈ N. ∀α, α′ ∈ AN.
(
∀i ≤ n. α(i) = α′(i)

)
⇒ ψ(α)(n) = ψ(α′)(n)

}
.

DRAFT

2.3. Final coalgebras 552.3. Final coalgebras 552.3. Final coalgebras 55

For such a causal stream function ψ, the output ψ(α)(n) ∈ B is thus determined
by the first n + 1 elements α(0), . . . , α(n) ∈ A. Prove that Z yields an alternative
description of the final Mealy automaton, via the structure map ζ : Z → (Z × B)A

given by:

ζ(ψ)(a) = 〈 λα ∈ AN. λn. ψ(a · α)(n+ 1), ψ(λn ∈ N. a)(0) 〉

where a · α is prefixing, to α ∈ AN, considered as infinite sequence.
For more information on Mealy machines, see [77, 183].

2.3.3. Assume a category C with a final object 1 ∈ C. Call a functor F : C → C affine if it
preserves the final object: the map F (1)→ 1 is an isomorphism. Prove that the inverse of
this map is the final F -coalgebra, i.e. the final object in the category CoAlg(F).
[Only a few of the functors F that we consider are affine; examples are the identity functor,
the non-empty powerset functor, or the distribution functor D from Section 4.1.]

2.3.4. Let Z be the (state space of the) final coalgebra of the binary tree functor X 7→ 1 + (A×
X ×X). Define by coinduction a mirror function mir : Z → Z which (deeply) exchanges
the subtrees. Prove, again by coinduction that mir ◦ mir = idZ .
Can you tell what the elements of Z are?

2.3.5. Recall the decimal representation coalgebra nextdec : [0, 1)→ 1+({0, 1, . . . , 9}×[0, 1))
from Example 1.2.2, with its behaviour map behnextdec : [0, 1) → {0, 1, . . . , 9}∞. Prove
that this behaviour map is a split mono: there is a map e in the reverse direction with
e ◦ behnextdec = id[0,1).
[The behaviour map is not an isomorphism, because both 5 and 49999 · · · , considered as
sequences in {0, 1, . . . , 9}∞, represent 1

2
∈ [0, 1). See other representations as continued

fractions in [347] or [335] which do yield isomorphisms.]

2.3.6. This exercise is based on [223, Lemma 5.4].
(i) Fix three sets A,B,C, and consider the simple polynomial functor

X 7−→ (C + (X ×B))A.

Show that its final coalgebra can be described as the set of functions:

Z = {ϕ ∈ (C +B)A
+ | ∀σ ∈ A+. ∀c ∈ C.ϕ(σ) = κ1(c)⇒

∀τ ∈ A?. ϕ(σ · τ) = κ1(c)}.

Once such functions ϕ ∈ Z hit C, they keep this value in C. Here we write A+ for
the subset of A? of non-empty finite sequences. The associated coalgebra structure
ζ : Z

∼=−→ (C + (Z ×B))A is given by:

ζ(ϕ)(a) =

{
κ1(c) if ϕ(〈a〉) = κ1(c)

κ2(b, ϕ′) if ϕ(〈a〉) = κ2(b) where ϕ′ = λσ ∈ A+. ϕ(a · σ)

(ii) Check that the fact that the set B∞ of both finite and infinite sequences is the final
coalgebra of the functor X 7→ 1 + (X ×B) is a special case of this.

(iii) Generalise the result in (i) to functors of the form:

X 7−→
(
C1 + (X ×B1)

)A1 × · · · ×
(
Cn + (X ×Bn)

)An

using this time as state space of the final coalgebra the set

{ϕ ∈ (C +B)A
+ | ∀σ ∈ A?. ∀i ≤ n.

∀a ∈ Ai. ϕ(σ · κi(a)) ∈ κ1[κi[Ci]] ∨ ϕ(σ · κi(a)) ∈ κ2[κi[Bi]]

∧ ∀c ∈ Ci. σ 6= 〈〉 ∧ ϕ(σ) = κ1(κi(c))

⇒ ∀τ ∈ A?. ϕ(σ · τ) = κ1(κi(c)) }

where A = A1 + · · ·+An, B = B1 + · · ·+Bn, and C = C1 + · · ·+ Cn.
(iv) Show how classes like in (1.10) fit into this last result.

DRAFT

56 Chapter 2. Coalgebras of Polynomial Functors56 Chapter 2. Coalgebras of Polynomial Functors56 Chapter 2. Coalgebras of Polynomial Functors

[Hint. Use that S+(S×E) ∼= (S×1)+(S×E) ∼= S× (1+E), using distributivity
from Exercise 2.1.7.]

2.3.7. For a topological space A consider the set AN of streams with the product topology (the
least one that makes the projections πn : AN → A continuous).
(i) Check that the head AN → A and tail AN → AN operations are continuous.
(ii) Prove that the functor A× (−) : Sp→ Sp has AN as final coalgebra.
(iii) Show that in the special case where A carries the discrete topology (in which every

subset is open) the product topology on AN is given by basic opens ↑σ = {σ · τ | τ ∈
AN}, for σ ∈ A? like in Example 2.3.10.

2.3.8. (i) Note that the assignment A 7→ AN yields a functor Sets→ Sets.
(ii) Prove the general result: consider a category C with a functor F : C× C→ C in two

variables. Assume that for each object A ∈ C, the functor F (A,−) : C → C has a
final coalgebra ZA

∼=−→ F (A,ZA). Prove that the mapping A 7→ ZA extends to a
functor C→ C.

2.4 Algebras

So far we have talked much about coalgebras. One way to introduce coalgebras is as duals
of algebras. We shall do this the other way around, and introduce algebras (in categorical
formulation) as duals of coalgebras. This reflects of course the emphasis in this text.

There are many similarities (or dualities) between algebras and coalgebras which are of-
ten useful as guiding principles. But one should keep in mind that there are also significant
differences between algebra and coalgebra. For example, in a computer science setting,
algebra is mainly of interest for dealing with finite data elements—such as finite lists or
trees—using induction as main definition and proof principle. A key feature of coalge-
bra is that it deals with potentially infinite data elements, and with appropriate state-based
notions and techniques for handling these objects. Thus, algebra is about construction,
whereas coalgebra is about deconstruction—understood as observation and modification.

This section will introduce the categorical definition of algebras for a functor, in anal-
ogy with coalgebras of a functor in Definition 1.4.5. It will briefly discuss initiality for
algebras, as dual of finality, and will illustrate that it amounts to ordinary induction. Also,
it will mention several possible ways of combining algebras and coalgebras. A systematic
approach to such combinations using distributive laws will appear in Chapter 5.

We start with the abstract categorical definition of algebras, which is completely dual
(i.e. with reversed arrows) to what we have seen for coalgebras.

2.4.1. Definition. Let C be an arbitrary category, with an endofunctor F : C→ C.
(i) An F -algebra, or just algebra for F , consists of a “carrier” object X ∈ C together

with a morphism a : F (X)→ X , often called the constructor, or operation.
(ii) A homomorphism of algebras, or a map of algebras, or an algebra map, from

one algebra a : F (X) → X to another coalgebra b : F (Y) → Y consists of a morphism
f : X → Y in C which preserves the operations:

F (X)

a
��

F (f)
// F (Y)

b
��

X
f

// Y

This yields a category, for which we shall write Alg(F).
(iii) An initial F -algebra is an initial object in Alg(F): it is an algebra α : F (A)→ A

such that for any F -algebra b : F (X) → X there is a unique homomorphism of algebras

DRAFT

2.4. Algebras 572.4. Algebras 572.4. Algebras 57

intb from α to b in:

F (A)
↓ α
A

 intb //______

F (X)
↓ b
X

 i.e.

F (A)

α
��

//______
F (intb)

F (X)

b
��

X //_______
intb

X

We call this map intb an interpretation map for the algebra b; sometimes it is also called a
fold or a reduce of b.

Certain maps can be seen both as algebra and as coalgebra. For example, a map S ×
A→ S is an algebra—of the functorX 7→ X×A—but can also be regarded as a coalgebra
S → SA, after Currying (2.11). But for other maps there is more clarity: maps A → S
are algebras, which can be used to construct elements in S from elements in A. And maps
S → A are coalgebras, which provide observations in A about elements in S.

The functor F in the above definition corresponds to what is traditionally called a sig-
nature. In simple form a (single-sorted) signature consists of a number of operations opi,
say for 1 ≤ i ≤ n, each with their own arity ki ∈ N. An algebra for such a signature is then
a set S with interpretations [[opi]] : Ski → S. Using the coproduct correspondence (2.6),
they may be combined to a single cotuple operation,

Sk1 + · · ·+ Skn

[
[[opi]], . . . , [[opi]]

]
// S

(2.29)

forming an algebra of the simple polynomial functor X 7→ Xk1 + · · ·+Xkn . This functor
thus captures the number and types of the operations—that is, the signature. In fact, we
have already seen the more general description of signatures via arities #: I → N and the
associated simple polynomial functor F#, namely in Definition 2.2.2.

A rule of thumb is: data types are algebras, and state-based systems are coalgebras.
But this does not always give a clear-cut distinction. For instance, is a stack a data type or
does it have a state? In many cases however, this rule of thumb works: natural numbers are
algebras (as we are about to see), and machines are coalgebras. Indeed, the latter have a
state that can be observed and modified.

Initial algebras are special, just like final coalgebras. Initial algebras (in Sets) can be
built as so-called term models: they contain everything that can be built from the operations
themselves, and nothing more. Similarly, we saw that final coalgebras consist of observa-
tions only. The importance of initial algebras in computer science was first emphasised
in [155]. For example, if F is the signature functor for some programming language, the
initial algebra F (P)→ P may be considered as the set of programs, and arbitrary algebras
F (D) → D may be seen as denotational models. Indeed, the resulting unique homomor-
phism int = [[−]] : P → D is the semantical interpretation function. It is compositional
by construction, because it commutes with the operations of the programming language.

2.4.2. Example. In mathematics many algebraic structure are single-sorted (or single-
typed). Examples are monoids, groups, rings, etc. In these structures there is only one
carrier set involved. Some structures, like vector spaces, involve two sorts, namely scalars
and vectors. In this case one speaks of a multi-sorted or typed algebra. Still, in mathematics
vector spaces are often described as single-sorted, by keeping the field involved fixed.

In computer science most of the examples are multi-sorted. For instance, a specification
of some data structure, say a queue, involves several sorts (or types): the type D of data
on the queue, the type Q of the queue itself, and possibly some other types like N for the
length of the queue. Type theory has developed into an area of its own, studying various
calculi for types and terms.

DRAFT

58 Chapter 2. Coalgebras of Polynomial Functors58 Chapter 2. Coalgebras of Polynomial Functors58 Chapter 2. Coalgebras of Polynomial Functors

Most programming languages are typed, involving various types like nat, int, float,
bool, and possibly also additional user-definable types. We shall describe a toy typed
programming language and show how its signature can be described via a functor. Interest-
ingly, this will not be a functor on the standard category Sets, but a functor on the product
category Sets3 = Sets × Sets × Sets. The 3-fold product Sets3 is used because our
toy language contains only three types, namely N for numbers, B for booleans (true and
false), and S for program statements.

We assume that our programming language involves the following operations on num-
bers and booleans.

n : N for 0 ≤ n < 216

v : N for variables v ∈ V
+: N ×N → N for addition

∗ : N ×N → N for multiplication

true,false : B truth values

∧ : B ×B → B for conjunction

¬ : B → B for negation

=: N ×N → B for equality

≤ : N ×N → B for comparison.

Here we use a (fixed) set V of variables. Note that the two operations = and ≤ involve
both types N and B. Also statements involve multiple types:

skip : S the program that does nothing

; : S × S → S sequential program composition

- := - : V ×N → S for assignment

if - then - else - fi : B × S × S → S for the conditional statement

while - do - od : B × S → S for repetition.

Following the (single-sorted) signature description as in (2.29) we could capture the con-
stants n, sum + and product ∗ via a functor X 7→ 216 + (X ×X) + (X ×X). But we need
to capture all operations at the same time. Thus we use a functor F : Sets3 → Sets3 in
three variables, where the first one, written as X , will be used for the type of naturals, the
second one Y for booleans, and the third one Z for program statements. The functor F is
then given by the following expression.

F
(
X,Y, Z

)
=
(

216 + V + (X ×X) + (X ×X) ,

(X ×X) + (X ×X) + 2 + (Y × Y) + Y ,

1 + (Z × Z) + (V ×X) + (Y × Z × Z) + (Y × Z)
)
.

An algebra F (A,B,C) → (A,B,C) in Sets3 for this functor is given by a triple of sets
(A,B,C) ∈ Sets3 interpreting naturals, booleans and statements, and a triple of functions
(a, b, c) : F (A,B,C) → (A,B,C) giving interpretations of the operations. For instance
the function b in the middle is given by a 5-cotuple of the form:

(A×A) + (A×A) + 2 + (B ×B) +B
b = [b1, b2, b3, b4, b5]

// B

where b3 : 2→ B interprets the two booleans (since 2 = 1 + 1 = {0, 1}) and b5 : B → B
interprets negation. Similarly for the maps a, c in this algebra.

The initial F -algebra is given by three sets containing all syntactically constructed ex-
pressions for naturals, booleans and statements, using the above operations. This will not
be proven, but the examples below illustrate how initial algebras consist of terms.

In this context of program language semantics, a final coalgebra is also understood
as a canonical operational model of behaviours. The unique homomorphism to the final

DRAFT

2.4. Algebras 592.4. Algebras 592.4. Algebras 59

coalgebra may be seen as an operational interpretation function which is fully abstract, in
the sense that objects have the same interpretation if and only if they are observationally
indistinguishable. This relies on Theorem 3.4.1, see [414, 412, 413] for more information.
Compositionality for such models in final coalgebras is an important issue, see Section 5.5.

Because of the duality in the definitions of algebras and coalgebras, certain results
can be dualised as well. For example, Lambek’s fixed point result for final coalgebras
(Lemma 2.3.3) also holds for initial algebras. The proof is the same, but with arrows
reversed.

2.4.3. Lemma. An initial algebra F (A) → A of a functor F : C → C is an isomorphism
F (A)

∼=−→ A in C.

The unique existence in the definition of initiality (again) has two aspects, namely exis-
tence corresponding to recursion, or definition by induction, and uniqueness, corresponding
to proof by induction. This will be illustrated in two examples.

The natural numbers N form a trivial, but important example of an initial algebra. We
shall consider it in some detail, relating the familiar description of induction to the categor-
ical one based on initiality.

2.4.4. Example (Natural numbers). According to Peano, the most basic operations on the
natural numbers N are zero 0 ∈ N and successor S : N → N. Using that an element of N
can be described as an arrow 1 → N, together with the coproduct correspondence (2.6),
these two maps can be combined into an algebra

1 + N
[0,S]

// N

of the simple polynomial function F (X) = 1 +X . This functor adds a new point ∗ ∈ 1 to
an arbitrary set X . It is easy to see that the algebra [0,S] is an isomorphism, because each
natural number is either zero or a successor. The isomorphism [0,S] : 1 + N ∼=−→ N is in
fact the initial algebra of the functor F (X) = 1 + X . Indeed, for an arbitrary F -algebra
[a, g] : 1 + X → X with carrier X , consisting of functions a : 1 → X and g : X → X ,
there is a unique homomorphism of algebras f = int[a,g] : N→ X with:

1 + N

[0,S] ∼=
��

//______ id1 + f
1 +X

[a, g]
��

N //________
f

X

i.e. with

{
f ◦ 0 = a

f ◦ S = g ◦ f.

In ordinary mathematical language, this says that f is the unique function with f(0) = a,
and f(n+ 1) = g(f(n)). This indeed determines f completely, by induction. Thus, ordi-
nary natural number induction implies initiality. We shall illustrate the reverse implication.

The initiality property of [0,S] : 1 + N ∼=−→ N is strong enough to prove all of Peano’s
axioms. This was first shown in [133], see also [316], or [156], where the initiality is
formulated as “natural numbers object”. As an example, we shall consider the familiar
induction rule: for a predicate P ⊆ N,

P (0) ∀n ∈ N. P (n) =⇒ P (n+ 1)

∀n ∈ N. P (n)

In order to show how the validity of this induction rule follows from initiality, let us write i
for the inclusion function P ↪→ N. We then note that the assumptions of the induction rule

DRAFT

60 Chapter 2. Coalgebras of Polynomial Functors60 Chapter 2. Coalgebras of Polynomial Functors60 Chapter 2. Coalgebras of Polynomial Functors

state that the zero and successor functions restrict to P , as in:

1 //______ 0

0
&&MMMMMMMMMMMMM P� _

i
��

P� _

i
��

//______ S
P� _

i
��

N N
S

// N

Thus, the subset P itself carries an algebra structure [0,S] : 1 + P → P . Therefore, by
initiality of N we get a unique homomorphism j : N→ P . Then we can show i ◦ j = idN,
by uniqueness:

1 + N

[0,S]
��

id1 + j
// 1 + P

[0,S]
��

id1 + i
// 1 + N

[0,S]
��

N
j

//

idN

44P
i // N

The rectangle on the left commutes by definition of j, and the one of the right by the
previous two diagrams. The fact that i ◦ j = idN now yields P (n), for all n ∈ N.

2.4.5. Example (Binary trees). Fix a set A of labels. A signature for A-labelled binary
trees may be given with two operations:

nil for the empty tree,

node(b1, a, b2) for the tree constructed from subtrees b1, b2 and label a ∈ A.

Thus, the associated signature functor is T (X) = 1 + (X × A ×X). The initial algebra
will be written as BinTree(A), with operation:

1 +
(
BinTree(A)×A× BinTree(A)

) [nil,node]
∼=

// BinTree(A)

This carrier set BinTree(A) can be obtained by considering all terms that can be formed
from the constructor nil via repeated application of the node operation node(nil, a,nil),
node(nil, a′,node(nil, a,nil)), etc. We do not describe it in too much detail because we
wish to use it abstractly. Our aim is to traverse such binary trees, and collect their labels
in a list. We consider two obvious ways to do this—commonly called inorder traversal
and preorder traversal—resulting in two functions iotrv,potrv : BinTree(A)→ A?. These
functions can be defined inductively as:

iotrv(nil) = 〈〉
iotrv(node(b1, a, b2)) = iotrv(b1) · a · iotrv(b2)

potrv(nil) = 〈〉
potrv(node(b1, a, b2)) = a · potrv(b1) · potrv(b2).

They can be defined formally via initiality, by putting two different T -algebra structures on
the set A? of sequences: the inorder transversal function arises in:

1 +
(
BinTree(A)×A× BinTree(A)

)

[nil,node]
��

//____________
id1 + (iotrv× idA × iotrv)

1 +
(
A? ×A×A?

)

[〈〉, g]
��

BinTree(A) //_____________________
iotrv = int[〈〉,g]

A?

DRAFT

2.4. Algebras 612.4. Algebras 612.4. Algebras 61

where the function g : A? × A × A? → A? is defined by g(σ, a, τ) = σ · a · τ . Similarly,
the function h(σ, a, τ) = a · σ · τ is used in the definition of preorder traversal:

1 +
(
BinTree(A)×A× BinTree(A)

)

[nil,node]
��

//____________
id1 + (potrv× idA × potrv)

1 +
(
A? ×A×A?

)

[〈〉, h]
��

BinTree(A) //_____________________
potrv = int[〈〉,h]

A?

What we see is that the familiar pattern matching in inductive definitions fits perfectly in
the initiality scheme, where the way the various patterns are handled corresponds to the
algebra structure on the codomain of the function that is being defined.

It turns out that many such functional programs can be defined elegantly via initiality
(and also finality); this style that is called “Origami Programming” in [143]. Moreover, via
uniqueness one can establish various properties about these programs. This has developed
into an area of its own which is usually referred to as the Bird-Meertens formalism—with
its own peculiar notation and terminology, see [73] for an overview.

In Example 2.4.2 we have seen how functors on different categories than Sets can
be useful, namely for describing multi-sorted signatures. The next example is another
illustration of the usefulness of descriptions in terms of functors.

2.4.6. Example (Refinement types). For a fixed set A we can form the functor F (X) =
1 + (A ×X). The initial algebra of this functor is the set A? of finite lists of elements of
A, with algebra structure given by the empty list nil and the prefix operation cons in:

1 +
(
A×A?

) [nil, cons]
∼=

// A?

Via this initiality one can define for instance the length function len : A? → Z. For some
special reasons we take the integers Z, instead of the natural numbers N, as codomain type
(as is common in computer science); the reasons will become clear later on. A definition
of length by initiality requires that the set Z be equipped with an appropriate F -coalgebra
structure:

1 +A×A?

[nil, cons] ∼=
��

id1 + idA × len
//________ 1 +A× Z

[0,S ◦ π2]
��

A?
len

//____________ Z

Commutation of this diagram corresponds to the expected defining equations for list-length:

len(nil) = 0 and len(cons(a, σ)) = S(len(σ)) = 1 + len(σ).

One can also define an append map app : A? × A? → A? that concatenates two lists
producing a new one, but this requires some care: by initiality one can define only maps of
the form A? → X , when X carries an F -algebra structure. The easiest way out is to fix a
list τ ∈ A? and to define app(−, τ) : A? → A? by initiality in:

1 +A×A?

[nil, cons] ∼=
��

id1 + idA × app(−, τ)
//___________ 1 +A×A?

[τ, cons]
��

A?
app(−, τ)

//______________ A?

DRAFT

62 Chapter 2. Coalgebras of Polynomial Functors62 Chapter 2. Coalgebras of Polynomial Functors62 Chapter 2. Coalgebras of Polynomial Functors

Alternatively, one can define the append map app via Currying, namely as map A? →(
A?
)A?

. This will be left to the interested reader. But one can also use the stronger princi-
ple of “induction with parameters”, see Exercise 2.5.5.

Now assume the set A carries a binary operation +: A × A → A. We would like to
use it to define an operation sum on lists, namely as:

sum(〈a1, . . . , an〉, 〈b1, . . . , bn〉) = 〈a1 + b1, . . . , an + bn〉.

But this works only for lists of the same length!
Hence what we would like to have is a special type of lists of a certain length n. It can

be formed as inverse image:

len−1({n}) = {σ ∈ A? | len(σ) = n} =

{
An if n ≥ 0

∅ otherwise.

The type of the function sum can now be described accurately as An × An → An. We
now consider the map len : A? → Z as a map in a slice category Sets/Z. Recall from
Exercise 1.4.3 that this map len : A? → Z can be identified with the indexed collection(
len−1({n})

)
n∈Z given by inverse images. An interesting question is: can we also define

such maps like sum on dependent types like len−1({n}) by initiality? This is relevant for
dependently typed programming languages like Agda1.

In [45] a solution is given. We sketch the essentials, in quite general terms. Let F : C→
C be an arbitrary functor on a category C. Assume an F -algebra b : F (B) → B; it plays
the role of Z above and the elements x ∈ B are used to form a refinement of F ’s initial
algebra. But first we transform F from an endofunctor on C into an endofunctor on the
slice category C/B. Intuitively this slice category contains objects of C indexed by B, see
Exercise 1.4.3. Recall that objects of C/B are arrows with codomain B, and morphisms
are commuting triangles.

We now define a functor F b : C/B → C/B by:

(
X

f
// B
) 7−→ (

F (X)
F (f)
// F (B)

b // B
)

X

f ��
222
h // Y

g��

B

 7−→

F (X)
F (f) BB

F (h)
// F (Y)
F (g)~~}}

F (B)

b ��
99

F (B)

b���
�

B

Next we assume an initial F -algebra α : F (A)
∼=→ A. The algebra b gives rise to a homo-

morphism intb : A → B by initiality. This map is an object in the slice category C/B. It
can be understood as what is called a refinement type since it corresponds to an indexed
family (Ax)x∈B , where Ax = int−1

b ({x}) = {a ∈ A | intb(a) = x}. In fact, this type is
also an initial algebra, but in a slice category, as observed in [45].

Claim. The refinement type intb : A→ B in C/B carries the initial algebra of the functor
F b : C/B → C/B defined above.

The truth of this claim is not hard to see but requires that we carefully keep track of the
category that we work in (namely C or C/B). We first have to produce an algebra structure
F b(intb)→ intb in the slice category C/B. When we work out what it can be we see that

1See http://wiki.portal.chalmers.se/agda

DRAFT

2.4. Algebras 632.4. Algebras 632.4. Algebras 63

the map α : F (A)
∼=→ A is the obvious candidate, on the left in:

F (A)
α
∼=

//

F (intb)
##GGG A

intb
��								

F (B)

b
AA

B

F (A)

α ∼=
��

F (inth)
//______ F (X)

h
��

A
inth

//_______ X

Next, if we have an arbitrary F b-coalgebra, say given by a map h : F b(X
f→ B) −→

(X
f→ B) in the slice category C/B, then this h is a map h : F (X) → X in C satisfying

f ◦ h = b ◦ F (h). By initiality we get an algebra homomorphism inth : A→ X as on the
right above. We claim that the resulting interpretation map inth : A → X is a morphism
intb → f in C/B. This means that f ◦ inth = intb, which follows by a uniqueness
argument in:

F (A)

α ∼=
��

F (inth)
//

GF EDF (intb)

��

F (X)

h
��

F (f)
// F (B)

b
��

A
inth //@A BC

intb

OOX
f

// B

What we finally need to show is that we have a commuting diagram in C/B of the form:

F b(intb)

α ∼=
��

F b(inth)
// F b(f)

h
��

intb
inth

// f

Commutation of this square in C/B amounts to commutation of the corresponding diagram
in C, which is the case by definition of inth. The proof of uniqueness of this homomor-
phism of F b-algebras intb → f is left to the reader.

At this stage we return to the length map len : A? → Z defined in the beginning of
this example. We now use initiality in the slice category Sets/Z to define a ‘reverse cons’
operation snoc : An × A → An+1 that adds an element at the end of a list. We do so,
like before, by fixing a parameter a ∈ A and defining snoc(−, a) : An → An+1. In order
to do so we need to come up with an algebra of the endofunctor F len on Sets/Z, where
F = 1 + (A×−). The claim above says that len : A? → Z is the initial F len-algebra.

As carrier of the algebra we take the object len′ : A? → Z in Sets/Z given by
len′(σ) = len − 1. It is at this point that we benefit from using the integers instead of
the naturals. The algebra map F len(len′)→ len′ we use is:

1 +A×A?
[〈a〉, cons]

//

1 +A× len′))RRRRRRR A?

len′
{{xxxxxxxxxxxxx

1 +A× Z

[0,S ◦ π2] &&LLLLLL

Z

DRAFT

64 Chapter 2. Coalgebras of Polynomial Functors64 Chapter 2. Coalgebras of Polynomial Functors64 Chapter 2. Coalgebras of Polynomial Functors

Here we use 〈a〉 = cons(a,nil) for the singleton list. The triangle commutes because:

len′(〈a〉) = len(〈a〉)− 1 = 1− 1 = 0

len′(cons(a, σ)) = len(cons(a, σ))− 1 = len(σ) + 1− 1

= len(σ)− 1 + 1 = S(len′(σ)) =
(
S ◦ π2 ◦ (A× len′)

)
(a, σ).

Hence by initiality of the map len : A? → Z there is unique algebra homomorphism
snoc(−, a) : len → len′ in Sets/Z. This means: len′ ◦ snoc(−, a) = len. Thus, for
each σ ∈ A?,

len(σ) = len′(snoc(a, σ)) = len(snoc(a, σ))− 1

i.e. len(snoc(σ, a)) = len(σ) + 1.

Alternatively, for each n ∈ N one has a typing:

An = len−1({n}) snoc // len−1({n+ 1}) = An+1

This concludes our refinement types example.

As we have seen in Example 2.4.4, an inductive definition of a function f : N → X
on the natural numbers requires two functions a : 1 → X and g : X → X . A recursive
definition allows for an additional parameter, via a function h : X × N → X , determining
f(n+1) = h(f(n), n). The next result shows that recursion can be obtained via induction.
A more general approach via comonads may be found in [416]. An alternative way to add
parameters to induction occurs in Exercise 2.5.5.

2.4.7. Proposition (Recursion). An arbitrary initial algebra α : F (A)
∼=−→ A satisfies the

following recursion property: for each map h : F (X × A) → X there is a unique map
f : A→ X making the following diagram commute.

F (A)

α ∼=
��

F 〈f, id〉
// F (X ×A)

h
��

A
f

// X

Proof. We first turn h : F (X × A) → X into an algebra on X × A, namely by taking
h′ = 〈h, α ◦ F (π2)〉 : F (X × A) → X × A. It gives by initiality rise to a unique map
k : A → X × A with k ◦ α = h′ ◦ F (k). Then π2 ◦ k = id by uniqueness of algebra
maps α→ α:

π2 ◦ k ◦ α = π2 ◦ h′ ◦ F (k)

= α ◦ F (π2) ◦ F (k)

= α ◦ F (π2 ◦ k).

Hence we take f = π1 ◦ k.

Adding parameters to the formulation of induction gives another strengthening, see
Exercise 2.5.5.

So far we have only seen algebras of functors describing fairly elementary datatypes.
We briefly mention some other less trivial applications.

• Joyal and Moerdijk [262] introduce the notion of a Zermelo-Fraenkel algebra, or ZF-
algebra, with two operations for union and singleton. The usual system of Zermelo-
Fraenkel set theory can then be characterised as the free ZF-algebra. Such a charac-
terisation can be extended to ordinals.

DRAFT

2.4. Algebras 652.4. Algebras 652.4. Algebras 65

• Fiore, Plotkin and Turi [127] describe how variable binding—such as λx.M in the
lambda calculus—can also be captured via initial algebras, namely of suitable func-
tors on categories of presheaves. An alternative approach, also via initiality, is de-
scribed by Gabbay and Pitts [139], using set theory with atoms (or urelements).

• π-calculus models by Fiore and Turi [128] and others [89, 320, 400]. Such “name-
passing” systems like the π-calculus are also modelled as coalgebras for endofunc-
tors on categories of presheaves.

In the remainder of this section we shall survey several ways to combine algebras and
coalgebras. Such combinations are needed in descriptions of more complicated systems
involving data as well as behaviour. Later on, in Section 5.5, we shall study bialgebras
more systematically, for operational semantics.

Additionally, so-called “binary methods” are problematic in a coalgebraic setting. These
are (algebraic) operations like X × X → X in which the state space X occurs multiple
times (positively) in the domain. The name “binary method” comes from object-oriented
programming, where the status of such methods is controversial, due to the typing prob-
lems they can cause, see [81]. They are also problematic in coalgebra, because they cannot
be described as a coalgebra X → F (X). However, one may ask whether it makes sense in
system theory to have an operation acting on two states, so that the problematic character
of their representation need not worry us very much. But see Exercise 2.4.10 for a possible
way to handle binary methods in a coalgebraic manner.

2.4.1 Bialgebras

A bialgebra consists of an algebra-coalgebra pair F (X) → X → G(X) on a common
state spaceX , where F,G : C→ C are two endofunctors on the same category C. We shall
investigate them more closely in Section 5.5 using so-called distributive laws, following the
approach of [413, 412, 59, 274].

Such structures are used in [70] to distinguish certain observer operations as coalgebraic
operations within algebraic specification, and to use these in a duality between reachability
and observability (following the result of Kalman, see Exercise 2.5.15).

2.4.2 Bialgebras

A bialgebra consist of a mapping F (X) → G(X) where F and G are two functors C →
C. This notion generalises both algebras (for G = id) and coalgebras (for F = id). It
was introduced in [180], and further studied for example in [129] in combination with
“laws” as a general concept of equation. In [359] a collection of such bialgebras Fi(X)→
Gi(X) is studied, in order to investigate the commonalities between algebra and coalgebra,
especially related to invariants and bisimulations.

2.4.3 Hidden algebras

Hidden algebra is introduced in [154] as the “theory of everything” in software engineer-
ing, combining the paradigms of object-oriented, logic, constraint and functional program-
ming. A hidden algebra does not formally combine algebras and coalgebras, like in bi-
/di-algebras, but it uses an algebraic syntax to handle essentially coalgebraic concepts, like
behaviour and observational equivalence. A key feature of the syntax is the partition of
sorts (or types) into visible and hidden ones. Typically, data structures are visible, and
states are hidden. Elements of the visible sorts are directly observable and comparable,
but observations about elements of the hidden sorts can only be made via the visible ones.
This yields a notion of behavioural equivalence—first introduced by Reichel—expressed in
terms of equality of contexts of visible sort. This is in fact bisimilarity, from a coalgebraic
perspective, see [311, 90].

DRAFT

66 Chapter 2. Coalgebras of Polynomial Functors66 Chapter 2. Coalgebras of Polynomial Functors66 Chapter 2. Coalgebras of Polynomial Functors

Because of the algebraic syntax of hidden algebras one cannot represent typically coal-
gebraic operations. But one can mimic them via subsorts. For instance, a coalgebraic
operation X −→ 1 + X can be represented as a “partial” function S −→ X for a subsort
S ⊆ X . Similarly, an operation X −→ X + X can be represented via two operations
S1 −→ X and S2 −→ X for subsorts S1, S2 ⊆ X with S1 ∪ S2 = X and S1 ∩ S2 = ∅.
This quickly gets out of hand for more complicated operations, like the methods methi
from (1.10), so that the naturality of coalgebraic representations is entirely lost. On the
positive side, hidden algebras can handle binary methods without problems—see also Ex-
ercise 2.4.10.

2.4.4 Coalgebras as algebras

In general, there is reasonable familiarity with algebra, but not (yet) with coalgebra. There-
fore, people like to understand coalgebras as if they were algebras. Indeed, there are
many connections. For example, in [55] it is shown that quite often the final coalgebra
Z
∼=−→ F (Z) of a functor F can be understood as a suitable form of completion of the ini-

tial algebra F (A)
∼=−→ A of the same functor. Examples are the extended natural numbers

N ∪ {∞} from Exercise 2.4.1 below, as completion of the initial algebra N of the functor
X 7→ 1 + X . And the set A∞ of finite and infinite sequences as completion of the initial
algebra A? with finite sequences only, of the functor X 7→ 1 + (A×X).

Also, since a final coalgebra ζ : Z
∼=−→ F (Z) is an isomorphism, one can consider its

inverse ζ−1 : F (Z)
∼=−→ Z as an algebra. This happens for example in the formalisation of

“coinductive types” (final coalgebras) in the theorem prover Coq [58] (and used for instance
in [103, 211]). However, this may lead to rather complicated formulations of coinduction,
distracting from the coalgebraic essentials. Therefore we like to treat coalgebra as a field
of its own, and not in an artificial way as part of algebra.

Exercises

2.4.1. Check that the set N ∪ {∞} of extended natural numbers is the final coalgebra of the
functor X 7→ 1 + X , as a special case of finality of A∞ for X 7→ 1 + (A × X). Use
this fact to define appropriate addition and multiplication operations (N ∪ {∞}) × (N ∪
{∞})→ N ∪ {∞}, see [378].

2.4.2. Define an appropriate size function BinTree(A)→ N by initiality.

2.4.3. Consider the obvious functions even, odd : N→ 2 = {0, 1}.
(i) Describe the two algebra structures 1 + 2 → 2 for the functor F (X) = 1 + X that

define even and odd by initiality.
(ii) Define a single algebra 1 + (2 × 2) → 2 × 2 that defines the pair 〈even, odd〉 by

mutual recursion, that is via even(n+ 1) = odd(n).

2.4.4. Show, dually to Proposition 2.1.5, that finite products (1,×) in a category C give rise to
finite products in a category Alg(F) of algebras of a functor F : C→ C.

2.4.5. Define addition +: N × N → N, multiplication · : N × N → N and exponentiation
(−)(−) : N× N→ N by initiality.
[Hint. Use the correspondence (2.11) and define these operations as function N → NN.
Alternatively, one can use Exercise 2.5.5 from the next section.]

2.4.6. Complete the proof of Proposition 2.4.7.

2.4.7. (“Rolling Lemma”) Assume two endofunctors F,G : C→ C on the same category. Let the
composite FG : C→ C have an initial algebra α : FG(A)

∼=−→ A.
(i) Prove that also the functor GF : C→ C has an initial algebra, with G(A) as carrier.
(ii) Formulate and prove a dual result, for final coalgebras.

2.4.8. This exercise illustrates the analogy between the set A? of finite sequences in Sets and the
vector space A§ in Vect, following Exercise 2.2.12. Recall from Example 2.4.6 that the
setA? of finite lists of elements ofA is the initial algebra of the functorX 7→ 1+(A×X).

DRAFT

2.5. Adjunctions, cofree coalgebras, behaviour-realisation 672.5. Adjunctions, cofree coalgebras, behaviour-realisation 672.5. Adjunctions, cofree coalgebras, behaviour-realisation 67

(i) For an arbitrary vector space A, this same functor 1 + (A× id), but considered as an
endofunctor on Vect, can be rewritten as:

1 + (A×X) ∼= A×X because 1 ∈ Vect is initial object
∼= A+X because × and + are the same in Vect

Prove that the initial algebra of the resulting functor A + id : Vect → Vect is the
vector spaceA§ with insertion and shift maps in : A→ A§ and sh : A§ → A§ defined
in Exercise 2.2.12 (iii).

(ii) Check that the behaviour formula from Exercise 2.2.12 (iv) for a system A
F→ X

G→
X

H→ B is obtained as H ◦ int[F,G] : A
§ → B using initiality.

(iii) Show that the assignment A 7→ A§ yields a functor Vect→ Vect.
[Hint. Actually, this is a special case of the dual of Exercise 2.3.8.]

2.4.9. Use Exercise 2.1.9 to show that there is a commuting diagram of isomorphisms:

P(A?)A × 2
∼= // P(1 + (A×A?))

P([nil, cons])

∼=
wwppppppppppp

P(A?)

〈D,E〉
∼=

ffLLLLLLLLLL

where the coalgebra 〈D,E〉 is the final Brzozowski deterministic automaton structure from
Corollary 2.3.6 (ii), and [nil, cons] is the initial list algebra (from Example 2.4.6).

2.4.10. Suppose we have a “binary method”, say of the form m : X ×X ×A −→ 1 + (X ×B).
There is a well-known trick from [134] to use a functorial description also in such cases,
namely by separating positive and negative occurrences. This leads to a functor of the form
F : Cop × C→ C, which in this case would be (Y,X) 7→ (1 + (X ×B))Y×A.
In general, for a functor F : Cop × C→ C define an F -coalgebra to be a map of the form
c : X → F (X,X). A homomorphism from c : X → F (X,X) to d : Y → F (Y, Y) is
then a map f : X → Y in C making the following pentagon commute.

F (X,Y)

F (X,X)

F (idX , f) 44iiiiii
F (Y, Y)

F (f, idY)jjTTTTTT

X

c
OO

f
// Y

d

OO

(i) Elaborate what this means for the above example (Y,X) 7→ (1 + (X ×B))Y×A.
(ii) Prove that these coalgebras and their homomorphisms form a category.
[Such generalised coalgebras are studied systematically in [407].]

2.5 Adjunctions, cofree coalgebras, behaviour-realisation

The concept of an adjunction may be considered as one of the basic contributions of the
theory of categories. It consists of a pair of functors going in opposite direction,

C
F

((D
G

hh

satisfying certain properties. An adjunction is a fundamental notion, occurring in many,
many situations. Identifying an adjunction is useful, because it captures much information,
and yields additional insights such as: the “left” adjoint functor preserves coproducts, and
the “right” adjoint preserves products. This is the good news. The bad news is that the

DRAFT

68 Chapter 2. Coalgebras of Polynomial Functors68 Chapter 2. Coalgebras of Polynomial Functors68 Chapter 2. Coalgebras of Polynomial Functors

notion of adjunction is considered to be a difficult one. It certainly requires some work
and experience to fully appreciate its usefulness. Much of this text can be read without
knowledge of adjunctions. However, there are certain results which can best be organised
in terms of adjunctions. Therefore we include an introduction to adjunctions, and apply
it to three standard examples in the theory of coalgebras and algebras, namely behaviour-
realisation, cofree coalgebras, and liftings of adjunctions to categories of (co)algebras.

We start with “baby-adjunctions”, namely Galois connections. Consider two posets
C and D as categories, with monotone functions f : C → D and g : D → C between
them, in opposite direction. They can be regarded as functors by Example 1.4.4 (ii). These
functions form a Galois connection if for each x ∈ C and y ∈ D one has f(x) ≤ y in D
if and only if x ≤ g(y) in C. We like to write this as a bijective correspondence:

f(x) ≤ y
========
x ≤ g(y)

In this situation one calls f the left or lower adjoint, and g the right or upper adjoint.
With these correspondences it is easy to show that the left adjoint f preserves joins

∨ that exist in C, i.e. that f(x1 ∨ x2) = f(x1) ∨ f(x2). This is done by showing that
f(x1 ∨ x2) is the least upperbound in D of f(x1) and f(x2): for any y ∈ D,

f(x1 ∨ x2) ≤ y
============
x1 ∨ x2 ≤ g(y)

========================
x1 ≤ g(y)
=========
f(x1) ≤ y

x2 ≤ g(y)
=========
f(x2) ≤ y

This says that f(x1 ∨ x2) ≤ y if and only if both f(x1) ≤ y and f(x2) ≤ y, and thus that
f(x1 ∨ x2) is the join of f(x1) and f(x2).

The notion of adjunction is defined more generally for functors between categories. It
involves a bijective correspondence like above, together with certain technical naturality
conditions. These side-conditions make the definition a bit complicated, but are usually
trivial in concrete examples. Therefore, the bijective correspondence is what should be
kept in mind.

2.5.1. Definition. Consider two categories C and D with functors F : C→ D andG : D→
C between them. These functors form an adjunction, written as F a G, if for all objects
X ∈ C and Y ∈ D there are bijective correspondences between morphisms:

F (X) // Y in D

X // G(Y) in C

which are “natural” in X and Y . In this case one says that F is the left adjoint, and G
the right adjoint. The map X → G(Y) corresponding to F (X) → Y (and vice-versa) is
sometimes called the transpose.

Let us write this correspondences as functionsψ : D
(
F (X), Y

) ∼=−→ C
(
X,G(Y)

)
. The

naturality requirement then says that for morphisms f : X ′ → X in C and g : Y → Y ′ in
D one has, for h : F (X)→ Y ,

G(g) ◦ ψ(h) ◦ f = ψ
(
g ◦ h ◦ F (f)

)
.

Since morphisms in poset categories are so trivial, the naturality requirement disappears
in the definition of a Galois connection.

There are several equivalent ways to formulate the concept of an adjunction, using for
example unit and counit natural transformations, or freeness (for left adjoints) or cofree-
ness (for right adjoints). We shall describe one alternative, namely the unit-and-counit

DRAFT

2.5. Adjunctions, cofree coalgebras, behaviour-realisation 692.5. Adjunctions, cofree coalgebras, behaviour-realisation 692.5. Adjunctions, cofree coalgebras, behaviour-realisation 69

formulation, in Exercise 2.5.7, and refer the interested reader to [315, Chapter IV] for more
information. At this stage we are mainly interested in a workable formulation.

We continue with an elementary example. It illustrates that adjunctions involve canon-
ical translations back and forth, which can be understood as minimal (or, more technically:
free) constructions, for left adjoints, and as maximal (or cofree) for right adjoints. Earlier,
Exercise 1.4.4 described the set of finite sequences A? as free monoid on a set A. Below in
Exercise 2.5.1 this will be rephrased in terms of an adjunction; it gives a similar minimality
phenomenon.

2.5.2. Example (From sets to preorders). Recall from Example 1.4.2 (iii) the definition of
the category PreOrd with preorders (X,≤) as objects—where ≤ is a reflexive and tran-
sitive order on X—and monotone functions between them as morphisms. There is then
an obvious forgetful functor U : PreOrd → Sets, given by (X,≤) 7→ X . It maps a
preorder to its underlying set and forgets about the order. This example shows that the
forgetful functor U has both a left and a right adjoint.

The left adjoint D : Sets → PreOrd sends an arbitrary set A to the “discrete” pre-
order D(A) = (A,Eq(A)) obtained by equipping A with the equality relation Eq(A) =
{(a, a) | a ∈ A}. A key observation is that for a preorder (X,≤) any function f : A→ X
is automatically a monotone function (A,Eq(A)) → (X,≤). This means that there is a
trivial (identity) bijective correspondence:

D(A) = (A,Eq(A))
f
// (X,≤) in PreOrd

A
f
// X = U(X,≤) in Sets

This yields an adjunction D a U .
The forgetful functor U : PreOrd→ Sets not only has a left adjoint, via the discrete,

minimal order =, but also a right adjoint, involving the indiscrete, maximal order: there
is a functor I : Sets → PreOrd that equips a set A with the indiscrete preorder I(A) =
(A,>A×A) with “truth” relation >A×A = {(a, a′) | a, a′ ∈ A} = (A × A ⊆ A × A),
in which all elements of A are related. Then, for a preorder (X,≤), any function X → A
is automatically a monotone function (X,≤) → (A,>A×A). Hence we again have trivial
correspondences:

(X,≤)
f
// (A,>A×A) = I(A) in Sets

U(X,≤) = X
f
// A in PreOrd

yielding an adjunction U a I .
This situation “discrete a forgetful a indiscrete” is typical, see Exercise 2.5.6 below.

Next we shall consider examples of adjunctions in the context of coalgebras. The first
result describes “cofree” coalgebras: it gives a canonical construction of a coalgebra from
an arbitrary set. Its proof relies on Theorem 2.3.9, which is as yet unproven. The proof
shows that actually checking that one has an adjunction can be quite a bit of work. Indeed,
the notion of adjunction combines much information.

2.5.3. Proposition. For a finite Kripke polynomial functor F : Sets→ Sets, the forgetful
functor U : CoAlg(F)→ Sets has a right adjoint. It is sends a set A to the carrier of the
final coalgebra of the functor A× F (−).

Proof. Given F , consider the functor F ′ : Sets → Sets given by A 7→ A × F (−).
Then F ′ is also a finite Kripke polynomial functor. Hence, by Theorem 2.3.9 it has a final

DRAFT

70 Chapter 2. Coalgebras of Polynomial Functors70 Chapter 2. Coalgebras of Polynomial Functors70 Chapter 2. Coalgebras of Polynomial Functors

coalgebra ζA = 〈ζA1 , ζA2 〉 : Â
∼=−→ A× F (Â), which we use to define an F -coalgebra:

G(A)
def
=
(
Â

ζA2 // F (Â)
)

We first show that G extends to a functor Sets → CoAlg(F). Let f : A → B

therefore be an arbitrary function. We define G on f as a function G(f) : Â → B̂ by
finality, in:

B × F (Â) //____________
idB × F (G(f))

B × F (B̂)

A× F (Â)

f × idF (Â)

OO

Â

ζA ∼=
OO

//_______________
G(f)

B̂

∼= ζB

OO

Clearly, ζB2 ◦ G(f) = F (G(f)) ◦ ζA2 , so that G(f) is a homomorphism of coalgebras
G(A) → G(B), as required. By uniqueness one shows that G preserves identities and
compositions. This requires a bit of work but is not really difficult.

The adjunction U a G that we want requires a (natural) bijective correspondence:

U

(
F (X)
c ↑
X

)
= X

g
// A in Sets

(
F (X)
c ↑
X

)

h
//

(
F (Â)
↑ ζA2
Â

)
= G(A) in CoAlg(F)

That is:

X
g

// A

F (X)
F (h)

// F (Â)

X

c
OO

h // Â

ζA2
OO

It is obtained as follows.

• Given a function g : X → A, we can define g : X → Â by finality:

A× F (X) //____________
idA × F (g)

A× F (Â)

X

〈g, c〉
OO

//_______________
g Â

∼= ζA = 〈ζA1 , ζA2 〉
OO

Then ζA2 ◦ g = F (g) ◦ c, so that g is a homomorphism of coalgebras c→ G(A).

• Conversely, given a homomorphism h : c→ G(A), take h = ζA1 ◦ h : X → A.

In order to complete the proof we still have to show bijectivity (i.e. g = g and h = h) and
naturality. The latter is left to the interested reader, but:

g = ζA1 ◦ g = π1 ◦ ζA ◦ g = π1 ◦ (idA × F (g)) ◦ 〈g, c〉 = π1 ◦ 〈g, c〉 = g.

DRAFT

2.5. Adjunctions, cofree coalgebras, behaviour-realisation 712.5. Adjunctions, cofree coalgebras, behaviour-realisation 712.5. Adjunctions, cofree coalgebras, behaviour-realisation 71

The second equation h = h follows by uniqueness: h is by construction the unique homo-
morphism k with ζA ◦ k = (idA × F (k)) ◦ 〈h, c〉, i.e. with ζA ◦ k = (idA × F (k)) ◦
〈ζA1 ◦ h, c〉. Since h is by assumption a homomorphism of coalgebras c → G(A), it also
satisfies this condition.

Dual to this result it makes sense to consider for algebras the left adjoint to a forgetful
functor Alg(F) → Sets. This gives so-called free algebras. They can be understood as
term algebras built on top of a given collection of variables.

Since an adjunction F a G involves two translations X 7→ F (X) and Y 7→ G(Y) in
opposite directions, one can translate objects “forth-and-back”, namely as X 7→ GF (X)
and Y 7→ FG(Y). There are then canonical “comparison” maps η : X → GF (X), called
unit, and ε : FG(Y)→ Y called counit.

In the context of the adjunction from the previous theorem, the unit η is a homomor-
phism from a coalgebra X → F (X) to the cofree coalgebra X̂ → F (X̂) on its carrier. It
is obtained by finality. And the counit ε maps the carrier Â of a cofree coalgebra back to
the original set A. It is ζA1 in the notation of the proof.

Using the notation ψ : D(F (X), Y)
∼=−→ C(X,G(Y)) from Definition 2.5.1, the unit

ηX : X → GF (X) and εY : FG(Y)→ Y maps can be defined as:

ηX = ψ(idF (X)) εY = ψ−1(idG(Y)).

Using the naturality of ψ one easily checks that for arbitrary f : X → X ′ in C and g : Y →
Y ′ in D, the following diagrams commute.

X

f
��

ηX
// GF (X)

GF (f)
��

FG(Y)

FG(g)
��

εY // Y

g
��

X ′ ηX′
// GF (X ′) FG(Y ′) εY ′

// Y ′

This leads to the following fundamental notion in category theory: a natural transformation.
It is a mapping between functors.

2.5.4. Definition. Let C, D be two categories, with two (parallel) functors H,K : C → D
between them. A natural transformation α from H to K consists of a collection of
morphisms αX : H(X)→ K(X) in D, indexed by objects X ∈ C satisfying the naturality
requirement: for each morphism f : X → Y in C, the following rectangle commutes.

H(X)
αX //

H(f)
��

K(X)

K(f)
��

H(Y) αY
// K(Y)

In this case one often write α : H ⇒ K with double arrow.

The next basic result illustrates the relevance of natural transformations in the theory of
algebras and coalgebras.

2.5.5. Proposition. Consider a natural transformation α : H ⇒ K as defined above, for
two endofunctors H,K : C → C. This α induces translation functors between the corre-
sponding categories of algebras and coalgebras, in commuting triangles:

Alg(K)

""DDDDDD
// Alg(H)

||zzzzzz
CoAlg(H)

$$HHHHHHH
// CoAlg(K)

zzvvvvvvv

C C

DRAFT

72 Chapter 2. Coalgebras of Polynomial Functors72 Chapter 2. Coalgebras of Polynomial Functors72 Chapter 2. Coalgebras of Polynomial Functors

These (horizontal) functors are given on objects by pre- and post-composition:

K(X)
↓ b
X

 � //

H(X)
↓ b ◦αX

X

H(X)
↑ c
X

 � //

K(X)
↑ αX◦ c
X

 .

On morphisms these functors are simply f 7→ f .

Proof. We shall write F : Alg(K) → Alg(H) for the mapping defined above. It is a
well-defined functor, since if f : X → X is a map of K-algebras b → b, then f is also a
map of H-algebras F (b)→ F (b), since:

F (b) ◦ H(f) = b ◦ αX ◦ H(f)

= b ◦ K(f) ◦ αX by naturality

= f ◦ b ◦ αX since f is a map of K-algebras

= f ◦ F (b).

For each set X there is an obvious map ρX : X? → Pfin(X) mapping a sequence
〈x1, . . . , xn〉 to the set {x1, . . . , xn} of elements involved—which may have size less than
n in case duplicate elements occur. This operation is “natural”, also in a technical sense:
for a function f : X → Y one has Pfin(f) ◦ ρX = ρY ◦ f?, since:

(
ρY ◦ f?

)
(〈x1, . . . , xn〉) = ρY (〈f(x1), . . . , f(xn)〉)

= {f(x1), . . . , f(xn)}
= Pfin(f)({x1, . . . , xn})
=
(
Pfin(f) ◦ ρX

)
(〈x1, . . . , xn〉).

In the reverse direction Pfin(X) → X? one can always choose a way to turn a finite set
into a list, but there is no natural way to do this. More examples and non-examples are de-
scribed at the end of Section 4.1. The idea is that natural transformations describe uniform
mappings, such given for instance by terms, see Exercise 2.5.17.

With this definition and notation we can write the unit and counit of an adjunction as
natural transformations η : idC ⇒ GF and ε : FG ⇒ idD. The closely related notion of
equivalence of categories is sometimes useful. It is an adjunction in which both the unit
and counit are isomorphisms. This is a weaker notion than isomorphism of categories.

We shall consider another example of an adjunction which is typical in a coalgebraic
setting, namely a so-called behaviour-realisation adjunction. Such adjunctions were first
recognised in the categorical analysis of mathematical system theory, see [150, 151, 152].
Here we give a simple version using the deterministic automata introduced in Section 2.2.
This requires two extensions of what we have already seen: (1) homomorphisms between
these automata which allow variation in the input and output sets, and (2) automata with
initial states.

2.5.6. Definition. We write DA for a category of deterministic automata. It has:

objects deterministic automata 〈δ, ε〉 : X → XA × B with an initial state x0 ∈
X

DRAFT

2.5. Adjunctions, cofree coalgebras, behaviour-realisation 732.5. Adjunctions, cofree coalgebras, behaviour-realisation 732.5. Adjunctions, cofree coalgebras, behaviour-realisation 73

morphisms from 〈X 〈δ,ε〉−−→ XA × B, x0 ∈ X〉 to 〈Y 〈δ′,ε′〉−−−−→ Y C × D, y0 ∈ Y 〉
consist of a triple of functions:

A C
f
oo B

g
// D X

h // Y

with for all x ∈ X and c ∈ C,

δ′(h(x))(c) = h(δ(x)(f(c)))

ε′(h(x)) = g(ε(x))

h(x0) = y0.

The identity morphisms in DA are of the form (id, id, id). The composition of (f1, g1, h1)
followed by (f2, g2, h2) is (f1 ◦ f2, g2 ◦ g1, h2 ◦ h1). Note the reversed order in the first
component.

The first two equations express that h is a coalgebra homomorphism from the automa-
ton 〈idfX ◦ δ, g ◦ ε〉 : X → XC ×D, translated via (f, g), to the automaton 〈δ′, ε′〉 : X →
XC × D. Here we use the exponent notation idfX for functions from (2.12). The third
equation simply says that the initial state is preserved.

We also introduce a category of deterministic behaviours. Its objects are elements of
the final coalgebras for deterministic automata, see Proposition 2.3.5.

2.5.7. Definition. Form the category DB with

objects functions of the form ϕ : A? → B

morphisms from A?
ϕ−→ B to C?

ψ−→ D are pairs of functions

A C
f
oo B

g
// D

with for σ ∈ C?,
g(ϕ(f?(σ))) = ψ(σ)

That is, for all 〈c1, . . . , cn〉 ∈ C?,

g(ϕ(〈f(c1), . . . , f(cn)〉)) = ψ(〈c1, . . . , cn〉)

The maps (id, id) are identities in DB. And composition in DB is given by: (f2, g2) ◦
(f1, g1) = (f1 ◦ f2, g2 ◦ g1).

The behaviour-realisation adjunction for deterministic automata gives a canonical way
to translate back-and-forth between deterministic automata and behaviours. It looks as
follows.

2.5.8. Proposition. There are a behaviour functor B and a realisation functor R in an
adjunction:

DA

B
��

a

DB

R

\\

DRAFT

74 Chapter 2. Coalgebras of Polynomial Functors74 Chapter 2. Coalgebras of Polynomial Functors74 Chapter 2. Coalgebras of Polynomial Functors

Proof. We sketch the main lines, and leave many details to the interested reader. The be-
haviour functor B : DA→ DB maps an automaton 〈δ, ε〉 : X → XA×B with initial state
x0 ∈ X to the behaviour beh〈δ,ε〉(x0) ∈ BA

?

of this initial state, see Proposition 2.3.5.
On morphisms, it is B(f, g, h) = (f, g). This is well-defined because g ◦ beh(x) ◦ f? =
beh′(h(x)), as is checked easily by induction.

Conversely, the realisation functor R : DB → DA sends a behaviour ψ : C? → D to
the final deterministic automaton ζ : DC? ∼=−→ (DC?

)C×D described in Proposition 2.3.5,
with ψ as initial state. The associated behaviour function behζ is then given by behζ(ϕ) =
ϕ. On morphisms,R it is defined asR(f, g) = (f, g, gf

?

).
The adjunction B a R is established by the bijective correspondence:

B
(
X
〈δ, ε〉

// XA ×B, x0 ∈ X
) (f, g)

//

(
C?

ψ
// D
)

===
(
X
〈δ, ε〉

// XA ×B, x0 ∈ X
)

(f, g, h)
// R
(
C?

ψ
// D
)

This correspondence exists because the function h below the double line is uniquely deter-
mined by finality in the following diagram.

XC ×D
hidC × idD // (DC?

)C ×D

XA ×B
idfX × g

OO

X

〈δ, ε〉
OO

h
// DC?

ζ∼=

OO

It satisfies h(x0) = ψ if and only if g ◦ beh〈δ,ε〉(x0) ◦ f? = ψ.

Several alternative versions of this behaviour-realisation adjunction for deterministic
automata are described in the exercises below. Such adjunctions have also been studied in
more abstract settings, see for example [48] and [265].

One interesting aspect of the behaviour-realisation adjunction is that it provides a set-
ting in which to (categorically) study various process operators. For instance, one can
consider several ways to put deterministic automata in parallel. For automata Mi =

〈Xi
〈δi,εi〉−−−−→ XAi

i ×Bi, xi ∈ X〉, one can define new automata:

M1 |M2 = 〈X1 ×X2

〈δ|,ε|〉−−−→ (X1 ×X2)A1+A2 × (B1 ×B2), (x0, x1)〉
where δ|(y1, y2)(κ1(a)) = (δ1(y1)(a), y2)

δ|(y1, y2)(κ2(a)) = (y1, δ2(y2)(a))

ε|(y1, y2) = (ε1(y1), ε2(y2))

M1 ⊗M2 = 〈X1 ×X2
〈δ⊗,ε⊗〉−−−−−→ (X1 ×X2)A1×A2 × (B1 ×B2), (x0, x1)〉

where δ⊗(y1, y2)(a1, a2) = (δ1(y1)(a), δ2(y2)(a))

ε⊗(y1, y2) = (ε1(y1), ε2(y2))

The first composition of automata involves transitions in each component automaton sepa-
rately, whereas the second composition combines transitions.

Both these definitions yield a so-called symmetric monoidal structure on the category
DA of deterministic automata. Similar structure can be defined on the associated category
DB of behaviours, in such a way that the behaviour functor B : DA → DB preserves

DRAFT

2.5. Adjunctions, cofree coalgebras, behaviour-realisation 752.5. Adjunctions, cofree coalgebras, behaviour-realisation 752.5. Adjunctions, cofree coalgebras, behaviour-realisation 75

this structure. Thus, complex behaviour can be obtained from more elementary building
blocks.

There is a line of research studying such “process categories” with operations that
are commonly used in process calculi as appropriate categorical structure, see for in-
stance [203, 266, 199, 383, 286, 428, 53, 194, 189, 191].

This section concludes with a result about lifting adjunctions to categories of algebras,
see [205, Theorem 2.14]. It is purely categorical abstract nonsense, and does not talk about
concrete categories or functors. In dual form it yields a lifting to categories of coalgebras.

2.5.9. Theorem. Consider a natural transformation α : SF ⇒ FT in a situation:

A S // A

�#
?????? α

B
F
OO

T
// B
F
OO

(2.30)

It induces a lifting of F to a functor Alg(F) in:

Alg(T)
Alg(F)

// Alg(S)
(
T (X)

a−→ X
) � //

(
SF (X)

αX−→ FT (X)
F (a)−→ F (X)

)

If α is an isomorphism, then a right adjoint G to F induces a right adjoint Alg(G) to
Alg(F) in:

A

G
��

Alg(S)

Alg(G)
��

Uoo

a a

B

F

EE

Alg(T)

Alg(F)

GG

U
oo

where the U ’s are forgetful functors. The functor Alg(G) arises from β : TG ⇒ GS, the

adjoint transpose of FTG ∼= SFG
Sε

=⇒ S.

Proof. Of course the functor Alg(F) is defined on morphisms as f 7→ F (f). We check

that this well-defined: for a homomorphism (T (X)
a→ X)

f−→ (T (Y)
b→ Y) of T -

algebras we obtain that F (f) is a homomorphism between the corresponding S-algebras
in:

SF (X)
SF (f)

//

αX
��

SF (Y)

αY
��

FT (X)
FT (f)

//

F (a)
��

FT (Y)

F (b)
��

F (X)
F (f)

// F (Y)

The upper square commutes by naturality of α, and the lower square because f is a homo-
morphism of T -algebras.

Next we assume that α is an isomorphism, and write βY , where Y ∈ A, for the follow-
ing map in B.

βY =
(
TG(Y)

ηTG(Y)
// GFTG(Y)

G(α−1
G(Y))
// GSFG(Y)

GS(εY)
// GS(Y)

)

DRAFT

76 Chapter 2. Coalgebras of Polynomial Functors76 Chapter 2. Coalgebras of Polynomial Functors76 Chapter 2. Coalgebras of Polynomial Functors

Following the construction of the functor Alg(F), this natural transformation β induces a
functor Alg(G) : Alg(S)→ Alg(S) by:

(
S(Y)

b→ Y
)
7−→

(
TG(Y)

βY→ GS(Y)
G(b)→ G(Y)

)
.

Now we have to establish the bijective correspondence for Alg(F) a Alg(G). It takes the
form:

Alg(F)

(
T (X)
a ↓
X

)
=

(
SF (X)
↓

F (X)

)
f

//

(
S(Y)
↓ b
Y

)

=============================(
T (X)
a ↓
X

)

g
//

(
TG(Y)
↓

G(Y)

)
= Alg(G)

(
S(Y)
↓ b
Y

)

This correspondence is the one of the adjunction F a G. We only need to check that the
transposes are again homomorphisms of algebras. We shall do so for the map f above the
lines, and leave the other case (for g) to the interested reader.

Assume therefore that f is a homomorphism of S-algebras as indicated above the lines.
This means that b ◦ Sf = f ◦ F (a) ◦ αX . The transpose f = G(f) ◦ ηX : X → G(Y) is
then a homomorphism of T -algebras:

(G(b) ◦ βY) ◦ T (f)

= G(b) ◦ GS(εY) ◦ G(α−1
G(Y)) ◦ ηTG(Y) ◦ TG(f) ◦ T (ηX)

= G(b) ◦ GS(εY) ◦ G(α−1
G(Y)) ◦ GFTG(f) ◦ GFT (ηX) ◦ ηT (X)

by naturality of η

= G(b) ◦ GS(εY) ◦ GSFG(f) ◦ GSF (ηX) ◦ G(α−1
X) ◦ ηT (X)

by naturality of α (and thus also of α−1)

= G(b) ◦ GSf ◦ GS(εF (X)) ◦ GSF (ηX) ◦ G(α−1
X) ◦ ηT (X)

by naturality of ε

= G(b) ◦ GSf ◦ G(α−1
X) ◦ ηT (X)

by one of the triangular identities, see Exercise 2.5.7

= G(f) ◦ GF (a) ◦ ηT (X)

by assumption about f

= G(f) ◦ ηX ◦ a
by naturality of η

= f ◦ a.
Those readers in search of even more abstraction may want to check that the above pair

of functors (S, T) with the natural transformations (α, β) forms a “map of adjunctions”
(F a G) → (F a G), see [315, IV,7] for the definition of this notion. The construction
Alg(F) a Alg(G) may then be understood as algebra of this endomorphism (of adjunc-
tions), in a suitably abstract sense.

This section concludes with a relatively long series of exercises, mostly because ad-
junctions offer a perspective that leads to many more results. In a particular situation they
can concisely capture the essentials of back-and-forth translations.

Exercises

2.5.1. Recall from Exercise 1.4.4 that the assignment A 7→ A? gives a functor (−)? : Sets →
Mon from sets to monoids. Show that this functor is left adjoint to the forgetful functor
Mon → Sets which maps a monoid (M,+, 0) to its underlying set M and forgets the
monoid structure.

DRAFT

2.5. Adjunctions, cofree coalgebras, behaviour-realisation 772.5. Adjunctions, cofree coalgebras, behaviour-realisation 772.5. Adjunctions, cofree coalgebras, behaviour-realisation 77

2.5.2. Check that the bijective correspondences

X −→ P(Y)
==========
• ⊆ X × Y

===========• ⊆ Y ×X
==========
Y −→ P(X)

induced by the correspondence (2.16) gives rise to an adjunction Setsop ←−−→ Sets.

2.5.3. The intention of this exercise is to show that the mapping # 7→ F# from arities to functors
is functorial. This requires some notation and terminology. Let Endo(Sets) be the category
with endofunctors F : Sets→ Sets as objects and natural transformations between them
as morphisms. One writes Sets/N for the slice category over N, see Exercise 1.4.3.
Prove that mapping # 7→ F# from (2.18) yields a functor Sets/N→ Endo(Sets).
[In [3, Theorem 3.4] it is shown how the functor Sets/N→ Endo(Sets) restricts to a “full
and faithful” functor via a suitable restriction of the category Endo(Sets). This means that
morphisms F#1 → F#2 in this restricted category are in one-to-one correspondence with
morphisms of arities #1 → #2.]

2.5.4. This exercise describes “strength” for endofunctors on Sets. In general, this is a useful
notion in the theory of datatypes [96, 97] and of computations [326], see Section 5.2 for a
systematic description.
Let F : Sets→ Sets be an arbitrary functor. Consider for sets X,Y the strength map

F (X)× Y
stX,Y

// F (X × Y) given by (u, y)
� // F (λx ∈ X. (x, y))(u) (2.31)

(i) Prove that this yields a natural transformation F (−)×(−)
st

=⇒ F ((−)×(−)), where
both the domain and codomain are functors Sets× Sets→ Sets.

(ii) Describe this strength map for the list functor (−)? and for the powerset functor P .

2.5.5. The following strengthening of induction is sometimes called “induction with parameters”.
It is different from recursion, which also involves an additional parameter, see Proposi-
tion 2.4.7.
Assume a functor F with a strength natural transformation as in the previous exercise, and
with initial algebra α : F (A)

∼=→ A. Let P be a set (or object) for parameters. Prove that
for each map h : F (X)×P → X there is a unique f : A×P → X making the following
diagram commute.

F (A)× P

α× id ∼=
��

〈F (f) ◦ st, π2〉
// F (X)× P

h
��

A× P
f

// X

[Hint. First turn h into a suitable algebra h′ : F (XP)→ XP .]
Use this mechanism to define the append map app : A? ×A? → A? from Example 2.4.6.

2.5.6. Show that the forgetful functor U : Sp → Sets from topological spaces to sets has both
a left adjoint (via the discrete topology on a set, in which every subset is open) and a right
adjoint (via the indiscrete topology, with only the empty set and the whole set itself as
opens).

2.5.7. Assume two functors F : C → D and G : D → C in opposite directions, with natural
transformations η : idC ⇒ GF and ε : FG⇒ idD. Define functions ψ : D(F (X), Y) −→
C(X,G(Y) by ψ(f) = G(f) ◦ ηX .
(i) Check that such ψ’s are natural.
(ii) Prove that these ψ’s are isomorphisms if and only if the following triangular identi-

ties hold.
G(ε) ◦ ηG = id εF ◦ F (η) = id.

DRAFT

78 Chapter 2. Coalgebras of Polynomial Functors78 Chapter 2. Coalgebras of Polynomial Functors78 Chapter 2. Coalgebras of Polynomial Functors

2.5.8. A morphismm : X ′ → X in a category D is called a monomorphism, (or mono, for short)
written asm : X ′ � X , if for each parallel pair of arrows f, g : Y → X ′, m ◦ f = m ◦ g
implies f = g.
(i) Prove that the monomorphisms in Sets are precisely the injective functions.
(ii) Let G : D→ C be a right adjoint. Show that if m is a monomorphism in D, then so is

G(m) in C.
Dually, an epimorphism (or epi, for short) in C is an arrow written as e : X ′ � X such
that for all maps f, g : X → Y , if e ◦ f = e ◦ g, then f = g.
(iii) Show that the epimorphism in Sets are the surjective functions.

[Hint. For an epi X � Y , choose two appropriate maps Y → 1 + Y .]
(iv) Prove that left adjoints preserve epimorphism.

2.5.9. Notice that the existence of final coalgebras for finite polynomial functors (Theorem 2.3.9)
that is used in the proof of Proposition 2.5.3 is actually a special case of this proposition.
[Hint. Consider the right adjoint at the final set 1.]

2.5.10. Assume an endofunctor F : C→ C. Prove that there are natural transformations:

CoAlg(F)

U
&&

FU

88

�� ��
�� C and Alg(F)

FU
&&

U

88

�� ��
�� C

where U is the forgetful functor.
[In 2-categorical terminology these maps form inserters, see e.g. [205, Appendix].]

2.5.11. (Hughes) Let C be an arbitrary category with products ×, and let F,H : C → C be two
endofunctors on C. Assume that cofree F -coalgebras exist, i.e. that the forgetful functor
U : CoAlg(F)→ C has a right adjointG—like in Proposition 2.5.3. Prove then that there
is an isomorphism of categories of coalgebras:

CoAlg(F ×H)
∼= // CoAlg(GHU)

where CoAlg(GHU) is a category of coalgebras on coalgebras, for the functor composi-
tion GHU : CoAlg(F)→ C→ C→ CoAlg(F).

2.5.12. Consider two adjoint endofunctors as in:

CF 99 Gee with F a G

Prove that we then get an isomorphism of categories:

Alg(F)
∼= // CoAlg(G)

between the associated categories of algebras and coalgebras.
[Remark: as noted in [35, Theorem 5.7], when C = Sets the only such adjunctions F a G
are product-exponent adjunctions X × (−) a (−)X as in (2.11). The argument goes as
follows. In Sets, each object A can be written as coproduct

∐
a∈A 1 of singletons. A left

adjoint F must preserve such coproducts, so that F (A) ∼=
∐
a∈A F (1) ∼= F (1) × A. But

then G(−) ∼= F (1)⇒ (−), by uniqueness of adjoints.]

2.5.13. Theorem 2.5.9 deals with lifting adjunctions to categories of algebras. Check that its “dual”
version for coalgebras is (see [205]):

For functors T : B → B, G : B → A, S : A → A, a natural transformation
α : GS ⇒ TG induces a functor CoAlg(G) : CoAlg(S) → CoAlg(T).
Furthermore, if α is an isomorphism, then, a left adjoint F a G induces a left
adjoint CoAlg(F) a CoAlg(G).

Does it require a new proof?

2.5.14. A deterministic automaton 〈δ, ε〉 : X → XA × B is called observable if its behaviour
function beh = λx. λσ. ε(δ∗(x, σ)) : X → BA

?

from Proposition 2.3.5 is injective. Later,
in Corollary 3.4.3 we shall see that this means that bisimilar states are equal.

DRAFT

2.5. Adjunctions, cofree coalgebras, behaviour-realisation 792.5. Adjunctions, cofree coalgebras, behaviour-realisation 792.5. Adjunctions, cofree coalgebras, behaviour-realisation 79

If this automaton comes equipped with an initial state x0 ∈ X one calls the automaton
reachable if the function δ∗(x0,−) : A? → X from Section 2.2 is surjective. This means
that every state can be reached from the initial state x0 via a suitable sequence of inputs.
The automaton is called minimal if it is both observable and reachable.
The realisation construction R : DB → DA from Proposition 2.5.8 clearly yields an
observable automaton since the resulting behaviour function is the identity. An alter-
native construction, the so-called Nerode realisation, gives a minimal automaton. It is
obtained from a behaviour ψ : C? → D as follows. Consider the equivalence relation
≡ψ ⊆ C? × C? defined by:

σ ≡ψ σ′ ⇐⇒ ∀τ ∈ C?. ψ(σ · τ) = ψ(σ′ · τ).

We take the quotient C?/ ≡ψ as state space; it is defined as factorisation:

C?
σ 7−→ λτ. ψ(σ · τ)

//

''PPPPPPP

''

DC?

C?/≡ψ
66

66mmmmmmm

It carries an automaton structure with transition function δψ : (C?/ ≡ψ) → (C?/ ≡ψ
)C given by δψ([σ])(c) = [σ · c], observation function εψ : (C?/ ≡ψ) → D defined as
εψ([σ]) = ψ(σ), and initial state [〈〉] ∈ C?/≡ψ .

(i) Check that this Nerode realisation N (C?
ψ→ D) is indeed a minimal automaton,

forming a subautomaton (or subcoalgebra) C?/≡ψ� DC?

of the final coalgebra.
Write RDA for the “subcategory” of DA with reachable automata as objects, and mor-
phisms (f, g, h) like in DA but with f a surjective function between the input sets. Simi-
larly, let RDB be the subcategory of DB with the same objects but with morphisms (f, g)
where f is surjective.
(ii) Check that the behaviour functor B : DA → DB from Proposition 2.5.8 restricts to

a functor B : RDA → RDB, and show that it has Nerode realisation N yields a
functor RDA→ RDB in the opposite direction.

(iii) Prove that there is an adjunction B a N .
(iv) Let MDA be the “subcategory” of RDA with minimal automata as objects. Check

that the adjunction in the previous point restricts to an equivalence of categories MDA '
RDB. Thus, (states of) minimal automata are in fact (elements of) final coalgebras.
[This result comes from [151, 152], see also [13].]

2.5.15. This exercise and the next one continue the description of linear dynamical systems from
Exercise 2.2.12. Here we look at the duality between reachability and observability. First a
preliminary result.
(i) Let B be an arbitrary vector space. Prove that the final coalgebra in Vect of the

functor X 7→ B × X is the set of infinite sequences BN, with obvious vector space
structure, and with coalgebra structure 〈hd, tl〉 : BN ∼=−→ B × BN given by head and
tail.

Call a linear dynamical system A
F→ X

G→ X
H→ B reachable if the induced function

int[F,G] : A
§ → X in the diagram on the left below, is surjective (or equivalently, an

epimorphism in Vect).

A+A§

[in, sh] ∼=
��

idA + int[F,G]
// A+X

[F,G]
��

B ×X
idB × beh〈H,G〉

// B ×BN

A§
int[F,G]

// X X

〈H,G〉
OO

beh〈H,G〉
// BN

〈hd, tl〉∼=
OO

Similarly, call this system observable if the induced map beh〈H,G〉 : X → BN on the right
is injective (equivalently, a monomorphism in Vect). And call the system minimal if it is
both reachable and observable.
(ii) Prove that A F→ X

G→ X
H→ B is reachable in Vect if and only if B H→ X

G→ X
F→

A is observable in Vectop.

DRAFT

80 Chapter 2. Coalgebras of Polynomial Functors80 Chapter 2. Coalgebras of Polynomial Functors80 Chapter 2. Coalgebras of Polynomial Functors

[Kalman’s duality result [263, Chapter 2] is now an easy consequence in finite dimensional
vector spaces, where the adjoint operator (−)∗ makes Vect isomorphic to Vectop—where
V ∗ is of course the “dual” vector space of linear maps to the underlying field. This result

says that A F→ X
G→ X

H→ B is reachable if and only if B∗ H∗→ X∗
G∗→ X∗

F∗→ A∗ is
observable. See also [35]. There is also a duality result for bialgebras in [70].]

2.5.16. This exercise sketches an adjunction capturing Kalman’s minimal realisation [263, Chap-
ter 10] for linear dynamical systems, in analogy with the Nerode realisation, described in
Exercise 2.5.14. This categorical version is based on [34, 35].
Form the category RLDS of reachable linear dynamical systems. Its objects are such
reachable systems A F→ X

G→ X
H→ B in Vect. And its morphisms from A

F→ X
G→

X
H→ B to C F ′→ Y

G′→ Y
H′→ D are triples of functions C

f
� A, B

g→ D and X h→ Y
with

A
F // X

G //

h
��

X
H //

h
��

B

g
��

C

OO

f

OO

F ′
// Y

G′
// Y

H ′
// D

Note that f is required to be a surjection/epimorphism.
Also, there is a category RLB with linear maps ϕ : A§ → B as objects. A morphism(
A§

ϕ→ B
)
−→

(
C§

ψ→ D
)

is a pair of linear maps f : C � A and g : B → D with g ◦
ϕ ◦ f§ = ψ—where f§ results from the functoriality of (−)§, see Exercise 2.4.8 (iv).
(i) Show that the behaviour formula from Exercises 2.2.12 (iv) and 2.4.8 (iii) yields a

behaviour functor B : RLDS→ RLB, given by (F,G,H) 7−→ H ◦ int[F,G].
(ii) Construct a functorK : RLB→ RLDS in the reverse direction in the following way.

Assume a behaviour ψ : C§ → D, and form the behaviour map b = beh〈ψ,sh〉 : C
§ →

DN below, using the finality from the previous exercise:

D × C§ //______ idD × b
D ×DN

C§

〈ψ, sh〉
OO

//________
b

DN

∼= 〈hd, tl〉
OO

The image Im(b) of this behaviour map can be written as:

(
C§

beh〈ψ,sh〉
// DN

)
=
(
C§ //e // Im(b) //

m // DN
)

It is not hard to see that the tail function tl : BN → BN restricts to tl′ : Im(b)→ Im(b)
via diagonal fill-in:

C§

e ◦ sh
��

//e // Im(b)

tl ◦ m
��{{w

w
w

w
w

tl′

Im(b) //
m
// DN

Hence one can define a linear dynamical system as:

K
(
C§

ψ
// D
)

def
=
(
C
e ◦ in // Im(b)

tl′ // Im(b)
hd ◦ m// D

)

Prove that this gives a minimal realisation, in an adjunction B a K.

2.5.17. This exercise describes the so-called “terms-as-natural-transformations” view which origi-
nally stems from [302]. It is elaborated in a coalgebraic context in [296].
Let H : Sets→ Sets be a (not necessarily polynomial) functor, with free algebras, given
by a left adjoint F to the forgetful functor U : Alg(H) → Sets. Let X be an arbitrary

DRAFT

2.5. Adjunctions, cofree coalgebras, behaviour-realisation 812.5. Adjunctions, cofree coalgebras, behaviour-realisation 812.5. Adjunctions, cofree coalgebras, behaviour-realisation 81

set, whose elements are considered as variables. Elements of the carrier UF (X) of the free
algebra on X can then be seen as terms containing free variables from X . Show that there
is a bijective correspondence:

terms t ∈ UF (X)
============================
natural transformations τ : UX =⇒ U

[Hint. The component of the natural transformation at a specific algebra HA → A is the
mapping which takes a valuation ρ : X → A of the variables inA to an interpretation [[t]]Aρ
of the term t in the algebra A. Naturality then says that for a homomorphism f : A → B
of algebras, one has the familiar equation f([[t]]Aρ) = [[t]]Bf◦ρ.]

DRAFT

82 Chapter 2. Coalgebras of Polynomial Functors82 Chapter 2. Coalgebras of Polynomial Functors82 Chapter 2. Coalgebras of Polynomial Functors

DRAFT
Chapter 3

Bisimulations

The operation of a coalgebra gives us information about its states. It may allow us to
observe certain things, and it may allow us to “modify states”, or to “move to successor
states”. Typically for coalgebras, we can observe and modify, but we have no means for
constructing new states. The behaviour of a state x is all that we can observe about x, either
directly or indirectly (via its successor states). This behaviour is written as beh(x), where
beh is the unique map to the final coalgebra (if any), as introduced in Definition 2.3.1.

In this situation it may happen that two states have the same behaviour. In that case we
cannot distinguish them with the operations (of the coalgebras) that we have at our disposal.
The two states need not be equal then, since the operations may only give limited access to
the state space, and certain aspects that may not be observable. When two states x, y are
observationally indistinguishable, they are called bisimilar. This is written as x↔ y.

The bisimilarity relation, for a given coalgebra (or pair of coalgebras), is introduced
as the union of all bisimulations. A bisimulation is a relation on state spaces, which is
maintained by coalgebra transitions and leads to equal observations. Bisimulations were
first introduced by Park [341] for automata, as mutual simulations—building on an earlier
notion of simulation between programs [322]. Park proved that if the initial states of two
deterministic automata are related by a bisimulation, then they accept the same sets of in-
puts (see also Corollary 3.4.4 below). Indeed, bisimulations form a crucial tool for stepwise
reasoning—like in induction arguments.

Bisimilarity is the main topic of the present chapter, but only for coalgebras of Kripke
polynomial functors. In the next chapter more general functors will be considered, but
for reasons of simplicity we prefer to first study the more concrete situation for polyno-
mial functors. Bisimulation will be introduced—like congruence—via a technique called
relation lifting. These liftings can be defined by induction on the structure of polynomial
functors. In a related manner the notion of invariance will arise in the Chapter 6 via predi-
cate lifting. The first part of this chapter concentrates on some basic properties of relation
lifting and of bisimulation relations; these properties will be used frequently. The coin-
duction proof principle in Section 3.4 is a basic result in the theory of coalgebras. It says
that two states have the same behaviour if and only if they are contained in a bisimula-
tion relation. Coinduction via bisimulations is illustrated in a simple process calculus in
Section 3.5.

3.1 Relation lifting, bisimulations and congruences

This section will introduce the technique of relation lifting from [204, 205] and use it
to define the notions of bisimulation for coalgebras, and congruence for algebras. Many
elementary results about relation lifting are provided. Alternative ways for introducing
bisimulations will be discussed later in Section 3.3.

83

DRAFT

84 Chapter 3. Bisimulations84 Chapter 3. Bisimulations84 Chapter 3. Bisimulations

We start by motivating the need for relation lifting. Consider a sequence coalgebra
c : X → 1 + (A ×X), like in Section 1.2. A bisimulation for this coalgebra is a relation
R ⊆ X×X on its state space which is “closed under c”. What this means is that ifR holds
for states x, y, then either both x and y have no successor states (i.e. c(x) = κ1(∗) = c(y)),
or they both have successor states which are again related by R and their observations are
the same: c(x) = κ2(a, x′), c(y) = κ2(b, y′), with a = b and R(x′, y′).

One way to express such closure properties uniformly is via a “lifting” of R from a
relation on X to a relation R′ on 1 + (A×X) so that this closure can be expressed simply
as:

R(x, y) =⇒ R′(c(x), c(y)).

This idea works if we take R′ ⊆
(
1 + (A×X)

)
×
(
1 + (A×X)

)
to be

R′ = {κ1(∗), κ1(∗)} ∪ {(κ2(a, x), κ2(b, y)) | a = b ∧ R(x, y)}.

The general idea of relation lifting applies to a polynomial functor F . It is a transfor-
mation of a relation R ⊆ X ×X to a relation R′ ⊆ F (X)× F (X), which will be defined
by induction on the structure of F . We shall use the notation Rel(F)(R) for R′ above.
Briefly, the lifted relation Rel(F)(R) uses equality on occurrences of constants A in F ,
and R on occurrences of the state space X , as suggested in:

F (X) = · · · X · · · A · · · X · · ·

Rel(F)(R) = R R

F (X) = · · · X · · · A · · · X · · ·

Actually, it will be convenient to define relation lifting slightly more generally, and to
allow different state spaces. Thus, it applies to relations R ⊆ X × Y , and yields a relation
Rel(F)(R) ⊆ F (X)× F (Y).

3.1.1. Definition (Relation lifting). Let F : Sets→ Sets be a polynomial functor, and let
X,Y be arbitrary sets. The mapping Rel(F) which sends a relation R ⊆ X × Y to a
“lifted” relation Rel(F)(R) ⊆ F (X) × F (Y) is defined by induction on the structure of
the functor F , following the points in Definition 2.2.1.

(1) If F is the identity functor, then

Rel(F)(R) = R.

(2) If F is a constant functor X 7→ A, then

Rel(F)(R) = Eq(A) = {(a, a) | a ∈ A}.

(3) If F is a product F1 × F2, then

Rel(F)(R) = {((u1, u2), (v1, v2)) |Rel(F1)(R)(u1, v1) ∧
Rel(F2)(R)(u2, v2)}.

(4) If F is a set-indexed coproduct
∐
i∈I Fi then:

Rel(F)(R) =
⋃

i∈I
{(κi(u), κi(v)) | Rel(Fi)(R)(u, v)}.

DRAFT

3.1. Relation lifting, bisimulations and congruences 853.1. Relation lifting, bisimulations and congruences 853.1. Relation lifting, bisimulations and congruences 85

(5) If F is an exponent GA, then

Rel(F)(R) = {(f, g) | ∀a ∈ A.Rel(G)(R)(f(a), g(a))}.

(6) If F is a powerset P(G), then

Rel(F)(R) = {(U, V) |∀u ∈ U.∃v ∈ V.Rel(G)(R)(u, v) ∧
∀v ∈ V.∃u ∈ U.Rel(G)(R)(u, v)}.

This same formula will be used in case F is a finite powerset Pfin(G).

In the beginning of Section 3.3 we shall see that relation lifting can also be defined
directly via images. The above inductive definition may seem more cumbersome, but gives
us a better handle on the different cases. Also, it better emphasises the relational aspects
of lifting, and the underlying logical infrastructure (such as finite conjunctions and dis-
junctions, and universal and existential quantification). This is especially relevant in more
general settings, such as in [205, 45, 140].

Relation lifting w.r.t. a functor is closely related to so-called logical relations. These
are collections of relations (Rσ)σ indexed by types σ, in such a way that Rσ→τ and Rσ×τ
are determined by Rσ and Rτ . Similarly, we use collections of relations (Rel(F)(R))F in-
dexed by polynomial functors F , which are also structurally determined. Logical relations
were originally introduced in the context of semantics of (simply) typed lambda calculus
([405, 138, 351]), see [325, Chapter 8] for an overview. They are used for instance for
definability, observational equivalence and data refinement.

In the next section we shall see various elementary properties of relation lifting. But
first we show what it is used for: bisimulation for coalgebras, and congruence for algebras.
The definitions we use are generic or polytypic, in the sense that they apply uniformly to
(co)algebras of an arbitrary polynomial functor.

3.1.2. Definition. Let F : Sets→ Sets be a polynomial functor.
(i) A bisimulation for coalgebras c : X → F (X) and d : Y → F (Y) is a relation

R ⊆ X × Y which is “closed under c and d”:

(x, y) ∈ R =⇒ (c(x), d(y)) ∈ Rel(F)(R).

for all x ∈ X and y ∈ Y . Equivalently:

R ⊆ (c× d)−1(Rel(F)(R)),

or, by (2.15), ∐
c×d(R) ⊆ Rel(F)(R).

(ii) A congruence for algebras a : F (X) → X and b : F (Y) → Y is a relation R ⊆
X × Y which is also “closed under a and b”:

(u, v) ∈ Rel(F)(R) =⇒ (a(u), b(v)) ∈ R.

That is:

Rel(F)(R) ⊆ (a× b)−1(R) or
∐
a×b(Rel(F)(R)) ⊆ R.

Often we are interested in bisimulations R ⊆ X × X on a single coalgebra c : X →
F (X). We then use the definition with d = c. Similarly for congruences.

Notice that we only require that a congruence is closed under the (algebraic) operations,
and not that it is an equivalence relation. This minor deviation from standard terminology
is justified by the duality we obtain between bisimulations and congruences. We shall use
the following explicit terminology.

DRAFT

86 Chapter 3. Bisimulations86 Chapter 3. Bisimulations86 Chapter 3. Bisimulations

3.1.3. Definition. A bisimulation equivalence is a bisimulation on a single coalgebra
which is an equivalence relation. Similarly, a congruence equivalence is a congruence
on a single algebra which is an equivalence relation.

We continue with several examples of the notions of bisimulation and congruence for
specific functors.

Bisimulations for deterministic automata

Consider a deterministic automaton 〈δ, ε〉 : X → XA×B. As we have seen in Section 2.2,
it is a coalgebra for the functor F = idA × B. Relation lifting for this functor yields for a
relation R ⊆ X ×X a new relation Rel(F)(R) ⊆

(
XA ×B

)
×
(
XA ×B

)
, given by:

Rel(F)(R)
(

(f1, b1), (f2, b2)
)
⇐⇒ ∀a ∈ A.R(f1(a), f2(a)) ∧ b1 = b2.

Thus, a relation R ⊆ X × X is a bisimulation w.r.t. the (single) coalgebra 〈δ, ε〉 : X →
XA ×B if, for all x, y ∈ X ,

R(x, y) =⇒ Rel(F)(R)
(

(δ(x), ε(x)), (δ(y), ε(y))
)
.

I.e.
R(x, y) =⇒ ∀a ∈ A.R(δ(x)(a), δ(y)(a)) ∧ ε(x) = ε(y).

That is, in transition notation:

R(x, y) =⇒
{
x

a−→ x′ ∧ y a−→ y′ implies R(x′, y′)

x ↓ b ∧ y ↓ c implies b = c.

Thus, once two states are in a bisimulation R, they remain in R and give rise to the same
direct observations. This makes them observationally indistinguishable.

Bisimulations for non-deterministic automata

Next, consider a non-deterministic automaton 〈δ, ε〉 : X → P(X)A × B, as coalgebra for
the functor F = P(id)A×B. Relation lifting for this functor is slightly more complicated:
it sends a relationR ⊆ X×X to the relation Rel(F)(R) ⊆

(
P(X)A×B

)
×
(
P(X)A×B

)

given by:

Rel(F)(R)
(
(f1, b1), (f2, b2)

)
⇐⇒ ∀a ∈ A. ∀x ∈ f1(a).∃y ∈ f2(a). R(x, y) ∧

∀y ∈ f2(a).∃x ∈ f1(a). R(x, y)

∧ b1 = b2.

Thus, R ⊆ X ×X is a bisimulation if for all x, y ∈ X with R(x, y),

• x a−→ x′ implies there is a y′ with y a−→ y′ and R(x′, y′);

• y a−→ y′ implies there is an x′ with x a−→ x′ and R(x′, y′);

• x ↓ b and y ↓ c implies b = c.

This corresponds to the standard notion of bisimulation used in the theory of automata /
transition systems.

DRAFT

3.1. Relation lifting, bisimulations and congruences 873.1. Relation lifting, bisimulations and congruences 873.1. Relation lifting, bisimulations and congruences 87

Congruences for monoids

Recall that a monoid is a set M carrying an associative operation +: M ×M →M with a
unit element 0 ∈M . These two operations + and 0, but not the relevant monoid equations,
can be captured as an algebra:

1 + (M ×M)
[0,+]

// M

of the functor F (X) = 1 + (X ×X). Relation lifting for F is described by

Rel(F)(R) = {(κ1(∗), κ1(∗))} ∪ {(κ2(x, x′), κ2(y, y′)) | R(x, y) ∧ R(x′, y′)}.

Hence a relation R ⊆M ×M on the carrier of the monoid is a congruence if:

Rel(F)(R)(u, v) =⇒ R([0,+](u), [0,+](v))

This amounts to:

R(0, 0) and R(x, y) ∧ R(x′, y′) =⇒ R(x+ x′, y + y′)

Thus a congruence, like a bisimulation, is closed under the operations.

Congruences in a binary induction proof principle

We have already discussed the usual “unary” induction proof principle for natural numbers
in Example 2.4.4, expressed in terms of predicates, which are assumed to be closed under
the operations. Later, in Section 6.1 we shall encounter it in full generality, stating that
every invariant on an initial algebra is the truth predicate.

There is also a less well-known binary version of the induction proof principle, ex-
pressed in terms of congruences. It was first formulated as such for the natural numbers
in [381], and further generalised in [205]. It also appeared in the derivations of induction
and coinduction principles in [354] in the context of a formal logic for parametric polymor-
phism.

At this stage we only formulate this binary version, and postpone the proof. It can
be given in various ways, see Exercises 3.3.2 and 6.2.2, but requires some properties of
relation lifting which are still to come.

3.1.4. Theorem (Binary induction proof principle). Every congruence on an initial alge-
bra contains the equality relation.

This binary version of induction is the dual of a coinduction principle, see Corol-
lary 3.4.2.

Bisimulations as congruences

The so-called structural operational semantics (SOS) introduced by Plotkin is a standard
technique in the semantics of programming languages to define the operational behaviour
of programs. The latter are seen as elements of the initial algebra F (Prog)

∼=−→ Prog of
a suitable functor F describing the signature of operations of the programming language.
A transition relation is then defined on top of the set of programs Prog, as the least rela-
tion closed under certain rules. This transition structure may be understood as coalgebra
Prog→ G(Prog), for an appropriate functorG—which is often the functor P(id)A for la-
belled transition systems, see [413, 412]; the transition structure is then given by transitions
p

a−→ q describing an a-step between programs p, q ∈ Prog.
The transition structure gives rise to certain equivalences for programs, like bisimilar-

ity (see below), trace equivalence or other equivalences, see [148]. These equivalences are

DRAFT

88 Chapter 3. Bisimulations88 Chapter 3. Bisimulations88 Chapter 3. Bisimulations

typically bisimulation equivalences. An important issue in this setting is: are these bisim-
ulation equivalences also congruences for the given algebra structure F (Prog)

∼=−→ Prog.
This is a basic requirement to make the equivalence a reasonable one for the kind of pro-
grams under consideration, because congruence properties are essential in reasoning with
the equivalence. In this setting given by a bialgebra F (Prog) → Prog → G(Prog), the
two fundamental notions of this section (bisimulation and congruence) are thus intimately
related. This situation will be investigated further in Section 5.5 in relation to distributive
laws.

It is a whole area of research to establish suitable syntactic formats for SOS-rules guar-
anteeing that certain bisimulation equivalences are congruences. See [164] for a basic
reference. We shall use a more categorical perspective, first in Section 3.5, and later in Sec-
tion 5.5, following [413, 412, 59]; see [274] for an overview of the coalgebraic approach.

3.1.5. Definition. Let X c→ F (X) and Y d→ F (Y) be two coalgebras of a polynomial
functor F . The bisimilarity relation↔ is the union of all bisimulations:

x↔ y ⇐⇒ ∃R ⊆ X × Y.R is a bisimulation for c and d, and R(x, y)

As a result of Proposition 3.2.6 (iii) in the next section, this union is a bisimulation itself,
so that↔ can be characterised as the greatest bisimulation.

Sometimes we write c
↔

d for ↔ to make the dependence on the coalgebras c and d
explicit.

Bisimilarity formalises the idea of observational indistinguishability. It will be an im-
portant topic in the remainder of this chapter.

Exercises

3.1.1. Use the description (2.17) of a list functor F ? to show that:

Rel(F ?)(R) = {(〈u1, . . . , un〉, 〈v1, . . . , vn〉) | ∀i ≤ n.Rel(F)(R)(ui, vi)}.

3.1.2. Unfold the definition of bisimulation for various kind of tree coalgebras, like X → 1 +
(A×X ×X) and X → (A×X)?.

3.1.3. Do the same for classes in object-oriented languages, see (1.10), described as coalgebras of
a functor in Exercise 2.3.6 (iii).

3.1.4. Note that the operations of a vector space V (over R), namely zero, addition, inverse, and
scalar multiplication, can be captured as an algebra 1 + (V × V) + V + (R× V) −→ V .
Investigate then what the associated notion of congruence is.

3.1.5. We have described relation lifting on a coproduct functor F = F1 + F2 in Definition 3.1.1
as:

Rel(F1 + F2)(R) =
∐
κ1×κ1

(Rel(F1)(R)) ∪∐κ2×κ2
(Rel(F2)(R)).

Prove that it can also be defined in terms of products
∏

and intersection ∩ as:

Rel(F1 + F2)(R) =
∏
κ1×κ1

(Rel(F1)(R)) ∩∏κ2×κ2
(Rel(F2)(R)),

where for a function f : X → Y the map
∏
f : P(X) → P(Y) is described in Exer-

cise 2.1.12.

3.1.6. In this text we concentrate on bi-simulations. There is also the notion of simulation, that
can be defined via an order on a functor, see [409, 218]. For a functor F : Sets → Sets
such an order consists of a functor v as in the diagram below.

PreOrd

forget
��

Sets
F

//

v
66lllllllllllll
Sets

DRAFT

3.2. Properties of bisimulations 893.2. Properties of bisimulations 893.2. Properties of bisimulations 89

Given such an order we define “lax” relation lifting Relv(F) asR 7→v◦ Rel(F)(R) ◦v.

A relation R ⊆ X × Y is then a simulation on coalgebras X c→ F (X), Y d→ F (Y) if
R ⊆ (c× d)−1(Relv(F)(R)). Similarity is then the union of all simulations.
(i) Investigate what it means to have an order as described in the above diagram.
(ii) Describe on the functor L = 1 + (A × (−)) a “flat” order, and on the powerset

functor P the inclusion order, as in the diagram. Check what the associated notions of
simulation are.

(iii) Prove that similarity on the final coalgebra A∞ of the functor L with order as in (ii) is
the prefix order given by σ ≤ τ iff σ·ρ = τ for some ρ ∈ A∞, see [218, Example 5.7].

3.2 Properties of bisimulations

This section is slightly technical, and possibly also slightly boring. It starts by listing
various elementary properties of relation lifting, and subsequently uses these properties to
prove standard results about bisimulations and bisimilarity.

First there are three lemmas about relation lifting.

3.2.1. Lemma. Let F : Sets → Sets be a polynomial functor. Relation lifting Rel(F)
w.r.t. F satisfies the following basic properties.

(i) It preserves the equality relation:

Rel(F)(Eq(X)) = Eq(F (X)).

(ii) It commutes with reversal of relations:

Rel(F)(R†) = Rel(F)(R)†.

(iii) It is monotone:

R ⊆ S =⇒ Rel(F)(R) ⊆ Rel(F)(S).

(iv) It preserves relation composition

Rel(F)(R ◦ S) = Rel(F)(R) ◦ Rel(F)(S).

(v) It preserves reflexivity, symmetry and transitivity; and thus, if R is an equivalence
relation, then so is Rel(F)(R).

Proof. The first four statement (i)–(iv) are proved by induction on the structure of F , fol-
lowing the cases in Definition 3.1.1. The case in (iv) where F is an exponent GA requires
the axiom of choice (AC), as will be illustrated: assume, as induction hypothesis (IH), that
the functor G preserves composition of relations, then so does the exponent GA, since:

Rel(GA)(R ◦ S)(f, g)

⇐⇒ ∀a ∈ A.Rel(G)(R ◦ S)(f(a), g(a))
(IH)⇐⇒ ∀a ∈ A.

(
Rel(G)(R) ◦ Rel(G)(S)

)
(f(a), g(a))

⇐⇒ ∀a ∈ A.∃z.Rel(G)(R)(f(a), z) ∧ Rel(G)(S)(z, g(a))
(AC)⇐⇒ ∃h.∀a ∈ Rel(G)(R)(f(a), h(a)) ∧ Rel(G)(S)(h(a), g(a)).

⇐⇒ ∃h.Rel(GA)(R)(f, h) ∧ Rel(GA)(S)(h, g)

⇐⇒
(
Rel(GA)(R) ◦ Rel(GA)(S)

)
(f, g).

The last statement (v) follows from the previous ones:

• IfR is reflexive, i.e. Eq(X) ⊆ R, then Eq(F (X)) = Rel(F)(Eq(X)) ⊆ Rel(F)(R),
so that Rel(F)(R) is also reflexive.

DRAFT

90 Chapter 3. Bisimulations90 Chapter 3. Bisimulations90 Chapter 3. Bisimulations

• IfR is symmetric, i.e. R ⊆ R−1, then Rel(F)(R) ⊆ Rel(F)(R−1) = Rel(F)(R)−1,
so that Rel(F)(R) is symmetric as well.

• If R is transitive, i.e. R ◦ R ⊆ R, then Rel(F)(R) ◦ Rel(F)(R) = Rel(F)(R ◦
R) ⊆ Rel(F)(R), so that Rel(F)(R) is also transitive.

We proceed with a similar lemma, about relation lifting and (inverse and direct) images.

3.2.2. Lemma. Let F : Sets → Sets be a Kripke polynomial functor again, and let
f : X → Z and g : Y →W be arbitrary functions.

(i) Relation lifting commutes with inverse images: for R ⊆ Z ×W ,

Rel(F)((f × g)−1(R)) = (F (f)× F (g))−1(Rel(F)(R)).

(ii) Relation lifting also commutes with direct images: for R ⊆ X × Y ,

Rel(F)(
∐
f×g(R)) =

∐
F (f)×F (g)(Rel(F)(R)).

Proof. Both equations are proved by induction on the structure of F . We leave (i) to the
reader. Once (i) is established, it can be used to prove the direction (⊇) of (ii), using the
Galois connection relating direct and inverse images in (2.15):

∐
F (f)×F (g)(Rel(F)(R)) ⊆ Rel(F)(

∐
f×g(R))

⇐⇒ Rel(F)(R) ⊆ (F (f)× F (g))−1Rel(F)(
∐
f×g(R))

= Rel(F)((f × g)−1
∐
f×g(R)).

But this latter inclusion holds by monotonicity of relation lifting from Lemma 3.2.1 (iii),
using that R ⊆ (f × g)−1

∐
f×g(R).

The inclusion (⊆) of (ii) is proved by induction on the structure of the functor F .
This requires the axiom of choice to handle the exponent functor case, like in the proof of
point (iv) in the previous lemma. The powerset case F = PG is most complicated, and
will be described in detail.

Rel(PG)(
∐
f×g(R))(U, V)

⇐⇒ ∀x ∈ U.∃y ∈ V.Rel(G)(
∐
f×g(R))(x, y)

∧ ∀y ∈ V.∃x ∈ U.Rel(G)(
∐
f×g(R))(x, y)

(IH)⇐⇒ ∀x ∈ U.∃y ∈ V. ∐G(f)×G(g) Rel(G)(R)(x, y)

∧ ∀y ∈ V.∃x ∈ U. ∐G(f)×G(g) Rel(G)(R)(x, y)

⇐⇒ ∀x ∈ U.∃y ∈ V.∃u, v.G(f)(u) = x ∧ G(g)(v) = y ∧ Rel(G)(R)(u, v)

∧ ∀y ∈ V.∃x ∈ U.∃u, v.G(f)(u) = x ∧ G(g)(v) = y ∧ Rel(G)(R)(u, v)

=⇒ ∀u ∈ U ′.∃v ∈ V ′.Rel(G)(R)(u, v)

∧ ∀v ∈ V ′.∃u ∈ U ′.Rel(G)(R)(u, v), where

U ′ = {u | G(f)(u) ∈ U ∧ ∃v.G(g)(v) ∈ V ∧ Rel(G)(R)(u, v)}
V ′ = {v | G(g)(v) ∈ V ∧ ∃u.G(f)(u) ∈ U ∧ Rel(G)(R)(u, v)}

⇐⇒ ∃U ′, V ′.P(G(f))(U ′) = U ∧ P(G(f))(V ′) = V ∧ Rel(P(G))(R)(U ′, V ′)

⇐⇒ ∐
P(G(f))×P(G(g))(Rel(PG)(R))(U, V).

Below we show in a diagram why Rel(F) is called relation lifting. The term “relator”
is often used in this context for the lifting of F , see for instance [409] (and Definition 4.4.5,
where a more general description of the situation is given). Additionally, the next result
shows that bisimulations are coalgebras themselves. It involves a category Rel with re-
lations as objects. This Rel should not be confused with the category SetsRel, from
Example 1.4.2 (iv), which has relations as morphisms.

DRAFT

3.2. Properties of bisimulations 913.2. Properties of bisimulations 913.2. Properties of bisimulations 91

3.2.3. Definition. We write Rel for the category with binary relations R ⊆ X × Y as
objects. A morphism (R ⊆ X×Y) −→ (S ⊆ U×V) consists of two functions f : X → U
and g : Y → V withR(x, y) =⇒ S(f(x), g(y)) for all x ∈ X, y ∈ Y . The latter amounts
to the existence of the necessarily unique dashed map in:

R
��

��

//________ S
��

��

X × Y
f × g

// U × V

Equivalently, R ⊆ (f × g)−1(S), or
∐
f×g(R) ⊆ S, by the correspondence (2.15).

3.2.4. Lemma. Consider a Kripke polynomial functor F .
(i) Relation lifting forms a functor:

Rel

��

Rel(F)
// Rel

��

Sets× Sets
F × F

// Sets× Sets

where the vertical arrows are the obvious forgetful functors.
(ii) A bisimulation is a Rel(F)-coalgebra in this category Rel. Similarly, a congruence

is a Rel(F)-algebra in Rel.

Proof. (i) We show that if (f, g) : R → S is a morphism in Rel—where f : X → U and
g : Y → V—then (F (f), F (g)) : Rel(F)(R) → Rel(F)(S) is also a morphism in Rel.
From the inclusion R ⊆ (f × g)−1(S) we obtain by monotony and preservation of inverse
images by relation lifting:

Rel(F)(R) ⊆ Rel(F)((f × g)−1(S)) = (F (f)× F (g))−1Rel(F)(S).

This means that (F (f), F (g)) is a morphism Rel(F)(R)→ Rel(F)(S) in Rel.
(ii) A Rel(F)-coalgebra R → Rel(F)(R) in Rel, for R ⊆ X × Y , consists of two

underlying maps c : X → F (X) and d : Y → F (Y) with:

R
��

��

//________ Rel(F)(R)
��

��

X × Y
c× d

// F (X)× F (Y)

This says that R is a relation which is closed under the F -coalgebras c, d, i.e. that R is a
bisimulation for c, d.

In the same way congruences are Rel(F)-algebras in the category Rel.

The next result lists several useful preservation properties of relation lifting.

3.2.5. Lemma. Relation lifting Rel(F) for a Kripke polynomial functor F : Sets→ Sets
preserves:

(i) kernel relations, given for an arbitrary function f : X → Y by:

Ker(f) = {(x1, x2) ∈ X ×X | f(x1) = f(x2)}
= (f × f)−1(Eq(Y))

in:
Rel(F)(Ker(f)) = Ker(F (f)).

DRAFT

92 Chapter 3. Bisimulations92 Chapter 3. Bisimulations92 Chapter 3. Bisimulations

(ii) graph relations given for f : X → Y by:

Graph(f) = {(x, y) ∈ X × Y | f(x) = y}
= (f × idY)−1(Eq(Y))

in:
Rel(F)(Graph(f)) = Graph(F (f)).

(iii) images of tuples: for X
f←− Z g−→ Y ,

Im(〈f, g〉) = {(x, y) ∈ X × Y | ∃z ∈ Z. f(z) = x ∧ g(z) = y}
=
∐
f×g(Eq(Z))

in:
Rel(F)(Im(〈f, g〉)) = Im(〈F (f), F (g)〉).

(iv) pullback relations of spans: for X
f−→ Z

g←− Y ,

Eq(f, g) = {(x, y) ∈ X × Y | f(x) = g(y)}
= (f × g)−1(Eq(Z))

in:
Rel(F)(Eq(f, g)) = Eq(F (f), F (g)).

Proof. (i) By the results from the previous two lemmas:

Rel(F)(Ker(f)) = Rel(F)((f × f)−1(Eq(Y)))

= (F (f)× F (f))−1(Rel(F)(Eq(Y)))

= (F (f)× F (f))−1(Eq(F (Y)))

= Ker(F (f)).

(ii) Similarly:

Rel(F)(Graph(f)) = Rel(F)((f × idY)−1(Eq(Y)))

= (F (f)× idF (Y))
−1(Rel(F)(Eq(Y)))

= (F (f)× idF (Y))
−1(Eq(F (Y)))

= Graph(F (f)).

(iii) And:

Rel(F)(Im(〈f, g〉)) = Rel(F)(
∐
f×g(Eq(Z)))

=
∐
F (f)×F (g)(Rel(F)(Eq(Z)))

=
∐
F (f)×F (g)(Eq(F (Z)))

= Im(〈F (f), F (g)〉)

(iv) Finally:

Rel(F)(Eq(f, g)) = Rel(F)((f × g)−1(Eq(Z)))

= (F (f)× F (g))−1(Rel(F)(Eq(Z)))

= (F (f)× F (g))−1(Eq(F (Z)))

= Eq(F (f), F (g)).

DRAFT

3.2. Properties of bisimulations 933.2. Properties of bisimulations 933.2. Properties of bisimulations 93

Once these auxiliary results are in place, the next two propositions establish a series
of standard facts about bisimulations and bisimilarity, see [378, Section 5]. We begin with
closure properties.

3.2.6. Proposition. Assume coalgebras X c→ F (X), X ′ c′→ F (X ′), and Y d→ F (Y),

Y ′
d′→ F (Y ′) of a Kripke polynomial functor F . Bisimulations are closed under:
(i) reversal: if R ⊆ X × Y is a bisimulation, then so is R† ⊆ Y ×X .

(ii) composition: if R ⊆ X × X ′ and S ⊆ X ′ × Y are bisimulations, then so is
(S ◦ R) ⊆ X × Y .

(iii) arbitrary unions: if Ri ⊆ X × Y is a bisimulation for each i ∈ I , then so is⋃
i∈I Ri ⊆ X × Y .
(iv) inverse images: for homomorphisms f : X → Y and f ′ : X ′ → Y ′, if R ⊆ Y ×Y ′

is a bisimulation, then so is (f × f ′)−1(R) ⊆ X ×X ′.
(v) direct images: for homomorphisms f : X → Y and f ′ : X ′ → Y ′, if R ⊆ X ×X ′

is a bisimulation, then so is
∐
f×f ′(R) ⊆ Y × Y ′.

Proof. (i) If the relation R is a bisimulation, i.e. if R ⊆ (c× d)−1(Rel(F)(R)), then

R† ⊆
(

(c× d)−1(Rel(F)(R))
)†

= (d× c)−1
(

Rel(F)(R)†
)

= (d× c)−1(Rel(F)(R†)) by Lemma 3.2.1 (ii).

(ii) Assume R ⊆ (c× e)−1(Rel(F)(R)) and S ⊆ (e× d)−1(Rel(F)(S)). If (x, y) ∈
(S ◦ R), say with R(x,w) and S(w, y), then by assumption (c(x), e(w)) ∈ Rel(F)(R)
and (e(w), d(y)) ∈ Rel(F)(S). Hence (c(x), d(y)) ∈

(
Rel(F)(S) ◦ Rel(F)(R)

)
=

Rel(F)(S ◦ R), by Lemma 3.2.1 (iv). We have thus proved the inclusion (S ◦ R) ⊆
(c× d)−1(Rel(F)(S ◦ R), and thus that S ◦ R is a bisimulation.

(iii) Assume Ri ⊆ (c× d)−1(Rel(F)(Ri)), for each i ∈ I . Then

⋃
i∈I Ri ⊆

⋃
i∈I(c× d)−1(Rel(F)(Ri))

= (c× d)−1
(⋃

i∈I Rel(F)(Ri)
)

since inverse image preserves unions

⊆ (c× d)−1
(
Rel(F)(

⋃
i∈I Ri)

)
by monotony of relation lifting

(and of inverse images).

(iv) If R ⊆ (d× d′)−1(Rel(F)(R)), then:

(f × f ′)−1(R)

⊆ (f × f ′)−1(d× d′)−1(Rel(F)(R))

= (c× c′)−1(F (f)× F (f ′))−1(Rel(F)(R)) because f, f ′ are homomorphisms

= (c× c′)−1(Rel(F)((f × f ′)−1(R))) by Lemma 3.2.2 (i).

(v) If
∐
c×c′(R) ⊆ Rel(F)(R), then:

∐
d×d′

∐
f×f ′(R)

=
∐
F (f)×F (f ′)

∐
c×c′(R) since f, f ′ are homomorphisms

⊆ ∐F (f)×F (f ′)(Rel(F)(R)) by assumption

= Rel(F)(
∐
f×f ′(R)) by Lemma 3.2.2 (ii).

3.2.7. Proposition. Let X c→ F (X), Y d→ F (Y) and Z e→ F (Z) be three coalgebras of
a Kripke polynomial functor F .

DRAFT

94 Chapter 3. Bisimulations94 Chapter 3. Bisimulations94 Chapter 3. Bisimulations

(i) An arbitrary function f : X → Y is a homomorphism of coalgebras if and only if
its graph relation Graph(f) is a bisimulation.

(ii) The equality relation Eq(X) on X is a bisimulation equivalence. More generally,
for a homomorphism f : X → Y , the kernel relation Ker(f) is a bisimulation equivalence.

(iii) For two homomorphisms X
f← Z

g→ Y the image of the tuple Im(〈f, g〉) ⊆ X×Y
is a bisimulation.

(iv) For two homomorphisms X
f→ Z

g← Y in the opposite direction, the pullback
relation Eq(f, g) ⊆ X × Y is a bisimulation.

Proof. By using Lemma 3.2.1.
(i) Because:

Graph(f) is a bisimulation

⇐⇒ Graph(f) ⊆ (c× d)−1(Rel(F)(Graph(f)))

= (c× d)−1(Graph(F (f))) by Lemma 3.2.5 (ii)

⇐⇒ ∀x, y. f(x) = y ⇒ F (f)(c(x)) = d(y)

⇐⇒ ∀x. F (f)(c(x)) = d(f(x))

⇐⇒ f is a homomorphism of coalgebras from c to d.

(ii) The fact that equality is a bisimulation follows directly from Lemma 3.2.1 (i).
Further, the kernel Ker(f) is a bisimulation because it can be written as Graph(f) ◦
Graph(f)−1, which is a bisimulation by (i) and by Proposition 3.2.6 (i), (ii).

(iii) We wish to prove an inclusion:

Im(〈f, g〉) ⊆ (c× d)−1(Rel(F)(Im(〈f, g〉))) = (c× d)−1(Im(〈F (f), F (g)〉)),

where we used Lemma 3.2.5 (iii) for the last equation. This means that we have to prove:
for each z ∈ Z there is a w ∈ F (Z) with c(f(z)) = F (f)(w) and d(f(z)) = F (g)(w).
But clearly we can take w = e(z).

(iv) We now seek an inclusion:

Eq(f, g) ⊆ (c× d)−1(Rel(F)(Eq(f, g))) = (c× d)−1(Eq(F (f), F (g))),

via Lemma 3.2.5 (iv). But this amounts to: f(x) = g(y) ⇒ F (f)(c(x)) = G(f)(d(y)),
for all x ∈ X, y ∈ Y . The implication holds because both f and g are homomorphisms.

We can now also establish some elementary properties of bisimilarity.

3.2.8. Proposition. Let F : Sets→ Sets be a Kripke polynomial functor, with coalgebras

X
c→ F (X), X ′ c

′
→ F (X ′), and Y d→ F (Y), Y ′ d

′
→ F (Y ′).

(i) The bisimilarity relation c
↔

d ⊆ X × Y is a bisimulation; it is the greatest among
all bisimulations between c and d.

(ii)
(
c
↔

d

)† ⊆ d
↔

c and c
↔

e ◦ e↔d ⊆ c
↔

d.
(iii) The bisimilarity relation c

↔
c⊆ X × X for a single coalgebra is a bisimulation

equivalence.
(iv) For homomorphisms of coalgebras f : X → Y and f ′ : X ′ → Y ′ one has, for

x ∈ X,x′ ∈ X ′,
f(x) d↔d′ f

′(x′) ⇐⇒ x c
↔

c′ x
′

Proof. (i) By Proposition 3.2.6 (iii).
(ii) The first inclusion follows from Proposition 3.2.6 (i) and the second one from

Proposition 3.2.6 (ii).

DRAFT

3.2. Properties of bisimulations 953.2. Properties of bisimulations 953.2. Properties of bisimulations 95

(iii) The bisimilarity relation c
↔

c⊆ X ×X is reflexive, because the equality relation
Eq(X) ⊆ X × X is a bisimulation, see Proposition 3.2.6 (ii). Symmetry and transitivity
of c↔ c follow from (ii).

(iv) Since d
↔

d′⊆ Y × Y ′ is a bisimulation, so is (f × f ′)−1(d↔d′) ⊆ X × X ′,
by Proposition 3.2.6 (iv). Hence (f × f ′)−1(d↔d′) ⊆ c

↔
c′, which corresponds to the

implication (=⇒).
Similarly we obtain an inclusion

∐
f×f ′(c↔ c′) ⊆ d

↔
d′ from Proposition 3.2.6 (v),

which yields (⇐=).

Exercises

3.2.1. (i) Prove that relation lifting Rel(F) for an exponent polynomial functor F (hence with-
out powersets P) preserves non-empty intersections of relations: for I 6= ∅,

Rel(F)(
⋂
i∈I Ri) =

⋂
i∈I Rel(F)(Ri)

(ii) Assume now that F is now a simple polynomial functor (also without exponents (−)A,
forA infinite). Prove that relation lifting Rel(F) preserves unions of ascending chains
of relations: if S0 ⊆ S1 ⊆ S2 ⊆ · · · then:

Rel(F)(
⋃
n∈N Sn) =

⋃
n∈N Rel(F)(Sn).

Which additional closure properties hold for bisimulations for coalgebras of such functors?

3.2.2. (i) Check that if≤ is a preorder on a set X , then Rel(F)(≤) is also a preorder on F (X).
(ii) Prove the same with ‘poset’ instead of ‘preorder’, for an exponent polynomial functor

F (without powerset).
(iii) Prove that a Galois connection f a g in:

(X,≤X)

g
22 (Y,≤Y)

f
rr

yields a “lifted” Galois connection F (f) a F (g) in:

(F (X),Rel(F)(≤X))

F (g)
00
(F (Y),Rel(F)(≤Y))

F (f)
pp

3.2.3. Check that, in analogy with Proposition 3.2.6, congruences are closed under inverses, com-
position, arbitrary intersections, and under inverse and direct images.

3.2.4. Prove the following analogue of Propositions 3.2.7 for algebras F (X)
a→ X , F (Y)

b→ Y
and F (Z)

c→ Z of a polynomial functor F .
(i) A function f : X → Y is a homomorphism of algebras if and only if its graph relation

Graph(f) ⊆ X × Y is a congruence.
(ii) The kernel relation Ker(f) of an algebra homomorphism f : X → Y is always a

congruence equivalence.

(iii) The image Im(〈f, g〉) ⊆ X × Y of a pair of algebra homomorphisms X
f← Z

g→ Y
is a congruence.

(iv) The pullback relation Eq(f, g) ⊆ X × Y of a span of algebra homomorphisms X
f→

Z
g← Y is a congruence.

3.2.5. Let R ⊆ X × X be an arbitrary relation on the state space of a coalgebra, and let R be
the least equivalence relation containing R. Prove that if R is a bisimulation, then R is a
bisimulation equivalence.

[Hint. Write R as union of iterated compositions Rn for n ∈ N.]

DRAFT

96 Chapter 3. Bisimulations96 Chapter 3. Bisimulations96 Chapter 3. Bisimulations

3.2.6. Check that lax relation lifting as introduced in Exercise 3.1.6 forms a functor in:

Rel

��

Relv(F)
// Rel

��

Sets× Sets
F × F

// Sets× Sets

and that simulations are coalgebras of this functor Relv(F)—like in Lemma 3.2.4.

3.2.7. This exercise describes a simple characterisation from [144] of when a function is definable
by induction. The analogue for coinduction is in Exercise 6.2.4.
Consider an initial algebra F (A)

∼=−→ A of a polynomial functor F , where A 6= ∅ Prove
that a function f : A → X is defined by initiality (i.e. f = inta for some algebra
a : T (X)→ X on its codomain) if and only its kernel Ker(f) is a congruence.
[Hint. Extend the induced map F (A)/Ker(F (f)) → X along F (A)/Ker(F (f)) �
F (X) by using an arbitrary element in F (A)/Ker(F (f)) obtained from A 6= ∅.]

3.3 Bisimulations as spans and cospans

This section continues the investigation of bisimulations, and focusses specifically, on the
relation between the definition of bisimulation used here, given in terms of relation lifting,
and an earlier definition given by Aczel and Mendler [8, 11]. One of the main results is that
these definitions are equivalent, see Theorem 3.3.2.

The first lemma below establishes an important technical relationship which forms the
basis for the subsequent theorem. The lemma uses that relations can be considered as
sets themselves. From a logical perspective this involves a form of comprehension, see
e.g. [225, Chapter 4, Section 6] or [205, 45, 140].

3.3.1. Lemma. Let F : Sets → Sets be a Kripke polynomial functor, and R ⊆ X ×
Y be an arbitrary relation, written via explicit functions 〈r1, r2〉 : R � X × Y . The
lifted relation Rel(F)(R), considered as a set, is a retract of F (R): there are functions
α : Rel(F)(R) → F (R) and β : F (R) → Rel(F)(R) with β ◦ α = idRel(F)(R). More-
over, these α and β make the following triangle commute.

Rel(F)(R)
11

α
--

''

''PPPPPPPPPPPP
F (R)

β

mmmm

〈F (r1), F (r2)〉
xxqqqqqqqqqq

F (X)× F (Y)

This means that Rel(F)(R) � F (X)× F (Y) is the image of F (R)→ F (X)× F (Y).

Proof. The functions α and β are constructed by induction on the structure of F . In the
two base cases where F is the identity functor or a constant functor, α and β are each
other’s inverses. We shall consider two induction steps, for product and powerset.

If F is a product F1 × F2, we may assume appropriate functions αi : Rel(Fi)(R) →
Fi(R) and βi : Fi(R) → Rel(Fi)(R), for i = 1, 2. The aim is to construct functions α, β
in: ({

((u1, u2), (v1, v2)) |Rel(F1)(R)(u1, v1) ∧
Rel(F2)(R)(u2, v2)

}
)

α //
F1(R)× F2(R)

β
oo

The definitions are obvious:

α((u1, u2), (v1, v2)) = (α1(u1, v1), α2(u2, v2))

β(w1, w2) = ((π1β1(w1), π1β2(w2)), (π2β1(w1), π2β2(w2))).

DRAFT

3.3. Bisimulations as spans and cospans 973.3. Bisimulations as spans and cospans 973.3. Bisimulations as spans and cospans 97

If F is a powerset P(F1), we may assume functions α1 : Rel(F1)(R) → F1(R) and
β1 : F1(R)→ Rel(F1)(R) as in the lemma. We have to construct:

({
(U, V) | ∀u ∈ U.∃v ∈ V.Rel(F1)(R)(u, v) ∧

∀v ∈ V.∃u ∈ U.Rel(F1)(R)(u, v)
}
)

α // P(F1(R))
β
oo

In this case we define:

α(U, V) = {α1(u, v) | u ∈ U ∧ v ∈ V ∧ Rel(F1)(R)(u, v)}
β(W) = ({π1β1(w) | w ∈W}, {π2β1(w) | w ∈W})

Then, using that β1 ◦ α1 = id holds by assumption, we compute:
(
β ◦ α

)
(U, V)

= ({π1β1α1(u, v) | u ∈ U ∧ v ∈ V ∧ Rel(F)(R)(u, v)},
{π2β1α1(u, v) | u ∈ U ∧ v ∈ V ∧ Rel(F)(R)(u, v)})

= ({u ∈ U | ∃v ∈ V.Rel(F1)(R)(u, v)}, {v ∈ V | ∃u ∈ U.Rel(F1)(R)(u, v)})
= (U, V).

The formulation of bisimulation that we are using here relies on relation lifting, see
Definition 3.1.2 and Lemma 3.2.4 (ii), where bisimulations for coalgebras of a functor F
are described as Rel(F)-coalgebras. This comes from [205]. An earlier definition was
introduced by Aczel and Mendler, see [8, 11]. With the last lemma we can prove the
equivalence of these definitions.

3.3.2. Theorem. Let X c→ F (X) and Y d→ F (Y) be two coalgebras of a polynomial
functor F . A relation 〈r1, r2〉 : R� X×Y is a bisimulation for c and d if and only if R is
an Aczel-Mendler bisimulation: R itself is the carrier of some coalgebra e : R → F (R),
making the the legs ri homomorphisms of coalgebras, as in:

F (X) F (R)
F (r1)

oo
F (r2)

// F (Y)

X

c

OO

Rr1

oo

e

OO

r2

// Y

d

OO

Thus, briefly: R carries a Rel(F)-coalgebra in the category Rel if and only if R carries
an F -coalgebra in Sets making the diagram commute.

Proof. In Lemma 3.2.4 (ii) we already saw that R ⊆ X × Y is a bisimulation according
to Definition 3.1.2 if and only it carries a Rel(F)-coalgebra; that is, if and only if the
function c×d : X×Y → F (X)×F (Y) restricts to a necessarily unique function f : R→
Rel(F)(R), making the square on the left below commute.

R
��

〈r1, r2〉
��

//________ f
Rel(F)(R)

��

��

// α //
F (R)

〈F (r1), F (r2)〉
uu

oo

β
oo

X × Y
c× d

// F (X)× F (Y)

The functions α, β in the triangle on the right form the retract from the previous lemma.
Then, ifR is a bisimulation according to Definition 3.1.2, there is a function f as indicated,
so that α ◦ f : R→ F (R) yields an F -coalgebra onR making the legs ri homomorphisms
of coalgebras. Conversely, if there is a coalgebra e : R → F (R) making the ri homomor-
phisms, then β ◦ e : R→ Rel(F)(R) shows that R ⊆ (c× d)−1(Rel(F)(R)).

DRAFT

98 Chapter 3. Bisimulations98 Chapter 3. Bisimulations98 Chapter 3. Bisimulations

This result gives rise to another two alternative characterisations of bisimilarity. For
non-polynomial functors on other categories than Sets these different descriptions may
diverge, see [401] for more information.

3.3.3. Theorem. Assume two elements x ∈ X and y ∈ Y of coalgebras X c→ F (X) and

Y
d→ F (Y) of a Kripke polynomial functor F : Sets → Sets. The following statements

are equivalent.
(i) x, y are bisimilar: x c

↔
d y;

(ii) there is a span of coalgebra homomorphisms:

•
f

}}{{{{{{{{ g

!!CCCCCCCC

(
F (X)
↑ c
X

) (
F (Y)
↑ d
Y

) with x = f(z) and y = g(z),

for some element z;

(iii) x, y are behaviourally equivalent: there is a cospan of coalgebra homomorphisms:
(
F (X)
↑ c
X

)

h !!CCCCCCCC

(
F (Y)
↑ d
Y

)

k}}{{{{{{{{

•

with h(x) = k(y).

For the proof we recall from Exercise 2.1.14 that the category Sets has coequalisers,
and that categories of coalgebras CoAlg(F) of endofunctors of Sets then also have such
coequalisers.

Proof. (i) ⇒ (ii). If x and y are bisimilar, then they are contained in some bisimulation
R ⊆ X × Y . By the previous result, this relation carries a coalgebra structure making the
two legs X ← R→ Y homomorphisms, and thus a span of coalgebras.

(ii) ⇒ (iii). Assume there is a span of coalgebra homomorphisms f : W → X ,
g : W → Y as described above in item (ii), with x = f(z) and y = g(z), for some
z ∈ W . One obtains a cospan as in (iii) by taking the pushout of f, g in the category
CoAlg(F). This notion of pushout has not been discussed yet, but it can be described in
terms of notions that we have seen. We form the coequaliser in CoAlg(F) in:

(
F (W)
↑
W

)
κ1 ◦ f

//

κ2 ◦ g
//

(
F (X + Y)
↑

X + Y

)
q
// //

(
F (Q)
↑
Q

)

where the coalgebra in the middle on X + Y is [F (κ1) ◦ c, F (κ2) ◦ d], as in Proposi-
tion 2.1.5. Then we take h = q ◦ κ1 and k = q ◦ κ2, so that:

h(x) = q(κ1x) = q(κ1f(z))

= q(κ2g(z)) since q is coequaliser

= q(κ2y) = k(y).

(ii)⇒ (iii). Assuming a cospan h, k of coalgebra homomorphisms with h(x) = k(y)
we take the pullback relation Eq(h, k) ⊆ X × Y . It is a bisimulation by Proposition 3.2.7
and it contains x, y by assumption. Hence x c

↔
d y.

We postpone a discussion of the different formulations of the notion of bisimulation
to the end of this section. At this stage we shall use the new “Aczel-Mendler” bisimula-
tions in the following standard result—specifically in point (ii)—about monos and epis in
categories of coalgebras.

DRAFT

3.3. Bisimulations as spans and cospans 993.3. Bisimulations as spans and cospans 993.3. Bisimulations as spans and cospans 99

3.3.4. Theorem. Let F : Sets→ Sets be a Kripke polynomial functor.
(i) For a coalgebra c : X → F (X) and a bisimulation equivalence R ⊆ X ×X , the

quotient set X/R carries a unique quotient coalgebra structure, written as c/R : X/R →
F (X/R), making the canonical quotient map [−]R : X � X/R a homomorphism of coal-
gebras, as in:

F (X)
F ([−]R)

// F (X/R)

X

c

OO

//

[−]R
// X/R

c/R

OO

(ii) A homomorphism of coalgebras f : X → Y from X
c→ F (X) to Y d→ F (Y) is a

monomorphism / epimorphism in the category CoAlg(F) if and only if f is an injective /
surjective function between the underlying sets.

(iii) Every homomorphism of coalgebras factors as an epimorphism followed by a mono-
morphism in CoAlg(F). This factorisation is essentially unique because of the following
“diagonal-fill-in” property. For each commuting square of coalgebra homomorphisms as
below, there is a unique diagonal homomorphism making both triangles commute.

• // //

��

•

�����
�

�
�

• // // •

This means that monomorphisms and epimorphisms in the category CoAlg(F) form a
so-called factorisation system, see [56, 35, 137], and Section 4.3.

As an aside, the result (ii) that a monomorphism between coalgebras is an injective
function holds for Kripke polynomial functors, but not for arbitrary functors, as shown
in [173].

Proof. (i) It suffices to prove that F ([−]R) ◦ c is constant on R. But this is obvious:

R ⊆ (c× c)−1(Rel(F)(R)) since R is a bisimulation

= (c× c)−1(Rel(F)(Ker([−]R)))

= (c× c)−1(Ker(F ([−]R))) by Lemma 3.2.5 (i)

= Ker(F ([−]R) ◦ c).

(ii) It is standard that if a coalgebra homomorphism f is injective / surjective, then it
is a monomorphism / epimorphism in Sets—see also Exercise 2.5.8—and hence also in
CoAlg(F). Conversely, assume first that f is a monomorphism in CoAlg(F). The kernel
〈r1, r2〉 : Ker(f) � X × X is a bisimulation by Proposition 3.2.7 (ii). Hence it carries
an F -coalgebra structure by the previous theorem, making the ri homomorphisms. From
f ◦ r1 = f ◦ r2, we can conclude that r1 = r2, since f is a monomorphism in CoAlg(F).
But r1 = r2 yields that f is injective:

f(x1) = f(x2) =⇒ (x1, x2) ∈ Ker(f)

=⇒ x1 = r1(x1, x2) = r2(x1, x2) = x2.

Next, assume that f is an epimorphism in CoAlg(F). There is a short categorical
argument that tells that f is then an epi in Sets, and thus surjective: the forgetful functor
CoAlg(F) → Sets creates colimits, see [378, Proposition 4.7]. However, we spell out

DRAFT

100 Chapter 3. Bisimulations100 Chapter 3. Bisimulations100 Chapter 3. Bisimulations

the argument. That f is epi in CoAlg(F) can be reformulated as: the following diagram
is a coequaliser in CoAlg(F):

(
F (X)
↑ c
X

)
κ1 ◦ f

//

κ2 ◦ f
//

(
F (Y + Y)
↑

Y + Y

)
[id, id]

// //

(
F (Y)
↑ d
Y

)

where the coalgebra in the middle is [F (κ1) ◦ d, F (κ2) ◦ d], as in Proposition 2.1.5. Since
in Sets a function is surjective if and only if it is an epimorphism—see Exercise 2.5.8 or
any basic textbook in category theory—it suffices to show that f is an epimorphism in Sets.
Thus we construct the coequaliser q : Y +Y � Q in Sets of κ1 ◦ f, κ2 ◦ f : X → Y +Y .
By Exercise 2.1.14 this quotient set Q carries a unique coalgebra Q→ F (Q) making q not
only a homomorphism in CoAlg(F) but also a coequaliser of the homomorphisms κ1 ◦
f, κ2 ◦ f . Since coequalisers are determined up-to-isomorphism there is an isomorphism
ϕ : Y

∼=→ Q in CoAlg(F) with ϕ ◦ [id, id] = q. This means that the codiagonal [id, id] is
also the coequaliser of κ1 ◦ f, κ2 ◦ f in Sets, and thus that f is an epimorphism in Sets
(and hence surjective).

(iii) Given a homomorphism of coalgebras f : X → Y , we know by Proposition 3.2.7 (ii)
that the kernel Ker(f) is a bisimulation equivalence. Hence by (i) the quotient X/Ker(f)
carries a coalgebra structure, and yields a standard factorisation (in Sets):

(
X

f
// Y
)

=
(
X //e // X/Ker(f) //

m // Y
)
.

The map e : X � X/Ker(f) is by definition of the unique coalgebra structure c′ on
X/Ker(f)—see point (i)—a homomorphism of coalgebras in:

F (X)
F (e)

// F (X/Ker(f))
F (m)

// F (Y)

X

c

OO

//
e

// X/Ker(f) // m
//

OO�
�
� c
′ = c/Ker(f)

Y

d

OO

Not only the square on the left, but also the one on the right commutes, using that e is an
epimorphism: d ◦ m = F (m) ◦ c′ follows from:

d ◦ m ◦ e = d ◦ f
= F (f) ◦ c
= F (m) ◦ F (e) ◦ c
= F (m) ◦ c′ ◦ e.

Thus, m : X/Ker(f) � Y is also a homomorphism of coalgebras. Hence we have a
factorisation X � X/Ker(f) � Y of f in the category CoAlg(F).

Regarding the diagonal-fill-in property, the diagonal is defined via the surjectivity of
the top arrow. Hence this diagonal is a homomorphism of coalgebras.

3.3.1 Comparing definitions of bisimulation

We started this chapter by introducing bisimulations via the logical technique of relation
lifting, and later showed equivalence to quite different formulations in terms of (co)spans
(Theorems 3.3.2 and 3.3.3). We shall discuss some differences between these “logical” and
“span-based” approaches.

DRAFT

3.3. Bisimulations as spans and cospans 1013.3. Bisimulations as spans and cospans 1013.3. Bisimulations as spans and cospans 101

1. The logical approach describes bisimulation as relations with a special property,
whereas the (co)span-based approaches rely on the existence of certain (coalgebra)
structure. This aspect of the logical approach is more appropriate, because it is in
line with the idea that bisimulations are special kinds of relations. If, in the Aczel-
Mendler approach, the coalgebra structure is necessarily unique, existence of this
structure also becomes a property. But uniqueness is neither required nor guaran-
teed. This is slightly unsatisfactory.

2. Relation lifting has been defined by induction on the structure of Kripke polynomial
functors. Therefore, the logical approach (so far) only applies to such a limited
collection of functors. Later, in Section 4.4 we will extend such lifting to functors
on categories equipped with a factorisation system. But (co)span-based approaches
apply more generally, without such factorisation structure. However, the dependence
on such structure may also be seen as an advantage, as will be argued next.

3. Relation lifting is a logical technique which is not restricted to the standard classical
logic of sets, but may be defined for more general (categorical) logics, in terms of
factorisation systems (see Section 4.4 below) or in terms of “indexed” or “fibred”
preorders, see [205, 225]. For instance, one may wish to consider topological spaces
with different logics, for instance with predicates given by the subsets which are
closed, or open, or both (clopen). Each of those preorders of predicates has different
algebraic / logical properties. Thus, the logical approach is more general (or flexible)
in another, logical dimension.

4. The cospan formulation (or behavioural equivalence) is essentially equivalent to
equality on the final coalgebra. But the convenient aspect of behavioural equivalence
is that it makes also makes sense in contexts where there is no final coalgebra.

5. Bisimulation relations can be constructed iteratively, by adding pairs until the relation
is appropriately closed. This is done for instance in tools like CIRC [310]. Such
techniques are not available for behavioural equivalence.

There is no clear answer as to which approach is “the best”. In more general situations—
other functors than the polynomial ones, on other categories than Sets—the various no-
tions may diverge (see [401]) and one may be better than the other. For instance, in coal-
gebraic modal logic the cospan based approach, using behavioural equivalence, see Theo-
rem 3.3.3 (iii), seems to work best. We have chosen to start from the logical approach be-
cause we consider it to be more intuitive and easier to use in concrete examples. However,
from now on we shall freely switch between the different approaches, and use whatever is
most convenient in a particular situation.

In Chapter 6 on invariants we shall encounter the same situation. There is a logical def-
inition based on “predicate lifting”. It leads to a notion of invariant, which, in the classical
logic of sets, is equivalent to the notion of subcoalgebra, see Theorem 6.2.5. The latter is
again defined in terms of structure, and applies to more general functors.

3.3.2 Congruences and spans

We conclude this section with two basic results for algebra. The first one is an analogue
of the Aczel-Mendler formulation of bisimulations (see Theorem 3.3.2) for congruences
on algebras. The second one involves quotient algebras; it requires an auxiliary technical
result about quotients in Sets.

3.3.5. Theorem. Assume two algebras a : F (X) → X and b : F (Y) → Y of a Kripke
polynomial functor F . A relation R ⊆ X × Y is a congruence relation if and only it

DRAFT

102 Chapter 3. Bisimulations102 Chapter 3. Bisimulations102 Chapter 3. Bisimulations

carries a (necessarily unique) algebra structure F (R) → R itself, making the two legs
〈r1, r2〉 : R� X × Y of the inclusion homomorphisms of algebras, as in:

F (X)

a
��

F (R)
F (r1)

oo

��

F (r2)
// F (Y)

b
��

X Rr1

oo
r2

// Y

Proof. Recall the retract (α, β), with β ◦ α = id, from Lemma 3.3.1 in:

F (R)
// α //

〈F (r1), F (r2)〉 ((

Rel(F)(R)
β

oooo
��

��

f
//________ R��

〈r1, r2〉
��

F (X)× F (Y)
a× b

// X × Y

AssumeR is a congruence, say via f : Rel(F)(R)→ R as above. Then f ◦ α : F (R)→ R
is an algebra such that the ri are homomorphisms. Conversely, if an algebra c : F (R)→ R
making the ri morphisms of algebras exist, then c ◦ β ensures Rel(()(F))R ≤ (a ×
b)−1(R).

Theorem 3.3.4 describes coalgebras on quotients in the category Sets. Below we use
some special properties of sets, like the axiom of choice and the fact that each equivalence
relation is “effective”: it is equal to the kernel of its quotient map.

3.3.6. Lemma. Let F : Sets→ Sets be an arbitrary endofunctor. If q : X � X/R is the
quotient map of an equivalence relation 〈r1, r2〉 : R ↪→ X×X , then we have a coequaliser
diagram:

F (R)
F (r1)

//

F (r2)
// F (X) //

F (q)
// F (X/R)

Proof. The quotient map q : X � X/R sends an element x ∈ X to its equivalence class
q(x) = [x]R = {x′ ∈ X | R(x, x′)} wrt. the relation R. It is surjective, so by the
axiom of choice we may assume a section s : X/R → X with q ◦ s = id—as noted at
the end of Section 2.1. This section s chooses a representative in each equivalence class.
Since q(x) = q(s(q(x))) we get R(x, s(q(x))), for each x ∈ X . Thus we can define a
function d : X → R by d(x) = (x, s(q(x))); by construction it satisfies r1 ◦ d = id and
r2 ◦ d = s ◦ q.

We now turn to the diagram in the lemma. First, we know that the map F (e) is surjec-
tive, because it has F (s) as a section: F (q) ◦ F (s) = F (q ◦ s) = id. Next, assume we
have a map f : F (X)→ Y with f ◦ F (r1) = f ◦ F (r2). Then:

f = f ◦ idF (X) = f ◦ F (r1) ◦ F (d)

= f ◦ F (r2) ◦ F (d) by assumption about f

= f ◦ F (s) ◦ F (q).

This shows that f ′ = f ◦ F (s) : F (X/R) → Y is the required mediating map: f ′ ◦
F (q) = f ◦ F (s) ◦ F (q) = f . Clearly, f ′ is unique with this property, because F (q) is an
epimorphism (i.e. is surjective).

3.3.7. Proposition. Let R ⊆ X × X be a congruence equivalence relation (i.e. both
a congruence and an equivalence relation) on an algebra F (X) → X . The quotient
X/R carries a unique algebra structure a/R : F (X/R)→ X/R making the quotient map
q : X → X/R a homomorphism of algebras.

DRAFT

3.3. Bisimulations as spans and cospans 1033.3. Bisimulations as spans and cospans 1033.3. Bisimulations as spans and cospans 103

Proof. Since R is a quotient we may assume by Theorem 3.3.5 an algebra c : F (R)→ R,
as on the left in:

F (R)

F (r1)
//

F (r2)
//

c
��

F (X) //
F (q)

//

a
��

F (X/R)

��
�
�
�

a/R

R
r1 //

r2

// X //
q

// X/R

The algebra structure a/R exists because the top row is a coequaliser by Lemma 3.3.6, and:

q ◦ a ◦ F (r1) = q ◦ r1 ◦ c
= q ◦ r2 ◦ c since q is coequaliser

= q ◦ a ◦ F (r2).

Such a result is of course well-known in universal algebra. Here we obtain it in a
uniform manner, for many functors (seen as signatures).

Exercises

3.3.1. Assume a homomorphism of coalgebras f : X → Y has two factorisations X � U � Y
and X � V � Y . Prove that the diagonal-fill-in property of Theorem 3.3.4 (iii) yields a
unique isomorphism U

∼=→ V commuting with the mono- and epi-morphisms and with the
coalgebra structures.

3.3.2. Use Theorem 3.3.5 to prove the binary induction proof principle in Theorem 3.1.4: every
congruence on an initial algebra is reflexive.

3.3.3. Assume f : X → Y is an epimorphism in a category CoAlg(F), for a Kripke polynomial
functor F on Sets. Prove that f is the coequaliser in CoAlg(F) of its own kernel pair
p1, p2 : Ker(f)→ X .

[Hint. Use that this property holds in Sets, and lift it to CoAlg(F).]

3.3.4. Formally, a quotient of an object X in a category is an equivalence class of epimorphisms
X � •. Two epis e : X � U and d : X � V are equivalent when there is a necessarily
unique isomorphism h : U → V with h ◦ e = d. Like for subobjects—which are equiva-
lence classes of monomorphisms—we often confuse a quotient with an epi that represents
it.
We now concentrate on the category Sets, and form a category Quot with:

objects quotients X � U

morphisms from (X
e� U) to (Y

d� V) are maps f : X → Y for which there is a
necessarily unique map:

U //______ V

X

OO
e
OO

f
// Y

OO

d

OO

Use that quotients are effective in Sets to prove that there is an isomorphism of categories:

Quot

%%KKKKK
∼= // EqRel

yyrrrrr

Sets

where EqRel ↪→ Rel is the subcategory of equivalence relations R� X ×X .

DRAFT

104 Chapter 3. Bisimulations104 Chapter 3. Bisimulations104 Chapter 3. Bisimulations

3.4 Bisimulations and the coinduction proof principle

We have already seen that states of final coalgebras coincide with behaviours, and that
bisimilarity captures observational indistinguishability. Hence the following fundamental
result does not come as a surprise: states are bisimilar if and only if they have the same
behaviour, i.e. become equal when mapped to the final coalgebra. This insight has been
important in the development of the field of coalgebra.

3.4.1. Theorem ([414, 378]). Let F : Sets→ Sets be a (finite) polynomial functor which
has a final coalgebra ζ : Z

∼=−→ F (Z). Let c : X → F (X) and d : Y → F (Y) be arbitrary
coalgebras, with associated homomorphisms behc : X → Z and behd : Y → Z given by
finality. Two states x ∈ X and y ∈ Y are then bisimilar if and only if they have the same
behaviour:

x c
↔

d y ⇐⇒ behc(x) = behd(y).

In particular, bisimilarity ζ↔ ζ⊆ Z × Z on the final coalgebra is equality.

Proof. (⇐) This is easy since we know by Proposition 3.2.7 (iv) that the pullback relation
Eq(behc,behd) = {(x, y) | behc(x) = behd(y)} ⊆ X × Y of two homomorphisms is a
bisimulation. Hence it is included in the greatest bisimulation c

↔
d.

(⇒) The bisimilarity relation c↔d is itself a bisimulation, so it carries by Theorem 3.3.2
a coalgebra structure e : (c↔d)→ F (c↔d) making the two legs ri of the relation 〈r1, r2〉
: (c↔d) � X × Y homomorphisms. By finality we then get behc ◦ r1 = behd ◦ r2,
yielding the required result. .

This result gives rise to an important proof method for establishing that two states have
the same behaviour. This method is often referred to as the coinduction proof principle, and
goes back to [323]. It corresponds to the uniqueness part of the unique existence property
of behaviour maps in Definition 2.3.1.

3.4.2. Corollary (Coinduction proof principle). Two states have the same behaviour if and
only if there is a bisimulation that contains them.

Consequently: every bisimulation on a final coalgebra is contained in the equality
relation.

The second formulation in this corollary is sometimes called ‘internal full abstractness’.
It is the dual of the binary induction principle from Theorem 3.1.4, stating that on an initial
algebra each congruence contains the equality relation (i.e. is reflexive).

As we shall see in Example 3.4.5 below, it may sometimes require a bit of ingenuity
to produce an appropriate bisimulation. The standard way to find such a bisimulation is
to start with the given equation as relation, and close it off with successor states until no
new elements appear. In that case one has only “circularities”. Formalising this approach
led to what is sometimes called circular rewriting, see e.g. [153], implemented in the tool
CIRC [310].

3.4.3. Corollary. Call a coalgebra c : X → F (X) observable if its bisimilarity relation

c
↔

c is equality on X . This is equivalent to a generalisation of the formulation used in
Exercise 2.5.14 for deterministic automata: the associated behaviour map behc : X → Z
to the final coalgebra Z ∼=−→ F (Z), if any, is injective.

Observable coalgebras are called simple in [378]. Coalgebras can always be forced to
be observable via quotienting, see Exercise 3.4.1 below.

Bisimilarity is closely related to equivalence of automata, expressed in terms of equal-
ity of accepted languages (see Corollary 2.3.6). This result, going back to [341], will be
illustrated next.

DRAFT

3.4. Bisimulations and the coinduction proof principle 1053.4. Bisimulations and the coinduction proof principle 1053.4. Bisimulations and the coinduction proof principle 105

3.4.4. Corollary. Consider two deterministic automata 〈δi, εi〉 : Si → SAi × {0, 1} with
initial states si ∈ Si, for i = 1, 2. These states s1, s2 are called equivalent if they accept
the same language. The states s1 and s2 are then equivalent if and only if they are bisimilar.

Proof. Because the accepted languages are given by the behaviours beh〈δi,εi〉(si) ∈ P(A?)
of the initial states, see Corollary 2.3.6 (ii).

Early on in Section 1.2 we already saw examples of coinductive reasoning for se-
quences. Here we continue to illustrate coinduction with (regular) languages.

3.4.5. Example (Equality of regular languages [375]). In Corollary 2.3.6 (ii) we have seen
that the set L(A) = P(A?) of languages over an alphabet A forms a final coalgebra,
namely for the deterministic automaton functor X 7→ XA × {0, 1}. We recall that the
relevant coalgebra structure on L(A) is given on a language L ⊆ A? by:

L
a−→ La where La = {σ ∈ A? | a · σ ∈ L} is the a-derivative of L

L ↓ 1⇐⇒ 〈〉 ∈ L which may simply be written as L ↓.

The subset R(A) ⊆ L(A) of so-called regular languages is built up inductively from
constants

0 = ∅, 1 = {〈〉}, {a}, for a ∈ A, usually written simply as a,

and the three operations of union, concatenation and Kleene star:

K + L = K ∪ L
KL = {σ · τ | σ ∈ K ∧ τ ∈ L}
K∗ =

⋃
n∈NK

n, where K0 = 1 and Kn+1 = KKn.

See also Exercise 3.4.4 below. For example, the regular language a(a+ b)∗b consists of all
(finite) words consisting of letters a, b only, that start with an a and end with a b. Regular
languages can be introduced in various other ways, for example as the languages accepted
by deterministic and non-deterministic automata with a finite state space (via what is called
Kleene’s theorem [270], or [395] for coalgebraic versions), or as the languages generated
by regular grammars. Regular languages (or expressions) are used in many situations, such
lexical analysis (as patterns for tokens), or text editing and retrieval (for context searches).
Regular expressions, see Exercise 3.4.4, are often used as search strings in a Unix/Linux
environment; for example in the command grep, for “general regular expression parser”.

An important topic is proving equality of regular languages. There are several ap-
proaches, namely via unpacking the definitions, via algebraic reasoning using a complete
set of laws (see [282] and also [231]), or via minimalisation of associated automata. A
fourth, coinductive approach is introduced in [375] using bisimulations. It is convenient,
and will be illustrated here.

Recall from Section 3.1 that a relation R ⊆ L(A) × L(A) is a bisimulation if for all
languages L,K,

R(L,K) =⇒
{
R(La,Ka) for all a ∈ A
L ↓ iff K ↓

The coinduction proof principle then says, for L,K ∈ L(A),

L = K ⇐⇒ there is a bisimulation R ⊆ L(A)× L(A) with R(L,K). (3.1)

We will use this same principle for the subset R(A) ⊆ L(A) of regular languages. This is
justified by the fact that the inclusion mapR(A) ↪→ L(A) is the unique homomorphism of

DRAFT

106 Chapter 3. Bisimulations106 Chapter 3. Bisimulations106 Chapter 3. Bisimulations

coalgebras obtained by finality in:

R(A)A × 2 //______ L(A)A × 2

R(A)

OO

//________ L(A) = P(A?)

∼=
OO

This works because the coalgebra structure on L(A) restricts to R(A). This coalgebra on
R(A) is given by the following rules for (Brzozowski) derivatives La and termination L ↓.

0a = 0 ¬
(
0 ↓
)

1a = 0 1 ↓

ba =

{
1 if b = a

0 otherwise
¬
(
b ↓
)

(K + L)a = Ka + La K + L ↓ iff K ↓ or L ↓

(KL)a =

{
KaL+ La if K ↓
KaL otherwise

KL ↓ iff K ↓ ∧ L ↓
(
K∗
)
a

= KaK
∗ K∗ ↓ .

We shall illustrate the use of the coinduction proof principle (3.1) for establishing equal-
ity of regular languages via two examples.

1. For an arbitrary element a in the alphabet A one has

(1 + a)∗ = a∗.

As candidate bisimulation R in (3.1) we take:

R = {((1 + a)∗, a∗)} ∪ {(0, 0)}.

The termination requirement obviously holds, so we concentrate on derivatives. First,
for a itself:
(
(1+a)∗

)
a

= (1+a)a (1+a)∗ = (1a+aa) (1+a)∗ = (0+1) (1+a)∗ = (1+a)∗

and similarly: (
a∗
)
a

= aa a
∗ = 1 a∗ = a∗.

Hence the pair of a-derivatives (((1 + a)∗)a, (a∗)a) = ((1 + a)∗, a∗) is again in the
relation R. Likewise, (0a, 0a) = (0, 0) ∈ R. And for an element b 6= a we similarly
have (

(
(1 + a)∗

)
b
,
(
a∗
)
b
) = (0, 0) ∈ R. This shows that R is a bisimulation, and

completes the proof. The reader may wish to compare it to an alternative proof of
equality, using the definition of Kleene star (−)∗.

2. Next we restrict ourselves to an alphabet A = {a, b} consisting of two (different)
letters only. Consider the two languages

E(b) = {σ ∈ A? | σ contains an even number of b’s}
O(b) = {σ ∈ A? | σ contains an odd number of b’s}.

(We consider 0 ∈ N to be even.) Using the definitions of derivative and termination,
it is not hard to see that:

E(b)a = E(b) E(b)b = O(b) E(b) ↓
O(b)a = O(b) O(b)b = E(b) ¬O(b) ↓.

DRAFT

3.4. Bisimulations and the coinduction proof principle 1073.4. Bisimulations and the coinduction proof principle 1073.4. Bisimulations and the coinduction proof principle 107

Our aim is to prove the equality:

E(b) = a∗ + a∗b(a+ ba∗b)∗ba∗

via coinduction. This requires by (3.1) a bisimulation R containing both sides of the
equation. We take:

R = {(E(b),K)} ∪ {(O(b), L)} where

K = a∗ + a∗b(a+ ba∗b)∗ba∗ (the right-hand side of the equation)

L = (a+ ba∗b)∗ba∗.

The computations that show thatR is a bisimulation use the above computation rules
for derivatives plus some obvious properties of the regular operations (like associa-
tivity, commutativity, X + 0 = X and 1X = X):

Ka =
(
a∗
)
a

+
(
a∗
)
a
b(a+ ba∗b)∗ba∗ +

(
b(a+ ba∗b)∗ba∗

)
a

= a∗ + a∗b(a+ ba∗b)∗ba∗ + ba(a+ ba∗b)∗ba∗

= K + 0(a+ ba∗b)∗ba∗

= K

Kb =
(
a∗
)
b

+
(
a∗
)
b
b(a+ ba∗b)∗ba∗ +

(
b(a+ ba∗b)∗ba∗

)
b

= 0 + 0b(a+ ba∗b)∗ba∗ + bb(a+ ba∗b)∗ba∗

= 0 + 0 + 1(a+ ba∗b)∗ba∗

= L

La =
(
(a+ ba∗b)∗

)
a
ba∗ +

(
ba∗
)
a

=
(
a+ ba∗b

)
a
(a+ ba∗b)∗ba∗ + baa

∗

= (aa + baa
∗b)(a+ ba∗b)∗ba∗ + 0a∗

= (1 + 0a∗b)(a+ ba∗b)∗ba∗ + 0

= L

Lb =
(
(a+ ba∗b)∗

)
b
ba∗ +

(
ba∗
)
b

=
(
a+ ba∗b

)
b
(a+ ba∗b)∗ba∗ + bba

∗

= (ab + bba
∗b)(a+ ba∗b)∗ba∗ + 1a∗

= a∗b(a+ ba∗b)∗ba∗ + a∗

= K.

This shows that (U, V) ∈ R implies both (Ua, Va) ∈ R and (Ub, Vb) ∈ R.

Further:
K ↓ ⇐⇒ a∗ ↓ ∨ a∗b(a+ ba∗b)∗ba∗ ↓
⇐⇒ true

L ↓ ⇐⇒ (a+ ba∗b)∗ ↓ ∧ ba∗ ↓
⇐⇒ true ∧ b ↓ ∧ a∗ ↓
⇐⇒ true ∧ false ∧ true

⇐⇒ false.

This shows that R is a bisimulation. As a result we obtain E(b) = K, as required,
but also, O(b) = L.

This concludes the example. For more information, see [375, 377, 379].

DRAFT

108 Chapter 3. Bisimulations108 Chapter 3. Bisimulations108 Chapter 3. Bisimulations

There are many more examples of coinductive reasoning in the literature, in vari-
ous areas: non-well-founded sets [8, 62], processes [324], functional programs [161],
streams [379, 202] (with analytic functions as special case [345]), datatypes [201], do-
mains [124, 349], etc.

Exercises

3.4.1. Check that for an arbitrary coalgebra c : X → F (X) of a Kripke polynomial functor,
the induced quotient coalgebra c/↔ : X/↔ → F (X/↔) is observable—using Theo-
rem 3.3.4 (i) and Proposition 3.2.8 (iii). Is the mapping c 7→ c/↔ functorial?
Note that since the canonical map [−] : X � X/↔ is a homomorphism, its graph is a
bisimulation. Hence a state x ∈ X is bisimilar to its equivalence class [x] ∈ X/↔. This
means that making a coalgebra observable does not change the behaviour.

3.4.2. (i) ([378, Theorem 8.1]) Prove that a coalgebra c is observable (or simple) if and only if
it has no proper quotients: every epimorphism c� d is an isomorphism.
[Hint. Consider the kernel of such a map.]

(ii) Conclude that there is at most one homomorphism to an observable coalgebra.

3.4.3. Prove the following analogue of Theorem 3.4.1 for algebras a : F (X)→ X and b : F (Y)→
Y of a Kripke polynomial functor F , with an initial algebra F (A)

∼=→ A.

Two elements x ∈ X and y ∈ Y are interpretations x = inta(t) and y =
intb(t) of the same element t ∈ A if and only if the pair (x, y) is in each
congruence relation R ⊆ X × Y .

Conclude that for coalgebras c, d and algebras a, b:

Eq(behc, behd)
def
= (behc × behd)

−1(Eq)

=
⋃{R | R is a bisimulation on the carriers of c, d}

Im(〈inta, intb〉) def
=
∐

inta×intb
(Eq)

=
⋂{R | R is a congruence on the carriers of a, b}.

3.4.4. Fix an alphabet A and consider the simple polynomial functor

R(X) = 1 + 1 +A+ (X ×X) + (X ×X) +X.

(i) Show that the initial algebra RE of R is the set of regular expressions, given by the
BNF syntax:

E := 0 | 1 | a | E + E | EE | E∗

where a ∈ A.
(ii) Define an interpretation map int : RE → P(A?) = L(A) by initiality, whose image

contains precisely the regular languages. In order to do so one needs an R-algebra
structure on the final coalgebra L(A), see also [231].

3.4.5. Use coinduction to prove the equation:

(a+ b)∗ = (a∗b)∗a∗ for alphabet A = {a, b, c}.

3.4.6. (From [375]) Prove the following equality of regular languages (over the alphabet {a, b})
by coinduction.

((b∗a)∗ab∗)∗ = 1 + a(a+ b)∗ + (a+ b)∗aa(a+ b)∗.

3.4.7. Prove that the language K = a∗ + a∗b(a+ ba∗b)∗ba∗ of words with an even numbers of
b’s from Example 3.4.5 is the language that is accepted by the following finite deterministic
automaton:

?>=<89:;0

b
))

a
66

?>=<89:;/.-,()*+1

b

ii a
hh

DRAFT

3.5. Process semantics 1093.5. Process semantics 1093.5. Process semantics 109

•

(2,1)

((

•

(1,3)

��

•

(0,5)

vv•

10kkkkkkkkkkkkk

uukkkkkkkkkkkkkkkkkkkk 10ssssssss

yysssssssssssss 10
�����

���������� 10
00000

��
00000000 10

KKKKKKKK

%%KKKKKKKKKKKKK 10
SSSSSSSSSSSSS

))SSSSSSSSSSSSSSSSSSSS

5BBBBBB

``BBBBBBBBBB
5

OO

5||||||

>>||||||||||

empty
// •

•

(5,0)

22

•

(4,2)

55

•

(3,4)

<<

•

(2,6)

bb

•

(1,8)

ii

•

(0,10)

ll

Figure 3.1: Transition diagram of a machine for changing 5 and 10 Euro notes into coins.

with 1 both as initial and as final state. More formally, this automaton is 〈δ, ε〉 : {0, 1} →
{0, 1}{a,b} × {0, 1} with

δ(0)(a) = 0 δ(0)(b) = 1 ε(0) = 0

δ(1)(a) = 1 δ(1)(b) = 0 ε(1) = 1.

3.5 Process semantics

This section will introduce a semantics for processes using final coalgebras for the finite
powerset functor Pfin. They capture the behaviour of so-called finitely branching transition
systems. This section forms an illustration of many of the ideas we have seen so far,
like behavioural interpretations via finality and compositional interpretations via initiality.
Also, we shall see how the coalgebraic notion of bisimilarity forms a congruence—an
algebraic notion. The material in this section builds on [414, 383], going back to [374]. It
will be put in a broader context via distributive laws in Section 5.5.

A first, non-trivial question is: what is a process? Usually one understands it as a run-
ning program. Thus, a sequential program, transforming input to output, when in operation
forms a process. But typical examples of processes are programs that are meant to be run-
ning ‘forever’, like operating systems or controllers. Often they consist of several processes
that run in parallel, with appropriate synchronisation between them. The proper way to de-
scribe such processes is not via input-output relations, like for sequential programs. Rather,
one looks at their behaviour, represented as suitable (infinite) trees.

Let us start with the kind of example that is often used to introduced processes. Sup-
pose we wish to describe a machine that can change e5 and e10 notes into e1 and e2
coins. We shall simply use ‘5’ and ‘10’ as input labels. And as output labels we use pairs
(i, j) to describe the return of i 2-e coins and j 1-e coins. Also there is a special output
action empty that indicates that the machine does not have enough coins left. Our abstract
description will not determine which combination of coins is returned, but only gives the
various options as a non-deterministic choice. Pictorially this yields a “state-transition”
diagram like in Figure 3.5. Notice that the machine can only make a ‘5’ or ‘10’ transition
if it can return a corresponding change. Otherwise, it can only do an ‘empty’ step.

In this section we shall describe such transition systems as coalgebras, namely as coal-
gebras of the functor X 7→ Pfin(X)A, for various sets A of “labels” or “actions”. As
usual, for states s, s′ ∈ S and actions a ∈ A we write s a−→ s′ for s′ ∈ c(s)(a), where
c : S → Pfin(S)A is our coalgebra. Note that for each state s ∈ S and input a ∈ A there
are only finitely many successor states s′ with s a−→ s′. Therefore, such transition systems
are often called finitely branching.

DRAFT

110 Chapter 3. Bisimulations110 Chapter 3. Bisimulations110 Chapter 3. Bisimulations

In the example of Figure 3.5, the set of labels is:

E = {5, 10, (2, 1), (1, 3), (0, 5), (5, 0), (4, 2), (3, 4), (2, 6), (1, 8), (0, 10),empty}.

And the set of states is:

S = {s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10},

with “change” coalgebra structure ch : S → Pfin(S)E given by:

ch(s0) = λa ∈ E.

{s1, s2, s3} if a = 5

{s4, s5, s6, s7, s8, s9} if a = 10

{s10} if a = empty

∅ otherwise

ch(s1) = λa ∈ E.
{
{s0} if a = (2, 1)

∅ otherwise

ch(s2) = λa ∈ E.
{
{s0} if a = (1, 3)

∅ otherwise

etc.

(3.2)

Since the functor X 7→ Pfin(X)A is a finite Kripke polynomial functor, we know by The-
orem 2.3.9 that it has a final coalgebra. In this section we shall write this final coalgebra
as:

ZA
ζA
∼=

// Pfin(ZA)A, (3.3)

where the set of inputs A is a parameter. We do not really care what these sets ZA actually
look like, because we shall only use their universal properties, and do not wish to depend
on a concrete representation. However, concrete descriptions in terms of certain finitely
branching trees modulo bisimilarity may be given, see [414, Section 4.3] (following [55]).
In this context we shall call the elements of carrier ZA of the final coalgebra processes.

Our change machine coalgebra ch from Figure 3.5 with its set of actions E thus gives
rise to a behaviour map:

Pfin(S)E //_________
Pfin(behch)E

Pfin(ZE)E

S

ch
OO

//____________
behch

ZE

∼= ζE

OO

(3.4)

The behaviour function behch turns the concrete states s0, . . . , s10 of our change machine
into abstract states of the final coalgebraZE—i.e. into processes—with the same behaviour.

3.5.1 Process descriptions

Several languages have been proposed in the literature to capture processes, such as Alge-
bra of Communicating Processes (ACP) [68, 130], Calculus of Communicating Systems
(CCS) [323, 324] or Communicating Sequential Processes (CSP) [209]. The goal of such
languages is to study processes via axiom systems in which notions like sequential and
parallel execution, alternative choice, communication, etc. are formalised by means of al-
gebraic operations and equations. It is not our aim to go into precise syntax and into the

DRAFT

3.5. Process semantics 1113.5. Process semantics 1113.5. Process semantics 111

various differences between these formalisms. Instead we concentrate on the semantics and
describe only a few basic operations on processes, showing how they can be interpreted in
a final coalgebra of the form (3.3). As an example, the above change machine could be
described via a (recursive) process equation:

CH = 5 · (2, 1) · CH + 5 · (1, 3) · CH + 5 · (0, 5) · CH +

10 · (5, 0) · CH + 10 · (4, 2) · CH + 10 · (3, 4) · CH +

10 · (2, 6) · CH + 10 · (1, 8) · CH + 10 · (0, 10) · CH +

empty · 0.

(3.5)

Process algebras can be understood more generally as providing a convenient syntax for
describing various kinds of transition systems, see also Example 3.5.1 below.

In the following we fix an arbitrary set A of actions, and we consider the associated
final coalgebra ZA

∼=−→ Pfin(ZA)A as in (3.3). We shall describe a collection of operations
(such as + and · above) on processes, understood as elements of ZA.

The null process

One can define a trivial process which does nothing. It is commonly denoted as 0, and is
defined as:

0 def
= ζ−1

A (λa ∈ A. ∅).
This means that there are no successor states of the process 0 ∈ ZA—since by construction
the set of successors ζA(0)(a) is empty, for each label a ∈ A.

Sum of two processes

Given two processes z1, z2 ∈ ZA, one can define a sum process z1 +z2 ∈ ZA via the union
operation ∪ on subsets:

z1 + z2
def
= ζ−1

A

(
λa ∈ A. ζA(z1)(a) ∪ ζA(z2)(a)

)
.

Then:
(z1 + z2)

a−→ w ⇐⇒ w ∈ ζA(z1 + z2)(a)

⇐⇒ w ∈ ζA(z1)(a) ∪ ζA(z2)(a)

⇐⇒ w ∈ ζA(z1)(a) or w ∈ ζA(z2)(a)

⇐⇒ z1
a−→ w or z2

a−→ w.

This means that there is an a-transition out of the sum process z1 +z2 if and only if there is
an a-transition either out of z1 or out of z2. In the process literature one usually encounters
the following two rules:

z1
a−→ w

z1 + z2
a−→ w

z2
a−→ w

z1 + z2
a−→ w

(3.6)

It is not hard to see that the structure (ZA,+, 0) is a commutative monoid with idempotent
operation: z + z = z for all z ∈ ZA.

Prefixing of actions

Given a process z ∈ ZA and an action b ∈ A there is a process b · z which first performs b
and then continues with z. It can be defined as:

b · z def
= ζ−1

A

(
λa ∈ A. if a = b then {z} else ∅

)

= ζ−1
A

(
λa ∈ A. {z | a = b}

)
.

DRAFT

112 Chapter 3. Bisimulations112 Chapter 3. Bisimulations112 Chapter 3. Bisimulations

We then have, for w ∈ ZA and b ∈ A,

(b · z) a−→ w ⇐⇒ w ∈ ζA(b · z)(a)

⇐⇒ w ∈ {z | a = b}
⇐⇒ a = b ∧ w = z.

This gives the standard rule:

b · z b−→ z
(3.7)

3.5.1. Example (Change machine, continued). Having defined prefixing and sum we can
verify the validity of the change machine equation (3.5), for the interpretation CH =
behch(s0) ∈ ZE from (3.2). First we note that:

(2, 1) · CH = ζ−1
E

(
λa ∈ E.

(
if a = (2, 1) then {behch(s0)} else ∅

))

= ζ−1
E

(
λa ∈ E.Pfin(behch)

(
if a = (2, 1) then {s0} else ∅

))

= ζ−1
E

(
λa ∈ E.Pfin(behch)

(
ch(s1)(a)

))

= ζ−1
E

(
λa ∈ E. ζE

(
behch(s1)

)
(a)
)

since behch is a map of coalgebras in (3.4)

= ζ−1
E

(
ζE
(
behch(s1)

))

= behch(s1)

Similar equations can be derived for the states s2, . . . , s9. And for s10 we have:

behch(s10) = ζ−1
E

(
λa ∈ E. ζE

(
behch(s10)

)
(a)
)

= ζ−1
E

(
λa ∈ E.Pfin(behch)

(
ch(s10)(a)

))

= ζ−1
E

(
λa ∈ E.Pfin(behch)(∅)

)

= ζ−1
E

(
λa ∈ E. ∅

)

= 0.

Finally we can check that the equation (3.5) holds for the behaviour CH = behch(s0),

DRAFT

3.5. Process semantics 1133.5. Process semantics 1133.5. Process semantics 113

since for each action a ∈ E we have:

ζE(CH)(a)

= ζE
(
behch(s10)

)
(a)

= Pfin(behch)
(
ch(s0)(a)

)
by (3.4)

=

{behch(s1),behch(s2),behch(s3)} if a = 5

{behch(s4),behch(s5),behch(s6),

behch(s7),behch(s8),behch(s9)} if a = 10

{behch(s10)} if a = empty

= {behch(s1),behch(s2),behch(s3) | a = 5} ∪
{ behch(s4),behch(s5),behch(s6),behch(s7),behch(s8),behch(s9) | a = 10}
∪ { ch(s10) | a = empty}

= {behch(s1) | a = 5} ∪ {behch(s2) | a = 5} ∪ {behch(s3) | a = 5} ∪
{ behch(s4) | a = 10} ∪ {behch(s5) | a = 10} ∪ { behch(s6) | a = 10} ∪
{ behch(s7) | a = 10} ∪ {behch(s8) | a = 10} ∪ { behch(s9) | a = 10} ∪
{ ch(s10) | a = empty}

= ζE(5 · (2, 1) · CH)(a) ∪ ζE(5 · (1, 3) · CH)(a) ∪ ζE(5 · (0, 5) · CH)(a) ∪
ζE(10 · (5, 0) · CH)(a) ∪ ζE(10 · (4, 2) · CH)(a) ∪ ζE(10 · (3, 4) · CH)(a) ∪
ζE(10 · (2, 6) · CH)(a) ∪ ζE(10 · (1, 8) · CH)(a) ∪ ζE(10 · (0, 10) · CH)(a) ∪
ζE(empty · 0)(a)

= ζE

(
5 · (2, 1) · CH + 5 · (1, 3) · CH + 5 · (0, 5) · CH +

10 · (5, 0) · CH + 10 · (4, 2) · CH + 10 · (3, 4) · CH +

10 · (2, 6) · CH + 10 · (1, 8) · CH + 10 · (0, 10) · CH + empty · 0
)

(a).

This example illustrates an approach for verifying that a transition system on an arbitrary
state space satisfies a certain process equation:

1. Map the transition system to the final coalgebra via the behaviour map beh;

2. Check the equation for beh(s0), where s0 is a suitable (initial) state, using the above
interpretations of the process combinators +, 0, · etc. on the final coalgebra.

3.5.2 A simple process algebra

In the previous subsection we have seen several process combinators, described as func-
tions on a terminal coalgebra ZA

∼=−→ Pfin(ZA)A. Next we shall consider these basic
combinators as constructors of a very simple process language, often called Basic Process
Algebra (BPA), see [130, 412]. In the spirit of this text, the language of finite terms will be
described as an initial algebra.

For an arbitrary set A of actions, consider the simple polynomial functor ΣA : Sets→
Sets given by

ΣA(X) = 1 + (A×X) + (X ×X)

An algebra ΣA(X) → X for this functor thus consists of three operations which we call
0 : 1 → X for null-process, · : A ×X → X for prefixing, and +: X ×X → X for sum.
We have seen that the final coalgebra ZA

∼=−→ Pfin(ZA)A carries a ΣA-algebra structure
which we shall write as ξA : ΣA(ZA) → ZA. It is given by the structure described earlier
(before Example 3.5.1). Thus we have a bialgebra of processes:

ΣA(ZA)
ξA

// ZA
ζA
∼=

// Pfin(ZA)A

DRAFT

114 Chapter 3. Bisimulations114 Chapter 3. Bisimulations114 Chapter 3. Bisimulations

The free ΣA-algebra on a set V consists the terms build up from the elements from V as
variables. An interesting algebra is given by the free ΣA-algebra on the final coalgebra ZA.
It consists of terms built out of processes, as studied in [374] under the phrase “processes
as terms”. Here we shall write PA for the initial ΣA-algebra, i.e. the free algebra on the
empty set. The set PA contains the “closed” process terms, without free variables. They
are built up from 0 and a ∈ A. We shall write this algebra as α : ΣA(PA)

∼=−→ PA. It is not
hard to see that the set PA of process terms also carries a bialgebra structure:

ΣA(PA)
α
∼=

// PA
β

// Pfin(PA)A

The coalgebra β is defined by induction, following the transition rules (3.6), (3.7). For each
a ∈ A,

β(0)(a) = ∅
β(b · s)(a) = {s | b = a}
β(s+ t)(a) = β(s)(a) ∪ β(t)(a).

These definitions form a very simple example of a structural operations semantics (SOS):
operational behaviour defined by induction on the structure of terms.

The next result shows that the denotational semantics given by initiality and operational
semantics given by finality for process terms coincide.

3.5.2. Proposition. In the above situation we obtain two maps PA → ZA, one by initiality
and one by finality:

ΣA(PA)

α ∼=
��

//______
ΣA(intα)

ΣA(ZA)

ξ
��

Pfin(PA)A //______
Pfin(behβ)A

Pfin(ZA)A

PA //________
intα

ZA PA

β

OO

//_________
behβ

ZA

ζ∼=
OO

These two maps are equal, so that intα = behβ : PA → ZA is a “map of bialgebras”
commuting both with the algebra and coalgebra structures. This proves in particular that
the behavioural semantics behβ of processes is compositional: it commutes with the term
forming operations.

Proof. By induction on the structure of a term s ∈ PA we prove that behβ(s) = intα(s),

DRAFT

3.5. Process semantics 1153.5. Process semantics 1153.5. Process semantics 115

or equivalently, ζ(behβ(s))(a) = ζ(intα(s))(a), for all a ∈ A.

ζ(behβ(0))(a) = Pfin(behβ)A
(
β(0)

)
(a)

= Pfin(behβ)(β(0)(a))

= Pfin(behβ)(∅)
= ∅
= ζ(0)(a)

= ζ(intα(0))(a).

ζ(behβ(b · s))(a) = Pfin(behβ)(β(b · s)(a))

= Pfin(behβ)({s | b = a})
= {behβ(s) | b = a})

(IH)
= {intα(s) | b = a})
= ζ(b · intα(s))(a)

= ζ(intα(b · s))(a)

ζ(behβ(s+ t))(a) = Pfin(behβ)(β(s+ t)(a))

= Pfin(behβ)(β(s)(a) ∪ β(t)(a))

= Pfin(behβ)(β(s)(a)) ∪ Pfin(behβ)(β(t)(a))

= ζ(behβ(s))(a) ∪ ζ(behβ(t))(a)
(IH)
= ζ(intα(s))(a) ∪ ζ(intα(t))(a)

= ζ(intα(s) + intα(t))(a)

= ζ(intα(s+ t))(a).

3.5.3. Proposition. Still in the above situation, the bisimilarity relation↔ on the set PA
of process terms is a congruence.

Proof. Consider the following diagram, where we abbreviate f = behβ = intα.

ΣA(↔)
d //

��
�
�
�

ΣA(PA)× ΣA(PA)

α× α
��

ΣA(f ◦ π1)
//

ΣA(f ◦ π2)
// ΣA(ZA)

ξ
��

↔ //
e

// PA × PA
f ◦ π1

//

f ◦ π2

// ZA

The map e is the equaliser of f ◦ π1 and f ◦ π2, using Theorem 3.4.1. The map d is the pair
〈ΣA(π1 ◦ e),Σ(π2 ◦ e)〉. We show that (α× α) ◦ d equalises f ◦ π1, f ◦ π2. The dashed
arrow then exists by the universal property of the equaliser e, making↔ a congruence (see
Theorem 3.3.5). Thus, what remains is:

f ◦ π1 ◦ (α× α) ◦ d
= intα ◦ α ◦ π1 ◦ d
= ξ ◦ ΣA(intα) ◦ ΣA(π1 ◦ e)
= ξ ◦ ΣA(intα) ◦ ΣA(π2 ◦ e) since e is equaliser and behβ = intα

= intα ◦ α ◦ π2 ◦ d
= f ◦ π2 ◦ (α× α) ◦ d.

This result shows that s ↔ s′ and t ↔ t′ implies a · s ↔ a · s′ and s + t ↔ s′ +
t′. Such congruence results are fundamental in process algebra, because they show that

DRAFT

116 Chapter 3. Bisimulations116 Chapter 3. Bisimulations116 Chapter 3. Bisimulations

the algebraic operations for process formation preserve indistinguishability of behaviour.
Later, in Section 5.5, this topic will be studied in greater generality (following [413, 412,
59, 274]). A more abstract view on the structure we find on the final coalgebra ZA is
elaborated in [194, 189, 191], where it is shown that “outer” structure that can be formulated
on coalgebras is mimicked by “inner” structure on the final coalgebra.

The toy example (3.5) of this section illustrates the close connection between final coal-
gebras and process languages. This connection is further elaborated in [395] (and [394])
where locally final coalgebras of polynomial functors are described syntactically.

Exercises

3.5.1. Complete the definition of the coalgebra ch : S → Pfin(S)E in the beginning of this section.

3.5.2. Prove that (ZA,+, 0) is indeed a commutative monoid, as claimed above.

3.5.3. One can consider each action a ∈ A as a process

â
def
= a · 0 ∈ ZA

It can do only an a-transition. Prove that this yields an injection A ↪→ ZA.

3.5.4. Consider the following alternative process equation for a Euro change machine.

CH’ = 5 ·
(

(2, 1) · CH’ + (1, 3) · CH’ + (0, 5) · CH’
)

+ 10 ·
(

(5, 0) · CH’ + (4, 2) · CH’ + (3, 4) · CH’ +

(2, 6) · CH’ + (1, 8) · CH’ + (0, 10) · CH’
)

+ empty.

Understand the difference between CH in (3.5) and this CH’, for instance by describing a
suitable transition system which forms a model of this equation.
Are CH and CH’ bisimilar?

DRAFT
Chapter 4

Logic, Lifting, and Finality

The previous three chapters have introduced some basic elements of the theory of coal-
gebras, focusing on coalgebraic system descriptions, homomorphisms, behaviour, finality
and bisimilarity. So far, only relatively simple coalgebras have been used, for inductively
defined classes of polynomial functors, on the category Sets of sets and functions. This
chapter will go beyond these polynomial functors, and will consider other examples. But
more importantly, it will follow a different, more systematic approach, not relying on the
way functors are constructed, but on the properties they satisfy—and work from there.
Inevitably, this chapter will technically be more challenging, requiring more categorical
maturity from the reader. However, the chapter can also be skipped and consulted later, on
a call-by-need basis.

The chapter starts with a concrete description of two new functors, namely the multiset
and distribution functors, written as M and D respectively. As we shall see, on the one
hand, from an abstract point of view, they are much like powerset P , but on the other hand
they capture different kinds of computation: D is used for probabilistic computation and
M for resource-sensitive computation.

Subsequently, Sections 4.2–4.5 will take a systematic look at relation lifting—used in
the previous chapter to define bisimulation relations. Relation lifting will be described as a
certain logical operation, which will be developed on the basis of a moderate amount of cat-
egorical logic, in terms of so-called factorisation systems. This will give rise to the notion
of ‘logical bisimulation’ in Section 4.5. It is compared to several alternative formulations.
For weak pullback preserving functors on Sets these different formulations coincide. With
this theory in place Section 4.6 concentrates on the existence of final coalgebras. Recall
that earlier we skipped the proof of Theorem 2.3.9, claiming the existence of final coalge-
bras for finite Kripke polynomial functors. Here we present general existence results, for
‘bounded’ endofunctors on Sets. Finally, Section 4.7 contains another characterisation of
simple polynomial functors in terms of size and preservation properties. It also contains
a characterisation of more general “analytical” functors, which includes for instance the
multiset functorM.

4.1 Multiset and distribution functors

A set is a collection of elements. Such an element, if it occurs in the set, occurs only
once. This sounds completely trivial. But one can imagine situations in which multiple
occurrences of the same element can be relevant. For instance, in a list it is quite natural
that one and the same element occurs multiple times—but at different places in the list. A
multiset—or what computer scientists usually call a bag—is a ‘set’ in which an element
x may occur multiple times. One can write this for instance as 2x, 10x, 1x, or even 0x,
where the n in nx describes that x occurs n times.

117

DRAFT

118 Chapter 4. Logic, Lifting, and Finality118 Chapter 4. Logic, Lifting, and Finality118 Chapter 4. Logic, Lifting, and Finality

operator order relevant multiplicities relevant

list (−)? Yes Yes

powerset P No No

multiset M No Yes

distribution D No Yes

Figure 4.1: Various collection types described as functors

Thus once can distinguish different operators for collecting elements according to wheth-
er the order of occurrence of elements matters, or whether multiplicities of elements are
relevant. The table in Figure 4.1 describes some of these collection types.

An important question is how to count occurrences of elements in a multiset. The
obvious choice is to use natural numbers nx, like above. But it turns out to be convenient
to allow also negative occurrences (−2)x, describing for instance a ‘lack’ or ‘deficit’ of
two elements x. But also one may want to allow 1

2x, so that the number in front of x may
be interpreted as the probability of having x in a set. This is precisely what happens in the
distribution functor D, see below.

It thus makes sense to allow a quite general form of counting elements. We shall use
an arbitrary commutative monoid M = (M,+, 0) for this purpose, and write occurrences
of an element x as mx or sometimes m ·x, for m ∈M . The expression 0x is then used for
non-occurrence of x. Later on, in Section 5.1 we shall see that it makes sense to assume
more than an additive monoid structure on multiplicities, namely also multiplication (giving
a semiring). But for now a monoid structure suffices.

The operation of forming (finite) multisets of a given set is functorial. The resulting
functor will be called the multiset functor, and written as M. It is called the “monoidal
exponentiation functor” in [394] (see also [174, 168]).

4.1.1. Definition. For a commutative monoid M = (M,+, 0) we define the multiset
functorMM : Sets→ Sets on a set X as:

MM (X) = {ϕ : X →M | supp(ϕ) is finite},

where supp(ϕ) = {x ∈ X | ϕ(x) 6= 0} is called the support of ϕ.
On a function f : X → Y one hasMM (f) : MM (X)→MM (Y) via:

MM (f)(ϕ)(y) =
∑

x∈f−1(y)

ϕ(x) =
∑
{ϕ(x) | x ∈ supp(ϕ) with f(x) = y}.

This definition requires some explanation. A multiset ϕ ∈ MM (X) is a function
ϕ : X → M which is non-zero on only finitely many elements, say ϕ(x1) 6= 0, · · · ,
ϕ(xn) 6= 0. The support of ϕ is then the subset supp(ϕ) = {x1, . . . , xn} ⊆ X of those
elements that occur in the multiset, with certain multiplicities. The multiplicity of xi ∈
supp(ϕ) is ϕ(xi) ∈ M . One conveniently writes such a multiset as formal sum m1x1 +
· · ·+mnxn, where mi = ϕ(xi) ∈M is the multiplicity of the element xi. By convention,
the + in these formal sums is commutative and associative; mx + m′x is the same as
(m+m′)x, and mx+ 0y is mx.

With this formal sum notation we can write the action of the functorMM on functions
as:

MM (f)
(
m1x1 + · · ·+mnxn

)
= m1f(x1) + · · ·+mnf(xn).

DRAFT

4.1. Multiset and distribution functors 1194.1. Multiset and distribution functors 1194.1. Multiset and distribution functors 119

This works by the above mentioned conventions about formal sums. Preservation of com-
position holds simply by:

MM (g)(MM (f)(
∑
imixi)) = MM (g)(

∑
imif(xi)) =

∑
imig(f(xi))

= MM (g ◦ f)(
∑
imixi).

Thus,MM (X) contains finite multisets, with elements from the set X and multiplicities
in the monoid M . We restrict ourselves to finite multiset, to make sure that the sums

∑
in

the definition ofMM (f) in Definition 4.1.1 exist.
Before describing examples, we mention some obvious properties.

4.1.2. Lemma. The empty multiset and the join of multisets make the setsMM (X) from
Definition 4.1.1 commutative monoids; the functionsMM (f) : MM (X)→MM (Y) pre-
serve this monoid structure.

Further, for the initial (empty) set 0, for the final (singleton) set 1, and for a finite set
V , there are isomorphisms:

MM (0) ∼= 1 MM (1) ∼= M MM (V) ∼= MV

(which are all isomorphisms of monoids).

Proof. The monoid structure onMM (X) can be described pointwise:

ϕ+ ψ = λx ∈ X.ϕ(x) + ψ(x) with zero λx ∈ X. 0

Alternatively, it may be described in terms of the formal sums: the operations represent the
join of multisets and the empty multiset. The isomorphisms are obvious.

4.1.3. Examples. For some specific examples of monoids M we describe the multiset
MM (X) in some more detail. The characterisations we give as free structures can be
checked per case, but turn out to be instances of a more general result, see Example 5.4.3 (ii)
later on.

(i) We start with M = N, the commutative monoid of natural numbers with addition
(0,+). The setMN(X) contains ‘traditional’ multisets (or bags), with natural numbers as
multiplicities. This setMN(X) is the free commutative monoid on the set X .

(ii) For M = Z we can additionally have negative occurrences of elements inMZ(X).
ThisMZ(X) is the free commutative (Abelian) group on X .

(iii) For the two-element monoid M = 2 = {0, 1}, with join ∨ (logical or) and unit 0
as monoid structure, there are no multiplicities except 0 and 1. Hence multisets over 2 are
finite subsets:M2(X) ∼= Pfin(X).

(iv) For M = R we get real numbers as multiplicities andMR(X) is free vector space
over R onX . Scalar multiplication is given by r •ϕ = λx. r·ϕ(x), where · is multiplication
of real numbers.

The general description of multisets, over an arbitrary monoid, thus covers various
mathematical structures. Next we illustrate how repeated multisets are of interest, namely
in order to describe (multivariate) polynomials.

4.1.4. Example. Above we have used formal sumsm1x1+· · ·+mnxn as convenient nota-
tion for multisets. For monoids and groups one sometimes uses additive notation (0,+) and
sometimes multiplicative notation (1, ·). Similarly, one may choose to use multiplicative
notation for multisets, as in:

xm1
1 · · ·xmn

n .

Now let’s consider the repeated multiset functor application:

MM

(
MN(X)

)
, (4.1)

DRAFT

120 Chapter 4. Logic, Lifting, and Finality120 Chapter 4. Logic, Lifting, and Finality120 Chapter 4. Logic, Lifting, and Finality

where M is an arbitrary monoid. An element Φ ∈MM

(
MN(X)

)
is described as a formal

sum of multisets:

Φ =
∑
imiϕi where ϕi ∈MN(X).

Now it is convenient to use multiplicative notation for the inner multisets ϕi, so that we
get:

Φ =
∑
imix

ni1
i1 · · ·x

niki

iki
for ki, nij ∈ N.

Thus, elements of the double-multiset (4.1) are polynomials (as in algebra), with coeffi-
cients mi from M . They are so-called multivariate polynomials, involving multiple vari-
ables xij , taken from a set of variables X . The univariate polynomials, with only one
variable—say x—are obtained as special case of (4.1), namely by taking the singleton set
X = 1. The element ofMM

(
MN(1)

) ∼=MM (N) are formal sums
∑
imini, commonly

written as
∑
imix

ni , where x is a chosen variable.

This concludes, for the time being, our investigation of multiset functors. In Section 5.1
we shall return to them and see that they carry a monad structure, provided the set of
multiplicities is not only a monoid but also a semiring (with additionally multiplication,
see Definition 5.1.4 and Lemma 5.1.5). In the remainder of this section we investigate the
distribution functor D, which involves probabilities as multiplicities.

4.1.5. Definition. The (discrete probability) distribution functor D : Sets → Sets is
defined as:

D(X) = {ϕ : X → [0, 1] | supp(ϕ) is finite and
∑
x ϕ(x) = 1},

where [0, 1] ⊆ R be the unit interval of real numbers, and supp(ϕ) ⊆ X is the subset
of x ∈ X where ϕ(x) 6= 0, like in Definition 4.1.1. For a function f : X → Y the map
D(f) : D(X)→ D(Y) is defined as for multisets, namely by:

D(f)(ϕ)(y) =
∑

x∈f−1(y)

ϕ(x) =
∑
{ϕ(x) | x ∈ supp(ϕ) with f(x) = y}.

A discrete probability distribution ϕ ∈ D(X) may be identified with a formal convex
sum r1x1 + · · · + rnxn, where supp(ϕ) = {x1, . . . , xn} and ri = ϕ(xi) ∈ [0, 1] is the
probability associated with the element xi ∈ X . These probabilities are required to add up
to one:

∑
i ri = 1. With this formal sum notation we can again describe the functor applied

to a function f succinctly asD(f)(
∑
i rixi) =

∑
i rif(xi), like for multiset functors. This

shows that the map D(f) is well-defined, in the sense
∑
y D(f)(ϕ)(y) = 1.

For distributions
∑
i rixi ∈ D(X) the probabilities ri ∈ [0, 1] add up to 1. In some

situations one wishes to be more flexible and allow
∑
i ri ≤ 1. Such “sub” probability dis-

tributions give rise to a “sub” probability functorD≤1 : Sets→ Sets. These setsD≤1(X)
have more structure than sets D(X) of (proper) probabilities. For instance D≤1(X) is a
dcpo (used in [193]) and carries an action [0, 1]×D≤1(X)→ D≤1(X).

Multiset functorsMM are parametrised by a monoid M . In contrast, distributions in
D(X) take their values in the (fixed) set [0, 1] of probabilities. It is also possible to replace
[0, 1] by a parameterised structure, namely a so-called effect monoid, see [236]. Such effect
monoids are used in the probability theory developed in the context of quantum mechanics
(see e.g. [363]). However, such generality is not needed here.

In analogy with Lemma 4.1.2 we have the following results for distribution functors.

4.1.6. Lemma. For the distribution functor D there are the following isomorphisms.

D(0) ∼= 0 D(1) ∼= 1 D(2) ∼= [0, 1].

DRAFT

4.1. Multiset and distribution functors 1214.1. Multiset and distribution functors 1214.1. Multiset and distribution functors 121

We saw that setsMM (X) are commutative monoids. Sets D(X) also carry algebraic
structure in the form of convex sums, see [232]. Further investigation of the categorical
structure of distribution functors will be postponed until Section 5.1 on monads. We con-
clude by briefly describing what coalgebras of the functorsMM and D introduced in this
section.

Coalgebras c : X → D(X) of the distribution functor map a state x to a probability
distribution c(X) ∈ D(X) over successor states. Such a distribution may be written as
c(x) = r1x1 + · · · + rnxn, where

∑
i ri = 1. A transition x −→ xi takes place with

probability ri ∈ [0, 1]. Sometimes this written as x ri−→ xi. Such a probabilistic transition
system X → D(X) is also known as Markov chain. This basic form may be extended in
various ways, for instance with labels, as in X → D(A×X), or with non-determinism, as
inX → P(A×D(X)), see [391]. A classification of various such systems is given in [61].

Here is a very simple example of a Markov chain. Assume an abstract political land-
scape where only lefties (L) and righties (R) are distinguished. It appears that with each
cycle (of one year, say) 80% of lefties remain lefties and 20% become righties. The righties
are more stable: 90% of them remains loyal, and 10% become lefties. This may be written
as a Markov chain, or probabilistic automaton, with two states L and R.

iL0.8
��

0.2
((iR 0.9

ss

0.1

hh
(4.2)

This Markov chain can equivalently be described as a coalgebra c : {L,R} → D({L,R})
of the distribution functor. The function c maps each state to a distribution, written as
formal convex sum:

c(L) = 0.8L+ 0.2R c(R) = 0.1L+ 0.9R.

Conventionally, such a system is described via a transition matrix:
(

0.8 0.2

0.1 0.9

)

and the analysis of the system proceeds via an analysis of the matrix (see [269, 213] for
more information).

So far we have seen non-deterministic systems as coalgebras of the powerset functor
P and probabilistic systems as coalgebras of the distribution functor D. Many systems
display both non-deterministic and probabilistic behaviour, in many combinations. Via a
description in terms of coalgebras the differences can be seen clearly. Figure 4.2 gives
an overview of the various systems that have been studied in the literature. The table is
copied from [60, 399], to which we refer for more information. Here we focus on discrete
probabilistic systems, in contrast to continuous ones, taking measurable spaces as state
spaces. Such continuous systems can also be described as coalgebras, namely of the “Giry”
functor (or monad), see [147] and [339, 115] for more information.

Coalgebras c : X → MM (X) of a multiset functor are known as multigraphs [106].
They can be understood more generally in terms of resources or costs m ∈ M associated
with a transition, as in x m−→ x′ when c(x)(x′) = m. This is characteristic of a weighted
automaton, see [387, 116, 84].

4.1.1 Mappings between collection functors

In Figure 4.1 we have seen various functors, like list (−)?, powerset P , multisetM and
distribution D that collect elements in a certain way. An obvious question that comes up
is if we can relate these functors, via suitable mappings. This can be done via natural

DRAFT

122 Chapter 4. Logic, Lifting, and Finality122 Chapter 4. Logic, Lifting, and Finality122 Chapter 4. Logic, Lifting, and Finality

Functor F Name for X → F (X) Reference

D Markov chain

P(A×−) ∼= PA labelled transition system

(1 +D(−))A reactive system [301, 149]

1 +D(A×−) generative systems [149]

1 + (A×−) +D(−) stratified system [149]

D(−) + P(A×−) alternating system [185]

D(A×−) + P(A×−) Vardi system [417]

P(A×D(−)) simple Segala system [392, 391]

PD(A×−) Segala system [392, 391]

DP(A×−) bundle system [109]

PDP(A×−) Pnueli-Zuck system [358]

PDP(A× (−) + (−)) most general systems

Figure 4.2: An overview of (discrete) probabilistic system types, taken from [60, 399] DRAFT

4.1. Multiset and distribution functors 1234.1. Multiset and distribution functors 1234.1. Multiset and distribution functors 123

transformations. Recall from Definition 2.5.4 that they are mappings between functors.
Below it will be shown that naturality is quite a subtle matter in this setting.

Consider first the probability distribution functor D : Sets → Sets. Each distribution
ϕ ∈ D(X) is a function ϕ : X → [0, 1] with finite support supp(ϕ) ⊆ X , given by
supp(ϕ) = {x ∈ X | ϕ(x) 6= 0}, and probabilities adding up to 1:

∑
x ϕ(x) = 1. Thus,

we have supp(ϕ) ∈ P(X), or even supp(ϕ) ∈ Pfin(X). In order to emphasise that we
take supports of distributions on X we label the support supp(ϕ) with this set X , as in
suppX(ϕ). Thus we have a collection of mappings:

(
D(X)

suppX // P(X)
)
X∈Sets

This collection of functions is “natural in X”: for each function f : X → Y we have a
commuting square:

X

f
��

D(X)
suppX //

D(f)
��

P(X)

P(f)
��

Y D(Y) suppY
// P(Y)

We check in detail that this diagram commutes. For a multiset ϕ = (
∑

1≤i≤n rixi) ∈
D(X), with ri ∈ (0, 1], going east-south in the rectangle yields:

(
P(f) ◦ suppX

)
(ϕ) = P(f)

(
{x1, . . . , xn}

)
= {f(x1), . . . , f(xn)}.

Notice that this result is a set, in which elements f(xi) = f(xj) for i 6= j are not distin-
guished. Similarly, going south-east in the rectangle above gives:

(
suppY ◦ D(f)

)
(ϕ) = suppY

(∑
1≤i≤n rif(xi)

)
= {f(x1), . . . , f(xn)}.

A subtle point is that when f(xi) = f(xj) = y, say, then this element occurs as (ri + rj)y
in the distribution D(f)(ϕ). This y appears in the resulting support suppY (D(f)(ϕ))
because ri + rj 6= 0. This is obvious for (non-zero) probabilities ri, rj ∈ [0, 1], but needs
to be required explicitly for multiset functors.

Call a monoidM zerosumfree if x+y = 0 inM implies x = y = 0. For a zerosumfree
commutative monoid M , the multiset functor MM comes with a natural transformation
supp: MM ⇒ Pfin.

If we take the non-zerosumfree monoid M = Z we can show that the support maps
suppX : MZ(X) → Pfin(X) are not natural. Take as example A = {a, b} with multiset
ϕ = 1a+ (−1)b ∈MZ(A). The unique function ! : A→ 1 = {∗} then provides a counter
example to naturality. On the one hand we have

(
Pfin(!) ◦ suppA

)
(ϕ) = Pfin(!)({a, b}) = {!(a), !(b)} = {∗}.

But by applyingMZ first and then support we get a different result:

(
supp1 ◦ MZ(f)

)
(ϕ) = supp1(1!(a) + (−1)!(b))

= supp1(1 ∗+ (−1)∗) = sup1(0) = ∅.

In Section 2.5 we have already seen that turning a list into the set of its elements yields
a natural transformation (−)? ⇒ Pfin, and also that there are no “natural” mappings in the
other direction, turning finite sets into lists (by choosing some order). Here we show that

DRAFT

124 Chapter 4. Logic, Lifting, and Finality124 Chapter 4. Logic, Lifting, and Finality124 Chapter 4. Logic, Lifting, and Finality

the obvious mappings υX : Pfin(X)→ D(X), choosing the uniform distribution on a finite
subset is also not natural. To be more specific, this mapping uX is given by:

υX({x1, . . . , xn}) = 1
nx1 + · · ·+ 1

nxn.

Take for instance A = {a, b, c} and 2 = {>,⊥} with function f : A → 2 given by
f(a) = f(b) = > and f(c) = ⊥. Then, for the subset {a, b, c} ∈ Pfin(A) we have on
the one hand: (

D(f) ◦ uA
)
({a, b, c}) = D(f)

(
1
3a+ 1

3b+ 1
3c
)

= 1
3f(a) + 1

3f(b) + 1
3f(c)

= 1
3>+ 1

3>+ 1
3⊥

= 2
3>+ 1

3⊥.
On the other hand:

(
u2 ◦ Pfin(f)

)
({a, b, c}) = u2({f(a), f(b), f(c)})

= u2(>,⊥})
= 1

2>+ 1
2⊥.

We conclude with a diagram describing some natural transformations between collec-
tion functors.

(−)?

##

D //MR // Pfin // P

MM

(M zerosumfree)

@@ (4.3)

The map D ⇒MR has not been discussed explicitly, but is the obvious inclusion, forget-
ting that probabilities add up to 1.

Exercises

4.1.1. Verify that the constructionMM (X) from Definition 4.1.1 is not only functorial in X but
also in M : for a homomorphism of monoids g : M → L there is a natural transformation
MM ⇒ML.

4.1.2. (i) Prove that the multiset functor maps coproducts to products, in the sense that there is
an isomorphism:

MM (X)×MM (Y) ∼= MM (X + Y).

(ii) Prove that this isomorphism is natural in X and Y .
(iii) Recall from Exercise 2.1.6 that the product M × L of (commutative) monoids M,L

is at the same time a coproduct (a biproduct). Check that the isomorphism in (i) is the
cotuple:

MM (X)×MM (Y)
[MM (κ1),MM (κ2)]

//MM (X + Y)

in the category of commutative monoids.
[This property will be re-described as additivity for monads in Exercise 5.1.15.]

4.1.3. Interpret, like in Example 4.1.4, what double-multisets in MM

(
MZ(X)

)
are. They are

usually called Laurent polynomials.

4.1.4. The Dirac distribution ηX : X → D is η(x) = 1x = (λy. if y = x then 1 else 0). Prove
that it forms a natural transformation id ⇒ D.

DRAFT

4.2. Weak pullbacks 1254.2. Weak pullbacks 1254.2. Weak pullbacks 125

4.1.5. Prove that Markov chains X → D(X) on a fixed set X form a monoid—in analogy with
the situation for powersets in Exercise 1.1.2—with the Dirac distribution from the previous
exercise as unit (or ‘skip’).

4.1.6. Consider the political Markov chain (2.20), as coalgebra.
(i) Describe the coalgebra composed with itself, using composition from the previous

exercise.
(ii) Check that this corresponds to matrix composition, for the corresponding transition

matrix.

4.1.7. The distribution functorD as introduced in Definition 4.1.5 involves distributions ϕ : X →
[0, 1] with finite support only. This finiteness restriction is not strictly needed. One can
define:

D∞(X) = {ϕ : X → [0, 1] | ∑x∈X ϕ(x) exists and equals 1}.
(i) Prove that in this case the support supp(ϕ) = {x ∈ X | ϕ 6= 0} is necessarily a

countable set.
(ii) Check that D∞ is a functor Sets→ Sets.
[This generalisation involves the existence of sums over non-finite sets; they exist in the
special case of the unit interval [0, 1]. This infinite generalisation is less natural for multiset
functorsMM .]

4.2 Weak pullbacks

If one starts to develop the theory of coalgebras in full categorical generality, for endo-
functors F : C → C on an arbitrary category C (and not just on Sets), so-called weak-
pullback-preserving functors become relevant, for at least two reasons:

1. for weak-pullback-preserving functors Aczel-Mendler bisimilarity coincides with
equality on the final coalgebra—like in Theorem 3.3.2;

2. for such functors there is a well-behaved categorical version of relation lifting, giving
us another way to define bisimulations, namely as coalgebras of these liftings.

The current section concentrates on this first point, and the subsequent sections 4.3–4.5 on
the second one. Hence we start by describing what (weak) pullbacks are.

4.2.1. Definition. Let C be an arbitrary category.

(i) For two morphisms X
f−→ Z

g←− Y in C with a common codomain, a pullback
is a commuting square as on the left:

V
h
~~}}}} k

AAAA

X

f
AAAA Y

g~~~~~~

Z

V ′

`���
�

h′

��

k′

��

V
h
}}{{{{ k

!!BBBB

X

f !!CCCC Y

g}}||||

Z

which is universal in the sense that for an arbitrary span X h′←− V ′
k′−→ Y with f ◦ h′ =

g ◦ k′ there is a unique “mediating” map ` : V ′ → V with h ◦ ` = h′ and k ◦ ` = k′, as
on the right. In diagrams a pullback is often indicated via a small angle, like in:

V
h //

k
��

X

f
��

Y g
// Z

DRAFT

126 Chapter 4. Logic, Lifting, and Finality126 Chapter 4. Logic, Lifting, and Finality126 Chapter 4. Logic, Lifting, and Finality

A weak pullback is like a pullback except that only existence and not unique existence of
` is required.

(ii) A functor F : C → D is called (weak) pullback preserving if it maps (weak)
pullback squares to (weak) pullback squares: that is, if F applied a (weak) pullback square
in the category C forms a (weak) pullback square in D.

The pullback of two maps X
f−→ Z

g←− Y in the category of sets can be described by
the set:

Eq(f, g) = {(x, y) ∈ X × Y | f(x) = g(y)},
that we used earlier in Lemma 3.2.5. It comes with obvious projections pi to X and Y as
in:

{(x, y) ∈ X × Y | f(x) = g(y)} p2
//

p1

��

Y

g
��

X
f

// Z

Also, inverse images of predicates and relations can be described via pullbacks, as in:

h−1(P)
��

��

//

_� P
��

��

(h× k)−1(R)
��

��

//

_� R
��

��

X
h

// Y X × U
h× k

// Y × V

It is a general fact that a pullback of a mono yields a mono, see Exercise 4.2.2 below.
A pullback is a generalisation of a cartesian product of objects (like in Definition 2.1.1):

in the presence of a final object 1 ∈ C, the product of two objects X,Y ∈ C is the same as
the pullback:

X × Y π2 //

π1

��

Y

!
��

X
!
// 1

(4.4)

Similarly, the following result exploits that being a monomorphism can be expressed via
pullbacks.

4.2.2. Lemma. An arbitrary map m in a category C is a monomorphism if and only if the
square:

• •
m
��•

m
// •

is a (weak) pullback.
A (weak) pullback preserving functor F : C→ D thus preserves monomorphisms: if m

is mono, then so is F (m).

4.2.3. Remark. In category theory it is quite common that structures, like products and
coproducts in Definitions 2.1.1 and 2.1.3, are described via the “unique existence” of a
certain map. The version with only existence, not necessarily unique existence, is typically
called “weak”. For instance, one can have a weak final object Z, such that for each object
X there is a map X → Z. Each non-empty set is a weak final object in the category
Sets. There is a third notion in between, denoted by “semi”, involving “natural existence”,

DRAFT

4.2. Weak pullbacks 1274.2. Weak pullbacks 1274.2. Weak pullbacks 127

see [195, 212]. For instance, an object Z is semi-final if for each object X there is a map
sX : X → Z, and for each f : X → Y one has sY ◦ f = sX .

Even though “weak” versions are not standard, weak pullbacks are quite natural in
the theory of coalgebras. Especially, preservation of weak pullbacks is a common (and
useful) property. It can often be characterised in different ways, like for instance in Propo-
sition 4.2.9 below, or in Theorem 4.4.6 later on. Also it plays a crucial role in the distinction
between polynomial and analytical functors in Section 4.7.

As mentioned in the introduction to this section, the following result is one of the
reasons why weak-pullback-preservation is important. It generalises Theorem 3.3.2.

4.2.4. Theorem. Assume a category C with pullbacks, and a weak-pullback-preserving
functor F : C → C with a final coalgebra Z ∼=−→ F (Z). Let c : X → F (X) and d : Y →
F (Y) be coalgebras. The pullback relation on X,Y in:

Eq(behc,behd)
��

��

//

_� Z
��

〈id, id〉
��

X × Y
behc × behd

// Z × Z
(4.5)

is then the greatest Aczel-Mendler bisimulation on coalgebras c, d.

Proof. First, if a relation 〈r1, r2〉 : R� X × Y is an Aczel-Mendler bisimulation, that is,
if R carries a coalgebra R→ F (R) in C making the legs ri homomorphisms in:

F (X) F (R)
F (r1)

oo
F (r2)

// F (Y)

X

c

OO

Rr1

oo

OO

r2

// Y

d

OO

then by finality behc ◦ r1 = behd ◦ r2 : R −→ Z. Hence there is a factorisation through
the equality relation on Z, as in:

R
��

〈r1, r2〉
��

//__________ Z
��

〈id, id〉
��

X × Y
behc × behd

// Z × Z

This may be read as: pairs in R are equal when mapped to the final coalgebra. It means
that R factors through the pullback Eq(behc,behd) from (4.5).

Next, we are done if we can show that the pullback relation Eq(behc,behd) � X×Y
from (4.5) is an Aczel-Mendler bisimulation. Here we use that F preserves weak pullbacks
(and Exercise 4.2.3) to obtain a coalgebra structure in:

Eq(behc,behd) //

�� ((RRRRRRR Y
d

##

X

c ,,

F
(
Eq(behc,behd)

)
//

��

F (Y)

F (behd)
��

F (X)
F (behc)

// F (Z)

By construction, the maps X ←− Eq(behc,behd) −→ Y are maps of coalgebras.

DRAFT

128 Chapter 4. Logic, Lifting, and Finality128 Chapter 4. Logic, Lifting, and Finality128 Chapter 4. Logic, Lifting, and Finality

We add another general result, this time involving preservation of ordinary (proper)
pullbacks. Recall that a category of coalgebras inherits colimits (coproducts and coequalis-
ers) from the underlying category (see Proposition 2.1.5 and Exercise 2.1.14). The situation
for the dual notion of limit—including products, pullbacks and equalisers—is different. In
general, they need not exist in categories of coalgebras, even if they exist in the under-
lying category—see also Section 6.3. The next result shows that pullbacks of coalgebras
exist if the functor preserves ordinary pullbacks. As we shall see subsequently, in Proposi-
tion 4.2.6, this applies to simple polynomial functors.

4.2.5. Proposition. Assume a functor F : C → C that preserves (ordinary) pullbacks. If
the category C has pullbacks, then so has the category of coalgebras CoAlg(F).

Proof. Assume we have span of coalgebras as on the left below. Then we take the pullback
in C of the underlying maps f, g, as on the right.

(
F (Y)
↑ d
Y

)

g
��(

F (X)
↑ c
X

)

f
//

(
F (W)
↑ e
W

)

P
_�
p2

//

p1

��

Y

g

��

X
f
// W

We need a coalgebra structure on the object P . Here we use that F preserves pullbacks and
obtain this structure in:

P d ◦ p2

c ◦ p1

##

b

""D
D

D
D

F (P)
_�
F (p2)

//

F (p1)
��

F (Y)

F (g)
��

F (X)
F (f)

// F (W)

The outer maps in this diagram commute:

F (f) ◦ c ◦ p1 = e ◦ f ◦ p1 since f is a map of coalgebras

= e ◦ g ◦ p2 since the pullback square in C commutes

= F (g) ◦ d ◦ p2 because g is a map of coalgebras too.

Hence the dashed map (coalgebra) b : P → F (P) exists. Thus we have constructed a
commuting square of coalgebra maps:

(
F (P)
↑ b
P

)
p2
//

p1
��

(
F (Y)
↑ d
Y

)

g
��(

F (X)
↑ c
X

)

f
//

(
F (W)
↑ e
W

)

In order to obtain this square preservation of weak pullbacks would have been enough. But
in order to show that it is a pullback we do need preservation of proper pullbacks. Suppose

DRAFT

4.2. Weak pullbacks 1294.2. Weak pullbacks 1294.2. Weak pullbacks 129

we have two coalgebra homomorphisms:

(
F (U)
↑ a
U

)
h //

(
F (X)
↑ c
X

)
and

(
F (U)
↑ a
U

)
k //

(
F (Y)
↑ d
Y

)

with f ◦ h = g ◦ k. Then there is a unique mediating map ` : U → P in C with p1 ◦ ` = h
and p2 ◦ ` = k. What remains is showing that ` is a homomorphism of coalgebras. Here
we use that F properly preserves pullbacks. There are two parallel maps in:

U F (k) ◦ a

F (h) ◦ a
##

""DDDDDDDD

""DDDDDDDD

F (P)
_�
F (p2)

//

F (p1)
��

F (Y)

F (g)
��

F (X)
F (f)

// F (W)

namely b ◦ ` and F (`) ◦ a. Thus, by uniqueness, b ◦ ` = F (`) ◦ a, making ` a
homomorphism of coalgebras. Uniqueness of ` in CoAlg(F) is left to the reader.

The remainder of this section concentrates on preservation of (weak) pullbacks for spe-
cific functors. It is not hard to see that preservation of ordinary pullbacks implies preser-
vation of weak pullbacks. This is left as exercise below. In Section 4.7 we shall see that
preservation of (countably indexed) weak pullbacks and pullbacks is a key property of sim-
ple polynomial and analytical functors.

4.2.6. Proposition. (i) Every exponent polynomial functor Sets → Sets preserves pull-
backs (and also weak ones).

(ii) The powerset functors P and Pfin preserve weak pullbacks.
In particular, Kripke polynomial functors, finite or not, preserve weak pullbacks.

Proof. (i) Trivially, identity and constant functors preserve pullbacks, so we only look at
(set-indexed) coproducts and exponents. So assume for an index set I we have pullbacks
in Sets as on the left below.

Wi

hi
��

ki //
_� Yi

gi
��

Xi
fi
// Zi

U β

((

α

!!

∐
i∈IWi

∐
i∈I hi

��

∐
i∈I ki

//
∐
i∈I Yi
∐
i∈I gi

��∐
i∈I Xi ∐

i∈I fi
//
∐
i∈I Zi

We have to show that the square on the right is again a pullback. So assume we have a set
U with maps α : U →∐

i∈I Xi and β : U →∐
i∈I Yi, as indicated, satisfying (

∐
i∈I fi) ◦

α = (
∐
i∈I gi) ◦ β. We can decompose each of the maps α, β into two parts: α = 〈α1, α2〉

and β = 〈β1, β2〉 where

α1, β1 : U −→ I and for each u ∈ U ,

{
α2(u) ∈ Xα1(u)

β2(u) ∈ Yβ1(u)

DRAFT

130 Chapter 4. Logic, Lifting, and Finality130 Chapter 4. Logic, Lifting, and Finality130 Chapter 4. Logic, Lifting, and Finality

Because the diagram on the right commutes we have:

α1 = β1 and for each u ∈ U , fα1(u)(α2(u)) = gα1(u)(β2(u)).

Since the diagram on the left is a pullback there is for each u ∈ U a unique element
γ(u) ∈ Wα1(u) with hα1(u)(γ(u)) = α2(u) and kα1(u)(γ(u)) = β2(u). Thus we get a
map 〈α1, γ〉 : U →

∐
iWi on the right. It is the unique mediating map.

For exponents assume again a pullback on the left in:

W

h
��

k //

_� Y

g
��

X
f
// Z

U β

%%

α

WA

hA
��

kA // Y A

gA
��

XA

fA
// ZA

We need to find a mediating map on the right. This is straightforward by a pointwise
construction: for each u ∈ U and a ∈ A we have:

f(α(u)(a)) =
(
fA ◦ α

)
(u)(a) =

(
gA ◦ β

)
(u)(a) = g(β(u)(a)).

Hence there is a unique γ(u)(a) ∈ W with h(γ(u)(a)) = α(u)(a) and k(γ(u)(a)) =
β(u)(a). Thus we get γ : U →WA, as required.

(ii) We first consider the powerset functor, assuming a weak pullback as on the left
below.

W

h
��

k // Y

g
��

X
f
// Z

U β

''

α

P(W)

P(h)
��

P(k)
// P(Y)

P(g)
��

P(X)
P(f)

// P(Z)

For the diagram on the right we assume P(f) ◦ α = P(g) ◦ β. This means for each
u ∈ U ,

{f(x) | x ∈ α(u)} = {g(y) | y ∈ β(u)}.
Thus, for each x ∈ α(u) there is an yx ∈ β(u) with f(x) = g(yx), and thus there is
a wx ∈ W with h(wx) = x and k(wx) = yx. Similarly, for each y ∈ β(u) there is a
xy ∈ α(u) with f(xy) = g(y) and so a wy ∈ W with h(wy) = xy and k(wy) = y. Now
take V (u) = {wx | x ∈ α(u)} ∪ {wy | y ∈ β(u)}. Then:

P(h)(V (u)) = {h(wx) | x ∈ α(u)} ∪ {h(wy) | y ∈ β(u)}
= {x | x ∈ α(u)} ∪ {xy | y ∈ β(u)}
= α(u),

and similarly P(k)(V (u)) = β(u).

The multiset functors MM from Definition 4.1.1 do not preserve weak pullbacks in
general. In [174] it is shown that this holds if and only if the commutative monoid M is
both positive and a so-called refinement monoid (introduced in [114]).

4.2.7. Definition. A commutative monoid M = (M, 0,+) is called:

DRAFT

4.2. Weak pullbacks 1314.2. Weak pullbacks 1314.2. Weak pullbacks 131

(i) positive if m+m′ = 0 implies m = m′ = 0;
(ii) a refinement monoid if for each equation:

r1 + r2 = c1 + c2

there is a 2× 2 “matrix” mij with:

{
ri = mi1 +mi2

cj = m1j +m2j

as depicted in

m11 m12 r1

m21 m22 r2

c1 c2

The natural numbers N with addition are obviously a positive monoid. They are also a
refinement monoid: assume r1 + r2 = c1 + c2 for ri, ci ∈ N. The numbers mij that we
need to find are written below the relevant segment of N in:

0
r1 + r2 =
c1 + c2

r1︷ ︸︸ ︷ r2︷ ︸︸ ︷
︸ ︷︷ ︸

m11

︸ ︷︷ ︸
m12

︸ ︷︷ ︸
m22

︸ ︷︷ ︸
m21︸ ︷︷ ︸

c2

Clearly there are ways to shift this c2 left or right, in such a way that the mij are fixed.
It is not hard to see that each Abelian group is a refinement monoid: if r1+r2 = c1+c2,

then we can take for example as matrix:

r1 − c1 c1 r1

2c1 − r1 c2 − c1 r2

c1 c2

using (for the second row) that: (2c1−r1)+(c2− c1) = c1 + c2−r1 = r1 +r2−r1 = r2.

4.2.8. Lemma (From [114]; also in [174]). A commutative monoid is a positive refinement
monoid if and only if the refinement property holds for each pair of numbers (n, k) ∈ N2.
That is, if:

r1 + · · ·+ rn = c1 + · · ·+ ck

then there is n× k matrix
(
mij

)
i≤n,j≤k with:

ri =
∑
jmij and cj =

∑
imij .

Proof. For pairs (0, k) and (n, 0) positivity is used. For pairs (1, k) and (n, 1) the result
trivially holds. For the other cases it suffices to see how (2, 3)-refinement follows from
(2, 2)-refinement. So assume we have r1 + r2 = c1 + c2 + c3. We obtain the following
successive refinements:

m11 m12 r1

m21 m22 r2

c1 c2 + c3

m′11 m′12 m12

m′21 m′22 m22

c2 c3

m11 m′11 m′12 r1

m21 m′21 m′22 r2

c1 c2 c3

Now we can address preservation of weak pullbacks for the multiset functorsMM : Sets→
Sets from Definition 4.1.1.

4.2.9. Proposition (From [174]). A multiset functorMM preserves weak pullbacks if and
only if the commutative monoid M is both positive and a refinement monoid.

DRAFT

132 Chapter 4. Logic, Lifting, and Finality132 Chapter 4. Logic, Lifting, and Finality132 Chapter 4. Logic, Lifting, and Finality

Proof. First, assumeMM preserves weak pullbacks. We show thatM is a refined monoid.
So assume we have r1 + r2 = c1 + c2. For the set 2 = {0, 1} we consider the pullback in
Sets on the left, and the resulting weak pullback on the right.

2× 2
π2 //

π1

��

_� 2

!
��

MM (2× 2)
MM (π2)

//

MM (π1)
��

MM (2)

MM (!)
��

2
!

// 1 MM (2)
MM (!)

//MM (1) ∼= M

We use the numbers ri, ci ∈ M in multisets ϕ,ψ ∈ MM (2), namely via ϕ(i) = ri
and ψ(i) = ci, for i ∈ 2 = {0, 1}. The equation r1 + r2 = c1 + c2 yieldsMM (!)(ϕ) =
MM (!)(ψ). The weak pullback property gives a multiset χ ∈MM (2×2) withMM (π1)(χ) =
ϕ andMM (π2)(χ) = ψ. Writing χ(i, j) = mij we get the required matrix, since, for in-
stance:

r1 = ϕ(0) =MM (π1)(χ)(0) =
∑
j χ(0, j) = m00 +m01.

Next we show thatM is positive. If we havem,m′ ∈M withm+m′ = 0 we consider
the pullback in Sets on the left, and the resulting weak pullback on the right.

0
id

//

!
��

_� 0

!
��

MM (0)
id

//

MM (!)
��

MM (0) ∼= 1

MM (!) = 0
��

2
!
// 1 MM (2)

MM (!)
//MM (1) ∼= M

The pair m,m′ gives rise to the multiset ϕ ∈ MM (2) given by ϕ(0) = m and ϕ(1) =
m′. It satisfies MM (!)(ϕ) = m + m′ = 0 = MM (!)(0), for the empty multiset 0 ∈
MM (0). The weak pullback property now yields an element inMM (0), necessarily the
empty multiset 0, withMM (!)(0) = ϕ. Thus ϕ = 0 and so m = m′ = 0.

Conversely, assume M is a positive refinement monoid. If we have a weak pullback as
on the left, we need to show that the square on the right is also a weak pullback.

W

h
��

k // Y

g
��

X
f
// Z

MM (W)

MM (h)
��

MM (k)
//MM (Y)

MM (g)
��

MM (X)
MM (f)

//MM (Z)

So suppose we have multisets ϕ ∈ MM (X) and ψ ∈ MM (Y) with MM (f)(ϕ) =
MM (g)(ψ). This means:

∑

x∈f−1(z)

ϕ(x) =
∑

y∈g−1(z)

ψ(y)

for each z ∈ Z. We can limit these sums to the finite subset Z ′ ⊆ Z, given by:

Z ′ = {f(x) | x ∈ supp(ϕ)} ∪ {g(y) | y ∈ supp(ψ)}.

For each z ∈ Z ′ we now have
∑
x∈f−1(z) ϕ(x) =

∑
y∈g−1(z) ψ(y). This has the shape of

a general refinement problem, like in Lemma 4.2.8. Thus there is a matrix (mz
xy), where

x ∈ f−1(z) ∩ supp(ϕ) and y ∈ g−1(z) ∩ supp(ψ) with:

ϕ(x) =
∑
ym

z
xy and ψ(y) =

∑
xm

z
xy.

DRAFT

4.2. Weak pullbacks 1334.2. Weak pullbacks 1334.2. Weak pullbacks 133

For each pair x ∈ f−1(z) ∩ supp(ϕ), y ∈ g−1(z) ∩ supp(ψ) we use the weak pullback
on the left and choose an element wzxy ∈W with h(wzxy) = x and k(wzxy) = y. This yields
a multiset χz =

∑
x,ym

z
xyw

z
xy ∈MM (W).

By doing this for each z ∈ Z ′ we can form χ =
∑
z∈Z′ χz ∈ MM (W). Notice that if

z1 6= z2, then supp(χz1) ∩ supp(χz2) = ∅. Indeed, if w ∈ supp(χz1) ∪ supp(χz2), then
z1 = (f ◦ h)(w) = z2, which is impossible. Finally,

MM (h)(χ)

=
∑
z∈Z′MM (h)(χz)

=
∑
z∈Z′

∑{mz
xyh(wzxy) | x ∈ f−1(z) ∩ supp(ϕ), y ∈ g−1(z) ∩ supp(ψ)}

=
∑
x∈supp(ϕ)

∑{mz
xyh(wzxy) | z = f(x), y ∈ g−1(z) ∩ supp(ψ)}

=
∑
x∈supp(ϕ) ϕ(x)x

= ϕ.

Similarly one getsMM (k)(χ) = ψ.

For the distribution functor the situation is simpler.

4.2.10. Proposition. The distribution functor D : Sets→ Sets from Definition 4.1.5 pre-
serves weak pullbacks.

Proof. This result can be obtained in several ways. One can mimick the proof for the mul-
tiset functorMM , after observing that the unit interval [0, 1] of probabilities is a “partial
commutative monoid” that is positive and satisfies the refinement property (in a suitably
generalised sense). This approach is followed (implicitly) in [328]. Alternatively, one can
follow the appendix of [420] which contains a proof using the max-flow min-cut theorem
from graph theory.

The “continuous” analogue of the (discrete) distribution functor D on Sets is the
“Giry” functor G on the category of measurable spaces, see e.g. [147, 108, 251, 339, 115].
In [419] it is shown that this functor G does not preserve weak pullbacks. Another such
example occurs in Exercise 4.2.11 below.

Exercises

4.2.1. Describe the graph Graph(f) of a function via a pullback in Sets.

4.2.2. Consider in an arbitrary category a pullback:

• //

m′

��

•
m
��

• // •

Prove: if m is a mono, then so is m′.

4.2.3. Verify that taking a pullback as on the left is the same as taking a pullback on the right.

P
p2
//

p1

��

_� Y

g
��

P
��

〈p1, p2〉
��

// Z
��

〈id, id〉
��

X
f
// Z X × Y

f × g
// Z × Z

4.2.4. Assume a category C with pullbacks. Prove that if a functor F : C → C preserves pull-
backs, then it also preserves weak pullbacks.

4.2.5. Let F be a weak pullback preserving functor C→ C.

DRAFT

134 Chapter 4. Logic, Lifting, and Finality134 Chapter 4. Logic, Lifting, and Finality134 Chapter 4. Logic, Lifting, and Finality

(i) Prove that F preserves (ordinary) pullbacks of monos: if the diagram below on the left
is a pullback, then so is the one on the right.

•
��

m
��

f
// •
��
n
��

•
��

F (m)
��

F (f)
// •
��
F (n)
��

•
g

// • •
F (g)

// •

This result can be written as: F (g−1(n))
∼=−→ F (g)−1(F (n)).

(ii) Conclude that F also preserves intersections ∧ of monos, given as diagonal in a pull-
back square:

• // //
��

��

��

m∧n
@@

��
@@

•
��
n
��

• //
m
// •

4.2.6. The following two results are known as the Pullback Lemmas. Prove them yourself.

•

��

// •

��

// •

��

(B) (A)

• // • // •

(i) If (A) and (B) are pullback squares, then the outer rectangle is also a pullback square.
(ii) If the outer rectangle and (A) are pullback squares, then (B) is a pullback square as

well.

4.2.7. Let F : C→ C be an endofunctor on a category C with pullbacks. Prove that the category
Alg(F) of algebras also has pullbacks, constructed as in C.

4.2.8. Assume a category C with pullbacks. Prove that each slice category C/I , see Exercise 1.4.3
then has
(i) products (and trivially also a final object);
(ii) pullbacks.

4.2.9. Prove, using the axiom of choice, that in the category Sets a diagram

• k //

h
��

•
g
��

•
f
// •

is a weak pullback iff Eq(f, g) ⊆ Im(〈h, k〉)

4.2.10. Consider the following pullback in Sets.

{0, 1, 2, 3, 4, 5} = 6
k //

h
��

_� {u, v, w}

g
��

{a, b, c, d}
f

// 2 = {0, 1}

where:

f(a) = f(b) = 0, f(c) = f(d) = 1

g(u) = 0, g(v) = g(w) = 1

h(0) = a, h(1) = b, h(2) = h(3) = c, h(4) = h(5) = d

k(0) = k(1) = u, k(2) = k(4) = v, k(3) = k(5) = w.

Assume multisets ϕ ∈MN({a, b, c, d}) and ψ ∈MN({u, v, w}) given by:

ϕ = 2a+ 3b+ 4c+ 5d ψ = 5u+ 3v + 6w.

DRAFT

4.3. Predicates and relations 1354.3. Predicates and relations 1354.3. Predicates and relations 135

(i) Check thatMN(f)(ϕ) =MN(g)(ψ).
(ii) Find a multiset χ ∈MN(6) withMN(h)(χ) = ϕ andMN(k)(χ) = ψ.
(iii) There are four such χ; describe them all.

4.2.11. ([378]) Consider the neighbourhood functorN : Sets→ Sets from Exercise 2.2.7, given
by the contravariant powerset functor composed with itself. That is, N (X) = P

(
P(X)

)
,

and for f : X → Y we haveN (f) : P
(
P(X)

)
→ P

(
P(Y)

)
by:

N (f)
(
A ⊆ P(X)

)
=
(
f−1

)−1
(A) = {V ∈ P(Y) | f−1(V) ∈ A}.

Later on, in Example 5.1.3 (vii) we shall recognise N = 2(2(−)) as an example of a con-
tinuation monad.
Prove thatN does not preserve weak pullbacks.
[Hint. Consider the pullback of the following functions f, g (as in [378]):

{
X = {x1, x2, x3}
Z = {z1, z2}

X
f
// Z X

g
// Z

x1, x2
� // y1 x1

� // y1

x3
� // y2 x2, x3

� // y2

]

4.3 Predicates and relations

Recall from Section 3.1 that the notion of bisimulation (and hence of bisimilarity) is in-
troduced via the lifting of a polynomial functor F : Sets → Sets to an endofunctor
Rel(F) : Rel → Rel on a category of relations. Bisimulations R are then coalgebras
R → Rel(F)(R) of this functor, and congruences are Rel(F)-algebras. In the next few
sections we generalise this situation from Sets to more general categories C. But first
we need to better understand what predicates and relations are, in an arbitrary category C.
That is the topic of the present section. We shall describe these predicates and relations via
“logical” structure in C, expressed in the form of a suitable factorisation system. As we
shall see in Example 4.3.8 this factorisation structure corresponds to a predicate logic with
finite conjunctions >,∧, existential quantification ∃ and comprehension {x : σ |ϕ}.

First we need to establish some basic notions and terminology—some of which has
already been used (implicitly). We start by ordering monomorphisms. Given two monos
m : U � X and n : V � X one writes m ≤ n if there is a necessarily unique, dashed
map ϕ in:

U

m
AAAA

ϕ
//____ V
~~

n~~}}}}

X

with n ◦ ϕ = m.

This order ≤ is reflexive (m ≤ m) and transitive (m ≤ n and n ≤ k implies m ≤ k), and
is thus a preorder. If we write m ∼= n for m ≤ n and n ≤ m, then ∼= is an equivalence
relation. An equivalence class [m] = {n | n ∼= m} of such monos is called a subobject.
These subobjects are seen as predicates on the object X . They are partially ordered, via ≤
as described above.

In practice one often writes m for the corresponding equivalence class [m]. Thus, we
often say things like: consider a subobject m : U � X with . . .

In the category Sets, monos U � X are injections and subobjects U � X are subsets
U ⊆ X . Thus, a relation R ⊆ X×Y is a subobject R� X×Y in Sets. More generally,
in a category C, a relation is a subobject R � X × Y . Such relations carry a partial order
≤, as subobjects of X × Y .

In practical situations it is sometimes more appropriate to consider certain subsets of
monos as predicates. This will be illustrated in the case of directed complete partial orders
(dcpos).

DRAFT

136 Chapter 4. Logic, Lifting, and Finality136 Chapter 4. Logic, Lifting, and Finality136 Chapter 4. Logic, Lifting, and Finality

4.3.1. Example. Recall the category Dcpo of directed complete partial orders from Ex-
ample 1.4.2 (iii) (4). These orders play an important role in the semantics of many pro-
gramming constructs (see e.g. [177, 325, 33]). Here we take a closer look at predicates in
Dcpo.

For a dcpo D a subset U ⊆ D is called admissible if, with the order inherited from D,
it is closed under directed joins—and thus a sub-dcpo. These admissible subsets look like
subobjects (equivalence classes of monos) in Dcpo, but they are not. They correspond to
a special class of monos, namely those monos that reflect the order. Thus, an admissible
subset U ⊆ D can be identified with an equivalence class of maps m : E → D in Dcpo
that reflect the order: m(x) ≤ m(x′) in D iff x ≤ x′ in E. Such a map m is automatically
injective: m(x) = m(x′) implies m(x) ≤ m(x′) and m(x′) ≤ m(x), and thus x ≤ x′ and
x′ ≤ x, so x = x′.

The appropriate notion to capture such situations where one only wants to consider
particular subsets of monos is a factorisation system, see [56, 35, 137]. In general, such
a factorisation system is given by two collections of morphisms, M for “abstract monos”
and E for “abstract epis” satisfying certain properties. In the present “logical” context we
add three special requirements, in points (iv)–(vi) below, to the standard properties; so we
will speak of a “logical factorisation system”.

4.3.2. Definition. In an arbitrary category C, a logical factorisation system is given by
two collections of maps M and E satisfying the following properties.

(i) Both M and E contain all isomorphisms from C and are closed under composition.
(ii) Each map f : X → Y in C can be factored as a map e(f) ∈ E followed by a map

m(f) ∈M, as in:

X

f
''OOOOOOOOOOOOOOO

e(f) � ,2 Im(f)_��
m(f)
��

Y

In such diagrams we standardly write special arrows � ,2 // for maps from M and � ,2 for
maps from E. Maps in M and E are sometimes called abstract monos and abstract epis,
respectively.

(iii) The diagonal-fill-in property holds: in a commuting square as indicated below, there
is a unique diagonal map as indicated, making the two triangles commute.

• in E � ,2

��

•

�����
�

�
�

• � ,2
in M

// •

(iv) All maps in M are monos.
(v) The collection M is closed under pullback: if m ∈ M then the pullback f−1(m)

along an arbitrary map f in C exists, and f−1(m) ∈M, like in:

f−1(V) //
_��

f−1(n)
��

� V��
n
��

X
f

// Y

(4.6)

Notice that we have overloaded the notation f−1 by writing both f−1(V) and f−1(n).
This is often convenient.

(vi) For each m ∈ M and e ∈ E we have m−1(e) ∈ E; this pullback exists by the
previous point.

DRAFT

4.3. Predicates and relations 1374.3. Predicates and relations 1374.3. Predicates and relations 137

The standard example of a logical factorisation system is is given by M = (injections)
and E = (surjections) in Sets. But there are many other examples, for instance with the
abstract monos M given by admissible subsets on dcpos (Example 4.3.1), closed subsets
of metric or topological spaces, or linearly closed subsets of vector spaces. The maps in E
are those whose “obvious” factorisation has an isomorphism as monic part. Examples will
be discussed explicitly in Example 4.3.7 below.

It can be shown that the collections M and E determine each other, see Exercise 4.3.5.
The above definition requires that the collection M of abstract monos is closed under

pullbacks. Sometimes it also happens that E is closed under pullback, but such stability
may fail (for a counter example involving admissible subsets of dcpos, see [104, Chapter 1,
Exercise (7)]). It does hold in Sets, where surjections are indeed closed under pullback.

We now define categories of predicates and relations with respect to a logical factorisa-
tion system.

4.3.3. Definition. For a category C with a logical factorisation system (M,E) we define:

• the category Pred(C) of predicates in C;

• the category Rel(C) of relations in C—provided C has products ×.

Notice that in these notations Pred(C) and Rel(C) we leave (M,E) implicit. Usually it
clear for a given category what the relevant factorisation system is.

Objects of the category Pred(C) are subobjects/predicates (m : U
� ,2 // X) of maps m ∈

M. Morphisms from (m : U
� ,2 // X) to (n : V

� ,2 // Y) in Pred(C) are maps f : X → Y in C
for which there is a necessarily unique dashed map as on the left below.

U_��

m
��

//______ V_��

n
��

R_��

〈r1, r2〉
��

//_________ S_��

〈s1, s2〉
��

X
f

// Y X1 ×X2

f1 × f2
// Y1 × Y2

Intuitively, this says ∀x ∈ X.U(x)⇒ V (f(x)).
Objects of the category Rel(C) are relations/subobjects 〈r1, r2〉 : R � ,2 // X1 ×X2 where

〈r1, r2〉 ∈M. And morphisms from 〈r1, r2〉 : R � ,2 // X1 ×X2 to 〈s1, s2〉 : S � ,2 // Y1 × Y2 in
Rel(C) are pairs of morphisms f1 : X1 → Y1, f2 : X2 → Y2 in C for which there is a
necessarily unique morphism R → S making the diagram on the right commute. It says:
R(x1, x2)⇒ S(f1(x1), f2(x2)).

For an object X ∈ C we sometimes write Pred(X) for the partial order of subob-
jects U � ,2 // X of an object X , coming from M; it may be considered as the subcategory
Pred(X) ↪→ Pred(C) with morphisms given by the identity map in C. Similarly, we
write Rel(X1, X2) ↪→ Rel(C) for the subcategory of relations R � ,2 // X1 ×X2 with pairs
of identities as morphisms. Thus Rel(X1, X2) = Pred(X1 ×X2).

Applying this construction for C = Sets yields the category Rel(Sets) which is the
category Rel as described earlier in Definition 3.2.3.

4.3.4. Lemma. Assume a category C with a logical factorisation system (M,E). There
are obvious forgetful functors that map predicates and relations to their carriers:

Pred(C)

��

U X
� ,2 //

_

��

Rel(C)

��

R X1 ×X2
� ,2 //

_
��

C X C× C (X1, X2)

(i) Each map f : X → Y in C gives rise to a pullback functor f−1 : Pred(Y) →
Pred(X), using diagram (4.6). Similarly, each pair of maps f1 : X1 → Y1, f2 : X2 → Y2

DRAFT

138 Chapter 4. Logic, Lifting, and Finality138 Chapter 4. Logic, Lifting, and Finality138 Chapter 4. Logic, Lifting, and Finality

gives rise to a pullback functor (f1 × f2)−1 : Rel(Y1, Y2)→ Rel(X1, X2). In this way we
get two functors:

Cop
Pred(−)

// PoSets and
(
C× C

)op Rel(−)
// PoSets

Such functors are also known as indexed categories, see e.g. [225].
(ii) These posets Pred(X) and Rel(X1, X2) have finite meets >,∧, given by the iden-

tity predicate and pullbacks of predicates:

>X =

(
X

X

_��
id��

) P
_�

� ,2 //
_��

��

��%

m∧n
@@@@

@@@

V_��

n
��

U
� ,2
m
// X

and similarly for relations. These meets are preserved by pullback functors f−1 so the
above indexed categories can be restricted to:

Cop
Pred(−)

//MSL and
(
C× C

)op Rel(−)
//MSL

where MSL is the category of meet semilattices (and monotone functions preserving >,∧
as homomorphisms).

(iii) The mapping X 7→ >X yields a ‘truth’ functor > : C → Pred(C) that is a right
adjoint to the forgetful functor in:

Pred(C)

a
��

C
>
__

(iv) This truth functor > : C → Pred(C) itself also has a right adjoint, mapping a
predicate (U

� ,2 // X) to its domain U . This functor provides comprehension and will thus
be written as {−} in:

Pred(C)

a
��

a {−}
ssC
>
__

Since subobjects are equivalence classes, this domain functor {−} involves a choice of
objects, from an isomorphism class.

Proof. (i) We first have to check that the pullback operations f−1 preserve the order be-
tween predicates. This is obvious. Further, we have id−1 = id and also (g ◦ f)−1 =
f−1 ◦ g−1; the latter holds by the “Pullback Lemma”, see Exercise 4.2.6. Notice that we
get equalities (instead of isomorphisms) because predicates are subobjects and thus equiv-
alence classes of maps.

(ii) The identity predicate >X =
(
id : X

� ,2 // X
)

is obviously the top element in the
poset Pred(X). Also, the above square defining m ∧ n : P

� ,2 // X satisfies k ≤ m and
k ≤ n iff k ≤ m ∧ n in Pred(X). The top element (identity map) is clearly preserved
under pullback. The same holds for the meet m ∧ n, but this requires some low-level
reasoning with pullbacks (using Exercise 4.2.6 again). In a similar manner finite meets for
relations exist; they are preserved by pullback.

DRAFT

4.3. Predicates and relations 1394.3. Predicates and relations 1394.3. Predicates and relations 139

(iii) We check the adjunction forgetful a truth. For a predicate U � ,2 // X and an object
Y ∈ C this involves a bijective correspondence:

(
U X

� ,2m //
)

//
(
Y Y

� ,2 id //
)

in Pred(C)

X // Y in C
namely

U_��
m
��

//___ Y_��
id
��

X
f
// Y

X
f
// Y

Clearly, the dashed map is uniquely determined as f ◦ m.
(iv) We now prove the adjunction truth a comprehension. For an object X ∈ C and a

predicate n : V
� ,2 // Y we have to prove bijective correspondences:

(
X X

� ,2 id //
)

//
(
V Y

� ,2 n //
)

in Pred(C)

X // V in C
namely

X_��
id
��

f
//___ V_��
n
��

X
n◦f
// V

X
f
// Y

Clearly the maps above and under the double lines determine each other.

We continue the investigation of the logical structure provided by factorisation systems.
The next result shows that existential quantifier ∃, written categorically as

∐
, exists for the

predicates and relations defined in terms of a logical factorisation structure.

4.3.5. Proposition. Let C be a category with a logical factorisation system (M,E).
(i) Each map f : X → Y and each pair of maps f1 : X1 → Y1, f2 : X2 → Y2 in C

give rise to functors (monotone functions) between posets:

Pred(X)

∐
f
// Pred(Y) Rel(X1, X2)

∐
f1×f2 // Rel(Y1, Y2)

which are defined via the factorisations:
∐
f (m) = m(f ◦ m) and

∐
f1×f2(r) = m((f1 ×

f2) ◦ r) in:

U_��

m
��

� ,2
∐
f (U)

_�� ∐
f (m)

��

R_��

r = 〈r1, r2〉
��

� ,2
∐
f1×f2(R)

_�� ∐
f1×f2(r)

��

X
f

// Y X1 ×X2
f1 × f2

// Y1 × Y2

Here we have used the same overloading for
∐

that we used for f−1 in (4.6).
(ii) These functors

∐
are left (Galois) adjoints to the pullback functors from Lemma 4.3.4:

Pred(X)

∐
f

,,

> Pred(Y)

f−1

ll
Rel(X1, X2)

∐
f1×f2

,,

> Rel(Y1, Y2)

(f1 × f2)−1

mm

They satisfy:

∐
idX

= idPred(X) and
∐
g◦f =

∐
g ◦
∐
f . (4.7)

DRAFT

140 Chapter 4. Logic, Lifting, and Finality140 Chapter 4. Logic, Lifting, and Finality140 Chapter 4. Logic, Lifting, and Finality

(iii) For each object X ∈ C the equality relation Eq(X) ∈ Rel(X,X) is defined by
factoring the diagonal ∆ = 〈id, id〉 : X � X ×X , in:

Eq(X) =
∐
〈id,id〉(>) = m(〈id, id〉) i.e.

X

〈id, id〉 $$JJJJJJJJ
� ,2 Eq(X)_��

m(〈id, id〉) = Eq(X)
��

X ×X

Here we deliberately overload the notation Eq(X). This equality forms a functor in:

Rel(C)

��

C

Eq(−)
44iiiiiiiiiiiiiiiii

〈idC, idC〉
// C× C

If diagonals ∆ = 〈id, id〉 : X � X × X are in the set M of abstract monos, then
Eq(X) is equal to this diagonal and “internal” equality in our predicate logic and “exter-
nal” equality coincide, in the sense that for two parallel maps f, g : Y → X one has:

f, g are internally equal
def⇐⇒ > ≤ Eq(f, g) = 〈f, g〉−1(Eq(X))

⇐⇒ f = g
def⇐⇒ f, g are externally equal.

(The direction (⇐=) of the equivalence in the middle always hold; only for (=⇒) one
needs that diagonals are in M.)

(iv) The inequalities
∐
f (f−1(n) ∧ m) ≤ n ∧ ∐f (m) are isomorphism, because the

collection E is closed under pullback along m ∈M—see Definition 4.3.2 (vi).

Having an equality like in the last point is usually referred to as the “Frobenius” con-
dition. Logically, it corresponds to the equivalence of ∃x. ϕ ∧ ψ and ϕ ∧ ∃x. ψ if the
variable x does not occur freely in the formula ϕ.

Proof. We do the proofs for predicates since they subsume relations.
(i) Assume m ≤ m′ in Pred(X), say via a map ϕ, then we get

∐
f (m) ≤ ∐f (m′) in

Pred(Y) via the diagonal-fill-in property:

U
� ,2

ϕ
��

∐
f (U)

_��
∐
f (m)

��||y
y

y
y

y
y

U ′

_��∐
f (U ′) � ,2∐

f (m′)
// Y

i.e.

U ′U�

m′

���

��������

� ,2
∐
f (U ′)

P��

∐
f (m′)

��������������

Um��

m
��

� ,2

ϕ 88qqqqqqq ∐
f (U)

u��

∐
f (m)

��
55555555

55kkk

X
f

// Y

(ii) For predicates m : U
� ,2 // X and n : V

� ,2 // Y we have to produce a bijective corre-
spondence:

∐
f (m) ≤ n

m ≤ f−1(n)
that is

∐
f (U)

��'
∐

f (m) ##GGGGG

ϕ
//____ VAz�
n������

Y

U~�$
m ��

>>>>
ψ
//____ f−1(V)5v�

f−1(n)zzuuuuu

Y

DRAFT

4.3. Predicates and relations 1414.3. Predicates and relations 1414.3. Predicates and relations 141

This works as follows. Given ϕ as indicated, we obtain ψ on the left below. The converse
is sketched on the right.

U

ψ &&LLLL\
�

m
..

� ,2
∐
f (U) � '. ϕ

��

U
� ,2

ψ
��

∐
f (U)

_��
∐
f (m)

��

ϕ

yys s s s s s s s s

f−1(V)
_�

//
_��

f−1(n)
��

V_��
n
��

f−1(V)

��

X
f

// Y V
� ,2

n
// Y

The functoriality equations (4.7) for
∐

follow from the functoriality equations for pull-
back, via Galois connection (adjunction)

∐
f a f−1.

(iii) For a map f : X → Y in C we have to show that the pair (f, f) is a morphism
Eq(X)→ Eq(Y) in Rel(C). This follows from diagonal-fill-in:

X
� ,2

f
��

Eq(X)_��
��

yyr r r r r r r r

Y

_��

X ×X
f × f
��

Eq(Y) � ,2 // Y × Y

The outer rectangle commutes because 〈id, id〉 ◦ f = (f × f) ◦ 〈id, id〉.
Clearly, external equality f = g implies internal equality, since the unit of the adjunc-

tion
∐
〈id,id〉 a 〈id, id〉−1 gives:

> ≤ 〈id, id〉−1
∐
〈id,id〉(>) = 〈id, id〉−1Eq(X).

Hence by applying f−1 we get:

> = f−1(>) ≤ f−1〈id, id〉−1Eq(X) =
(
〈id, id〉 ◦ f

)−1
Eq(X) = 〈f, f〉−1Eq(X).

For the other direction, assume the diagonal ∆ = 〈id, id〉 is in M. Equality Eq(X) is then
equal to this diagonal, and so 〈f, g〉−1(Eq(X)) is the pullback:

E
p2

//
_��

p1
��

� X��
〈id, id〉 = Eq(X)��

Y 〈f, g〉
// X ×X

where the map p1 is in fact the equaliser of f, g. Internal equality of f, g amounts to an
inequality > ≤ 〈f, g〉−1(Eq(X)) = p1. It expresses that the map p1 is an isomorphism,
and so:

f = π1 ◦ 〈f, g〉 = π1 ◦ 〈id, id〉 ◦ p2 ◦ p−1
1

= π2 ◦ 〈id, id〉 ◦ p2 ◦ p−1
1 = π2 ◦ 〈f, g〉 = g.

(iv) Assume a map f : X → Y with predicatesm : U
� ,2 // X and n : V

� ,2 // Y . The unit of
the adjunction

∐
f a f−1 gives and inequality m ≤ f−1(

∐
f (m)), from which we obtain:

f−1(n) ∧ m ≤ f−1(n) ∧ f−1(
∐
f (m)) = f−1(n ∧∐f (m)).

The adjunction
∐
f a f−1 now yields the required inequality

∐
f (f−1(n) ∧ m) ≤ n ∧∐

f (m). The second part of the statement requires more work and uses requirement (vi) in

DRAFT

142 Chapter 4. Logic, Lifting, and Finality142 Chapter 4. Logic, Lifting, and Finality142 Chapter 4. Logic, Lifting, and Finality

Definition 4.3.2, which says that E is closed under pullback along each k ∈ M. Consider
the following diagram, below on the left.

P_��

p2

��

� ,2 p1
//

_���'

""FFFFFFFFF f−1(V)_��

f−1(n)
��

// V_��

n
��

U_��

m
��

e � ,2
∐
f (U)

_�� ∐
f (m)

��

U
� ,2

m
// X

f
// Y X

f
// Y

The diagonal is the conjunction f−1(n) ∧ m. In order to get
∐
f (f−1(n) ∧ m) we need

to factorise the composite f ◦ (f−1(n) ∧ m) = f ◦ m ◦ p2. This factorisation appears if
we consider the other conjunct n ∧∐f (m), arising as diagonal on the left below.

P_��

p2

��

d � ,2
� Q��

q2
��

� ,2 q1
//

_�
�)

$$JJJJJJJJJJJJ V_��

n
��

U e
� ,2@A BC

f ◦ m

OO

∐
f (U) � ,2∐

f (m)
// Y

The outer rectangle is a pullback because f ◦ m =
∐
f (m) ◦ e, as described above. Thus,

by the Pullback Lemma (see Exercise 4.2.6), the rectangle on the left is a pullback. But
then the map d arises as pullback of e ∈ E along q2 ∈ M. Hence, by assumption, d ∈ E.
But this means that

∐
f (f−1(n) ∧ m), which is by definition the M-part of f ◦ m ◦ p2, is

the diagonal map n ∧∐f (m). Thus we are done.

4.3.6. Remark. The third point of Proposition 4.3.5 deals with equality relations Eq(X),
as M-part of the diagonal ∆ = 〈id, id〉 : X � X × X . This diagonal ∆ need not be
in M. Its presence in M is a non-trivial property, and therefore we have not made it part
of the requirements for a ‘logical factorisation system’ in Definition 4.3.2. Recall, for
instance, that one formulation of the Hausdorff property for topological spaces says: the
diagonal relation ∆ is closed. Closed subsets of topological spaces may indeed be used
as abstract monos for a factorisation system. An alternative example will be elaborated in
Examples 4.3.7 (i) below: in the category SetsRel of sets and relations diagonals ∆ are
not abstract monos.

The requirement that diagonals are in M is equivalent to the requirement that all maps
in E are epis. This is left as an exercise below.

But if diagonals are in M the resulting logic in the category satisfies the special property
that internal and external equality coincide. This is for instance the case in every topos
whose logic is described via all monos/subobjects (see e.g. [317]).

4.3.7. Examples. (i) The category SetsRel of sets and relations is defined in Exam-
ple 1.4.2. Each relation 〈r1, r2〉 : R ↪→ X×Y , seen as morphismR : X → Y in SetsRel,
can be factored as:

(
X

R // Y
)

=
(
X

e(R)
// Y ′

m(R)
// Y
)
,

where Y ′ = {y | ∃x.R(x, y)} is the image of r2 : R→ Y and

e(R) =

(
Rr1
~~}} !! !!BB

X Y ′

)
m(R) =

(
Y ′

zzzz
 BB

Y ′ Y

)
.

A factorisation system (M,E) exists on the category SetsRel: the collection M consists
of injections Y ′ � Y , forming a relation as on the right above. And E contains relations

DRAFT

4.3. Predicates and relations 1434.3. Predicates and relations 1434.3. Predicates and relations 143

〈r1, r2〉 : R ↪→ X × Y with the right leg r2 forming a surjection. These maps in M and E
are characterised in [207] as “dagger kernels” and “zero-epis” respectively.

The category SetsRel has products (actually biproducts) given by coproducts + on
sets. The diagonal (relation) ∆ = 〈id, id〉 : Y � Y + Y in SetsRel is given by the
subset:

∆ = {(y, κ1y) | y ∈ Y } ∪ {(y, κ2y) | y ∈ Y } ⊆ Y × (Y + Y).

Thus, in span form it can be written as:

∆ =

 Y + Y

[id,id]
yytttt OOO

OOO

Y Y + Y

with image given by the equality relation on Y + Y , obtained as:

Eq(Y) = m(∆) =

 Y + Y

oooooo OOO
OOO

Y + Y Y + Y

 .

For parallel relations R,S : X → Y in SetsRel we then have:

〈R,S〉−1(Eq(Y)) = {x ∈ X | ∀y, y′. R(x, y) ∧ S(x, y′)⇒ y = y′}.

Hence internal equality > ≤ 〈R,S〉−1(Eq(Y)) is in SetsRel not the same as external
equality.

(ii) Recall the category Vect of vector spaces (over the real numbers R, or some other
field). It carries a factorisation system (M,E) where M = (injective linear maps) and E =
(surjective linear maps). The subobjects associated with M are linearly closed subspaces.
The product (actually biproduct) for two vector spaces is given by the product of the under-
lying sets, with coordinatewise structure. Hence the diagonal ∆ = 〈id, id〉 : V � V × V
is the usual (set-theoretic) diagonal. Since these diagonals are in M, internal and external
equality coincide in Vect.

(iii) We write Hilb for the category of Hilbert spaces (over the real, or possibly also
over the complex numbers). Morphisms are linear maps which are continuous (or equiva-
lently bounded). The category Hilb also carries a factorisation system, where maps in M
correspond to subspaces which are both linearly and metrically closed. Also in this case
diagonals are in M. More details can be found in [207].

We close this section with a special example of a category with a logical factorisation
system. It is obtained from an ordinary logical calculus, by suitably organising the syntactic
material into a category. It illustrates what kind of logical structure is relevant in this setting.
Categories like these are described as Lindenbaum-Tarski (or term model) constructions
in [225]. These categories may also be described via an initiality property, but that goes
beyond the current setting.

4.3.8. Example. We sketch a (multi-sorted, typed) logic, whose types, terms and formulas
are given by the following BNF syntax.

Types σ := B | 1 | σ × σ | {x : σ |ϕ} (B is primitive type)

Terms M := x | f(M, . . . ,M) | π1M | π2M | 〈M,M〉 (f is function symbol)

Formulas ϕ := P | > | ϕ ∧ ϕ |M =σ M | ∃x : σ. ϕ (P is atomic predicate)

A type is thus either a primitive type B, a singleton (or unit) type 1, a product type σ × σ′
or a comprehension type {x : σ |ϕ} for a formula ϕ. A term is either a variable x, a

DRAFT

144 Chapter 4. Logic, Lifting, and Finality144 Chapter 4. Logic, Lifting, and Finality144 Chapter 4. Logic, Lifting, and Finality

function application f(M1, . . . ,Mn) for a function symbol f with appropriate arity and
type, a projection term πiM , or a tuple 〈M,M ′〉. Finally, a formula is either an atomic
predicate P , a truth formula >, a conjunction ϕ ∧ ϕ′, an equation M =σ M ′ for two
terms M,M ′ both of type σ, or a (typed) existential formula ∃x : σ. ϕ. Here we assume
that the function symbols f and atomic predicates P are somehow given, via an appropriate
signature. Notice, by the way, that negation is not part of this logical language.

A proper account of our predicate logic now lists the typing rules for sequents of the
form x1 : σ1, . . . , xn : σn ` M : τ , expressing that term M , (possibly) containing typed
variables x1, . . . , xn, has type τ , and also the deduction rules for logical sequents written as
x1 : σ1, . . . , xn : σn | ϕ1, . . . , ϕn ` ψ. Sometimes we write a term M as M(x1, . . . , xn)
to make the variables occurring inM explicit (and similarly for formulas). We write [M/x]
for the (postfix) operation of substituting the term M for all (free) occurrences of the vari-
able x (where M and x have the same type). We assume the reader is reasonably familiar
with these rules, and refer to [225] for further information. The exception we make is for
the rules of the comprehension type, see below, because they are not so standard.

But first we show that we may restrict ourselves to terms and formulas containing at
most one variable. Suppose a term M(x, y) has two variables x : σ, y : τ . Then we may
replace x, y by a single variable z : σ × τ in a product type. This z is placed in M via
substitution: M [π1z/x, π2/y]. This can of course be repeated for multiple variables. Sim-
ilarly, we may replace entailments ϕ1, · · · , ϕn ` ψ by an entailment ϕ1 ∧ · · · ∧ ϕn ` ψ
between only two formulas (using > as antecedent if n = 0). If we keep track of the
variable involved we write such sequents as x : σ | ϕ ` ψ.

Now we can be more explicit about comprehension types. If we have a formula ϕ(x),
involving a variable x : σ, we can form the type {x : σ |ϕ}. It comes with introduction and
elimination rules, involving tags i for ‘in’ and o for ‘out’.

y : τ `M : σ y : τ | > ` ϕ[M/x]

y : τ ` iϕ(M) : {x : σ |ϕ}

y : τ ` N : {x : σ |ϕ}
y : τ ` oϕ(N) : σ

x : σ | ϕ,ψ ` χ
x′ : {x : σ |ϕ} | ψ[oϕ(x′)/x] ` χ[oϕ(x′)/x]

with associated conversions oϕ(iϕ(M)) = M and iϕ(oϕ(N)) = N . In the sequel we omit
these subscripts ϕ for convenience.

We now form a category L, for logic, with:

objects types σ
morphisms σ → τ are equivalence classes [M] of terms x : ` M : τ . Two terms

M,M ′ are equivalent when one can deduce x : σ | > ` M =σ M ′.
Via these equivalence classes we force ’internal’ (provable) equality and
’external’ equality (of maps) to coincide.

The identity map σ → σ is [xσ], where xσ : σ is a particular (chosen) variable of type
σ. The composition of maps [M(x)] : σ → τ and [N(y)] : τ → ρ is given by the term
x : σ ` N [M(x)/y] : ρ obtained by substitution. This category L has finite (categorical)
products, via the type-theoretic products 1, σ × τ .

The category L also carries a logical factorisation system (M,E). The set M contains
the “o-maps”, given by a formula ϕ in:

u : {x : σ |ϕ} ` o(u) : σ.

(Actually, we take in M all these o-maps composed with isomorphisms.)

DRAFT

4.3. Predicates and relations 1454.3. Predicates and relations 1454.3. Predicates and relations 145

These o-maps are clearly monic: if o(N) = o(N ′), then N = i(o(N)) = i(o(N ′)) =
N ′. Also, they are closed under composition. This can be seen in the following diagram.

{y : {x : σ |ϕ} |ψ} � ,2
[o]

//

[P] ∼=
��

{x : σ |ϕ}_��

[o]
��{x : σ |ϕ ∧ ψ[i(x)/y]} � ,2

[o]
// σ

The term P (v) is i(o(o(v))) and is obtained in the following derivation.

x : σ | ϕ,> ` ϕ
y : {x : σ |ϕ} | > ` ϕ[o(y)/x]

y : {x : σ |ϕ} | ψ,> ` ψ
v : {y : {x : σ |ϕ} |ψ} | > ` ψ[o(v)/y]

v : {y : {x : σ |ϕ} |ψ} | > ` ϕ[o(o(v))/x] ∧ ψ[o(v)/y]

= (ϕ ∧ ψ[i(x)/y])[o(o(v))/x]

v : {y : {x : σ |ϕ} |ψ} ` P (v)
def
= i(o(o(v))) : {x : σ |ϕ ∧ ψ[i(x)/y]}

Notice that the i and o’s in P (v) = i(o(o(v))) are associated with different formulas. In a
similar manner one obtains the inverse term P−1 of P as P−1(u) = i(i(o(u))).

The set M is also closed under pullback, via substitution in formulas:

{y : τ |ϕ[M(y)/x]}_��
[o]
��

[i(M [o(v)/y])]
// {x : σ |ϕ}_��

[o]
��

τ
[M(y)]

// σ

The map on top is well-typed since:

y : τ | ϕ[M(y)/x],> ` ϕ[M(y)/x]

v : {y : τ |ϕ[M(y)/x]} | > ` ϕ[M(y)/x][o(v)/y] = ϕ[M [o(v)/y]/x]

v : {y : τ |ϕ[M(y)/x]} ` i(M [o(v)/y]) : {x : σ |ϕ}

We leave it to the reader to check that it forms a pullback in L.
The set M also contains the equality relations via the following isomorphism.

σ

〈id, id〉 = [〈x, x〉] !!DDDDDDDDD
[i(〈x, x〉)]
∼=

// {z : σ × σ |π1z =σ π2z}2u}

[o]yyrrrrrrrrrr

σ × σ

The inverse in this diagram is given by [π1o(v)] = [π2o(v)], where the variable v has type
{z : σ × σ |π1z =σ π2z}.

We define E so that it contains those maps of the form [M] : σ → {y : τ |ψ} that satisfy
y : τ | ψ ` ∃x : σ. o(M(x)) = y. We leave it to the reader to show that these maps are
closed under composition and also closed under pullback along o-maps (from M).

We come to factorisation. For an arbitrary map [M] : σ → τ in L we can consider the
following predicate on the codomain type τ .

Im([M]) =
(
y : τ ` ∃x : σ.M(x) = y

)
.

DRAFT

146 Chapter 4. Logic, Lifting, and Finality146 Chapter 4. Logic, Lifting, and Finality146 Chapter 4. Logic, Lifting, and Finality

Thus we can factorise the map [M] as:

σ

[M]
((QQQQQQQQQQQQQQQQQ

[i(M)] � ,2 {Im([M])} = {y : τ | ∃x : σ.M(x) = y}_��
[o]
��
τ

Finally, we check the diagonal-fill-in condition. Assume we have a commuting square:

σ
[M] � ,2

[P]
��

{y : τ |ψ}

[Q]
��

{z : ρ |ϕ} � ,2
[o]

// ρ

(4.8)

Commutation says o(P) =ρ Q[M/y′], where y′ : {y : τ |ψ}. It may be clear that the only
choice as diagonal {y : τ |ψ} → {z : ρ |ϕ} is the term i(Q), since:

o(i(Q)) = Q

i(Q)[M/y′] = i(Q[M/y′])

= i(o(P))

= P.

The challenge is to show that the term i(Q) is appropriately typed. This is achieved via the
derivation in Figure 4.3.

Exercises

4.3.1. Let (M,E) be a logical factorisation system.
(i) Show that a map f ∈M ∩ E is an isomorphism.
(ii) Prove that if we can factor a map g both as g = m ◦ e and as g = m′ ◦ e′, where

m,m′ ∈ M and e, e′ ∈ E, then there is a unique isomorphism ϕ with m′ ◦ ϕ = m
and ϕ ◦ e = e′.

(iii) Show for m ∈M and e ∈ E that m(m ◦ f) = m ◦ m(f) and e(f ◦ e) = m(f) ◦ e,
where m(−) and e(−) take the M-part and E-part like in Definition 4.3.2 (ii).

4.3.2. Let F : C → C be an endofunctor on a category C with a logical factorisation system
(M,E).
(i) Assume that F preserves abstract epis, i.e. e ∈ E ⇒ F (e) ∈ E. Prove that the

category Alg(F) of algebras also carries a logical factorisation system. Use that
pullbacks in Alg(F) are constructed as in C, see Exercise 4.2.7.

(ii) Check that every endofunctor F : Sets → Sets satisfies this assumption, i.e. pre-
serves surjections—if the axiom of choice holds.
[Hint. Recall that the axiom of choice can be formulated as: each surjection has a
section, see Section 2.1.]

4.3.3. Define the category EnRel(C) of endorelations in a category C (with a logical factorisation
system) via the following pullback of functors.

EnRel(C)
_�

//

��

Rel(C)

��

C 〈idC, idC〉
// C× C

(i) Describe this category EnRel(C) in detail.

DRAFT

4.3. Predicates and relations 1474.3. Predicates and relations 1474.3. Predicates and relations 147

� �

� �
y
′ :
{y

:
τ
|ψ
}
`

o(
y
′)

:
τ

y
:
τ
|ψ
,>
`
∃x

:
σ
.o

(M
)

=
y

y
′ :
{y

:
τ
|ψ
}
|>
`
∃x

:
σ
.o

(M
)

=
o(
y
′)

y
′ :
{y

:
τ
|ψ
}
|>
`
∃x

:
σ
.M

=
y
′

��

� �

� �
x

:
σ
`
P

:
{z

:
ρ
|ϕ
}

z
:
ρ
|ϕ
,>
|ϕ

z
′ :
{z

:
ρ
|ϕ
}
|>
`
ϕ

[o
(z
′)
/z

]

x
:
σ
|>
`
ϕ

[o
(P

)/
z
]

��

x
:
σ
|>
`

o(
P

)
=
Q

[M
/y
′]

� �
� �

x
:
σ
`
M

:
{y

:
τ
|ψ
}

��
y
′ ,
y
′′

:
{y

:
τ
|ψ
}
|ϕ

[Q
[y
′′ /
y
′]
/z

],
y
′′

=
y
′
`
ϕ

[Q
/z

]

x
:
σ
,y
′ :
{y

:
τ
|ψ
}
|ϕ

[Q
[M
/y
′]
/z

],
M

=
y
′
`
ϕ

[Q
/
z
]

x
:
σ
,y
′ :
{y

:
τ
|ψ
}
|ϕ

[o
(P

)/
z
],
M

=
y
′
`
ϕ

[Q
/z

]

x
:
σ
,y
′ :
{y

:
τ
|ψ
}
|M

=
y
′
`
ϕ

[Q
/z

]

y
′ :
{y

:
τ
|ψ
}
|∃
x

:
σ
.M

=
y
′
`
ϕ

[Q
/z

]

y
′ :
{y

:
τ
|ψ
}
|>
`
ϕ

[Q
/z

]

y
′ :
{y

:
τ
|ψ
}
`

i(Q
):
{z

:
ρ
|ϕ
}

Figure 4.3: Well-typedness of the diagonal map for the rectangle (4.8).

DRAFT

148 Chapter 4. Logic, Lifting, and Finality148 Chapter 4. Logic, Lifting, and Finality148 Chapter 4. Logic, Lifting, and Finality

(ii) Show that equality relations form a functor Eq(−) : C→ EnRel(C).

4.3.4. Let C be a category with a logical factorisation system and finite coproducts (0,+).
(i) Show that the image of the unique map ! : 0 → X is the least element ⊥ in the poset

Pred(X) of predicates on X .
(ii) Similarly, show that the join m ∨ n in Pred(X) of predicates m : U

� ,2 // X and
n : V

� ,2 // Y is the image of the cotuple [m,n] : U + V → X .

4.3.5. Two morphisms f, g in an arbitrary category C may be called orthogonal, written as f ⊥ g,
if in each commuting square as below there is a unique diagonal making everything in sight
commute.

·

��

f
// ·

�����
�

�

·
g
// ·

The diagonal-fill-in property for a factorisation system (M,E) in Definition 4.3.2 thus says
that e ⊥ m for each m ∈M and e ∈ E.
Now assume that a category C is equipped with a factorisation system (M,E), not neces-
sarily ‘logical’. This means that only properties (i)–(iii) in Definition 4.3.2 hold.
(i) Prove that f ∈ E if and only if f ⊥ m for all m ∈M.
(ii) Similarly, prove that g ∈M if and only if e ⊥ g for all e ∈ E.
(iii) Prove: e, d ◦ e ∈ E⇒ d ∈ E.
(iv) Similarly (or dually): m,m ◦ n ∈M⇒ n ∈M.
(v) Prove also m,n ∈M⇒ m× n ∈M, assuming products exist in C.
(vi) Show that diagonals ∆ = 〈id, id〉 are in M if and only if all maps in E are epis.

4.3.6. Prove that the converse of Proposition 4.3.5 (iv) also holds: if
∐
f (f−1(n) ∧ m) = n ∧∐

f (m) holds for all appropriate f,m, n, then E is closed under pullback along maps m ∈
M.

4.3.7. Assume a factorisation system (M,E) on a category C with finite products 1,×. Prove that
the category of predicates Pred(C) also has finite products, via the following constructions.

• The identity (1
� ,2 // 1) on the final object 1 ∈ C is final in Pred(C).

• The product of predicates (m : U
� ,2 // X) and (n : V

� ,2 // Y) is the conjunction of the
pullbacks π−1

1 (m) ∧ π−1
2 (n), as predicate on X × Y .

Show that also the category of relations Rel(C) has finite products.

4.3.8. Let (M,E) be a logical factorisation system on a category C with pullbacks. Prove that E
is closed under pullbacks along arbitrary maps if and only if the so-called Beck-Chevalley
condition holds: for a pullback as on the left, the inequality on the right is an isomorphism:

X

f
��

h //

_� Y

k
��

Z g
// W

∐
f h
−1(m) ≤ g−1∐

k(m)

4.4 Relation lifting, categorically

The previous section introduced predicates and relations in a category via a factorisation
system, corresponding to conjunctions>,∧, equality, existential quantification ∃, and com-
prehension {−}. In this section we use such factorisation systems to describe relation lift-
ing for an arbitrary functor—not just for a polynomial one, like in Section 3.1. Predicate
lifting wrt. such a factorisation system will be described later, in Subsection 6.1.2.

4.4.1. Definition. Assume a category C with a logical factorisation system (M,E), and an
arbitrary endofunctor F : C → C. Then we define a functor Rel(F) : Rel(C) → Rel(C)
in the following way.

DRAFT

4.4. Relation lifting, categorically 1494.4. Relation lifting, categorically 1494.4. Relation lifting, categorically 149

• Given a relation r = 〈r1, r2〉 : R � ,2 // X1 ×X2 in Rel(C) we introduce a new rela-
tion Rel(F)(r) : Rel(F)(R) � ,2 // F (X1)× F (X2) via the following factorisation, de-
scribing the lifted relation as the right-hand-side leg of the triangle:

F (R) � ,2

〈F (r1), F (r2)〉
%%JJJJJJJ

Rel(F)(R)0t|

Rel(F)(r)xxpppppppp

F (X1)× F (X2)

• Assume a morphism (f1, f2) : R→ S in Rel(C), as in:

R_��

r = 〈r1, r2〉
��

ϕ
//_________ S_��

s = 〈s1, s2〉
��

X1 ×X2

f1 × f2
// Y1 × Y2

The pair of maps (F (f1), F (f2)) then forms a morphism Rel(F)(r) → Rel(F)(s)
in Rel(C) by the diagonal-fill-in property from Definition 4.3.2 (iii):

F (R) � ,2

F (ϕ)
��

GF ED〈F (r1), F (r2)〉

BC
oo

Rel(F)(R)

Rel(F)(f1, f2)
n n n n n n

vvn n n n n n

_��

��

F (S)

_��

GF
@A BC

〈F (s1), F (s2)〉

OO

F (X1)× F (X2)

F (f1)× F (f2)
��

Rel(F)(S) � ,2 // F (Y1)× F (Y2)

By uniqueness of such diagonals one verifies that Rel(F)(−) preserves identities
and composition.

This definition of relation lifting generalises the situation found in Lemma 3.3.1 for
Kripke polynomial functors on Sets. We first establish some general properties of this
relation lifting, much like in Section 3.2. But before we can do so we need to describe
composition of relations.

For two relations 〈r1, r2〉 : R � ,2 // X × Y and 〈s1, s2〉 : S � ,2 // Y × Z we define their re-
lational composition S ◦ R � ,2 // X × Z via pullback and image: first form the object P by
pullback in:

P
p2
//

p1

��

_� S
s2 //

s1

��

Z

R r2

//

r1

��

Y

X

and take the image:

P
e � ,2

〈r1 ◦ p1, s2 ◦ p2〉
��

??????????? (S ◦ R)_��

��

X × Z

(4.9)

It is possible to turn objects with such relations between them into a category, say C-Rel
like in SetsRel, but this requires additional properties of logical factorisation systems
(namely: diagonals are in M and E is closed under pullbacks, like in Exercise 4.3.8).
See [271] for details.

DRAFT

150 Chapter 4. Logic, Lifting, and Finality150 Chapter 4. Logic, Lifting, and Finality150 Chapter 4. Logic, Lifting, and Finality

4.4.2. Proposition. Relation lifting as defined above forms a functor in a commuting dia-
gram:

Rel(C)

��

Rel(F)
// Rel(C)

��

C× C
F × F

// C× C

Then:
(i) The functor Rel(F) preserves the order ≤ between relations (on the same objects):

R ≤ S =⇒ Rel(F)(R) ≤ Rel(F)(()S).
(ii) This Rel(F) also preserves reversal (also called daggers) (−)† of relations, where:

(
R

� ,2〈r1,r2〉// X × Y
)†

=
(
R

� ,2〈r2,r1〉// Y ×X
)
.

Moreover, there are inequalities:
(iii) Eq(F (X)) ≤ Rel(F)(Eq(X)), and Eq(F (X)) = Rel(F)(Eq(X)) in case either:

• diagonals are in M, or
• F preserves abstract epis, i.e. e ∈ E =⇒ F (e) ∈ E.

(iv) Rel(F)(S ◦ R) ≤ Rel(F)(R) ◦ Rel(F)(S), if F preserves abstract epis.

Proof. (i) Assume two relations R � X1 ×X2 and S � X1 ×X2 on the same objects.
Then R ≤ S means that the pair of identities (idX1 , idX2) is a morphism R → S in
Rel(C). By applying Rel(F) we get a map (idF (X1), idF (X2)) : Rel(F)(R)→ Rel(F)(S)
in Rel(C). This means Rel(F)(R) ≤ Rel(F)(S).

(ii) Let us write γ = 〈π2, π1〉 for the twist map. For a relation 〈r1, r2〉 : R � ,2 // X × Y ,
the reversed relation R† is γ ◦ 〈r1, r2〉 = 〈r2, r1〉 : R � ,2 // Y ×X. We write the image of
F (R) as 〈s1, s2〉 : Rel(F)(R) � F (X1)× F (X2). The reversal Rel(F)(R)† of the lifted
relation is 〈s2, s1〉. Thus we need to prove that the image of 〈F (r2), F (r1)〉 is 〈s2, s1〉.
This is done via Exercise 4.3.1 (iii):

m(〈F (r2), F (r1)〉) = m(γ ◦ 〈F (r1), F (r2)〉)
= γ ◦ m(〈F (r1), F (r2)〉) since γ is an iso and thus in M

= γ ◦ 〈s1, s2〉
= 〈s2, s1〉.

(iii) The equality relation Eq(X) on an object X is given by the image of the diagonal,
below on the left, giving rise to the relation lifting on the right:

X
eX � ,2
!!

∆X = 〈idX , idX〉 !!CCCCCCCC
Eq(X)_��

〈m1,m2〉
��

F (Eq(X))
d � ,2

〈F (m1), F (m2)〉 %%JJJJJJJJJ
Rel(F)(Eq(X))1t}

〈r1, r2〉xxqqqqqqqqqq

X ×X F (X)× F (X)

The inequality Eq(F (X)) ≤ Rel(F)(Eq(X)) is obtained via diagonal-fill-in:

F (X)

F (eX)
��

eF (X) � ,2 Eq(F (X))_��

��xxq q q q q q q q q q q

F (Eq(X))

d_��
Rel(F)(Eq(X)) � ,2

〈r1, r2〉
// F (X)× F (X)

DRAFT

4.4. Relation lifting, categorically 1514.4. Relation lifting, categorically 1514.4. Relation lifting, categorically 151

In case F (eX) ∈ E we have two factorisations of the diagonal F (X) � F (X) × F (X),
making the dashed map an isomorphism.

If diagonals ∆X = 〈idX , idX〉 : X � X × X are in M, then the equality relation
Eq(X) on X is this diagonal ∆X and its lifting Rel(F)(Eq(X)) is the image of the tuple
〈F (idX), F (idX)〉 = 〈idF (X), idF (X)〉 : F (X) � F (X) × F (X). This image is the
diagonal ∆F (X) itself, which is the equality relation Eq(F (X)) on F (X).

(iv) Assume two relations 〈r1, r2〉 : R � ,2 // X × Y and 〈s1, s2〉 : S � ,2 // Y × Z with com-
position S ◦ R as in (4.9). We write their liftings as 〈r′1, r′2〉 : Rel(F)(R) � ,2 // F (X)× F (Y)
and 〈s′1, s′2〉 : Rel(F)(S) � ,2 // F (Y)× F (Z), with composition:

Q
q2
//

q1

��

_� Rel(F)(S)
s′2 //

s′1
��

F (Z)

Rel(F)(R)
r′2
//

r′1
��

F (Y)

F (X)

and image:

Q
d � ,2

〈r′1 ◦ q1, s
′
2 ◦ q2〉

KKKKKKK

%%KKKKK

Rel(F)(S) ◦ Rel(F)(R)_��

��

F (X)× F (Z)

Consider the map ϕ obtained in:

F (P)
F (p2)

//

F (p1)
��

ϕ

&&LLLLL
F (S)

��

F (R)

((

Q
q2

//

q1
��

_� Rel(F)(S)

s′1
��

Rel(F)(R)
r′2
// F (Y)

Since F (e) ∈ E, by assumption, we obtain the required inequality ≤ as diagonal in:

F (P)
F (e) � ,2

ϕ
��

F (S ◦ R) � ,2 Rel(F)(S ◦ R)_��

��vvm m m m m m m m m m m m m m

Q

d_��
Rel(F)(S) ◦ Rel(F)(S) � ,2 // F (X)× F (Z)

Stronger preservation results for lifted functors Rel(F) can be obtained if we assume
that all abstract epis are split epis, i.e. that E ⊆ SplitEpis . This assumption in Sets is
equivalent to the axiom of choice, see before Lemma 2.1.7. Also in the category Vect of
vector spaces surjective (linear) maps are split: if f : V → W in Vect is surjective, then
there are isomorphisms V ∼= ker(f)⊕ Im(f) and Im(f) ∼= W . The resulting map

W
∼= // Im(f)

κ2 // ker(f)⊕ Im(f)
∼= // V

is a section of f .

4.4.3. Proposition. Assume a logical factorisation system (M,E) on a category C where
E ⊆ SplitEpis . In this case the lifting of a functor Rel(F) : Rel(C) → Rel(C) preserves
reversals (−)†, equality and coproducts

∐
.

DRAFT

152 Chapter 4. Logic, Lifting, and Finality152 Chapter 4. Logic, Lifting, and Finality152 Chapter 4. Logic, Lifting, and Finality

Moreover, if F preserves weak pullbacks, then Rel(F) preserves composition of rela-
tions and inverse images:

Rel(F)(S ◦ R) = Rel(F)(S) ◦ Rel(F)(R)

Rel(F)
(
(f1 × f2)−1(S)

)
=
(
F (f1)× F (f2)

)−1(
Rel(F)(S)

)
.

In particular relation lifting preserves graph relations: Rel(F)(Graph(f)) = Graph(F (f)),
since Graph(f) = (f × id)−1(Eq(Y))

� ,2 // X × Y for f : X → Y .

Proof. Split epis are “absolute”: they are preserved by any functor F , see Lemma 2.1.7.
As a result, equality and coproducts are preserved, see Proposition 4.4.2 and Exercise 4.4.3.
Hence we concentrate on the second part of the proposition and assume that the functor F
preserves weak pullbacks. We shall write sections tR in a factorisation:

F (R) eR
� ,2

〈F (r1), F (r2)〉 **TTTTTTTTTTTTTT Rel(F)(R)_��
〈r′1, r′2〉
��

jj

tR
uu

F (X)× F (Y)

where eR ◦ tR = id.

We then get 〈F (r1), F (r2)〉 ◦ tR = 〈r′1, r′2〉, and thus F (ri) ◦ tR = r′i, because eR is a
(split) epi:

〈F (r1), F (r2)〉 ◦ tR ◦ eR = 〈r′1, r′2〉 ◦ eR ◦ tR ◦ eR = 〈r′1, r′2〉 ◦ eR.

We first show that Rel(F) preserves composition of relations. We use pullbacks P and
Q as in the proof of Proposition 4.4.2. Because F preserves weak pullbacks we obtain a
map ϕ in:

Q
q2

//

q1

��

ϕ

&&NNNNNNN Rel(F)(S)
tS

��

Rel(F)(R)

tR ,,

F (P)
F (p2)

//

F (p1)
��

F (S)

F (s1)
��

F (R)
F (r2)

// F (Y)

Thus we obtain a diagonal:

Q
d � ,2

ϕ
��

Rel(F)(S) ◦ Rel(F)(R)_��

��~~|
|

|
|

|
|

|
|

|
|

|
|

|

F (P)

F (e)
_��

F (S ◦ R)

_��
Rel(F)(S ◦ R) � ,2 // F (X)× F (Z)

Preservation of inverse images is obtained as follows. Consider the pullback
(
F (f1)×

DRAFT

4.4. Relation lifting, categorically 1534.4. Relation lifting, categorically 1534.4. Relation lifting, categorically 153

F (f2)
)−1(

Rel(F)(S)
)

written simply as • in:

F
(
(f1 × f2)−1(S)

)
//

""

g
��
�
�
�

F (S)

_��
•_��

��

_�
//

h
WW

�

�

Rel(F)(S)_��

��

F (X1)× F (X2)
F (f1)× F (f2)

// F (Y1)× F (Y2)

The map g is obtained because the lower square is a pullback. And h arises because F pre-
serves weak pullbacks (and the map F (S) � ,2 Rel(F)(S) is a split epi). Then g ◦ h = id,
because the lower square is a (proper) pullback, so that g is split epi. From Exercise 4.4.2
we can conclude that we have an appropriate factorisation giving • ∼= Rel(F)

(
(f1 ×

f2)−1(S)
)
, as required.

4.4.4. Corollary. Assume F is a weak-pullback-preserving functor on a category with a
logical factorisation system (M,E) satisfying E ⊆ SplitEpis . Then:

R is an equivalence relation =⇒ Rel(F)(R) is an equivalence relation.

Writing EqRel(R) for the category of equivalence relationsR � ,2 // X ×X, we get an obvi-
ous restriction of the relation lifting functor Rel(F) to EqRel(F) in:

EqRel(C)

��

EqRel(F)
// EqRel(C)

��

C
F

// C

Proof. The fact that R � ,2 // X ×X is an equivalence relation can be expressed via three
inequalities ∆ = Eq(X) ≤ R and R† ≤ R and R ◦ R ≤ R. By the previous result
relation lifting Rel(F) preserves equality, reversal and composition, making Rel(F)(R)
and equivalence relation.

The next definition captures some essential properties of the lifted functor Rel(F).
Subsequently, a close connection with weak-pullback-preserving functors is established.

4.4.5. Definition. Let C be a category with a logical factorisation system (M,E). A re-
lator for a functor F : C → C, also known as an F -relator, is a functor H : Rel(C) →
Rel(C) that makes the following diagram commute

Rel(C)

��

H // Rel(C)

��

C× C
F × F

// C× C

and preserves equality relations, relation reversal, relation composition, and graph rela-
tions. (The latter means H(Graph(f)) = Graph(F (f)) and thus links H and F .)

There is some disagreement in the literature about the precise definition of an F -relator,
see for instance [409, 376], but the most reasonable requirements seem to be precisely
those that yield the equivalence with weak-pullback-preservation by F in the next result.
Often these relators are defined with respect to a category with relations as morphisms, like
SetsRel in Example 1.4.2 (vii). But the category Rel(C) with relations as objects (that we

DRAFT

154 Chapter 4. Logic, Lifting, and Finality154 Chapter 4. Logic, Lifting, and Finality154 Chapter 4. Logic, Lifting, and Finality

use) seems more natural in this context, for instance, because it contains bisimulations as
coalgebras (see below). The situation is compared, in the set-theoretic case, more explicitly
in Corollary 5.2.8 later on.

The essence of the following result comes from [411] and [88]. It applies in particu-
lar for C = Sets. A generalisation in enriched categories may be found in [71] (using
preservation of exact squares instead of preservation of weak pullbacks).

4.4.6. Theorem. Assume a functor F : C → C, where the category C carries a logical
factorisation system (M,E) with E ⊆ SplitEpis . Then: F has a relator if and only if F
preserves weak pullbacks.

Moreover, this relator, if it exists, is uniquely determined.

Proof. Proposition 4.4.3 tells us that Rel(F) is a relator if F preserves weak pullbacks.
Conversely, assume H is an F -relator. We use make extensive use of the equations in
Exercise 4.4.4 for showing that F preserves weak pullbacks. So assume we have a weak
pullback on the left below, and a pair of maps a, b making the outer diagram on the right
commute.

V

h
��

k // Y

g
��

X
f
// Z

A

a

$$

b

''

F (V)

F (h)
��

F (k)
// F (Y)

F (g)
��

F (X)
F (f)

// F (Z)

Commutation of this diagram means:

> ≤ 〈F (f) ◦ a, F (g) ◦ b〉−1(Eq(F (Z)))

= 〈a, b〉−1(F (f)× F (g))−1
(
Eq(F (Z))

)

= 〈a, b〉−1
(
Eq(F (f), F (g))

)

= 〈a, b〉−1
(
H(Eq(f, g))

)
,

(∗)

where the latter equation holds because in Exercise 4.4.4 equality is formulated in terms of
graphs, composition and reversal, namely as: Eq(f, g) = Graph(g)† ◦ Graph(f). The
two graph relations involved are obtained via pullbacks in:

Graph(f)
m2 //

_��
〈m1,m2〉

��

� Z��
∆
��

Graph(g)
n2 //

_��
〈n1, n2〉

��

� Z��
∆
��

X × Z
f × id

// Z × Z Y × Z
g × id

// Z × Z

And the relation composition Graph(g)† ◦ Graph(f) = Eq(f, g) results from the follow-
ing pullback and image.

P
p2

//

p1

��

_� Graph(g)
n1 //

n2

��

Y

Graph(f) m2

//

m1

��

Z

X

P
e � ,2

〈m1 ◦ p1, n1 ◦ p2〉
��

??????????? Eq(f, g)_��

〈r1, r2〉
��

X × Y

DRAFT

4.4. Relation lifting, categorically 1554.4. Relation lifting, categorically 1554.4. Relation lifting, categorically 155

We then have:

f ◦ m1 ◦ p1 = m2 ◦ p1 = n2 ◦ p2 = g ◦ n1 ◦ p2.

This line of reasoning started with a weak pullback. It yields a map c : P → V , not
necessarily unique, with h ◦ c = m1 ◦ p1 and k ◦ c = n1 ◦ p2. The image factorisation
on the left below then gives a diagonal on the right:

V_��

> = id
��

d � ,2
∐
〈h,k〉(>)

_��

`
��

V 〈h, k〉
// X × Y

P

c
��

e � ,2 Eq(f, g)_��

〈r1, r2〉

��zzt
t

t
t

t
t

t
t

t

V

d_��∐
〈h,k〉(>) � ,2

`
// X × Y

Thus we have an inequality Eq(f, g) ≤ ∐
〈h,k〉(>). Using the equation

∐
〈h,k〉(>) =

Graph(k) ◦ Graph(h)† from Exercise 4.4.4 we can continue the reasoning from (∗) in:

> ≤ 〈a, b〉−1
(
H(Eq(f, g))

)

≤ 〈a, b〉−1
(
H(
∐
〈h,k〉(>))

)

= 〈a, b〉−1
(
H(Graph(k) ◦ Graph(h)†)

)

= 〈a, b〉−1
(
Graph(F (k)) ◦ Graph(F (h))†

)

= 〈a, b〉−1
(∐
〈F (h),F (k)〉(>)

)
.

This inequality can be described diagrammatically as:

F (V)_��
> = id

��

d′
� ,2
∐
〈F (h),F (k)〉(>)

_��
`′
��

soo
A_��

id = >
��

j
oo_ _ _ _ _ _

F (V)
〈F (h), F (k)〉

// F (X)× F (Y) A〈a, b〉
oo

where s satisfies d′ ◦ s = id, using that d′ is a split epi. The resulting map s ◦ j : A →
F (V) is the mediating map that proves that F preserves weak pullbacks:

〈F (h), F (k)〉 ◦ s ◦ j = `′ ◦ d′ ◦ s ◦ j = `′ ◦ j = 〈a, b〉.

Finally, via the equations in Exercise 4.4.4 and the preservation properties of relators
we can prove uniqueness: one gets H = Rel(F) from:

H(R) = H
(

Graph(r2) ◦ Graph(r1)†
)

= H
(
Graph(r2)

)
◦ H

(
Graph(r1)†

)

= H
(
Graph(r2)

)
◦ H

(
Graph(r1)

)†

= Graph(F (r2)) ◦ Graph(F (r1))†

= Rel(F)
(
Graph(r2)

)
◦ Rel(F)

(
Graph(r1)

)†

= · · · = Rel(F)(R).

Exercises

4.4.1. Verify that composition of relations as defined categorically in (4.9) is in the set-theoretic
case, with M = (injections) and E = (surjections), the same as ordinary composition of
relations.

DRAFT

156 Chapter 4. Logic, Lifting, and Finality156 Chapter 4. Logic, Lifting, and Finality156 Chapter 4. Logic, Lifting, and Finality

4.4.2. Prove that split epis are orthogonal to all monos (where orthogonality is defined in Exer-
cise 4.3.5).
Conclude that E ⊆ SplitEpis , for a logical factorisation system (M,E), implies E =
SplitEpis .

4.4.3. Use functoriality of relation lifting to obtain:
(i)

∐
F (f)×F (g)(Rel(F)(R)) ≤ Rel(F)(

∐
f×g(R))

(ii) Rel(F)((f × g)−1(R)) ≤ (F (f)× F (g))−1(Rel(F)(R)).
Prove that the inequality ≤ in (i) is an equality = if the functor F preserves abstract epis.

4.4.4. Assume a category C with a logical factorisation system (M,E). Show that graph relations,
composition and reversal are fundamental, in the sense that:
(i) Eq(f, g)

def
= 〈f, g〉−1(Eq(Z)) = Graph(g)† ◦ Graph(f), for f : X → Z and

g : Y → Z.
And if E ⊆ SplitEpis , show that:
(ii) R = Graph(r2) ◦ Graph(r1)†, for 〈r1, r2〉 : R � ,2 // X × Y ;
(iii) Im(〈h, k〉) def

=
∐
〈h,k〉(>) = Graph(k) ◦ Graph(h)†, for h : V → X and k : V →

Y .

4.4.5. Use the pullback in Exercise 4.3.3 to define a lifting EnRel(F) : EnRel(C)→ EnRel(C)
of an endofunctor on C to an endofunctor on endorelations in C. Describe in detail how
this functor works.

4.4.6. Let C be a category with a logical factorisation system (M,E).
(i) Show that a natural transformation σ : F ⇒ G gives rise to a “lifted” natural transfor-

mation Rel(σ) : Rel(F)⇒ Rel(G) in:

Rel(C)

Rel(F)
,,

Rel(G)

22

��

⇓ Rel(σ) Rel(C)

��

C
F × F

++

G×G
33⇓ σ × σ C

(ii) Prove that relation lifting is functorial, in the sense that it preserves identity natural
transformations Rel(idF) = idRel(F) and composition of natural transformations:
Rel(τ ◦ σ) = Rel(σ) ◦ Rel(τ).

(iii) Show that for two arbitrary endofunctors F,G : C→ C, there is a natural transforma-
tion Rel(FG)⇒ Rel(F)Rel(G).

4.5 Logical bisimulations

In the preceding sections we have first developed a general form of categorical logic us-
ing factorisation systems, and subsequently used this logic to introduce liftings Rel(F) of
functors F to relations. This enables us to describe F -bisimulations as Rel(F)-coalgebras,
like Lemma 3.2.4, in but at a much more general level (not only for polynomial functors,
not only on Sets).

4.5.1. Definition. Consider a functor F : C→ C on a category C with a logical factorisa-
tion system, together with the resulting lifting Rel(F) : Rel(C) → Rel(C) as described in
Definition 4.4.1.

In this setting a logical F -bisimulation is a Rel(F)-coalgebra. It thus consists of a
relation R � ,2 // X × Y with a pair of morphisms (coalgebras) c : X → F (X), d : Y →
F (Y) in C forming a morphism in the category Rel(C):

R_��

��

//________ Rel(F)(R)_��

��

X × Y
c× d

// F (X)× F (Y)

DRAFT

4.5. Logical bisimulations 1574.5. Logical bisimulations 1574.5. Logical bisimulations 157

For the record we add that a logical F -congruence is a Rel(F)-algebra.
As a special case a coalgebra of the functor EnRel(F) : EnRel(C)→ EnRel(C) from

Exercise 4.4.5 is a bisimulation on a single coalgebra. It is an endorelation itself.

The notion of Rel(F)-coalgebra thus already contains the two underlying coalgebras.
It is more common that these two coalgebras c, d are already given and that a bisimulation
is a relation R on their state spaces so that the pair (c, d) is a morphism R → Rel(F)(R)
in Rel(C). This is just a matter of presentation.

As is to be expected, equality relations are bisimulations. This can be formulated more
abstractly as a lifting property, using the category EnRel(C) of endorelations from Exer-
cise 4.3.3.

4.5.2. Lemma. Assume an endofunctor F : C→ C on a category C with a logical factori-
sation system. For each coalgebra c : X → F (X) the equality relation Eq(X)

� ,2 // X ×X
on its state is a bisimulation.

As a result there is a lifting of the equality functor in:

CoAlg(F)

��

Eq(−)
// CoAlg(EnRel(F))

��

C
Eq(−)

//

F

YY
EnRel(C)

EnRel(F)

GG

This lifting sends:

(
X

c // F (X)
)
7−→

Eq(X)_��
��

// Eq(F (X))
�)

%%KKKKK ≤ Rel(F)(Eq(X))6v�

{{vvvvvv

X ×X c× c
// F (X)× F (X)

where we use that the functor Rel(F) and EnRel(F) coincide on endorelations.

A similar lifting for algebras is more complicated, because in general, there is only
an inequality Eq(F (X)) ≤ Rel(F)(Eq(X)), see Proposition 4.4.2 (iii). But under addi-
tional assumptions guaranteeing Eq(F (X)) = Rel(F)(Eq(X)) there is also a lifted func-
tor Eq(−) : Alg(F) → Alg(EnRel(F)). These additional assumptions are for instance
that diagonals are abstract monos, or F preserves abstract epis.

In a next step we wish to compare notions of bisimulation (like in [401]):

• the above logical one involving a coalgebra R→ Rel(F)(R) in Rel(C);

• the span-based formulation, with the Aczel-Mendler notion involving a coalgebra
R→ F (R) in C as special case;

• the cospan-based formulation, also known as behavioural equivalence.

Earlier, in Theorems 3.3.2 and 3.3.3 it was shown that these notions coincide in the more
restricted context of polynomial functors on Sets. In the present general setting they
diverge—but they still coincide in Sets, for weak-pullback-preserving functors.

4.5.3. Theorem. In the setting of Definition 4.5.1, with a logical factorisation system
(M,E) on a category C, there are the following implication arrows between notions of

DRAFT

158 Chapter 4. Logic, Lifting, and Finality158 Chapter 4. Logic, Lifting, and Finality158 Chapter 4. Logic, Lifting, and Finality

bisimulation.

Aczel-
Mendler

##

��

cospan of
coalgebra maps

(behavioural equivalence)

i3 22

logical
bisimulation

i1
cc

span of
coalgebra maps

;;

i2
ff

With additional side-conditions:i1 abstract epis are split, i.e. E ⊆ SplitEpis

i2 the category C has pushouts

i3 the functor F preserves weak pullbacks and diagonals ∆ = 〈id, id〉 are in M—or
equivalently, E ⊆ Epis , see Exercise 4.3.5 (vi).

Proof. Clearly an Aczel-Mendler bisimulation R → F (R) on coalgebras c : X → F (X)
and d : Y → F (Y) forms a span of coalgebra maps X ← R→ Y . This implication is the
(vertical) downarrow in the middle.

For the other unlabelled (unconditional) implication starting from an Aczel-Mendler
bisimulation, assume the relation is 〈r1, r2〉 : R � ,2 // X × Y , carrying a coalgebra R →
F (R) as on the left below. It gives rise to a Rel(F)-coalgebra on the right via the fac-
torisation that defines Rel(F)(R).

R_��

〈r1, r2〉
��

// F (R)

〈F (r1), F (r2)〉
��

R_��

��

//
**k j h f d c a _] [Z X V

F (R) � ,2

〈F (r1), F (r2)〉
��

Rel(F)(R)@z�

vv

X × Y
c× d

// F (X)× F (Y) X × Y
c× d

// F (X)× F (Y)

(Here we assume that the relation R is already in M; if not, we have to consider it as a
proper span and factorise it first, see below.)

In the other direction, for the implication with label/condition i1 , assume a coalgebra
(c, d) : R → Rel(F)(R) in Rel(C) as in the outer diagram on the right above. If the
abstract epi F (R) � ,2 Rel(F)(R) is split, we obtain a map R → Rel(F)(R) → F (R)
yielding a commuting diagram as on the left.

Next assume a general span of coalgebra maps:

(
F (X)
↑ c
X

) (
F (W)
↑ b
W

)
f
oo

g
//

(
F (Y)
↑ d
Y

)

Clearly if the category C has pushouts, then so has the category CoAlg(F). The pushout
of this diagram forms a cospan of coalgebras. This establishes the implication i2 .

For the span above we consider the two factorisations of 〈f, g〉 and 〈F (r1), F (r2)〉 in
the diagram below. They make the image Im(〈f, g〉) a logical bisimulation via diagonal-

DRAFT

4.5. Logical bisimulations 1594.5. Logical bisimulations 1594.5. Logical bisimulations 159

fill-in:

F (W)

F (e)
��

W

e
_��

b
33hhhhhhhhhhhhhhhhhhhhhGF

@A
〈f, g〉

//

F (Im(〈f, g〉))

_��

ED

BC
〈F (r1), F (r2)〉

oo

Im(〈f, g〉)_��
〈r1, r2〉

��

//______ Rel(F)(Im(〈f, g〉))_��

��

X × Y
c× d

// F (X)× F (Y)

Finally, for the implication with condition i3 assume we have a cospan of coalgebra
maps:

(
F (X)
↑ c
X

)
f
//

(
F (W)
↑ b
W

) (
F (Y)
↑ d
Y

)
g
oo

We claim that the pullback below on the left gives rise to a coalgebra map on the right.

R_��

〈p1, p2〉
��

//

� W��

∆ = 〈id, id〉
��

R_��

〈p1, p2〉
��

c // F (R)

〈F (p1), F (p2)〉
��

X × Y
f × g

// W ×W X × Y
c× d

// F (X)× F (Y)

By construction the pairX
p1←− R p2−→ Y is the pullback of f, g. Hence becauseF preserves

weak pullbacks there is a (not necessarily unique) map c : R→ F (R) in:

R
p2

//

p1

��

c

""E
E

E
E Y d

""

X

c ((

F (R)

F (p1)
��

F (p2)
// F (Y)

F (g)
��

F (X)
F (f)

// F (W)

It is precisely the map we seek.

After this analysis of the abstract situation we become more concrete and characterise
(logical) bisimulation for the two endofunctors from Section 4.1, namely multiset MM

(for a commutative monoid M) and distribution D, both on Sets. We follow [420] where
it was first shown that bisimulation equivalence for the distribution functor coincides with
the (non-coalgebraic) formulation developed by Larsen and Skou [301].

For a relation 〈r1, r2〉 : R ↪→ X × Y the relation lifting Rel(MM)(R) ⊆ MM (X)×
MM (Y) is the image in Sets in the diagram:

MM (R)

〈MM (r1),MM (r2)〉 **TTTTTTTTTTTTTTTTT
// // Rel(MM)(R)

��

��

MM (X)×MM (Y)

DRAFT

160 Chapter 4. Logic, Lifting, and Finality160 Chapter 4. Logic, Lifting, and Finality160 Chapter 4. Logic, Lifting, and Finality

We can describe this image concretely as:

Rel(MM)(R) = {(ϕ,ψ) ∈MM (X)×MM (Y) | ∃χ ∈MM (R).

MM (r1)(χ) = ϕ ∧MM (r2)(χ) = ψ}
= {(MM (r1)(χ),MM (r2)(χ)) | χ ∈MM (R)}
= {(∑imixi,

∑
imiyi) |

∑
imi(xi, yi) ∈MM (R)}.

Thus, this relationR is a (logical) bisimulation for twoMM -coalgebras c : X →MM (X)
and d : Y → MM (Y) if for each pair (x, y) ∈ R there is multiset

∑
imi(xi, yi) over R

with c(x) =
∑
imixi and d(x) =

∑
imiyi.

It is not hard to see that bisimulations for the distribution functor D take precisely
the same form, except that the multiplicities mi must be in in the unit interval [0, 1] and
add up to 1. For the distribution functor there is an alternative description of bisimulation
equivalences (i.e. for relations that are at the same time bisimulations and equivalence
relations).

4.5.4. Proposition (From [420]). Assume two coalgebras c, d : X → D(X) of the distri-
bution functor, with the same state space X . An equivalence relation R ⊆ X ×X is then a
logical bisimulation forD-coalgebras c, d if and only ifR is a “probabilistic bisimulation”
(as defined in [301]): for all x, y ∈ X ,

R(x, y) =⇒ c(x)[Q] = d(y)[Q], for each R-equivalence class Q ⊆ X

(where for ϕ ∈ D(X) and U ⊆ X we write ϕ[U] =
∑
x∈U ϕ(x)).

Proof. First, assume R is a bisimulation equivalence with R(x, y). As described above,
there is then a formal distribution χ =

∑
i ri(xi, yi) ∈ D(X ×X) with R(xi, yi) for each

i, and c(x) =
∑
i rixi and d(y) =

∑
i riyi. Now let Q ⊆ X be an R-equivalence class.

Then xi ∈ Q iff yi ∈ Q, since R(xi, yi), and thus:

c(x)[Q] =
∑
xi∈Q ri =

∑
yi∈Q ri = d(y)[Q].

Conversely, assume R is a probabilistic bisimulation with R(x, y). We write c(x) =∑
i rixi and d(y) =

∑
j sjyj . For each xi and yj in this sum, for which R(xi, yj) holds,

there is an equivalence class:

Qi,j
def
= [xi]R = [yj]R.

By assumption, c(x)[Qi,j] = d(y)[Qi,j]. These sums, say ti,j ∈ [0, 1], are non-zero
because by definition of xi ∈ supp(c(x)) and yj ∈ supp(d(y)). We now define χ ∈
D(X ×X) by:

χ(u, v) =

c(x)(xi) · d(y)(yj)

ti,j
if (u, v) = (xi, yj) and R(xi, yj)

0 otherwise.

We then have for xi ∈ supp(c(x))

D(π1)(χ)(xi) =
∑

j,R(xi,yj)

χ(xi, yj)

=
∑

j,R(xi,yj)

c(x)(xi) · d(y)(yj)

ti,j

= c(x)(xi) ·
∑
j,R(xi,yj) d(y)(yj)

ti,j
= c(x)(xi).

DRAFT

4.5. Logical bisimulations 1614.5. Logical bisimulations 1614.5. Logical bisimulations 161

Similarly, D(π2)(χ) = d(y). Finally, the probabilities in χ add up to 1 since:
∑

i,j,R(xi,yj)

χ(xi, yj) =
∑

i

∑

j,R(xi,yj)

χ(xi, yj)

=
∑

i

c(x)(xi) as just shown

= 1.

4.5.1 Logical formulations of induction and coinduction

Earlier, in Theorem 3.1.4 we have stated that the familiar induction principle for initial
algebras can be formulated in “binary” form as: every congruence on the initial algebra is
reflexive (i.e. contains the equality relation). In the present setting we can formulate this
induction principle in far more general logical form, as preservation properties.

For the validity of these logical formulations we need the assumption that relation lift-
ing preserves equality: Eq(F (X)) = Rel(F)(Eq(X)). Recall from Proposition 4.4.2 (iii)
that in general only the inequality ≤ holds. This property is used in the algebraic case to
guarantee that equality lifts to a functor Eq(−) : Alg(F)→ Alg(EnRel(F)), analogously
to Lemma 4.5.2, turning equality relations on carriers of algebras into logical congruences.

But first we have a quite general result.

4.5.5. Theorem. Assume an endofunctor F : C → C, on a category C with a logical
factorisation system, which has an initial algebra α : F (A)

∼=→ A. Then each logical
congruence is reflexive.

More precisely, suppose we have two arbitrary algebras a : F (X)→ X and b : F (Y)→
Y and a relation 〈r1, r2〉 : R � ,2 // X × Y . Assume this R is a logical congruence, in the
sense that the pair (a, b) forms an algebra Rel(F)(R) → R in the category Rel(C) of
relations. Then there is a map Eq(A)→ R in Rel(C), namely:

Eq(A)_��

��

//_______ R_��
〈r1, r2〉
��

A×A
inta × intb

// X × Y

where inta : A → X and intb : A → Y are the algebra homomorphisms obtained by
initiality.

Proof. Exercise 4.5.1 says that the fact that R is a logical congruence may be described
via a (necessarily unique) algebra structure c : F (R) → R with 〈r1, r2〉 ◦ c = (a × b) ◦
〈F (r1), F (r2)〉, as in the rectangle on the right, below. It yields an algebra map intc : A→
R on the left, in:

F (A)

∼=
��

F (intc)
//________ F (R)

c
��

〈F (r1), F (r2)〉
// F (X)× F (Y)

a× b
��

A
intc

//__________ R // 〈r1, r2〉
// X × Y

By uniqueness we then get r1 ◦ intc = inta and r2 ◦ intc = intb in:

X

A
intc //

inta ..

intb
00

R
r1

77ooooooooo
r2

''OOOOOOOOO

Y

DRAFT

162 Chapter 4. Logic, Lifting, and Finality162 Chapter 4. Logic, Lifting, and Finality162 Chapter 4. Logic, Lifting, and Finality

But then we obtain the map of relations Eq(A)→ R via diagonal-fill-in:

A
� ,2

intc

��

Eq(A)_��

��

||y
y

y
y

y
y

y
y

A×A
inta × intb
��

R
� ,2
〈r1, r2〉

// X × Y

If we restrict ourselves to endorelations (on the same object) then we can formulate this
binary induction principle more abstractly as a preservation property (like in [205]).

4.5.6. Corollary. Assuming relation lifting preserves equality, the lifted equality functor
Eq(−) : Alg(F)→ Alg(EnRel(F)) preserves initial objects.

Thus: if F (A)
∼=→ A is initial in the category Alg(F), then the logical congruence

Eq(A) � ,2 // A×A is initial in Alg(EnRel(F)), i.e. is the initial logical congruence.

Proof. Assume an EnRel(F)-algebra b : EnRel(F)(R) → R, given by an F -algebra
b : F (X) → X and a logical congruence relation 〈r1, r2〉 : R � ,2 // X ×X. Theorem 4.5.5
gives the unique map of relations intb : Eq(A)→ R in the category EnRel(C) of endorela-
tions. This makes Eq(A) initial in Alg(EnRel(F)). Hence the functor Eq(−) : Alg(F)→
Alg(EnRel(F)) preserves initial objects.

The formulation “Eq(−) : Alg(F) → Alg(EnRel(F)) preserves initial objects” is
used as definition in [205]; it expresses that the logic involved satisfies the induction princi-
ple. The above result says that under mild assumptions (relation lifting preserves equality)
the logic given by a logical factorisation system indeed satisfies the induction principle.
In [205] logics are described more generally in terms of fibrations. Then it is shown that
the crucial structure for this result is comprehension {−}. It is built into the kind of logics
we consider here, see Section 4.3.

A bit more concretely, suppose we have a relation R ⊆ A? × A? on the initial algebra
A? of lists over a set A. Assume R(nil,nil) and R(σ, σ′) ⇒ R(cons(a, σ), cons(a, σ′))
hold. These two assumptions express that R is a logical congruence, for the (initial) al-
gebra [nil, cons] : 1 +A×A? ∼=−→ A?. The previous corollary then says that R must be
reflexive, i.e. that R(σ, σ) holds for all σ ∈ A?.

We turn to a similar logical formulation of coinduction. We can say, still following
the approach of [205], that the coinduction principle is satisfied if the equality functor
Eq(−) : CoAlg(F) → CoAlg(EnRel(F)) from Lemma 4.5.2 preserves final objects.
This is not automatically the case. The crucial structure we now need are quotients (instead
of comprehension). We briefly explain how this works.

4.5.7. Definition. Assume a category C with a logical factorisation system. We say that
it admits quotients if the equality functor Eq(−) : C → EnRel(C) has a left adjoint,
typically written as Q.

Intuitively, the above functor Q sends an endorelation R � ,2 // X ×X to the quotient
X/R, where R is the least equivalence relation containing R. Exercise 4.5.5 will describe
some conditions guaranteeing the existence of such quotients Q.

4.5.8. Theorem. Assume a logical factorisation system with quotients on a category C,
and an endofunctor F : C → C whose relation lifting Rel(F) preserves equality. Then
the coinduction principle holds: the functor Eq(−) : CoAlg(F) → CoAlg(EnRel(F))
from Lemma 4.5.2 preserves final objects.

DRAFT

4.5. Logical bisimulations 1634.5. Logical bisimulations 1634.5. Logical bisimulations 163

Proof. Assume a final F -coalgebra ζ : Z
∼=→ F (Z). We have to prove that equality Eq(Z)

on its carrier is the final logical bisimulation. So let R � ,2 // X ×X be an arbitrary logical
bisimulation on a coalgebra c : X → F (X). We have to produce a unique map of Rel(F)-
coalgebras:

(
R

c // Rel(F)(R)
)

//

(
Eq(Z)

ζ
// Rel(F)(Eq(Z))

)

Since such a map is by definition also a map in c → ζ in the category CoAlg(F) it
can only be the unique map behc : X → Z to the final coalgebra. Hence our task is
reduced to showing that behc is a map of relations R → Eq(Z). But since Eq(−) is right
adjoint to quotients Q we need to find a map Q(R) → Z. It arises by finality as soon
as the object Q(R) carries an F -coalgebra structure Q(R) → F (Q(R)). Again we use
the adjunction Q a Eq(−) to obtain such a coalgebra map. It suffices to have a map of
relations R → Eq(F (Q(R))). The latter is obtained as from the unit η : R → Eq(Q(R))
of the adjunction, using that relation lifting preserves equality:

R
c // Rel(F)(R)

Rel(F)(η)
// Rel(F)(Eq(Q(R))) = Eq(F (Q(R))).

Exercises

4.5.1. Let F be an endofunctor an a category C with a logical factorisation system. Assume
algebras a : F (X)→ X and b : F (Y)→ Y and a relation 〈r1, r2〉 : R � ,2 // X × Y . Prove
(a, b) is a Rel(F)-algebra Rel(F)(R)→ R in Rel(C)—makingR a logical congruence—
if and only if the object R ∈ C carries an F -algebra c : F (R) → R making the ri algebra
homomorphisms in:

F (X)

a
��

F (R)

c
��

F (r1)
oo

F (r2)
// F (Y)

b
��

X Rr1

oo
r2

// X

Check that this algebra c, if it exists, is unique.

4.5.2. Generalise Lemma 4.5.2 in the following manner. Assume an endofunctor F : C → C on
a category C with a logical factorisation system. Consider two coalgebra homomorphisms
f, g with the same domain. Prove that the image Im(〈f, g〉) =

∐
〈f,g〉(>) is a logical

bisimulation.

4.5.3. Assume two coalgebras X c→ F (X), Y
d→ F (Y) of an endofunctor F : C → C on a cat-

egory C with a logical factorisation system.
(i) Prove that a relation R

� ,2 // X × Y is a logical bisimulation for c, d if and only if∐
c×d(R) ≤ Rel(F)(R).

(ii) Assume that posets of relations have arbitrary joins
∨

. Prove that logical bisimulations
are closed under

∨
, in the sense that if eachRi is a logical bisimulation, then so

∨
iRi.

[Hint. Use that
∐
c×d, as left adjoint, preserves joins.]

This shows that bisimilarity↔, as join of all bisimulations, is a bisimulation itself.

4.5.4. Use Exercise 4.4.3 (i) to prove that for coalgebra homomorphisms f, g one has: if R is a
bisimulation, then so is

∐
f×g(R).

4.5.5. Consider a category C with a logical factorisation system (M,E) with diagonals ∆ =
〈id, id〉 contained in M. Prove that if C has coequalisers, then its logic admits quotients—
in the sense of Definition 4.5.7.

[Hint. Define the functor Q : EnRel(C) → C via the coequaliser of the two legs of a
relation.]

DRAFT

164 Chapter 4. Logic, Lifting, and Finality164 Chapter 4. Logic, Lifting, and Finality164 Chapter 4. Logic, Lifting, and Finality

4.5.6. Assume a logical factorisation system with quotients on a category C, and an endofunctor
F : C → C whose relation lifting Rel(F) preserves equality. Prove that a bisimulation
R

� ,2 // X ×X on a coalgebra c : X → F (X) yields a quotient coalgebra c/R : Q(R) →
F (Q(R)) and a map of coalgebras:

F (X)
F (q)

// F (Q(R))

X

c
OO

q
// Q(R)

c/R
OO

This construction makes explicit what is used in the proof of Theorem 4.5.8; it generalises
Theorem 3.3.4 (i).

4.6 Existence of final coalgebras

Final coalgebras have already been used at various places in this text. They have been
described explicitly for a number of special functors, like for functors (−)A × B for de-
terministic automata in Proposition 2.3.5. Often it is interesting to see what the elements
of such final coalgebras are, but in actually using final coalgebras their universal property
(i.e. finality) is most relevant. Hence what is most important to know is whether or not a
final coalgebra exists. Theorem 2.3.9 has mentioned, without proof, that a final coalgebra
exists for each finite Kripke polynomial functor. It is the main aim in this section to prove
a general result about the existence of final coalgebras in Sets, which implies the earlier
mentioned Theorem 2.3.9. This general result says: bounded endofunctors on Sets have
final coalgebras.

In this section we only consider final coalgebras for endofunctors on sets. There are
more general results, applying to other categories. For instance, [430] shows that any
accessible endofunctor on a locally presentable category admits a final coalgebra. Such
results go beyond this introductory text. There is an extensive literature on final coalge-
bras [398, 11, 55, 267, 14, 17, 23, 430, 378, 165, 371, 160] that can be consulted for further
information. The last two references [371, 160] describe a “logical” construction of final
coalgebras, via modal formulas (known as canonical models, in modal logic).

The section starts with a generalisation of the familiar construction of obtaining least
fixed points of continuous endofunctions on directed complete posets (dcpo). It serves as
suitable introduction to the topic.

First we recall the basic fixed point constructions for directed complete partial orders
(dcpos). Assume D is a dcpo with a least element ⊥ ∈ D, and f : D → D is a continuous
function—that is an endo map in Dcpo, so f is not required to preserve ⊥. The least fixed
point µf ∈ D can then be defined as join of an ascending ω-chain of elements in D:

⊥ ≤ f(⊥) ≤ f2(⊥) ≤ f3(⊥) ≤ · · · ≤ µf =
∨

n∈N
fn(⊥),

where f0(x) = x and fn+1(x) = f
(
fn(x)

)
. By continuity one obtains f(µf) =∨

n f(fn(⊥)) =
∨
n f

n+1(⊥) = µf . It is easy to see that µf is the least fixed point,
or, better, the least pre-fixed point: if f(x) ≤ x, then µ(f) ≤ x. By induction one obtains
fn(⊥) ≤ x, and thus µf =

∨
n f

n(⊥) ≤ x.
Aside: the Greek letter ω is often used in mathematical logic for the set N of natural

numbers (considered as ordinal). It is standard in this context.
Since each poset is a category and a monotone function between posets is a functor,

we can see f : D → D as a functor. The element µf is then the initial algebra. This
construction can be generalised to categories (as in [398, Lemma 2]), once the relevant
notions have been suitably extended, both for algebras and for coalgebras.

4.6.1. Proposition. Let F : C→ C be an arbitrary endofunctor.

DRAFT

4.6. Existence of final coalgebras 1654.6. Existence of final coalgebras 1654.6. Existence of final coalgebras 165

(i) Suppose the following ω-chain starting from the initial object 0 ∈ C has a colimit
A ∈ C.

0
! // F (0)

F (!)
// F 2(0)

F 2(!)
// F 3(0) // · · · // A

(4.10)

If the functor F is co-continuous, in the sense that it preserves colimits of ω-chains, then
there is an initial algebra structure F (A)

∼=−→ A.
(ii) Dually, assume there is a limit Z ∈ C of the chain starting at the final object 1 ∈ C.

1 F (1)
!oo F 2(1)

F (!)
oo F 3(1)

F 2(!)
oo · · ·oo Zoo (4.11)

If F is continuous (preserves ω-limits), then we get a final coalgebra Z ∼=−→ F (Z).

Proof. The two statements are each other’s duals and we choose to prove only the second
one; Exercise 4.6.1 elaborates on the first point. We shall make explicit what it means when
an object X is a limit of a diagram:

X0 X1

f1
oo X2

f2
oo X3

f3
oo . . .

f4
oo Xoo

It requires the presence of a ‘universal cone’: a collection of arrows (X
ζn−→ Xn)n∈N

satisfying fn+1 ◦ ζn+1 = ζn, with the following universal property. For each cone, given
by an object Y ∈ C with arrows gn : Y → Xn such that fn+1 ◦ gn+1 = gn, there is a
unique map h : Y → Z with ζn ◦ h = gn, for each n ∈ N. In a diagram:

X0 X1f1
oo X2f2

oo X3f3
oo . . .f4

oo · · · Z

ζ0

ww

ζ1

vv

ζ2
uu

Y

OO�
�
�
�
�
�

hg0WWWWWWWWWWWWWWWWWWWWWWWWWW

kkWWWWWWWWWWWWWWWWWWWWWWWWW g1UUUUUUUUUUUUUUUUUUUUU

jjUUUUUUUUUUUUUUUUUUUU g2RRRRRRRRRRRRRRR

hhRRRRRRRRRRRRRRR g3KKKKKKKKKK

. . .

eeKKKKKKKKKK

We now return to the situation in the proposition. Assume a limit (4.11) with maps
ζn : Z → Fn(1) satisfying Fn(!) ◦ ζn+1 = ζn. Applying F to the chain (4.11) and
its limit Z yields another chain (F (ζn) : F (Z) → Fn+1(1)) with limit F (Z). Using the
latter’s universal property yields an isomorphism ζ : Z

∼=−→ F (Z) with F (ζn) ◦ ζ = ζn+1.
It is a final coalgebra, since for an arbitrary coalgebra c : Y → F (Y) we can form a
collection of maps cn : Y −→ Fn(1) via:

c0 =
(
Y

!−→ 1
)

c1 =
(
Y

c−→ F (Y)
F (!)−→ F (1)

)
= F (c0) ◦ c

c2 =
(
Y

c−→ F (Y)
F (c)−→ F 2(1)

F 2(!)−→ F 2(1)
)

= F (c1) ◦ c
...

cn+1 = F (cn) ◦ c.

The maps cn commute with the arrows in the chain (4.11), which is easily seen by induc-
tion. This yields a unique map h : Y → Z with ζn ◦ h = cn. It forms a homomorphism of

DRAFT

166 Chapter 4. Logic, Lifting, and Finality166 Chapter 4. Logic, Lifting, and Finality166 Chapter 4. Logic, Lifting, and Finality

coalgebras, i.e. satisfies ζ ◦ h = F (h) ◦ c, by uniqueness of maps Y → F (Z) to the limit
F (Z):

F (ζn) ◦ ζ ◦ h = ζn+1 ◦ h
= cn+1

= F (cn) ◦ c
= F (ζn) ◦ F (h) ◦ c.

In order to make this ω-limit construction more concrete we consider some examples
in Sets. The following result is then useful.

4.6.2. Lemma. (i) In Sets limits of ω-chains exist, and are computed as follows. For a

chain
(
Xn+1

fn−→ Xn

)
n∈N the limit Z is a subset of the infinite product

∏
n∈NXn given

by:

Z = {(x0, x1, x2, . . .) | ∀n ∈ N. xn ∈ Xn ∧ fn(xn+1) = xn}.

(ii) Each exponent polynomial functor F : Sets → Sets—without powerset—is con-
tinuous.

Proof. (i) The maps ζn : Z → Xn are the n-th projections. The universal property
is easily established: given a set Y with functions gn : Y → Xn satisfying fn+1 ◦
gn+1 = gn, the unique map h : Y → Z with ζn ◦ h = gn is given by the ω-tuple
h(y) = (g0(y), g1(y), g2(y), . . .).

(ii) By induction on the structure of F , using that products, coproducts and (constant)
exponents preserve the relevant constructions.

4.6.3. Corollary. Each exponent polynomial functor F : Sets→ Sets has a final coalge-
bra, which can be computed as limit of an ω-chain like in (4.11).

We show how to actually (re)calculate one such final coalgebra.

4.6.4. Example. In Corollary 2.3.6 (ii) we have seen that the final coalgebra for a (simple
polynomial) functor F (X) = XA×2 can be described as the set 2A

?

= P(A?) = L(A) of
languages with alphabet A. Here we shall reconstruct this coalgebra as limit of an ω-chain.

Therefore we start by investigating what the chain (4.11) looks like for this functor F .

F 0(1) = 1 ∼= P(0)

F 1(1) = 1A × 2 ∼= 1× 2 ∼= 2 ∼= P(1)

F 2(1) ∼= 2A × 2 ∼= 2A+1 ∼= P(1 +A)

F 3(1) ∼=
(
2A+1

)A × 2 ∼= 2A×(A+1) × 2 ∼= 2A
2+A+1 ∼= P(1 +A+A2) etc.

One sees that:

Fn(1) ∼= P
(∐n−1

i=0 A
i
)
.

The maps Fn(!) : Fn+1(1) → Fn(1) in (4.11) are given by the inverse image κ−1
n of the

obvious coprojection function κn : 1 +A+ · · ·+An−1 −→ 1 +A+ · · ·+An−1 +An. An
element U ∈ Z of the limit Z as described in Lemma 4.6.2 (i) consists of elements Un ⊆
1+A+ · · ·+An−1 −→ 1+A+ · · ·+An−1, with the requirement that κ−1

n (Un+1) = Un.
The latter means that these Un+1 ⊆ 1 + A+ · · ·+ An−1 −→ 1 + A+ · · ·+ An−1 + An

can be identified with the set An of words of length n. Together they form a set of words,
or language, U ⊆ A?, like in the original description in Corollary 2.3.6 (ii).

DRAFT

4.6. Existence of final coalgebras 1674.6. Existence of final coalgebras 1674.6. Existence of final coalgebras 167

What we have done so far applies only to (co-)continuous endofunctors. But for in-
stance, the finite powerset is not continuous. Hence we shall need more powerful tech-
niques to cover a larger class of functors. This is done via the notion of a bounded func-
tor. It goes back to [267] and occurs regularly in the theory of coalgebras, see for in-
stance [378, 176]. Here we shall use it for the description of final coalgebras. We first
introduce the standard formulation, and then immediately introduce an equivalent alterna-
tive that is easier to work with in the current setting.

4.6.5. Definition. A functor F : Sets → Sets is called bounded if there is a set M such
that for each coalgebra X → F (X) and state x ∈ X there is a subcoalgebra on S ↪→ X
with x ∈ S, where S is strictly smaller than M , i.e. |S| < |M |.

We use the notation |X| for the cardinality of a set X . The notion of subcoalgebra
S ↪→ X will be investigated more systematically in the next chapter in terms of invariants.
Here the meaning should be obvious, namely a coalgebra S → F (S) making the inclusion
S ↪→ X a homomorphism of coalgebras.

4.6.6. Example. Here is an example of a bounded functor that will play an important role.
Deterministic automata are described as coalgebras of the functor D(X) = XA × B, for
suitable sets A,B. This functor is bounded by the set P(A?). Indeed, given an arbitrary
D-coalgebra 〈δ, ε〉 : X → XA × B with a state x ∈ X we can take as subset S ↪→ X the
set of successor states of x, given by:

S = {δ∗(x, α) | α ∈ A?},

where the iterated transition function δ∗ is introduced in (2.22). Clearly, x ∈ S for α = 〈〉.
Also, S is closed under transitions and thus carries a subcoalgebra structure. Finally, |S| ≤
|A?| < |P(A?|.

The following alternative description of bounded functors is a combination of results
from [410, 176, 27].

4.6.7. Proposition. For a functor F : Sets → Sets the following three statements are
equivalent.

(i) F is bounded;
(ii) F is accessible: there is a set M such that for each set X ,

F (X) =
⋃{F (U) | U ⊆ X and |U | < |M |};

(iii) There are sets A,B with a natural transformation:

(−)A ×B σ +3 F

where for each set X 6= ∅ the component σX : XA ×B → F (X) is surjective.

The equation in (ii) is intuitively clear but a bit sloppy, since we have omitted inclusion
functions i : U ↪→ X , which turn elements u ∈ F (U) into elements F (i)(u) ∈ F (X).

A functor that is bounded by the set N of natural numbers is called ω-accessible or fini-
tary These ω-accessible/finitary functors are thus entirely determined by their behaviour
on finite sets. They preserve ω-colimits, see Exercise 4.6.7, and thus have initial algebras.
As we shall see, they also have final coalgebras.

Proof. (i)⇒ (ii) Assume that F is bounded, say via the setM (as in Definition 4.6.5). This
same set can be used in the description of accessibility. The inclusion (⊇) in (ii) clearly
holds, so we concentrate on (⊆). If X = ∅ the result is obvious, so we may assume an
element x0 ∈ X . Let w ∈ F (X); it yields a constant coalgebra c = λx ∈ X.w : X →

DRAFT

168 Chapter 4. Logic, Lifting, and Finality168 Chapter 4. Logic, Lifting, and Finality168 Chapter 4. Logic, Lifting, and Finality

F (X). Since F is bounded by assumption, for the element x0 ∈ X there is a subcoalgebra
cS : S → F (S) of c, on a subset i : S ↪→ X with |S| < |M |, and an element y0 ∈ S
with i(y0) = x0. We claim that v = cS(y0) ∈ ⋃{F (U) | U ⊆ X and |U | < |M |} is the
required element that is mapped to w ∈ F (X):

F (i)(v) = F (i)(cS(y0))

= c(i(y0)) since cS is a subcoalgebra

= w.

(ii) ⇒ (iii) Assume that F is accessible, say via the set M . We take A = M and
B = F (M), and define σX : XM × F (M)→ F (X) as σX(f, b) = F (f)(b). It is easy to
see that σ is natural, so we concentrate on showing that σX is surjective for X 6= ∅.

Assume w ∈ F (X). By accessibility of F there is a subset i : U ↪→ X with |U | < |M |
and an element v ∈ F (U) with w = F (i)(v). Since |U | < |M | there is, by definition of
the cardinal order, an injection j : U �M . We distinguish two cases.

• U = ∅. In that case i : U � X is the unique map !X : ∅ → X , since ∅ is initial
in Sets. Thus w = F (!X)(v) ∈ F (X). We take b = F (!M)(v) ∈ F (M) and
f = λm ∈ M.x0 : M → X , where x0 ∈ X is an arbitrary element. This pair
(f, b) ∈ XM × F (M) is mapped by σX to the element w ∈ F (X) that we started
from:

σX(f, b) = F (f)(b) = F (f)
(
F (!M)(v)

)
= F (f ◦ !M)(v)

= F (!X)(v) = w.

• U 6= ∅. Since j : U � M is injective there is a map k : M � S in the reverse
direction with k ◦ j = id—as noted at the end of Section 2.1. We now take f = i ◦
k : M → X and b = F (j)(v) ∈ F (M). Then:

σX(f, b) = F (f)(b) = F (i ◦ k)
(
F (j)(v)

)
= F (i ◦ k ◦ j)(v)

= F (i)(v) = w.

(iii)⇒ (i) This implication is easy using the previous example and Exercise 4.6.8.

4.6.8. Lemma. Each finite Kripke polynomial functor is bounded.

Proof. We shall use the third formulation from Proposition 4.6.7 and show by induction on
the structure of a finite Kripke polynomial functor F that there are setsA,B with a suitable
natural transformation σ : (−)A ×B ⇒ F . We leave details to the interested reader.

• If F is the identity functor we simply take A = 1 and B = 0.

• If F is the constant functor X 7→ C we take A = 0 and B = C.

• In case F is a product F1 × F2 for which we have suitable natural transformations
σi : (−)Ai × Bi ⇒ Fi, for i = 1, 2, we take A = A1 + A2 and B = B1 × B2 and
define σX : XA ×B → F (X) by:

σX(f, (b1, b2)) = 〈σ1(λa ∈ A1. f(κ1a), b1), σ2(λa ∈ A2. f(κ2a), b2)〉.

It is clearly natural, and surjective for X 6= ∅.
• Similarly, if F =

∐
i∈I Fi with σi : (−)Ai × Bi ⇒ Fi, we take A =

∐
i∈I Ai and

B =
∐
i∈I Bi and define σX : XA ×B → F (X) by:

σX(f, κjb) = κjσj(λa ∈ Aj . f(κja), b).

DRAFT

4.6. Existence of final coalgebras 1694.6. Existence of final coalgebras 1694.6. Existence of final coalgebras 169

• Next consider F = GC , and assume we have a suitable natural transformation
τ : (−)A ×B ⇒ G. We then define σX : X(C×A) ×BC → G(X)C as:

σX(f, g)(c) = τX(λa ∈ A. f(c, a), g(c)).

Proving that σX is surjective, for X 6= ∅, involves the axiom of choice.

• Finally, assume F = PfinG, where G already comes with a natural transformation
τ : (−)A × B ⇒ G. Then we can define σX : X(N×A) × B? → Pfin(GX) as the
n-element set:

σX(f, 〈b1, . . . , bn〉)
= {τX(λa ∈ A. f(1, a), b1), . . . , τX(λa ∈ A. f(n, a), bn)}.

4.6.9. Theorem. Each bounded functor Sets→ Sets has a final coalgebra. In particular,
each

• finite Kripke polynomial functor, like Pfin(A×−),

• finitary functor, like multisetMM or distribution D,

has a final coalgebra.

The existence of final coalgebras of finitary functors occurs already in [55].

Proof. Let F be this bounded functor. The third formulation of Proposition 4.6.7 yields
a natural transformation σ : (−)A × B ⇒ F , for suitable sets A and B, with surjective
components σX for X 6= ∅. Recall from Proposition 2.3.5 that the functor (−)A × B

has carrier Z = BA
?

of the final coalgebra ζ : Z
∼=−→ ZA ×B. We define an F -coalgebra

ξ = σZ ◦ ζ : Z → F (Z). We claim that it is “weakly” final: for each F -coalgebra c : X →
F (X) there is a (not necessarily unique) homomorphism of F -coalgebras f : X → Z.

If X is the empty (initial) set ∅, there is obviously such a homomorphism f : X → Z.
Otherwise, we know that σX : XA × B → F (X) is surjective, and thus, using the axiom
of choice, has a section s : F (X) → XA × B with σX ◦ s = idF (X). The coalgebra
s ◦ c : X → XA × B yields a homomorphism f : X → Z of (−)A × B-coalgebra by
finality. It is then also a homomorphism of F -coalgebras:

F (f) ◦ c = F (f) ◦ σX ◦ s ◦ c because σX ◦ s = id

= σZ ◦ (fA × idB) ◦ s ◦ c by naturality of σ

= σZ ◦ ζ ◦ f since f is a homomorphism

= ξ ◦ f.

We now force the weakly final coalgebra ξ : Z → F (Z) to be truly final. The general
theory of bisimulation from Section 4.4 will be used, for the standard logical factorisation
system on Sets, with its quotients. Bisimilarity ↔ is a join of bisimulations, and thus a
bisimulation itself by Exercise 4.5.3. Hence we can form a quotient coalgebra ξ/↔ : W →
F (W) on W = Q(↔) = Z/↔ by Exercise 4.5.6. This coalgebra ξ/↔ is final: for each
coalgebra c : X → F (X) there is a homomorphism X → W , namely the composition
of the map X → Z obtained by weak finality and the quotient map q : Z → W . This is
the only one, since if we have two such homomorphisms f, g : X → W , then the image
Im(〈f, g〉) � ,2 // W ×W is a bisimulation by Exercise 4.5.2. Hence Im(〈f, g〉) ≤ ↔, so that
f = g.

DRAFT

170 Chapter 4. Logic, Lifting, and Finality170 Chapter 4. Logic, Lifting, and Finality170 Chapter 4. Logic, Lifting, and Finality

Weakly final (co)algebras, as used in this proof, may also be constructed in (second
order) polymorphic type theory, see [180, 432]. Under suitable parametricity conditions,
these constructions yield proper final coalgebras, see [187, 354, 49].

In the end one may ask if there is a link between the final coalgebra constructions based
on limits of chains and on boundedness. It is provided in [431], via transfinite induction,
going beyond ω: for instance, for a finitary (ω-accessible) functor F the final coalgebra can
be reached in ω + ω steps as limit of the chain Fω+m(1) = Fm(Fω(1)), where Fω(1) is
the limit of the chain Fn(1).

Exercises

4.6.1. (i) Spell out the notions of colimit of ω-chain and of co-continuity.

(ii) Check that the colimit of an ω-chain X0
f0−→ X1

f1−→ X2 · · · in Sets can be de-
scribed as quotient of the disjoint union:

∐
n∈NXn/∼ = {(n, x) | n ∈ N ∧ x ∈ Xn}/∼

where
(n, x) ∼ (m, y) ⇐⇒ ∃p ≥ n,m. fnp(x) = fmp(y),

with fqp = fp−1 ◦ fp−2 ◦ · · · ◦ fq : Xq → Xp for q ≤ p.
(iii) Prove Proposition 4.6.1 (i) in detail: the initial algebra of a co-continuous functor

F : C→ C on a category C with initial object 0 ∈ C can be obtained as colimit A of
the ω-chain:

0
! //

α0

++VVVVVVVVVVVVVVVVVVVVVVVVVVV F (0)
F (!)

//

α1

))SSSSSSSSSSSSSSSSS F 2(0)
F 2(!)

//

α2

""EEEEEEEE
· · ·

A

with the induced initial algebra α : F (A)
∼=−→ A satisfying α ◦ F (αn) = αn+1.

4.6.2. Recall from Example 2.4.4 that the lift functor L = 1 + (−) on Sets has the natural
numbers N as initial algebra. If we consider the functor 1 + (−) not on Sets but on
PoSets, there are two obvious ways to add and element, namely at the bottom or at the
top.
(i) Check that N is the colimit of the chain (4.10) for the lift functor on Sets.
(ii) Write L⊥ for the functor which adds a bottom element ⊥ to a poset X; prove that

the natural numbers with the usual order ≤ form an initial algebra of the functor
L⊥ : PoSets→ PoSets, for instance via the chain construction (4.10).

(iii) Now write L> : PoSets → PoSets for the functor that adds an element > as top
element. Check that the initial L>-algebra is (N,≥)—which has 0 as top element.

4.6.3. Prove that a left adjoint preserves colimits of ω-chains, and dually, that a right adjoint
preserves limits of such chains.

4.6.4. Consider an initial algebra α : F (A)
∼=−→ A constructed as colimit (4.10) for a functor F

that preserves monomorphisms (like any weak-pullback-preserving, and hence any Kripke
polynomial functor, see Lemma 4.2.2). Assume F also has a final coalgebra ζ : Z

∼=−→
F (Z), and let ι : A → Z be the unique (algebra and coalgebra) homomorphism with
ζ ◦ ι = F (ι) ◦ α−1. Prove that ι is injective.
[Hint. Define suitable ζn : Z → Fn(1) and use that Fn(!) : Fn(0)→ Fn(1) is mono.]

4.6.5. Check that the list (−)?, multisetMM distribution D and finite powerset Pfin functors are
finitary (ω-accessible), but the ordinary powerset functor P is not.

4.6.6. Check that Lemma 4.6.8 specialises to: every simple polynomial functor is finitary.
[Hint. The easiest way is to use Proposition 2.2.3.]

4.6.7. Prove that each finitary functorF : Sets→ Sets preserves colimits ofω-chains (described
explicitly in Exercise 4.6.1).
Conclude that such a functor has both an initial algebra, by Proposition 4.6.1, and a final
coalgebra, by Theorem 4.6.9.

DRAFT

4.7. Polynomial and analytical functors 1714.7. Polynomial and analytical functors 1714.7. Polynomial and analytical functors 171

4.6.8. (See e.g. [176]) LetF,G : Sets→ Sets be functors with a natural transformation σ : G⇒
F between them for which σX surjective for each X 6= ∅. Prove that F is bounded in case
G is.

4.6.9. Show that if both F,G : Sets→ Sets are bounded, then so is the composition GF .

4.7 Polynomial and analytical functors

This section will present another characterisation of simple polynomial endofunctors (on
Sets), and also of the related class of analytical functors (introduced in [261]). The charac-
terisation involves properties that we have seen earlier in this chapter—notably finitariness
and (weak) pullbacks. Recall from Proposition 2.2.3 that simple polynomial functors are of
the form F (X) =

∐
i∈I X

#i, where #: I → N is an ‘arity’. Analytical functors are sim-
ilar, and have the form F (X) =

∐
i∈I Xi/Gi involving an additional quotient (see below

for details). The main result of this section (Theorem 4.7.8) says that a functor is simple
polynomial if and only if it is finitary and preserves (countable) pullbacks. Similarly, a
functor is analytical if and only if it is finitary and preserves (countable) weak pullbacks.

These characterisation results will not be used elsewhere in this book but provide back-
ground theory about endofunctors. These results go back to [261] and have been digested
and reformulated several times, notably in [188] and [30], but see also [125]. The present
section contains another minor re-digest, leaning heavily on [188]. Although the main
result is relatively easy to formulate, its proof requires quite a bit of work.

First of all we need to generalise the notion of (weak) pullback, as introduced in Sec-
tion 4.2. There, the binary (weak) pullback is defined, for two maps f1 : X1 → Y and
f2 : X2 → Y with common codomain. Here we generalise it to an arbitrary number of
maps fi : Xi → Y , for indices i in an arbitrary index set I . In fact, we only need I to be
countable, so we restrict ourselves to index set I = N. The formulation for arbitrary sets I
is then an obvious generalisation.

So assume we have a countable collection (fi : Xi → Y)i∈N with common codomain
(in an arbitrary category). The pullback of this collection is given by an object P together
with maps pi : P → Xi such that fi ◦ pi = fj ◦ pj , for all i, j ∈ N, as in:

P

p0
kkkkkkk

uukkkkkkk p1
www

{{ww p2
��

p3

GGG

##GG
))SSSSSSSSSSSSSSS

X0

f0
SSSSSSS

))SSSSSSS

X1

f1

GG

##GGG

X2

f2
��

X3

f3
ww

{{www

· · ·

uukkkkkkkkkkkkkkk

Y

This diagram is a (countable) pullback if it is universal in the obvious way: for each object
Q with maps gi : Q → Xi satisfying fi ◦ gi = fj ◦ gj , there is a unique map g : Q → P
satisfying pi ◦ g = gi. It is a weak pullback if such a g exists, without the uniqueness
requirement. A functor F preserves such a (weak) pullback if the maps F (p1) : F (P) →
F (Xi) are a (weak) pullback of the collection (F (fi) : F (Xi)→ F (Y))i∈N. These preser-
vation properties play a crucial role in Theorem 4.7.8 below.

The present proof of this sections main result, Theorem 4.7.8, exploits the idea, like
in [30], that each functor F can be written as coproduct F =

∐
iGi of affine functors Gi

(preserving the terminal object: Gi(1) ∼= 1). This observation goes back to [410] and will
be described first. We will use it only for the category Sets, but the construction involved
can be performed more generally and so we describe it first in a separate lemma. This
construction is important, and may be understood as a form of reindexing/substitution—
whence the (−)−1 notation. This construction is used for instance in [254, 252] to define
the notion of ‘shapely’ functor, see Proposition 4.7.9.

DRAFT

172 Chapter 4. Logic, Lifting, and Finality172 Chapter 4. Logic, Lifting, and Finality172 Chapter 4. Logic, Lifting, and Finality

4.7.1. Lemma. Assume C is a category with finite limits (binary pullbacks and terminal
object 1 ∈ C). Let F : C → C be an arbitrary endofunctor, with a map u : A → F (1) in
C. Form for each X ∈ C the pullback:

u−1(F)(X)
σX //

πX
��

F (X)

F (!X)
��

A u
// F (1)

(4.12)

(i) The mapping X 7→ u−1(F)(X) extends to a functor u−1(F) : C → C, with a
natural transformation σ : u−1(F)⇒ F .

(ii) For X = 1 the map π1 : u−1(F)(1)→ A is an isomorphism.

Proof. (i) For f : X → Y in C define u−1(F)(f) in:

u−1(F)(X)
σX //

u−1(F)(f)

''NNNNNN

((

F (X)

F (f)
##GGGGGGGGG F (!X)

��

u−1(F)(Y) σY
//

��

F (Y)

F (!Y)
��

A u
// F (1)

The outer diagram commutes since !Y ◦ f = !X . By construction this yields a natural
transformation σ : u−1(F)⇒ F .

(ii) For X = 1 we have F (!1) = id : F (1) → F (1) as vertical map on the right-hand-
side in (4.12). Hence its pullback π1 : u−1(F)(1)→ A is an isomorphism.

4.7.2. Proposition. Consider the previous lemma for C = Sets and A = 1.
(i) For each functor F : Sets→ Sets one obtains a natural isomorphism:

 ∐

u∈F (1)

u−1(F)

 ∼= +3 F

describing the functor F as coproduct of affine functors u−1(F)—since u−1(F)(1) ∼= 1 by
Lemma 4.7.1 (ii).

(ii) If F preserves (weak) pullbacks, then so does each u−1(F).
(iii) If F is finitary, then so is u−1(F).

Proof. (i) In the previous lemma we found a natural transformation σ : u−1(F) ⇒ F .
We left the dependence on the map u implicit. But if we make it explicit by writing σu

instead of σ, then the above map
∐
u∈F (1) u

−1(F) ⇒ F is the cotuple [σu]u∈F (1). It
is an isomorphism since for each w ∈ F (X) we get u = F (!)(w) ∈ F (1) with w′ ∈
u−1(F)(X) obtained via the following pullback.

1 w

&&

w′

$$I
I

I
I

I

u−1(F)(X)
σX //

!
��

F (X)

F (!)
��

1
u = F (!)(w)

// F (1)

DRAFT

4.7. Polynomial and analytical functors 1734.7. Polynomial and analytical functors 1734.7. Polynomial and analytical functors 173

This shows surjectivity. Injectivity is obvious by the uniqueness of maps into the pullback
u−1(F)(X).

(ii) Fix u ∈ F (1); for convenience we abbreviate F ′ = u−1(F). Assume a non-empty
collection of maps fi : Xi → Y in C with weak pullback pi : P → Xi. If we have map
gi : Q → F ′(Xi) with F ′(fi) ◦ gi = F ′(fj) ◦ gj , then we get maps σXi ◦ gi : Q →
F (Xi) with:

F (fi) ◦ σXi
◦ gi = σY ◦ F ′(fi) ◦ gi

= σY ◦ F ′(fj) ◦ gj = F (fj) ◦ σXj ◦ gj .
Since F preserves weak pullbacks this yields a map g : Q → F (P) with F (pi) ◦ g =
σXi ◦ gi. Then we obtain a unique map h : Q→ F ′(P) in:

Q

!Q

%%

g

$$

h
""D

D
D

D

F ′(P)
σP //

!
��

F (P)

F (!P)
��

1 u
// F (1)

In order to see that the outer diagram commutes, we pick an arbitrary index i0; it exists
because we assumed our collection of maps fi is non-empty. Then:

F (!P) ◦ g = F (!Xi0
) ◦ F (pi0) ◦ g

= F (!Xi0
) ◦ σXi0

◦ gi0
= u ◦ !F (Xi0

) ◦ gi0
= u ◦ !Q.

The resulting map h : Q → F ′(P) satisfies F ′(pi) ◦ h = gi by uniqueness of mediating
maps for the pullback defining F ′(X) = u−1(F):

! ◦ F ′(pi) ◦ h = !

= ! ◦ gi
σXi ◦ F ′(pi) ◦ h = F (pi) ◦ σP ◦ h

= F (pi) ◦ g
= σXi

◦ gi.
In case P is a proper (non-weak) pullback, uniqueness of h is obtained from uniqueness

of g = σP ◦ h.
(iii) Assume F : Sets→ Sets is finitary. We need to show that F ′ = u−1(F) is finitary

too. So assume an element w ∈ F ′(X). Then σX(w) ∈ F (X). Hence there is a finite
subset ϕ : Y ↪→ X with v ∈ F (Y) such that σX(w) = F (ϕ)(v). We obtain v′ ∈ F ′(Y)
via the pullback defining F ′(Y) = u−1(F)(Y):

1

%%

v

$$

v′

""D
D

D
D

D

F ′(Y)
σY //

!
��

F (Y)

F (!Y)
��

1 u
// F (1)

By uniqueness one obtains F ′(ϕ)(v′) = w, as required.

DRAFT

174 Chapter 4. Logic, Lifting, and Finality174 Chapter 4. Logic, Lifting, and Finality174 Chapter 4. Logic, Lifting, and Finality

If we wish to show that a functor is simple polynomial or analytical, we need to describe
it as coproduct of elementary functors. The previous result is important for that goal.
Another important ingredient will be described next.

Recall that a finitary functor F : Sets→ Sets is determined by its behaviour on finite
subsets. In fact, since each finite set Y is isomorphic to a natural number Y ∼= n, we
can say that such a finitary functor F is determined by the outcomes F (n), for n ∈ N
considered as n-element set. We shall make this a bit more precise via the operations:

F (n)×Xn
apn // F (X)

(u, t) � // F (t)(u).
(4.13)

The n-tuple t ∈ Xn is identified with a function t : n → X , to which the functor F is
applied. The following result again relates a functor to a coproduct of simpler functors.

4.7.3. Lemma. For an arbitrary functor F : Sets → Sets, the cotuple of the apn maps
in (4.13) yields a natural transformation:

(∐

n∈N
F (n)× (−)n

)
ap = [apn]n∈N +3 F (4.14)

all of whose components
∐
n F (n)×Xn ⇒ F (X) are surjective if and only if F is finitary.

This functor
∐
n∈N F (n)× (−)n on the left hand side is isomorphic to an arity functor

F#F
, where the arity #F associated with F is defined as #F = π1 :

(∐
n∈N F (n)

)
→ N.

Proof. First, assume F is finitary and u is an element of F (X). Hence there is a finite
subset i : Y ↪→ X and v ∈ F (Y) with F (i)(v) = u. Let n = |Y | be the size of Y and
choose an isomorphism j : n

∼=→ Y . Take t = i ◦ j : n→ X and w = F (j−1)(v) ∈ F (n).
Then:

apn(w, t) = F (t)(w) =
(
F (i ◦ j) ◦ F (j−1)

)
(v) = F (i)(v) = u.

Conversely, assume the map
∐
n F (n)×Xn ⇒ F (X) is surjective for each set X , and let

u ∈ F (X). Then there is an n ∈ N and (v, t) ∈ F (n)×Xn with apn(v, t) = F (t)(v) = u.
Consider the image factorisation (in Sets):

n
e // //

t %%JJJJJJJJJ Y = {t(i) ∈ X | i ∈ n}� _

m
��

X

Now take w = F (e)(v) ∈ F (Y). It satisfies F (m)(w) = F (m ◦ e)(v) = F (t)(v) = u.
The arity functor F#F

for the arity #F is given by F#(X) =
∐
n∈N,u∈F (n)X

n. This
is obviously isomorphic to

∐
n∈N F (n)×Xn, as used above.

A finitary functor F is thus a quotient, via the map ap in the lemma, of a simple poly-
nomial functor

∐
n F (n)× (−)n. We shall see that further (preservation) conditions on the

functor F allow us to say more about this map ap. To this end the following category of
elements is useful.

4.7.4. Definition. For a functor F : Sets → Sets let Elt(F) be the category of “ele-
ments” of F in the following manner. Objects of Elt(F) are pairs X ∈ Sets, u ∈ F (X).
A morphism (u ∈ F (X)) → (v ∈ F (Y)) is a map f : X → Y in Sets satisfying
F (f)(u) = v. Composition and identities are inherited from Sets. There is thus an obvi-
ous forgetful functor Elt(F)→ Sets.

DRAFT

4.7. Polynomial and analytical functors 1754.7. Polynomial and analytical functors 1754.7. Polynomial and analytical functors 175

This category Elt(F) of elements is relevant in the current setting since an equation
apn(u, t) = v ∈ F (X), for u ∈ F (n) and t ∈ Xn, means that t is a morphism t : (u ∈
F (n)) → (v ∈ F (X)) in Elt(F). We are interested in getting appropriately minimal
versions of such maps.

4.7.5. Lemma. Assume F : Sets→ Sets is a finitary functor.
(i) For each w ∈ F (X),

• there is a map (w′ ∈ F (n))→ (w ∈ F (X)) in Elt(F), where n ∈ N,

• such that for each f : (v ∈ F (Y)→ (w′ ∈ F (n)) in Elt(F), the function f : Y → n
is surjective.

(ii) If the functor F preserves countable weak pullbacks, then the previous point can be
strengthened to: for each w ∈ F (X),

• there is a map (w′ ∈ F (n))→ (w ∈ F (X)) in Elt(F),

• such that each f : (v ∈ F (Y)→ (w′ ∈ F (n)) is a split epi in Elt(F).

If we write:

F ◦(n) = {w ∈ F (n) | each (v ∈ F (Y))→ (w ∈ F (n)) is a split epi},

then this last result says: for each w ∈ F (X) there is a map (w′ ∈ F ◦(n)) → (w ∈
F (X)).

Proof. (i) Assume w ∈ F (X). Because the component at X of the map ap in (4.14) is
surjective, the set {(n, u, t) | n ∈ N, u ∈ F (n), t ∈ Xn with apn(u, t) = w} is non-
empty. Among all these elements we take the one with the least number n and call it
(n,w′, t). Thus apn(w′, t) = w, so that t : (w′ ∈ F (n)) → (w ∈ F (X)) in Elt(F);
additionally, for each m ∈ N with apm(u, s) = w we have n ≤ m. Next, assume a map
f : (v ∈ F (Y) → (w′ ∈ F (n)) in Elt(F). Factorise f : Y → n in Sets as f = i ◦ f ′
where f ′ : Y � m and i : m� n (so that m ≤ n). We then have v′ = F (f ′)(v) ∈ F (m)
and t′ = t ◦ i ∈ Xm satisfying:

apm(v′, t′) = F (t′)(v′) = F (t ◦ i ◦ f ′)(v) = F (t ◦ f)(v) = F (t)(w′) = w.

But then n ≤ m and thus m = n. Hence i : m � n is an isomorphism, and f = i ◦ f ′ is
surjective.

(ii) Assume towards a contradiction that for eachw ∈ F (X) and for all (w′ ∈ F (n))→
(w ∈ F (X)) there is a map f : (v ∈ F (Y)) → (w′ ∈ F (n)) that is not a split epi. We
proceed in a number of steps.

(1) By (i) we do have a map t1 : (w1 ∈ F (n1)) → (w ∈ F (X)) such that for each
f : (v ∈ F (Y)) → (w1 ∈ F (n1)) the function f is surjective. But, by assumption,
there is a map f1 : (v1 ∈ F (Y1))→ (w1 ∈ F (n1)) which is not a split epi.

(2) We now apply the assumption to v1 ∈ F (Y1). It yields, as before a map t2 : (w2 ∈
F (n2))→ (v1 ∈ F (Y1)) as in (i), together with f2 : (v2 ∈ F (Y2))→ (w2 ∈ F (n2))
that is not a split epi.

(3) Continuing in this manner we obtain a chain of maps in Elt(F):

(w ∈ F (X)) (v1 ∈ F (Y1))
f1

ttiiiiiiii
(v2 ∈ F (Y2))

f2

ttiiiiiiii
· · ·

vvmmmmmmmmm

(w1 ∈ F (n1))

t1
OO

(w2 ∈ F (n2))

t2
OO

(w3 ∈ F (n3))

t3
OO

(4.15)

(4) By (i), for each of the resulting maps fi ◦ ti+1 : (wi+1 ∈ F (ni+1))→ (wi ∈ F (ni))
in Elt(F) the underlying function fi ◦ ti+1 : ni+1 → ni is surjective. Hence ni+1 ≥
ni. We also have ni+1 6= ni: if ni+1 = ni then the map fi ◦ ti+1 is an isomorphism,
say with inverse s : ni → ni+1. As a result:

DRAFT

176 Chapter 4. Logic, Lifting, and Finality176 Chapter 4. Logic, Lifting, and Finality176 Chapter 4. Logic, Lifting, and Finality

• s is a map (wi ∈ F (ni)) → (wi+1 ∈ F (ni+1)) in Elt(F) since F (s)(wi) =(
F (s) ◦ F (fi ◦ ti+1)

)
(wi+1) = wi+1.

• ti+1 ◦ s : (wi ∈ F (ni)) → (vi ∈ F (Yi)) is a splitting for fi, since fi ◦ ti+1 ◦
s = id;

Thus, an equality ni+1 = ni makes fi a split epi in Elt(F)—which we know is not
the case. Hence ni+1 > ni.

(5) Now write gn for the resulting maps gi : (wi ∈ F (ni)) → (w ∈ F (X)), obtained
as chain of t’s and f ’s in (4.15). We take the (countable) pullback P =

∏
X ni of

these gi : ni → X in Sets, with projections pi : P → ni satisfying gi ◦ pi = gj ◦ pj .
Since F preserves weak pullbacks and F (gi)(wi) = w, there is an element u ∈ F (P)
with F (pi)(u) = wi. Hence pi : (u ∈ F (P))→ (wi ∈ F (ni)) in Elt(F).

(6) Since F is finitary and u ∈ F (P) we get a map t : (u′ ∈ F (k)) → (u ∈ F (P)), for
some k ∈ N. Recall we have an ascending sequence n1 < n2 < n3 < . . ., so there is
an index i with k < ni. At the same time we have a map:

(u′ ∈ F (k))
t // (u ∈ F (P))

pi
// (wi ∈ F (ni))

whose underlying function pi ◦ t : k → ni must be surjective—by construction of
the (wi ∈ F (ni)), using (i). But surjectivity of this map implies k ≥ ni, which is
impossible.

Hence our original assumption is wrong.

If we apply these results to affine functors, things are beginning to fall into place.

4.7.6. Proposition. Let a countable weak pullback preserving functor F : Sets → Sets
be finitary and affine.

(i) There is a unique n ∈ N for which apn : F ◦(n)× (−)n ⇒ F is surjective.
(ii) This yields a (natural) isomorphism:

 ∐

u∈F◦(n)

Xn/∼u

 ∼= // F (X),

where ∼u is the equivalence relation on Xn given by:

t ∼u s ⇐⇒ ∃ϕ : n
∼=−→ n. t ◦ ϕ = s and F (ϕ)(u) = u.

(iii) In case F preserves (proper) pullbacks, we get an isomorphism:

 ∐

u∈F◦(n)

Xn

 ∼= // F (X),

making F a simple polynomial functor.

Proof. (i) Assume we have two elements u ∈ F (X) and v ∈ F (Y). We pick two maps
t : (u′ ∈ F ◦(n))→ (u ∈ F (X)) and s : (v′ ∈ F ◦(m))→ (v ∈ F (Y)) with the properties
of Lemma 4.7.5 (ii). The aim is to show n = m. The product n ×m is a pullback over
1; applying F yields a weak pullback, as on the left below. Because F is affine we get
F (t)(u′) = F (s)(v′); hence there is an element w ∈ F (n×m) with F (π1)(w) = u′ and

DRAFT

4.7. Polynomial and analytical functors 1774.7. Polynomial and analytical functors 1774.7. Polynomial and analytical functors 177

F (π2)(w) = v′. The maps πi are then split epis, by Lemma 4.7.5 (ii), so we get a diagram
in Elt(F) as on the right, with ri splitting πi.

F (n×m)

F (π1)
��

F (π2)
// F (m)

F (s)
��

(w ∈ F (n×m))

π1
����

π2

// // (v′ ∈ F (m))

s
��

r2
uu

F (n)
F (t)

// F (1) ∼= 1 (u′ ∈ F (n))
t

//

r1

BB

(∗ ∈ F (1))

Since v′ ∈ F ◦(m) and u′ ∈ F ◦(n) we obtain that the two resulting diagonal maps:

(u′ ∈ F (n))
r1 // (w ∈ F (n×m))

π2 // // (v′ ∈ F (m))

(v′ ∈ F (m))
r2 // (w ∈ F (n×m))

π1 // // (u′ ∈ F (n))

are both split epis. Hence n ≤ m and m ≤ n, and so n = m.
(ii) For u ∈ F ◦(n) we need to show:

apn(u, t) = apn(u, s) ⇐⇒ t ∼u s.

The implication (⇐) is trivial: if t ◦ ϕ = s and F (ϕ)(u) = u, then:

apn(u, t) = F (t)(u) = F (t)
(
F (ϕ)(u)

)
= F (t ◦ ϕ)(u) = F (s)(u) = apn(u, s).

For the direction (⇒), assume apn(u, t) = apn(u, s) in F (X). We form the pullback:

n×X n

p1

��

p2
// n

s
��

n
t

// X

Applying F yields a weak pullback, and thus an element w ∈ F (n ×X n) with maps
p1, p2 : (w ∈ F (n ×X n)) → (u ∈ F (n)) in Elt(F). These maps pi are both split epis,
since u ∈ F ◦(n), say with splittings ri. Then ϕ = p1 ◦ r2 : n → n is a split epi, and thus
an isomorphism. It satisfies:

t ◦ ϕ = t ◦ p1 ◦ r2 = s ◦ p2 ◦ r2 = s

F (ϕ)(u) = F (p1 ◦ r2)(u) = F (p1)(w) = u.

(iii) Assume now that F preserves pullbacks. Since F is affine, i.e. F (1) ∼= 1, F
preserves all finite limits, and in particular products and equalisers. We first show that
there is at most one map (u ∈ F ◦(n)) → (v ∈ F (X)). If we have two of them, say t, s,
we can form the equaliser in Sets:

E //
e // n

t
**

s
44 X

This equaliser is preserved by F . Since F (t)(u) = v = F (s)(u), there is a unique element
w ∈ F (E) with F (e)(w) = u. This map e : (w ∈ F (E)) → (u ∈ F (n)) is then a split
epi, and thus an isomorphism. Hence t = s.

With this observation we see that apn(u, t) = apn(u, s) implies s = t. Thus the
equivalence relation ∼u on Xn used in (ii) is the equality relation.

DRAFT

178 Chapter 4. Logic, Lifting, and Finality178 Chapter 4. Logic, Lifting, and Finality178 Chapter 4. Logic, Lifting, and Finality

The equivalence relation ∼u used in point (ii) involves a set of isomorphisms:

Gu = {ϕ : n
∼=−→ n | F (ϕ)(u) = u}, (4.16)

that is a subgroup of the symmetric group Sn of permutations on n. It induces an action:

Gu ×Xn // Xn by (ϕ, t)
� // t ◦ ϕ.

The set of equivalence classes Xn/∼u can then also be described as the set of orbits:

Xn/Gu = {[t] | t ∈ Xn} with [t] = {t ◦ ϕ | ϕ ∈ Gu}.

This is used below.

4.7.7. Definition ([261]). A functor F : Sets → Sets is called analytical if it can be
written as:

F =

(∐

i∈I
X#i/Gi

)
,

where #: I → N is an arity and Gi ⊆ S#i is a subgroup of the symmetric group of
permutations on #i ∈ N.

An example of an analytical functor is the multiset (or bag) functorMN, since one can
write:

MN(X) = 1 +X +X2/S2 +X3/S3 + · · ·
since each finite multiset, say with n elements in total, can be identified with an n-tuple in
Xn up-to-the-order, that is, with an element of the quotient Xn/Sn that destroys the order.
Intriguingly this formulation ofMN(X) looks very similar to the Taylor expansion of the
exponential function:

ex = 1 + x+ x2

2! + x3

3! + · · ·
(Recall that the order of the symmetric group Sn is n!). In [261] the concept of derivative
of a functor (see also [3]) is defined, in such a way that MN is its own derivative, see
Exercise 4.7.3 for a glimpse.

We finally come to the main characterisation result. The second point dealing with
analytical functors comes from [261]. The first point is in a sense a restriction of the
second and can be found in [188] (where simple polynomial functors are called normal,
after [146]).

4.7.8. Theorem. Let F : Sets→ Sets be an arbitrary functor.
(i) F is simple polynomial if and only if it is finitary and preserves countable pullbacks.

(ii) F is analytical if and only if it is finitary and preserves countable weak pullbacks.

Proof. (i) We already know that a simple polynomial functor is finitary (Exercise 4.6.6)
and preserves binary pullbacks (Proposition 4.2.6); it is not hard to see that the latter gen-
eralises to preservation of arbitrary pullbacks.

For the converse, assume F is finitary and preserves countable pullbacks. In order to
see that F is simple polynomial we have to combine two results.

(1) First, use Proposition 4.7.2 to write F ∼=
∐
u∈F (1) u

−1(F) as coproduct of affine
functors u−1(F), each of which is finitary and preserves countable pullbacks.

(2) Next, use Proposition 4.7.6 to write these affine functors as u−1(F) ∼=
∐
v∈Iu X

nu ,
where Iu = u−1(F)◦(nu) and nu ∈ N is the unique number for which Iu ×Xnu →
u−1(F)(X) is surjective.

DRAFT

4.7. Polynomial and analytical functors 1794.7. Polynomial and analytical functors 1794.7. Polynomial and analytical functors 179

Hence by taking I =
∐
u∈F (1) Iu and #(u, v) = nu we obtain F ∼=

∐
i∈I X

#i, make F
simple polynomial.

(ii) Following the same steps one shows that a finitary functor preserving countable
weak pullbacks is of the form

∐
i∈I X

#i/Gi, where the subgroup Gi of the symmetric
group on #i ∈ N arises as in (4.16).

In the reverse direction, an analytical functor F =
∐
i∈I X

#i/Gi is obviously finitary.
It is not hard to see that it preserves countable weak pullbacks. This is left to the interested
reader.

We conclude this section with yet another characterisation of simple polynomial func-
tors, namely as the ‘shapely’ functors from [254, 252] (see also [3, Theorem 8.3]). For this
result we need to know that a natural transformation is called (weak) cartesian if all its
naturality squares are (weak) pullbacks. This terminology will also be used in the exercises
below.

4.7.9. Proposition. A functor F : Sets → Sets is simple polynomial if and only if it is
shapely: it preserves binary pullbacks and comes with a cartesian natural transformation
F ⇒ (−)? to the list functor.

Proof. Assume F is polynomial: F (X) =
∐
i∈I X

#i via an arity #: I → N. We already
know that it preserves pullbacks. Each tuple t ∈ X#i can be seen as an #i element list
t = 〈t0, t1, . . . , t#i−1〉 ∈ X?. Thus we obtain a natural transformation σ : F ⇒ (−)? as
cotuple. We check that its naturality squares form pullbacks. So assume we have a function
f : X → Y and a naturality square:

F (X)

F (f)
��

σX // X?

f?
��

F (Y) σY
// Y ?

If we have an element v ∈ F (Y) and a list α = 〈x1, . . . , xn〉 ∈ X? with σY (v) =
f?(〈x1, . . . , xn〉) = 〈f(x1), . . . , f(xn)〉, then v ∈ F (Y) =

∐
i∈I Y

#i must be of the
form 〈i, λk ≤ n. f(xk)〉, where #i = n. Hence there is precisely one mediating element
u ∈ F (X), namely u = 〈i, λk ≤ n. xk〉.

Conversely, assume that F preserves pullbacks and that we have a cartesian natural
transformation σ : F ⇒ (−)?. We take I = F (1) with arity:

#
def
=
(
I = F (1)

σ1 // 1? = N
)
.

Since σ is cartesian, the following naturality square is a pullback.

F (X)
σX //

F (!)
��

X?

!? = length
��

I = F (1)
σ1 = #

// 1? = N

This means that F (X) is the set of pairs i ∈ I and t ∈ X? with length(t) = #i. Hence
such an element is a pair i ∈ I, t ∈ X#i. Thus F (X) =

∐
i∈I X

#i, making F simple
polynomial.

In the end we recall the description of a ‘container’ or ‘dependent polynomial functor’
from Exercise 2.2.6, as a functor of the form F (X) =

∐
i∈I X

Ai , for an indexed col-
lection (Ai)i∈I of not necessarily finite sets Ai. These containers are more general than

DRAFT

180 Chapter 4. Logic, Lifting, and Finality180 Chapter 4. Logic, Lifting, and Finality180 Chapter 4. Logic, Lifting, and Finality

simple polynomial functors. They capture the idea that many data types are given by a tem-
plate that determines how data is stored. Their theory is developed, from a programming
perspective, in [2, 1]. In particular, the idea of keeping track of a specific position within
such datatypes (as one-hole contexts) can be formalised via derivatives of such functors,
see [3]. Such a derivative of a functor goes back to [261]; it is described in Exercise 4.7.3
below, for simple polynomial functors.

Exercises

4.7.1. Assume two arities #: I → N and #: J → N. Prove that there are bijective correspon-
dences:
(i)

∐
i∈I(−)#i σ +3 ∐

j∈J(−)#j

============================
I

f
// J with #f(i)

ϕi
// #i

(ii) This correspondence restricts to:

(weak) cartesian
∐
i∈I(−)#i σ +3 ∐

j∈J(−)#j

==

I
f
// J with #f(i)

ϕi

∼= // #i

4.7.2. For a functor F : Sets→ Sets and a set X consider the coequaliser:

 ∐

n,m∈N
F (m)× nm ×Xn

d1 //

d2

//

(∐

n∈N
F (n)×Xn

)
//c // F̃ (X)

The two maps d1, d2 are given by (u, t, s) 7→ (F (t)(u), s) and (u, t, s) 7→ (u, s ◦ t).

(i) Describe a natural transformation F̃ ⇒ F , via the map ap:
∐
n∈N F (n) × Xn →

F (X) from (4.14).
(ii) Show that this F̃ ⇒ F consists of monos if F preserves (binary) weak pullbacks.
(iii) And also that it consists of epis if F is finitary.

4.7.3. (From [261]) For an arbitrary functor F : C → C define the derivative, if it exists, to the
functor F ′ : C→ C with a universal weak cartesian natural transformation ρ : F ′× idC ⇒
F . Universality means that for an arbitrary functor G with a weak cartesian τ : G× idC ⇒
F there is a unique weak cartesian τ ′ making the following diagram commute.

F ′ × idC
ρ

// F

G× idC

τ

77nnnnnnnnnnnnnn

OO�
�
�τ ′ × id

Prove that for a simple polynomial functor F (X) =
∐
i∈I X

#i the derivative is:

F ′(X) =
∐

i∈I,#i>0

#i×X#i−1.

[Hint. Use Exercise 4.7.1.]

DRAFT
Chapter 5

Monads, comonads and
distributive laws

Monads and comonads—the duals of monads—form one of the basic notions in category
theory, like adjunction. A monad is a special kind of endofunctor with some additional
structure (unit and multiplication), a bit like for a monoid. Various computationally relevant
functors are actually monads: lift, list, powerset, multiset, distribution. Associated with a
(co)monad two categories are of interest.

• The Kleisli category captures the computations associated with a (co)monad. Coal-
gebras can be described within such Kleisli categories, namely as endomaps, and
the Kleisli structure can be used for sequential composition of coalgebras. A promi-
nent application involves final coalgebra inside such Kleisli categories. It gives a
systematic description of so-called trace semantics, see Section 5.3.

• The Eilenberg-Moore category contains (co)algebras for a (co)monad. These are
the mathematical structures associated with the (co)monad. Where (co)algebras of
a functor only describe operations, (co)algebras of a (co)monad additionally capture
constraints, in the form of equations or other assertions. Many standard mathematical
structures, like monoids, vector spaces and complete lattices are algebras of a monad.
A systematic, uniform description of such structures is convenient, since it gives
many results at once, like the existence of limit and colimits.

Most of the material in this chapter is standard (basic) category theory. It is presented
here with a special focus on the context of coalgebras as dynamical state-based systems.
Section 5.1 introduces the basic definitions, together with the main examples. Kleisli cate-
gories will be discussed in Section 5.2, with an emphasis on the lifting of functors to such
categories. These liftings play an important role in Section 5.3 on trace semantics. Sec-
tion 5.4 describes Eilenberg-Moore categories, together with their basic properties. Sec-
tion 5.5 concludes this chapter with bialgebras, combining both algebras (structure) and
coalgebras (behaviour), for the operational semantics of programming languages.

The topic of algebras and coalgebras in combination with assertions is postponed until
the next Chapter. Assertions require the notion of invariant, in the coalgebraic case. Once
this concept is in place, (co)algebraic specifications can be introduced, as descriptions of
(co)algebras satisfying certain logical properties.

5.1 Monads and comonads: definition and examples

Monads are special endofunctors with some additional structure. Our prime example is the
powerset functor P which comes equipped with a singleton map {−} : X → P(X) and a

181

DRAFT

182 Chapter 5. Monads, comonads and distributive laws182 Chapter 5. Monads, comonads and distributive laws182 Chapter 5. Monads, comonads and distributive laws

(big) union
⋃

: P2(X)→ P(X). These operations are natural inX and satisfy some basic
equations. This is axiomatised in the notion of monad, see Definition 5.1.1 below. It turns
out that the “collection” functors (list, powerset, multiset, distribution) from Figure 4.1 all
have such monad structure.

As we shall see, monads have two distinct roles.

1. Monads capturing types of computations. In this sense monads are similar to
the endofunctors F whose coalgebras X → F (X) we have been studying so far:
a distinction is made between values/states in X and computations in F (X), re-
turning values in X . But the additional structure that monads have give rise to the
basic operation of sequential composition. We have already seen such composition,
for instance in Exercise 1.1.2, without identifying the underlying monad structure.
This composition is captured in what is called the Kleisli category associated with a
monad. It will be the main focus of the next section.

2. Monads capturing algebraic theories. Monads also form an abstraction that de-
scribes the essentials of an algebraic theory, given by operations and equations be-
tween them. Here one associates a different category with a monad, namely its cat-
egory of so-called Eilenberg-Moore algebras. These categories will be introduced
in Section 5.4, but the aspect of monads as algebraic theories will be postponed to
Section 6.7 in the next chapter.

Historically, the algebraic view on monads preceded the computational view. This
computational view, using Kleisli categories, has been introduced by Moggi [326]. It has
been widely adopted in functional programming—notably in the programming language
Haskell—in order to deal with special kinds of computational effects (see e.g. [260], and for
combinations with initial algebras / final coalgebras, see [340, 44]). In fact, in this second
computational approach to monads an alternative formulation of the notion of monad has
emerged, in terms of so-called Kleisli extensions. Here we stick to the standard formulation
in the next definition, and formulate the Kleisli version separately (in Proposition 5.2.3 in
the next section).

From the computational perspective monads are thus used for structuring the outputs of
computations. At the end of this section we briefly discuss comonads, which can be used
to structure inputs of computations. As an aside, a combined structuring can be achieved
via so-called arrows, generalising both monads and comonads. They will not be discussed
here, but the interested reader is referred to [215, 342, 206, 237].

This section will introduce the notion of (co)monad and focus mostly on examples—of
which there are plenty, contributing to the relevance of the notion. The next section will
define the associated concept of a Kleisli category.

We are now ready to see the definition of monad. It is an endofunctor, typically written
as T , with additional structure given by two natural transformations that play the role of
“singleton” and “flattening”. This will be illustrated in the subsequent examples.

5.1.1. Definition. A monad on an arbitrary category C consists of an endofunctor T : C→
C together with two natural transformations: a unit η : idC ⇒ T and multiplication
µ : T 2 ⇒ T . These are required to make the following diagrams commute, for X ∈ C.

T (X)
ηT (X)

//

PPPPPPPPPP

PPPPPPPPPP T 2(X)

µX
��

T (X)
T (ηX)
oo

nnnnnnnnnn

nnnnnnnnnn
T 3(X)

µT (X)
//

T (µX)
��

T 2(X)

µX
��

T (X) T 2
µX

// T (X)

Often we simply write T for a monad (T, η, µ) since we standardly use η and µ for the unit
and multiplication involved.

DRAFT

5.1. Monads and comonads: definition and examples 1835.1. Monads and comonads: definition and examples 1835.1. Monads and comonads: definition and examples 183

Before seeing examples of monads we immediately illustrate their usefulness in the the-
ory of coalgebras: they introduce (sequential) composition of coalgebras. This composition
will be presented in slightly more general form later on, via Kleisli categories.

5.1.2. Lemma. For a monad T , coalgebras X → T (X) form a monoid—where X is a
fixed object.

Proof. For two coalgebras c, d : X → T (X) we define a “c then d” coalgebra c ; d : X →
T (X) as composite:

c ; d
def
=
(
X

c // T (X)
T (d)

// T 2(X)
µX
// T (X)

)
.

The associated neutral element ‘skip’ is the unit ηX : X → T (X) of the monad. The fact
that (η, ;) forms a monoid follows almost immediately from the monad equations.

The notion of monad, like most of the concepts in category theory, is best understood
via concrete examples. In order to see the common structure it may help to fill in some of
the missing verifications of the monad requirements in the series of examples below.

5.1.3. Examples. (i) As mentioned in the beginning, the powerset functor P , is a monad
with unit and multiplication given by singleton and union:

X
ηX
// P(X) P(P(X))

µX
// P(X)

x � // {x} A
� //

⋃
A = {x ∈ X | ∃U ∈ A. x ∈ U}.

The first two of the monad equations are easy: for V ∈ P(X),
(
µX ◦ ηP(X)

)
(V) =

⋃{V } = V(
µX ◦ P(ηX)

)
(V) =

⋃{{x} | x ∈ V } = V.

The µ-equation requires more care. For A ∈ P3(X) = P(P(P(X))) one has:
(
µX ◦ P(µX)

)
(A) =

⋃{⋃B | B ∈ A}
= {x ∈ X | ∃B ∈ A.∃U ∈ B. x ∈ U}
= {x ∈ X | ∃U ∈ ⋃A. x ∈ U}
=
⋃⋃A

=
(
µX ◦ µP(X)

)
(A).

Also the non-empty powerset P 6=∅ is a monad, and so are their finitary versions Pfin and
P 6=∅fin (taking only finite subsets).

We recall that coalgebrasX → P(X) of this monad—or of non-empty/finite variations
thereof—are used to model non-deterministic programs. Composition as in Lemma 5.1.2
corresponds to relational composition: for coalgebras c, d : X → P(X) we have:

(c ; d)(x) =
⋃{d(x′) | x′ ∈ c(x)}

= {x′′ | ∃x′. x c−→ x′ and x′ d−→ x′′}.

(ii) The non-empty powerset takes subsets with at least one element. The “lift” or
“maybe” functor L(X) = 1 + X adds a base point to a set X; it may be understood as
a “collection” functor that takes subsets of X with at most one element (also known as
subsingletons). Lift L = 1 + (−) : Sets→ Sets is a monad with unit and multiplication:

X
η = κ2

// 1 +X 1 + (1 +X)
µ = [κ1, id]

// 1 +X

DRAFT

184 Chapter 5. Monads, comonads and distributive laws184 Chapter 5. Monads, comonads and distributive laws184 Chapter 5. Monads, comonads and distributive laws

This lift monad may be defined on other categories than Sets, see Exercise 5.1.1 (or [279]).
CoalgebrasX → L(X) of the lift monad are partial (endo)functions onX; their sequential
composition ; from Lemma 5.1.2 is the usual composition of partial functions.

(iii) Recall the list functor (−)? : Sets → Sets that sends a set X to the set X? =
{〈x1, . . . , xn〉 | xi ∈ X} of finite sequences of elements of X . It forms a monad via:

X
η
// X? X??

µ
// X?

x � // 〈x〉 〈−→x1 , . . . ,−→xn〉 � // −→x1 · · · −→xn.

The multiplication µ flattens a list of lists to a single list, by removing inner brackets.
(iv) The distribution functor D from Definition 4.1.5 forms a monad with singleton

“Dirac” distribution as unit, and matrix multiplication as (monad) multiplication.

X
η

// D(X) D(D(X))
µ

// D(X)

x � // 1x = λy.

{
1 if y = x

0 if y 6= x
Ψ

� // λy.
∑
ϕ∈D(X) Ψ(ϕ) · ϕ(y).

This unit was already described as Dirac distribution in Exercise 4.1.4. The multiplication
applied to a multiset of multisets Ψ =

∑
i riϕi yields a distribution µ(Ψ) ∈ D(X) that

assigns to y ∈ X the probability µ(Ψ)(y) =
∑
i ri · ϕi(y). For instance, if we have

distributions:
ϕ = 1

2x+ 1
2y and ψ = 1

3y + 2
3z,

Then:
µ
(

3
4ϕ+ 1

4ψ
)

=
(

3
4 · 1

2

)
x +

(
3
4 · 1

2

)
y +

(
1
4 · 1

3

)
y +

(
1
4 · 2

3

)
z

= 3
8x+ 11

24y + 1
6z.

As discussed in Section 4.1, coalgebras of the distribution monad are Markov chains.
Their composition, occurring already in Exercise 4.1.5, corresponds to standard composi-
tion of such chains—usually given by matrix multiplication, see Exercise 5.1.3.

It is not hard to see that subdistributions—with sum of probabilities at most 1, instead
of equal to 1—also form a monad, written as D≤1.

(v) If M is a monoid, say with multiplicative structure (1, ·), then the functor M ×
(−) : Sets→ Sets is a monad. The multiplication map η : X →M ×X is η(x) = (1, x)
and multiplication µ : M× (M×X)→M×X is simply µ(m1, (m2, x)) = (m1 ·m2, x).
The monad laws follow directly from the monoid laws.

There are close connections between monoids and monads, see for instance the adjunc-
tion in Exercise 5.2.16. On a more abstract level one can describe monads C as “monoids
in the category of endofunctors” on C, see [315, VII.3] for more information.

(vi) The first few examples of monads all involve collections (subsets, lists, distribu-
tions) of some sort. The remaining examples are also relevant in computing, but are of a dif-
ferent kind. We start with the state monad. It involves a fixed set S, elements of which are
seen as states that are passed around in a computation. The state monad S : Sets→ Sets
is given by:

S(X) =
(
S ×X

)S
.

It comes equipped with unit and multiplication operations:

X
η
//
(
S ×X

)S (
S ×

(
S ×X

)S)S µ
//
(
S ×X

)S

x � // λs ∈ S. 〈s, x〉 〈h1, h2〉 � // λs ∈ S. h2(s)
(
h1(s)

)
.

DRAFT

5.1. Monads and comonads: definition and examples 1855.1. Monads and comonads: definition and examples 1855.1. Monads and comonads: definition and examples 185

(vii) Our next example, the continuation monad, is also motivated by programming se-
mantics. It starts from a fixed set C and takes the “double dual” of a set, where C is used as
dualising object (see [276] for a more general setting). This is the pure form of the monad,
that we shall describe first; some variations will be discussed subsequently. To start, we
define a functor C : Sets→ Sets by:

C(X) = C(CX) and C
(
X

f→ Y
)

= λh ∈ C(CX). λg ∈ CY . h(g ◦ f).

Earlier, in Exercise 2.2.7, we have seen the neighbourhood functor as special caseN (X) =

2(2X) for C = 2.
This functor C forms a monad via:

X
η

//
C(CX)

C

(
C

(
C(CX)

)) µ
//
C(CX)

x � // λg ∈ CX . g(x) H
� // λg ∈ CX . H

(
λk ∈ C(CX). k(g)

)
.

It requires a bit of elementary bookkeeping to check that these η and µ are natural and
satisfy the three monad equations.

Coalgebras X → C(CX) of the continuation monad capture an indirect way of com-
puting a result in C. The computation involves an explicit argument function X → C that
is usually called a continuation. This may be useful to get a better handle on intermediate
values and argument evaluation, see e.g. [421] for more information.

The monad C describes what may be called the “pure” version of the continuation
monad. There are some variations which restrict the kind of functions involved (and form
submonads). This will be illustrated via a several examples.

• For an arbitrary set X an ultrafilter on X is a subset F ⊆ P(X) which is a filter
(F is closed under finite intersections and upclosed) satisfying ∅ 6∈ F and for each
U ∈ P(X) either U ∈ F or ¬U ∈ F . Such an ultrafilter can be identified with a
morphism of Boolean algebras P(X)→ {0, 1}. The set of ultrafilters onX may thus
be defined as homset in the category BA of Boolean algebras:

UF(X) = BA
(
P(X), {0, 1}

)

= BA
(
{0, 1}X , {0, 1}

)

= {f ∈ {0, 1}({0,1}X) | f is a morphism of Boolean algebras}.

This is a subset of C(X) = C(CX), with set C = {0, 1}. In this case UF is still a
monad (see e.g. [256] for more information).

• Next we take the unit interval [0, 1] ⊆ R as constant C. It is a complete lattice and
hence certainly a dcpo. Also, for each set X , the function space [0, 1]X is a dcpo.
In [268] the following monad is defined.

G(X) = {f ∈ [0, 1]([0,1]X) | f is continuous and sublinear}.

Sublinearity means that f(r · g) = r · f(g) and f(g1 + g2) ≤ f(g1) + f(g2), if
g1(x) + g2(x) ≤ 1 for all x ∈ X . This monad G is used for a semantics and logic of
a “probabilistic-nondeterministic” programming language in [268].

• A variation on the previous point is the expectation monad given by:

E(X) = {f ∈ [0, 1]([0,1]X) | f is a map of effect modules}.

These requirements are slightly different and amount to f(r·g) = r·f(g), f(λx. 1) =
1 and f(g1 + g2) = f(g1) + f(g2), if g1(x) + g2(x) ≤ 1 for all x ∈ X . More
information can be found in [239].

DRAFT

186 Chapter 5. Monads, comonads and distributive laws186 Chapter 5. Monads, comonads and distributive laws186 Chapter 5. Monads, comonads and distributive laws

(viii) In [244] a monad J : Sets → Sets is introduced for the semantics of Java pro-
grams that combines several of the monads mentioned earlier. We recall that statements
(and expressions) in Java can either:

• fail to terminate, typically because of an infinite (‘for’ or ‘while’) loop; this is mod-
elled via the lift monad L = 1 + (−);

• terminate normally, producing a successor state (for statements), and a successor state
together with a result (for an expression);

• terminal exceptionally, yielding an exception, say of typeE, together with a successor
state.

When we put these ingredients together we obtain a monad:

J (X) =
(

1 + (S ×X) + (S × E)
)S
.

The unit η : X → J (X) is given by η(x) = λs ∈ S. κ2〈s, x〉 like for the state monad.
The second coprojection κ2, used for the middle option, corresponds to normal/successful
termination. The multiplication operation µ : J 2(X)→ J (X) is:

µ(h)(s) =

κ1∗ if h(s) = κ1∗
k(s′) if h(s) = κ2(s′, k) where k ∈ J (X)

κ3(s, e) if h(s) = κ3(s, e).

Thus, in the first case (non-termination) and the third case (abrupt termination) the outcome
of h is returned, and no subsequent evaluation takes place. This is what happens in Java.
But exceptions in Java have more substructure, that is ignored here. A more complete
formalisation occurs in [226].

Producing new monads from existing ones, as we have done here, may be described
more systematically in terms of so-called monad transformers, see [308, 66, 219].

(ix) Let I,O be two arbitrary but fixed sets, used as sets of “inputs” and “outputs”.
Consider for each set X the initial algebra F ∗(X) of the functor:

Y 7−→ X + F (Y) where F (Y) = Y I + (O × Y),

with initial algebra map:

X + F ∗(X)I +
(
O × F ∗(X)

) ∼= // F ∗(X).

The mapping X 7→ F ∗(X) is then a monad. Later on, with Proposition 5.1.8, we shall
recognise this as an instance of a more general construction of free monads on a functor.
The above special case is called the I/O monad, see [326, 66].

One may expect that the multiset functor MM from Definition 4.1.1 also forms a
monad (like distribution above). This is indeed the case if one assumes that the multiplic-
ities in M used for counting elements not only form an (additive) commutative monoid,
but also carry a multiplication operation. In short, multiplicities must form a semiring, that
is, a “ring without additive inverses”, sometimes also called a “rig”. For convenience, we
define it explicitly.

(As one can see in the description of distributionD as a monad in point (iv) of the above
examples, multiplication is used, on the unit interval. The construction can be generalised
from the unit interval to a so-called effect monoid, see [236].)

5.1.4. Definition. A semiring is a set S carrying:

• a commutative monoid structure, written additively as (0,+);

DRAFT

5.1. Monads and comonads: definition and examples 1875.1. Monads and comonads: definition and examples 1875.1. Monads and comonads: definition and examples 187

• another monoid structure, written multiplicatively as (1, ·),

in such a way that multiplication distributes over addition:

0 · z = 0 z · 0 = 0

(x+ y) · z = x · z + y · y z · (x+ y) = z · x+ z · y.

The semiring is called commutative if its multiplication operation · is commutative.
A morphisms of semirings f : S → R is a function between the underlying sets which

is both additively and a multiplicatively a homomorphism of monoids. We write SRng for
the category of semirings and their homomorphisms. The full subcategory of commutative
semirings is written as CSRng ↪→ SRng.

Recall that a ring is a semiring with additive inverses, so the additive monoid involved
is an (Abelian) group. The natural numbers N form a semiring, but not a ring. Similarly,
the non-negative natural numbers R≥0 = {r ∈ R | r ≥ 0} form a semiring but not a ring.

5.1.5. Lemma. If S is a semiring, then the multiset functorMS : Sets → Sets, taking
multiplicities in S, is a monad, with unit and multiplication like for the distribution monad:

η(x) = 1x and µ
(∑

i siϕi
)
(x) =

∑
i si · ϕi(x),

where ϕi ∈MS(X) = {ψ : X → S | supp(ψ) is finite}.

The proof involves some routine calculations and is left to the reader. In essence the
multiplication µ is given by matrix multiplication, see Exercise 5.1.3 below.

We turn to some more categorical aspects of monads. The following basic result (see
e.g. [315, VI 1]) shows that adjunctions form a source of monads.

5.1.6. Lemma. For each adjunction F a G the endofunctor GF is a monad, as depicted
in:

D
a G
��

C
F

<<

T = GF monad

mm

Proof. Write the unit and counit of the adjunction F a G as η : idC ⇒ GF and ε : FG⇒
idD. They satisfy the triangular identities G(εY) ◦ ηGY = idGY and εFX ◦ F (ηX) =
idFX described in Exercise 2.5.7. We write T = GF : C→ C. The unit η of the adjunction
forms the unit η : idC ⇒ T for the monad T . The multiplication µ : T 2 ⇒ T is defined
with component at X ∈ C:

TT (X) = GFGF (X)
µX

def
=G(εFX)

// GF (X) = T (X). (5.1)

It is easy to see that this is a natural transformation satisfying the monad requirements from
Definition 5.1.1. For instance,

µX ◦ T (ηX) = G(εFX) ◦ GF (ηX)

= G
(
εFX ◦ F (ηX)

)

= G(idFX)

= idTX .

Of course, in category theory one does not introduce a notion without saying what the
associated morphism is.

DRAFT

188 Chapter 5. Monads, comonads and distributive laws188 Chapter 5. Monads, comonads and distributive laws188 Chapter 5. Monads, comonads and distributive laws

5.1.7. Definition. Let T, S : C → C be two monads on the same category. A map of
monads σ : T ⇒ S is a natural transformation that commutes with the respective units and
multiplications, as in:

X

ηX
��

X

ηX
��

T 2(X)

µX
��

σTX // S(T (X))
S(σX)

// S2(X)

µX
��

T (X) σX
// S(X) T (X) σX

// S(X)

In this way one obtains a category Mnd(C) of monads on C with maps between them.

Maps of monads arise naturally, see for instance Exercises 5.1.7 and 5.1.8 describing
the functoriality of some monad constructions from Example 5.1.3. Also, the earlier exam-
ples (4.3) of natural transformations between collection functors are all maps of monads.

We also use maps of monads in the following result. It described how every endofunctor
can be turned into a monad, in a free manner, assuming that certain initial algebras exist.

5.1.8. Proposition. Let F : C→ C be an endofunctor on a category C with coproducts +.
Assume for each object X , the functor X + F (−) : C→ C has an initial algebra, written
as:

X + F
(
F ∗(X)

) αX
∼=

// F ∗(X).

The mapping X 7→ F ∗(X) forms a monad, that is the free one on the functor F , via a
universal natural transformation θ : F ⇒ F ∗.

Proof. We first show that X 7→ F ∗(X) is functorial. For a map f : X → Y in C write
F ∗(f) : F ∗(X)→ F ∗(Y) for the unique algebra homomorphism obtained by initiality in:

X + F
(
F ∗(X)

)

αX ∼=
��

id + F
(
F ∗(f)

)
//________ X + F

(
F ∗(Y)

)

f + id
��

Y + F
(
F ∗(Y)

)

αY∼= ��
F ∗(X)

F ∗(f)
//____________ F ∗(Y)

(5.2)

It is easy to see that F ∗ preserves identities and composition. We get a unit natural trans-
formation η : id ⇒ F ∗ with components:

ηX
def
=
(
X

κ1 // X + F
(
F ∗(X)

) αX
∼=
// F ∗(X)

)
.

It is natural since for f : X → Y ,

F ∗(f) ◦ ηX = αY ◦ (f + id) ◦ (id + F (F ∗(f))) ◦ α−1
X ◦ αX ◦ κ1

= αY ◦ κ1 ◦ f = ηY ◦ f.

The multiplication map µ : F ∗F ∗ ⇒ F ∗ arises as unique map in:

F ∗(X) + F
(
F ∗F ∗(X)

)

αF∗(X) ∼=
��

id + F (µX)
//______ F ∗(X) + F

(
F ∗(X)

)

[id, αX ◦ κ2]
��

F ∗F ∗(X) µX
//____________ F ∗(X)

DRAFT

5.1. Monads and comonads: definition and examples 1895.1. Monads and comonads: definition and examples 1895.1. Monads and comonads: definition and examples 189

The first of the monad equations is easy:

µX ◦ ηF∗(X) = µX ◦ αF∗(X) ◦ κ1

= [id, αX ◦ κ2] ◦ (id + F (µX)) ◦ κ1

= [id, αX ◦ κ2] ◦ κ1

= id.

The other two equations can be obtained via (the uniqueness part of) initiality—which we
leave to the reader. W continue with the universal property. There is a natural transforma-
tion θ : F ⇒ F ∗ with components:

θX
def
=
(
F (X)

F (ηX)
// F (F ∗(X))

κ2 // X + F (F ∗(X))
αX
∼=
// F ∗(X)

)
.

If T = (T, ηT , µT) is an arbitrary monad with a natural transformation σ : F ⇒ T , then
there is a unique map of monads σ : F ∗ ⇒ T with σ ◦ θ = σ. This σ is obtained by
initiality in:

X + F
(
F ∗(X)

)

αX ∼=
��

id + F (σX)
//______ X + F (T (X))

[ηTX , µ
T
X ◦ σT (X)]

��

F ∗(X)
σX

//__________ T (X)

Then indeed:

σX ◦ θX = σX ◦ αX ◦ κ2 ◦ F (ηX)

= [ηTX , µ
T
X ◦ σT (X)] ◦ (id + F (σX)) ◦ κ2 ◦ F (ηX)

= µTX ◦ σT (X) ◦ F (σX)) ◦ F (ηX)

= µTX ◦ T (σX) ◦ T (ηX) ◦ σX
= µTX ◦ T (σX ◦ αX ◦ κ1) ◦ σX
= µTX ◦ T ([ηTX , µ

T
X ◦ σT (X)] ◦ (id + F (σX)) ◦ κ1) ◦ σX

= µTX ◦ T (ηTX) ◦ σX
= σX .

Uniqueness of σ is left to the interested reader.

Free monads will be used to give a systematic description of terms in algebraic specifi-
cation, see Sections 6.6 and 6.7. There we shall see further properties of such free monads
(on Sets), such as F ∗ is finitary (or weak pullback preserving) if F is, see Lemma 6.6.4
and Exercise 6.7.4.

5.1.1 Comonads

A comonad is the dual of a monad, in the sense that a comonad on category C is a monad
on the opposite category Cop. Basically, we can now use what we have already learned
about monads. However, it is convenient to make a few things explicit.

5.1.9. Definition. A comonad on a category C is given by a functor S : C → C together
with two natural transformations, namely a counit ε : S ⇒ id and a comultiplication

DRAFT

190 Chapter 5. Monads, comonads and distributive laws190 Chapter 5. Monads, comonads and distributive laws190 Chapter 5. Monads, comonads and distributive laws

δ : S ⇒ S2 making for each object X ∈ C the following diagrams commute.

S(X)

qqqqqqqqqqq

qqqqqqqqqqq

MMMMMMMMMMM

MMMMMMMMMMM

δX
��

S(X)
δX //

δX
��

S2(X)

S(δX)
��

S(X) S2(X)
S(εX)
oo

εS(X)

// S(X) S2(X)
δS(X)

// S3(X)

A map of comonads is a natural transformation σ : S ⇒ S′ that commutes appropri-
ately with the counit ε and comultiplication δ.

Comonads are not so common as monads. We conclude by listing some examples. They
can all be understood as providing structure to the context of computations (like in [415]).
Further examples can be obtained as cofree comonads on a functor, via final coalgebras
(see Exercise 5.1.14). In Section 6.8 we will see how to obtain comonads from coalgebraic
specifications.

5.1.10. Examples. Probably the clearest example of a comonad is given by streams, i.e.
by the functor X 7→ XN sending a set to the set of infinite sequences of its elements.

X XNεoo δ //
(
XN)N

α(0) α�oo � // λn. λm.α(n+m).

The counit ε thus selects the head of the stream. The comultiplication δ maps a stream to a
stream of streams, where the i-th stream of δ(α) is the substream α(i), α(i+1), α(i+2), . . .
of α starting at i. It is not hard to see that this forms a comonad.

One way of understanding this stream comonad XN is as providing infinitely many
copies of X as input for a computation. This is also the idea of the exponential ! in linear
logic [145]—which is standardly modeled via a comonad, see e.g. [390, 65]. There are
some variations on the stream comonad, with additional structure keeping track of a posi-
tion in the sequence. We shall describe them in concrete form, for both discrete time and
real time inputs. Exercise 5.1.10 describes some of these comonads in more abstract form.

The diagram below presents the discrete time comonads, together with comonad maps
between them.

X? ×X XN × N
no futureoo

no past
// XN

(〈α(0), . . . , α(n− 1)〉, α(n)) (α, n)�oo � // λm.α(n+m)

(5.3)

The comonad structure for XN × N in the middle is:

X XN × N
εoo δ //

(
XN × N

)N × N

α(n) (α, n)�oo � // (λm. (α,m), n).

The intuition for a pair (α, n) ∈ XN × N is that the number n represents the present stage
in the stream α = 〈α(0), α(1), . . . , α(n−1), α(n), α(n+1), . . .〉, where everything before
n is past input, and everything after n is future input.

The comonad structure for X? ×X on the left in (5.3) is:

X X? ×Xεoo δ //
(
X? ×X

)? ×X
x (α, x)

�oo � // (〈(〈〉, x1), . . . , (〈x1, . . . , xn−1〉, xn)〉, (α, x)),

DRAFT

5.1. Monads and comonads: definition and examples 1915.1. Monads and comonads: definition and examples 1915.1. Monads and comonads: definition and examples 191

where α = 〈x1, . . . , xn〉. The comultiplication δ thus turns a pair (α, x) into another pair
(β, (α, x)), where β is a list of pairs (α<i, xi), in which xi is the i-th element in α and α<i
is the sublist of α of elements up to i.

The two arrows in the diagram (5.3) are homomorphisms of comonads, commuting
with the relevant comonad/context structure.

The real-time analogue uses the (semiring of) non-negative real numbers R≥0 = {r ∈
R | r ≥ 0} to represent time. One obtains a diagram like (5.3):

(∐
t∈R≥0

X [0,t)
)
×X XR≥0 × R≥0

oo // XR≥0 (5.4)

The leftmost comonad may also be described as:
∐
t∈R≥0

X [0,t].

The notion of ‘arrow’ developed in [215] forms a generalisation of both monads and
comonads, see also [361, 237, 309].

Exercises

5.1.1. Assume C is a category with coproducts +. Fix an arbitrary object A ∈ C and prove that
the functor X 7→ A+X forms a monad on C.

5.1.2. Describe sequential composition ; for Java programs, modelled as coalgebrasX → J (X),
using the Java monad J from Example 5.1.3 (viii).

5.1.3. Let S be a semiring and X a finite set, say X = {x1, . . . , xn}.
(i) Check that coalgebras c : X →MS(X) can be identified with n × n matrices, with

entries in S; write Mc for the matrix corresponding to c.
(ii) Prove thatMc ; d = McMd, where the left-hand-side uses sequential composition ; for

coalgebras (from Lemma 5.1.2) and the right-hand-side involves matrix composition.
(iii) Check that the same works for finite Markov chains, as coalgebrasX → D(X), where

X is finite.

5.1.4. Fix a set C and consider the contravariant functor X 7→ CX . Prove that there is an adjunc-
tion:

Setsop

C(−)

++
> Sets

C(−)

kk

Check that the monad induced by this adjunction on Sets, like in Lemma 5.1.6, is the
continuation monad from Example 5.1.3 (vii).

5.1.5. Consider the continuation monad C(X) = C(CX) from Example 5.1.3 (vii). Assume the
setC carries an operation f : Cn → C, for some n ∈ N. Prove that it gives rise to a natural
transformation: (

C(X)
)n

=⇒ C(X).

5.1.6. Recall from Subsection 2.2.6 that Turing machines can be modelled as coalgebras X →
T (n ·X)n, where n is the number of (control) states.
(i) ([235]) Show that the mapping X 7→ T (n ·X)n is a monad if T is a monad.
(ii) Describe the 2-step composite c ; c for the Turing-machine-as-coalgebra example monad

c described in (2.27) and (2.28).

5.1.7. Show that sending a monoid M to the monad M × (−), as in Example 5.1.3 (v), yields a
functor Mon→Mnd(Sets).
[This functor has a right adjoint, see Exercise 5.2.16.]

5.1.8. Prove that mapping a semiring S to the corresponding multiset monadMS yields a functor
SRng→Mnd(Sets).

5.1.9. Prove that the support natural transformation D ⇒ P from (4.3) is a map of monads.

5.1.10. Show that for each monoidM and setE the following functors are comonads on Sets.
(i) X 7→ XM ;

DRAFT

192 Chapter 5. Monads, comonads and distributive laws192 Chapter 5. Monads, comonads and distributive laws192 Chapter 5. Monads, comonads and distributive laws

(ii) X 7→ XE × E.
Show also that there is a map of comonads (−)M ×M ⇒ (−)M , as used twice in Exam-
ple 5.1.10.

5.1.11. Prove that the arrows XN × N→ X? ×X in Diagram (5.3) form a map of comonads.

5.1.12. Define the comonad structure on
(∐

t∈R≥0
(−)[0,t)

)
×X and the comonad map (−)R≥0 ×

R≥0 ⇒
(∐

t∈R≥0
(−)[0,t)

)
×X in Diagram (5.4).

5.1.13. Let T be a monad on a category C, and let A,B be arbitrary categories. Prove that pre- and
post-composition with T yields monads (−) ◦ T : AC → AC and T ◦ (−) : CB → CB on
categories of functors C→ A and B→ C.

5.1.14. Prove the dual of Proposition 5.1.8: the cofree comonad on a functor F : C → C can be
constructed as the mapping F∞ : C → C that sends X ∈ C to the carrier of the final
coalgebra of the functor X × F (−), assuming this final coalgebra exists. Check that
(i) this comonad arises from the cofree coalgebra construction in Proposition 2.5.3;
(ii) the stream comonad X 7→ XN is the cofree comonad on the identity functor.

5.1.15. Prove that the multiset monad MS from Lemma 5.1.5 is “additive”, in the sense that it
sends finite coproducts to products:

MS(0) ∼= 1 and MS(X + Y) ∼= MS(X)×MS(Y).

The same property holds for the (finite) powerset monad, see Exercise 2.1.9.

5.2 Kleisli categories and distributive laws

This section shows how to associate with a monad T a category of “computations of type
T ”. This category is called the Kleisli category of T and is written as K̀ (T). Compo-
sition of morphisms in Kleisli categories generalises composition ; of coalgebras from
Lemma 5.1.2. Dually, for comonads S there is a also a Kleisli category, for which we
use the same notation: K̀ (S). In general, it will be clear from the context whether this is a
Kleisli category of a monad, or of a comonad.

The basics of the theory of Kleisli categories is described in this section. Included is
the notion of distributive law that will be used to lift functors to Kleisli categories. Such
liftings play a crucial role in the description of trace semantics for coalgebras in the next
section.

5.2.1. Definition. Assume a monad T on a category C. The Kleisli category K̀ (T) of T
has the same objects as C; but morphisms X → Y in K̀ (T) are maps X → T (Y) in C.

The identity map X → X in K̀ (T) is the unit ηX : X → T (X). Composition of
f : X → Y and g : Y → Z in K̀ (T), that is, of f : X → T (Y) and g : Y → T (Z) in C, is
written as ; and defined like in Lemma 5.1.2:

f ; g
def
=
(
X

f
// T (Y)

T (g)
// T 2(Z)

µZ
// T (Z)

)
.

Notice that we use a reversed order in the notation for composition in a Kleisli cate-
gory. This is motivated by the fact that program statements are standardly interpreted as
morphisms in a Kleisli category. Hence we like to use the notation ; that is commonly
used for sequential composition of program statements also for composition in a Kleisli
category, together with the convention used in programming that f ; g means: first execute
f , and then g. Hopefully this does not lead to too much confusion. In fact, having a sep-
arate notation for composition in Kleisli categories may help to distinguish composition
in C from composition in K̀ (T). The only thing that remains special is then the order of
composition.

DRAFT

5.2. Kleisli categories and distributive laws 1935.2. Kleisli categories and distributive laws 1935.2. Kleisli categories and distributive laws 193

Kleisli mapsX → Y may be seen as generalised coalgebrasX → T (Y), with different
domain and codomain. The composition monoid described in Lemma 5.1.2 is the monoid
of endomorphisms X → X in the Kleisli category K̀ (T).

The Kleisli construction captures many well-known categories. For instance, the Kleisli
category K̀ (P) of the powerset monad is the category SetsRel of sets with relations
between them—using the correspondence (2.16). The Kleisli category K̀ (L) of the lift
monad is the category of sets and partial functions. Alternatively, the morphisms can be
described as total functions that preserve the bottom elements in sets L(X); such functions
are sometimes called strict. The Kleisli category K̀ (D) of the distribution monad is the
category of sets with “stochastic relations” between them.

There are some general observations about Kleisli categories.

5.2.2. Proposition. Let T be a monad on an arbitrary category C.
(i) There is an adjunction:

K̀ (T)

a U
��

C
J
BB

where

{
U(Y) = T (Y)

U(f) = µ ◦ T (f)
and

{
J(X) = X

J(f) = η ◦ f.

(ii) If the monad T comes as T = HL from an adjunction L a H , like in Lemma 5.1.6,
then there is a “comparison” functor K in:

K̀ (T)
K //

a
U
$$HHHHHHH D

HooCJ

UU

a
L

=={{{{{{{

CDAB T = HL@G <<
where

{
K(Y) = L(Y)

K(f) = ε ◦ L(f)

This functor comparison functor K satisfies K ◦ J = L and H ◦ K = U .
(iii) The Kleisli category inherits coproducts and coequalisers from C—if any—and

J : C→ K̀ (T) preserves them.

Proof. (i) It is not hard to see that J and U as defined above are functors, using some care
wrt. the order of compositions. For instance:

U(f ; g) = µ ◦ T (µ ◦ T (g) ◦ f)

= µ ◦ µ ◦ T 2(g) ◦ T (f) using the µ-law from Definition 5.1.1

= µ ◦ T (g) ◦ µ ◦ T (f) by naturality of µ

= U(g) ◦ U(f)

J(g ◦ f) = η ◦ g ◦ f
= T (g) ◦ η ◦ f
= µ ◦ T (η ◦ g) ◦ η ◦ f
= (η ◦ f) ;(η ◦ g)

= J(f) ;J(g).

The adjunction J a U follows directly by unravelling the structure.

J(X) = X
f
// Y in K̀ (T)

X
f
// T (Y) = U(Y) in C

DRAFT

194 Chapter 5. Monads, comonads and distributive laws194 Chapter 5. Monads, comonads and distributive laws194 Chapter 5. Monads, comonads and distributive laws

(ii) Let η : id ⇒ HL = T and ε : LH ⇒ id be the unit and counit of the adjunction
L a H . For a morphism f : X → Y in K̀ (T), that is for f : X → HLY in C, its transpose
K(f) = εLY ◦ L(f) : LX → LY yields a map in D. This K preserves identities and
composition, since:

K(idX) = K(ηX)

= εLX ◦ L(ηX)

= idLX by the triangular identities

K(f ; g) = K(µ ◦ T (g) ◦ f)

= εLZ ◦ L
(
H(εLZ) ◦ HL(g) ◦ f

)
by (5.1)

= εLZ ◦ L(g) ◦ εLY ◦ L(f) by naturality

= K(g) ◦ K(f).

(iii) We shall do the (simple) case of binary coproducts + in C. They also form coprod-
ucts in K̀ (T) with coprojections J(κi) = η ◦ κi : Xi → X1 +X2. For two map fi : Xi →
Y in K̀ (T), that is for fi : Xi → T (Y) in C, their cotuple [f1, f2] : X1 + X2 → T (Y) in
C forms the cotuple in K̀ (T). Alternatively, one can use the bijective correspondences:

X + Y −→ Z
=============
X + Y −→ T (Z)

==========================
X −→ T (Z)
=========
X −→ Z

Y −→ T (Z)
=========
Y −→ Z

where the arrows at the top and bottom are in K̀ (T).

This Kleisli construction inspires an alternative formulation of the notion of monad that
is popular in the (functional) programming community. It avoids functoriality and natural-
ity and only speaks about a type constructor with operations satisfying some equations.

5.2.3. Proposition. Assume an arbitrary category C with:

• a mapping C 3 X 7→ T (X) ∈ C, on objects only;

• a map ηX : X → T (X), for each X ∈ C.

The following are then equivalent.

1. the mapping X 7→ T (X) is functorial, η is a natural transformation, and there is a
natural transformation µ : T 2 ⇒ T making (T, η, µ) a monad;

2. there is a “Kleisli extension” operation (−)$ sending

X
f
// T (Y) to T (X)

f$
// T (Y) (5.5)

in such a way that the following equations hold.

f$ ◦ η = f η$ = id g$ ◦ f$ =
(
g$ ◦ f

)$
.

Proof. First assume we have a monad (T, η, µ). Then define extension (−)$ as:

f$ def
=
(
T (X)

T (f)
// T 2(Y)

µY
// T (Y)

)
.

DRAFT

5.2. Kleisli categories and distributive laws 1955.2. Kleisli categories and distributive laws 1955.2. Kleisli categories and distributive laws 195

It is not hard to check that it satisfies the above three equations.
Conversely, assume a Kleisli extension operation (−)$ as in (5.5). We first turn the

mapping X 7→ T (X) into a functor by defining for a map f : X → Y a new map T (f) =
(ηY ◦ f)$: T (X)→ T (Y). Then T (id) = id obviously holds, and:

T (g) ◦ T (f) =
(
η ◦ g

)$ ◦
(
η ◦ f

)$

=
((
η ◦ g

)$ ◦ η ◦ f
)$

=
(
η ◦ g ◦ f

)$

= T (g ◦ f).

This also makes the maps ηX : X → T (X) natural: for f : X → Y ,

T (f) ◦ ηX = (ηY ◦ f)$ ◦ ηX = ηY ◦ f.

The multiplication µX : T 2(X)→ T (X) can then be defined as µX = (idTX)$. Remain-
ing details are left to the interested reader.

With this Kleisli extension (−)$ one can define composition f ; g in a Kleisli category
as g$ ◦ f .

For the record we mention that the Kleisli category category K̀ (S) of a comonad S
has the same objects as C and its morphisms X → Y are maps S(X) → Y in C. Like
in Lemma 5.1.6, an adjunction F a G gives rise to a comonad FG. And the obvious
functor K̀ (S) → C from the Kleisli category of a comonad has a right adjoint. Further,
Kleisli categories of comonads inherit limits (products and equalisers) from the underlying
category.

We come to the next big topic of this section.

5.2.4. Definition. Assume we have a monad T : C→ C and an ordinary functor F : C→
C on the same category C. A distributive law or also a K̀ -law of F over T is a natural
transformation λ : FT ⇒ TF that is compatible with T ’s monad structure:

F (X)

F (ηX)
��

F (X)

ηF (X)

��

FT 2(X)

F (µX)
��

λT (X)
// TFT (X)

T (λX)
// T 2F (X)

µF (X)

��

FT (X)
λX
// TF (X) FT (X)

λX
// TF (X)

(5.6)

Distributive laws FT ⇒ TF as described here corresponds to liftings to Kleisli cate-
gories K̀ (T). That is why we also refer to these distributive law as K̀ -laws. Such liftings
play an important role in the next section. Later on, we shall also see distributive laws
TG ⇒ GT that correspond to liftings to Eilenberg-Moore categories EM(T). We shall
call such distributive laws EM-laws.

5.2.5. Proposition. Assume a monad T : C → C and a functor F : C → C. Then there is
a bijective correspondence between:

1. a distributive K̀ -laws λ : FT ⇒ TF ;

2. a lifting of F : C→ C to a functor K̀ (F) : K̀ (T)→ K̀ (T) in a commuting diagram:

K̀ (T)
K̀ (F)

// K̀ (T)

C
J
OO

F
// C
J
OO

(5.7)

DRAFT

196 Chapter 5. Monads, comonads and distributive laws196 Chapter 5. Monads, comonads and distributive laws196 Chapter 5. Monads, comonads and distributive laws

The notation K̀ (F) for this lifting is convenient, but a bit dangerous: not only does it
leave the dependence on λ implicit—so K̀ λ(F) would be better—but it may also give the
wrong impression that the Kleisli construction as such is functorial. Bearing that caveat in
mind, we continue to write K̀ (F) for the lifting.

Proof. Assuming a distributive law λ : FT ⇒ TF we can define K̀ (F) : K̀ (T)→ K̀ (T)
as:

K̀ (F)(X) = F (X) K̀ (F)
(
X

f−→ Y
)

=
(
F (X)

F (f)−−−→ FT (Y)
λX−−→ TF (Y)

)
.

The above two requirements in (5.6) for λ precisely say that K̀ (F) is a functor. For in-
stance:

K̀ (F)(f ; g) = λ ◦ F (µ ◦ T (g) ◦ f)

= µ ◦ T (λ) ◦ λ ◦ FT (g) ◦ F (f)

= µ ◦ T (λ) ◦ TF (g) ◦ λ ◦ F (f)

= µ ◦ T
(
K̀ (F)(g)

)
◦ K̀ (f)

= K̀ (F)(f) ; K̀ (F)(g).

Conversely, assume there is a functor G : K̀ (T) → K̀ (T) in a commuting square like
in (5.7). Then, on objects, G(X) = F (X). Further, for a map f : X → T (Y) in C we get
G(f) : F (X) → TF (Y) in C. This suggests how to define a distributive law: the identity
map idTX : T (X) → T (X) in C forms a map T (X) → X in K̀ (T), so that we can
define λX = G(idTX) : FT (X) → TF (X) in C. We check that these λ’s form a natural
transformation, again using commutation of the diagram: for an arbitrary f : X → Y in C
we have G(η ◦ f) = η ◦ F (f). Then we get in C:

TF (f) ◦ λX = TF (f) ◦ G(idTX)

= µ ◦ T (η ◦ F (f)) ◦ G(idTX)

= G(idTX) ;G(η ◦ f)

= G
(
idTX ;(η ◦ f)

)

= G
(
µ ◦ T (η ◦ f) ◦ idTX

)

= GT (f)

= G
(
µ ◦ T (idTY) ◦ η ◦ Tf

)

= G
(
(η ◦ T (f)) ; idTY

)

= G(η ◦ T (f)) ;G(idTY)

= µ ◦ T (G(idTY)) ◦ η ◦ FT (f)

= µ ◦ η ◦ G(idTY) ◦ FT (f)

= G(idTY) ◦ FT (f)

= λY ◦ FT (f).

Similarly one verifies that λ interacts appropriately with η and µ.

The commuting diagram (5.7) in this result yields an identity as isomorphism in dia-
gram (2.30) in Theorem 2.5.9, needed to lift an adjunction to categories of algebras. Thus
we obtain the following result as immediate consequence. At this stage it may look like a
formality, but it turns out to be very useful in the next section.

5.2.6. Corollary. Assume an endofunctor F and a monad T on a category C, together
with a distributive K̀ -law FT ⇒ TF of F over T . The adjunction J a U between the

DRAFT

5.2. Kleisli categories and distributive laws 1975.2. Kleisli categories and distributive laws 1975.2. Kleisli categories and distributive laws 197

Kleisli category K̀ (T) and C lifts to an adjunction Alg(J) a Alg(U) by Theorem 2.5.9:

Alg(F)

��

Alg(J)
..⊥ Alg(K̀ (F))

��

Alg(U)

mm

C
F

;;

J
--⊥ K̀ (T)

K̀ (F)
ee

U

mm

Explicitly, the functor Alg(J) : Alg(F)→ Alg(K̀ (F)) maps an algebra a : F (X)→
X to the composite:

K̀ (F)(X) = F (X)
a // X

η
// T (X).

It is an algebra K̀ (F)(X) → X in the Kleisli category K̀ (T). Conversely, the functor
Alg(U) : Alg(K̀ (F))→ Alg(F) sends an algebra b : F (Y)→ T (Y) to the F -algebra:

FT (Y)
λ // TF (Y)

T (b)
// T 2

µ
// T (Y).

We now concentrate on distributive K̀ -laws where the monad involved is powerset P .
The next result from [230] derives a distributive laws with respect to the powerset monad
from preservation of weak pullbacks. It is described as ∇, following [418], because of its
role in Moss’ coalgebraic modal logic, with its ∇ operator, see Subsection 6.5.2. This ∇
should not be confused with the codiagonal notation∇ = [id, id] : X +X → X .

5.2.7. Lemma. For each weak-pullback-preserving functor F : Sets → Sets there is a
distributive K̀ -law ∇ : FP ⇒ PF obtained by applying relation lifting to the reverse
inhabitation relation 3⊆ P(X)×X .

This∇may be used to describe relation lifting: if, for an arbitrary relationR ⊆ X×Y
we write R̂ : X → P(Y) for the corresponding function, as in (2.16), then the following
triangle commutes.

FP(Y)

∇
��

F (X)

F (R̂) 33gggggggggggg

̂Rel(F)(R)
++WWWWWWWWWWWW

PF (Y)

(5.8)

At this stage we use relation lifting as described in Definition 4.4.1, for arbitrary endo-
functors on Sets, using the standard logical factorisation system of injections and surjec-
tions.

Proof. Applying relation lifting to 3X ⊆ P(X) × X yields a relation Rel(F)(3X) ⊆
F (P(X))× F (X), which can be reformulated, via (2.16), as:

F (P(X))
∇X // P(F (X))

u � // {v ∈ F (X) | (u, v) ∈ Rel(F)(3X)}
(5.9)

In order to show that the ∇’s behave appropriately we need the basic properties of relation
lifting from Proposition 4.4.3—which all apply because epis are split in Sets—together
with basic connections between inhabitation and the unit η = {−} and multiplication
µ =

⋃
of the powerset monad (see Example 5.1.3 (i)).

(a)
(
P(f)× id

)−1
(3Y) =

∐
id×f (3X);

DRAFT

198 Chapter 5. Monads, comonads and distributive laws198 Chapter 5. Monads, comonads and distributive laws198 Chapter 5. Monads, comonads and distributive laws

(b) (ηX × id)−1(3X) = Eq(X);

(c) (µX × id)−1(3X) = 3X ◦3P(X).

For naturality of ∇ we use that relation lifting preserves inverse and direct images. For
f : X → Y and u ∈ F (P(X)),

(
∇Y ◦ FP(f)

)
(u) = {w ∈ F (Y) | (FP(f)(u), w) ∈ Rel(F)(3Y)}

= {w | (u,w) ∈
(
F (P(f))× id

)−1
(Rel(F)(3Y))}

= {w | (u,w) ∈ Rel(F)
((
P(f)× id

)−1
(3Y)

)
}

(a)
= {w | (u,w) ∈ Rel(F)

(∐
id×f (3X)

)
}

= {w | (u,w) ∈∐F (id)×F (f)

(
Rel(F)(3X)

)
}

= {w | ∃(u′, v). u′ = u ∧ F (f)(v) = w ∧ (u′, v) ∈ Rel(F)(3X)}
= {F (f)(v) | (u, v) ∈ Rel(F)(3X)}
=
(
PF (f) ◦ ∇X

)
(u).

This∇ also interacts appropriately with the unit η = {−} and multiplication µ =
⋃

of the
powerset monad, because relation lifting preserves equality and composition, and because
of the above points (b) and (c):

(
∇X ◦ F (ηX)

)
(u)

= {v | (F (η)(u), v) ∈ Rel(F)(3X)}
= {v | (u, v) ∈

(
F (η)× F (id)

)−1(
Rel(F)(3X)

)
}

= {v | (u, v) ∈ Rel(F)
(
(η × id)−1(3X)

)
}

(b)
= {v | (u, v) ∈ Rel(F)(Eq(X))}
= {v | (u, v) ∈ Eq(F (X))}
= {u}
= ηF (X)(u)(
µF (X) ◦ P(∇X) ◦ ∇P(X)

)
(u)

=
⋃{∇X(v) | (u, v) ∈ Rel(F)(3P(X))}

= {w | ∃v. (v, w) ∈ Rel(F)(3X) ∧ (u, v) ∈ Rel(F)(3P(X))}
= {w | (u,w) ∈ Rel(F)(3X) ◦ Rel(F)(3P(X))}
= {w | (u,w) ∈ Rel(F)(3X ◦3P(X))}
(c)
= {w | (u,w) ∈ Rel(F)

(
(µX × id)−1(3X)

)
}

= {w | (u,w) ∈
(
F (µX)× F (id)

)−1(
Rel(F)(3X)

)
}

= {w | (F (µX)(u), w) ∈ Rel(F)(3X)}
=
(
∇X ◦ F (µX)

)
(u).

Commutation of the triangle (5.8) follows from an easy calculation. For u ∈ F (X) and
v ∈ F (Y) we have:

v ∈
(
∇ ◦ F (R̂)

)
(u) ⇐⇒ (F (R̂)(u), v) ∈ Rel(F)(3)

⇐⇒ (u, v) ∈
(
F (R̂)× id

)−1
(Rel(F)(() 3))

⇐⇒ (u, v) ∈ Rel(F)((R̂× id)−1(3))

⇐⇒ (u, v) ∈ Rel(F)(R)

⇐⇒ v ∈ ̂Rel(F)(R)(u).

DRAFT

5.2. Kleisli categories and distributive laws 1995.2. Kleisli categories and distributive laws 1995.2. Kleisli categories and distributive laws 199

For a weak-pullback-preserving functor on Sets there are thus two liftings to two cat-
egories of relations: once with relations as morphisms and once as objects. Since they are
easily confused, we describe them explicitly.

5.2.8. Corollary. A weak-pullback-preserving functor F : Sets→ Sets has two liftings:

1. a “computational” one, to SetsRel → SetsRel via Proposition 5.2.5, using the
distributive K̀ -law ∇ : FP ⇒ PF from the previous lemma and the fact that the
category SetsRel of sets and relations as morphisms is the Kleisli category K̀ (P)
of the powerset monad;

2. a “logical” one, to a relator Rel→ Rel via Theorem 4.4.6, where Rel = Rel(Sets)
is the category with relations as objects and morphisms preserving relation inclusion.

The action
(
X

R−→ P(Y)
)
7−→

(
F (X)

∇◦F (R)−−−−−→ P(F (Y))
)

of the functor in point 1 on
morphisms is the same as the action

(
R� X × Y

)
7−→

(
Rel(F)(R) � F (X)×F (Y)

)

of the functor in point 2 on objects, via the triangle (5.8).

We close this section by extending the notion of strength from functors to monads,
together with the associated property of commutativity for monads. Commutativity allows
us to define some more distributive laws, and also to define a tensor on Kleisli categories.

In Exercise 2.5.4 we have already briefly seen strength for functors on Sets. In general,
for a functors F : C→ C on a category C with finite products, a functor is called strong if
it comes with a strength natural transformation st with components:

F (X)× Y
stX,Y

// F (X × Y)

that commute appropriately with trivial projections and associativity isomorphisms. Here
are the diagrams, starting with naturality.

F (X)× Y st //

F (f)× g
��

F (X × Y)

F (f × g)
��

F (X)× 1

π1

∼=
''PPPPPPPPP

st // F (X × 1)

F (π1)∼=
��

F (Z)×W st // F (Z ×W) F (X)

(F (X)× Y)× Z st× id
//

∼=
��

F (X × Y)× Z st // F ((X × Y)× Z)

∼=
��

F (X)× (Y × Z)
st

// F (X × (Y × Z))

(5.10)

As an aside: cartesian products are not really needed in order to define strength; monoidal
(tensor) products suffice, since we not really need projections or diagonals.

A monad T is called strong if it has a strength st : T (X)× Y → T (X × Y), as above,
that commutes with the unit and multiplication of the monad:

X × Y
η × id

��

X × Y
η
��

T 2(X)× Y
µ× id

��

st // T (T (X)× Y)
T (st)
// T 2(X × Y)

µ
��

T (X)× Y
st
// T (X × Y) T (X)× Y

st
// T (X × Y)

(5.11)

Given such a strength st : F (X) × Y → F (X × Y) one can also form a “swapped”
strength in the second argument, written as:

st′
def
=
(
X × F (Y)

swap
∼=
// F (Y)×X st // F (Y ×X)

F (swap)
∼=
// F (X × Y)

)

(5.12)

DRAFT

200 Chapter 5. Monads, comonads and distributive laws200 Chapter 5. Monads, comonads and distributive laws200 Chapter 5. Monads, comonads and distributive laws

where, of course, swap = 〈π2, π1〉.
With both st and st′ there are for a monad T two ways of going T (X) × T (Y) →

T (X × Y), namely via first st and then st′ or the other way around, in:

T (X × T (Y))
T (st′)

// T 2(X × Y) µ
))TTTT

T (X)× T (Y)

st 44hhhhh

st′
**VVVVV

T (X × Y)

T (T (X)× Y)
T (st)

// T 2(X × Y)
µ
55jjjj

(5.13)

The monad T is called commutative if this diagram commutes. We wrap up the foregoing
in a definition.

5.2.9. Definition. Let C be a category with finite products.
(i) A functor F : C → C is called strong if if there is strength natural transformation

st satisfying (5.10).
(ii) A monad T : C→ C is strong if it is has a strength satisfying both (5.10) and (5.11).

(iii) A strong monad is called commutative if its strength makes the diagram (5.13)
commute. In that case we sometimes write dst : T (X) × T (Y) → T (X × Y) for the
resulting “double strength” map.

(iv) If we have two strong monads T and S, then a map of monads σ : T ⇒ S is called
a strong map if it commutes with strengths, as in:

T (X)× Y
stT
��

σX × id
// S(X)× Y

stS
��

T (X × Y) σX×Y
// S(X × Y)

(5.14)

We shall write CMnd(C) ↪→ StMnd(C) ↪→Mnd(C) for the subcategories of commu-
tative and strong monads, with strong monad maps between them.

Commutativity of monads can also be formulated by saying that the monad is monoidal
(see e.g. [275]) but this requires the machinery of monoidal categories which is out of
scope. Alternative formulations using exponents occur in Exercise 5.2.15.

In Exercise 2.5.4 we have seen that every endofunctor on Sets is strong, via a uniform
strength. The same holds for monads—and also for comonads, see Exercise 5.2.13.

5.2.10. Lemma. StMnd(Sets) = Mnd(Sets). That is, each monad on Sets, and each
monad map between them, is strong.

Proof. Recall from Exercise 2.5.4 the definition of st : T (X)× Y → T (X × Y):

st(u, y) = T
(
λx ∈ X. (x, y)

)
(u)

It is not hard to see that it commutes with T ’s unit η and multiplication µ, using their
naturality. For instance:

(
st ◦ (η × id)

)
(z, y) = T

(
λx ∈ X. (x, y)

)
(η(z))

=
(
T
(
λx ∈ X. (x, y)

)
◦ η
)

(z)

=
(
η ◦ (λx ∈ X. (x, y))

)
(z)

= η(z, y).

DRAFT

5.2. Kleisli categories and distributive laws 2015.2. Kleisli categories and distributive laws 2015.2. Kleisli categories and distributive laws 201

And for a map of monads σ : T ⇒ S the relevant diagram (5.14) automatically com-
mutes, by naturality:

(
stT ◦ (σ × id)

)
(u, y) = stT (σ(u), y) = T (λx ∈ X. (x, y))(σ(u))

= σ
(
S(λx ∈ X. (x, y))(u)

)

=
(
σ ◦ stS

)
(u, y).

The next result shows that commutativity of monads is a reasonable notion.

5.2.11. Lemma. (i) A monoidM is commutative if and only if the associated monadM×
(−) : Sets→ Sets is commutative.

(ii) A semiring S is commutative if and only if the multiset monadMS : Sets→ Sets
is commutative.

Proof. By the previous lemma both monads are strong. For the monad M × (−) the
strength map st : (M × X) × Y → M × (X × Y) is associativity: st((m,x), y) =
(m, (x, y)). The swapped strength map st′ : X × (M × Y) → M × (X × Y) is similar:
st′(x, (m, y)) = (m, (x, y)). The upper and lower path in (5.13) are:

(
M ×X

)
×
(
M × Y

)
((m,x), (k, y)) 7→ (m · k, (x, y))

**

((m,x), (k, y)) 7→ (k ·m, (x, y))

44
M ×

(
X × Y

)

Hence they are equal if and only if M is commutative.
The strength st : MS(X) × Y → MS(X × Y) and the swapped strength st′ for the

multiset monad are given by:

st(
∑
i sixi, y) =

∑
i si(xi, y) st′(x,

∑
j tjyj) =

∑
j tj(x, yj).

The resulting two paths in (5.13) are:

MS(X)×MS(Y)

(
∑
i sixi,

∑
j tjyj) 7→

∑
i,j si · tj(xi, yj)

**

(
∑
i sixi,

∑
j tjyj) 7→

∑
i,j tj · si(xi, yj)

44
MS(X × Y)

Thus, commutativity of the (multiplication of the) semiring S implies commutativity of the
monadMS . For the converse, it suffices to choose X = Y = 1 and use thatMS(1) ∼= S.

Commutativity of monads is not only a reasonable but also a useful notion because it
gives us distributive laws, and thus liftings to Kleisli categories. The following result comes
from [193] and defines a distributive law of a simple polynomial functor—with identity,
constants, products ×, and coproducts

∐
only, see Definition 2.2.1—over an arbitrary

commutative monad.

5.2.12. Lemma. Let T : Sets→ Sets be a commutative monad, and F : Sets→ Sets a
simple polynomial functor. Then there is a distributive K̀ -law λ : FT ⇒ TF .

Proof. The construction of the distributive law λ proceeds by induction on the structure of
the functor F .

DRAFT

202 Chapter 5. Monads, comonads and distributive laws202 Chapter 5. Monads, comonads and distributive laws202 Chapter 5. Monads, comonads and distributive laws

• If F is the identity functor, then λ is the identity natural transformation T ⇒ T .

• If F is a constant functor, say X 7→ A, then λ is the unit map ηA : A→ T (A).

• If F = F1 × F2 we use induction and assume distributive laws λi : FiT ⇒ TFi for
i ∈ {1, 2}. Then we can form a new distributive law, using that T is commutative.

F1T (X)× F2T (X)
λ1 × λ2 // TF1(X)× TF2(X)

dst // T
(
F1(X)× F2(X)

)
.

• If F is a coproduct
∐
i∈I Fi then we may assume laws λi : FiT ⇒ TFi for i ∈ I ,

and define:

∐
i∈I FiT (X)

[
T (κi) ◦ λi

]
i∈I
// T
(∐

i∈I Fi(X)
)
.

It is straightforward to check that these λ’s are natural and compatible with the monad
structure.

We conclude by remarking that the Kleisli category of a commutative monad car-
ries a tensor ⊗. Formally, this is expressed in terms of a symmetric monoidal structure
(see [315]). Here we describe it more concretely.

5.2.13. Proposition. Let C be a category with finite products and T : C→ C a commuta-
tive monoid. The cartesian product then becomes a functor × : K̀ (T)× K̀ (T)→ K̀ (T).

Proof. For f : X → Y and g : Z →W in K̀ (T) we have to define a mapX×Z → Y ×W .
Using double strength we take:

X × Z
f × g

// T (Y)× T (W)
dst // T (Y ×W).

Using the properties of Exercise 5.2.14 it easy to see that identities and composition are
preserved.

Exercises

5.2.1. Show that a map of monads σ : T ⇒ S induces a functor K̀ (T)→ K̀ (S).

5.2.2. Prove the three properties (a)–(c) in the proof of Lemma 5.2.7.

5.2.3. Prove in detail that if a category C has coequalisers, then so has the Kleisli category K̀ (T)
for a monad T on C—as claimed in Proposition 5.2.2.

5.2.4. Assume a monad T on a category C with an initial object 0 ∈ C. Prove that the following
two statements are equivalent.
(i) The object T (0) ∈ C is final;
(ii) The object 0 ∈ K̀ (T) is a zero object, i.e. 0 is both initial and final in K̀ (T).

5.2.5. Prove that there is a bijective correspondence:

X // Y in K̀ (P) = SetsRel

P(Y) // P(X) in CL∧

where CL∧ is the category of complete lattices and arbitrary meet preserving functions.
[This is the heart of the correspondence between (non-deterministic) state transformers
X → Y and predicate transformers P(Y) → P(X) that forms the basis for the weakest
precondition condition calculus in program verification, see [113, 313].]

DRAFT

5.2. Kleisli categories and distributive laws 2035.2. Kleisli categories and distributive laws 2035.2. Kleisli categories and distributive laws 203

5.2.6. Recall that non-deterministic automata can be turned into deterministic ones by changing
the state space. If we consider the state transition map only, this can be described as trans-
forming a coalgebra X → P(X)A into a coalgebra P(X)→ P(X)A.
(i) Describe this transformation concretely.
(ii) Describe this transformation via (pointwise) Kleisli extension.
(iii) Show that it leads to a functor CoAlg

(
P(−)A

)
→ CoAlg

(
(−)A

)
.

5.2.7. In Definition 5.2.4 we have seen a distributive K̀ -law FT ⇒ TF of a functor F over
a monad T . There is also a notion of distributive law when F is a monad too (going
back to [63]). In that case the natural transformation should commute will all units and
multiplications.
(i) Write down the relevant diagrams.
(ii) Assume such a distributive law ST ⇒ TS, where S and T are monads, and prove

that TS is then also a monad.
(iii) Prove that the units yield maps of monads S ⇒ TS and T ⇒ TS.
(iv) Check that the lifted functor K̀ (S) : K̀ (T)→ K̀ (T) is again a monad.

5.2.8. Let T : C → C be an arbitrary monad on a category C with coproducts. Fix an object
A ∈ C, recall from Exercise 5.1.1 that A+ (−) is a monad on C, and prove that the maps:

A+ T (X)
λX = [T (κ1) ◦ ηA, T (κ2)]

// T (A+X)

form a K̀ -law of monads (as defined in the previous exercise). Conclude that T (A+ (−))
is also a monad on C.

5.2.9. Consider the mapping T 7→ E(T)
def
= T (A+ (−)) from the previous exercise.

(i) Prove that it gives rise to a functor E : Mnd(C)→Mnd(C).
(ii) Show that E is even a monad, on the category Mnd(C) of monads on C.
[This mapping E is often called the exception monad transformer. It is investigated more
systematically in [307] together with associated operations for handling exceptions in pro-
grams. The proof that E is a monad requires a certain level of categorical fearlessness, but
is in essence not difficult.]

5.2.10. Let T be a strong monad. Check that strength gives for each object Y a K̀ -law of the
functor (−)× Y over T .

5.2.11. ([219, Proposition 1]) Let F be an endofunctor and T = (T, η, µ) be a monad, both on the
same category. Show that the maps λX = ηFT (X) ◦ F (µX) : FTT (X) → FT (X) →
TFT (X) form a distributive K̀ -law of the functor FT over the monad T .

5.2.12. Show that the powersetP and distributionDmonad are commutative, with double strengths:

P(X)× P(Y)
dst // P(X × Y) D(X)×D(Y)

dst // D(X × Y)

(U, V)
� // U × V (ϕ,ψ)

� // λ(x, y). ϕ(x) · ψ(x).

Check that the list monad (−)? is not commutative.

5.2.13. Prove the following analogue of Lemma 5.2.10 for comonads: for each comonad S : Sets→
Sets, the associated strength map st makes the following diagrams commute.

S(X)× Y
ε× id

��

st // S(X × Y)

ε
��

S(X)× Y
δ × id

��

st // S(X × Y)

δ
��

X × Y X × Y S2(X)× Y
st
// S(S(X)× Y)

S(st)
// S2(X × Y)

5.2.14. Show that the double strength map dst of a commutative monad T is a natural transforma-
tion and makes the following diagrams commute.

X × Y
η × η

��

X × Y
η
��

T (X)× T (Y)
dst
// T (X × Y)

DRAFT

204 Chapter 5. Monads, comonads and distributive laws204 Chapter 5. Monads, comonads and distributive laws204 Chapter 5. Monads, comonads and distributive laws

T 2(X)× T 2(Y)

µ× µ
��

dst // T (T (X)× T (Y))
T (dst)

// T 2(X × Y)

µ
��

T (X)× T (Y)
dst

// T (X × Y)

5.2.15. This exercise involves an alternative formulation of strength st, both for functors and for
monads, using exponents. Assume C is a cartesian closed category with an endofunctor
F : C→ C.
(i) Prove that F is strong if and only if there are maps rX,Y : F (XY)→ F (X)Y which

are natural in X and Y and make the following diagrams commute.

F (XY2
1)

F (Λ(f ◦ ev ◦ (id × g))) = F (fg)
��

r // F (X1)Y2

F (f)g= Λ(F (f) ◦ ev ◦ (id × g))
��

F (XY1
2) r

// F (X2)Y1

F (X)

F (Λ(π1)) ∼=
��

F (X)

Λ(π1)∼=
��

F
(
(XY)Z

)

∼=
��

r // F (XY)Z
rZ // (F (X)Y

)Z

∼=
��

F (X1) r
// F (X)1 F (XZ×Y) r

// F (X)Z×Y

where the isomorphisms on the right are Λ
(
ev ◦ (ev × id) ◦ α

)
, with associativity

isomorphism α = 〈(id × π1), π2 ◦ π2〉 : A× (B × C)
∼=−→ (A×B)× C.

(ii) Prove also that a monad T : C→ C is strong if and only if there are such r : T (XY)→
T (X)Y satisfying:

XY

η
��

XY

ηY
��

T 2(XY)

µ
��

T (r)
// T (T (X)Y)

r // T 2(X)Y

µY
��

T (XY) r
// T (X)Y T (XY) r

// T (X)Y

5.2.16. Show that there are adjunctions between (commutative) monoids and (commutative) mon-
ads:

Mon

M 7→M × (−)
��

CMon

M 7→M × (−)
��

a a

Mnd(Sets)

T 7→ T (1)

XX

CMnd(Sets)

T 7→ T (1)

XX

The adjunction on the left comes from [427] where it is described in the more general
setting of monoidal categories. See also [102] for more such adjunctions, also involving the
multiset monad.
[Hint. Define a monoid structure on T (1) via strength, as T (1)×T (1)→ T (1×T (1))

∼=→
T 2(1)→ T (1).]

5.3 Trace semantics via finality in Kleisli categories

This section describes how finite traces of observables of computations can be described
via finality, not in the familiar category Sets but in the Kleisli category K̀ (T) of a monad
T on Sets. We shall be considering coalgebras of the form X → TF (X), where T is
our monad capturing the kind of computation involved (non-deterministic, probabilistic,
. . .) and F is a functor that describes the branching structure. The main examples that will
be elaborated here involve non-deterministic and probabilistic automata and context-free

DRAFT

5.3. Trace semantics via finality in Kleisli categories 2055.3. Trace semantics via finality in Kleisli categories 2055.3. Trace semantics via finality in Kleisli categories 205

grammars. The use of Kleisli categories for trace semantics goes back to [362, 230]. (The
latter reference [230] does not deal with finite trace semantics—as in this section—but with
the infinite version. It involves only weak finality, i.e. it lacks uniqueness of the trace map.)

We begin with an illustration that uses the powerset monad P on Sets. Recall that
its Kleisli category K̀ (P) is the category SetsRel of sets and relations between them,
since a relation R ⊆ X × Y may equivalently be described as a characteristic function
R : X → P(Y). We shall often switch back-and-forth between these two notations. For
convenience we recall that the identity map X → X in SetsRel is the equality relation
Eq(X) ⊆ X ×X . And (Kleisli) composition of R : X → Y and S : Y → Z is the usual
relational composition: R ;S = {(x, z) ∈ X × Z | ∃y ∈ Y.R(x, y) ∧ S(y, z)}. There is
an obvious “graph” functor Sets → SetsRel as already described in Example 1.4.4 (iv).
It maps a set to itself, and a function f : X → Y to its graph relation Graph(f) = {(x, y) ∈
X × Y | f(x) = y}. This graph functor is the standard map J : C → K̀ (T) associated
with a Kleisli category, see Proposition 5.2.2.

Let us now fix a set L of “labels”, and write F for the “list” functor Sets→ Sets given
byX 7→ 1+(L×X). We shall consider transition systems of the form c : X → PF (X) =
P(1 + (L×X)). As noticed in Exercise 2.2.3, such transition systems correspond to non-
deterministic automataX → P(X)L×2. Here we prefer the formulation with the powerset
on the outside, because it allows us to describe such automata as maps X → F (X) in the
Kleisli category K̀ (P) = SetsRel.

These transition systems X → P(1 + (L × X)) describe besides usual transitions
x

a−→ x′, as shorthand for (a, x′) ∈ c(x), also terminating transitions x −→ ∗ for ∗ ∈ c(x).
A trace for such a coalgebra starting at an element x ∈ X consists of a list of elements
〈a1, . . . , an〉 ∈ L? for which there is a list of states x0, . . . , xn ∈ X where:

• x0 = x;

• xi ai−→ xi+1 for all i < n;

• xn −→ ∗.

Thus, traces are sequences of labels appearing in terminating sequences of computations.
One can then define a function tracec : X → P(L?) that maps a state to the set of

traces starting in that state. We shall show how to define this function by finality. It turns
out not to be a coincidence that the set L? of lists is the initial algebra of the functor F .

First we need to move from sets to relations as morphisms. We shall lift the func-
tor F : Sets → Sets to K̀ (F) : SetsRel → SetsRel. Essentially, this lifting to Kleisli
categories happens as in Proposition 5.2.5—using the distributive law from Lemma 5.2.7—
but at this moment we wish to proceed more concretely. The lifting K̀ (F) : SetsRel →
SetsRel maps an object (or set) X to F (X), and a morphism R : X → Y in SetsRel
to the morphism Rel(F)(R) : F (X) → F (Y) obtained by relation lifting, see Corol-
lary 5.2.8. Explicitly, according to Definition 3.1.1, the lifted relation Rel(F)(R) ⊆
F (X)× F (Y) is described by:

Rel(F)(R) = {(∗, ∗)} ∪ {〈(a, x), (a, x′)〉 | a ∈ L and R(x, x′)}.

We now have three important observations.

1. The first one is simple: a transition system, or PF -coalgebra, c : X → PF (X) as
considered above is an K̀ (F)-coalgebra X → K̀ (F)(X) in SetsRel, for the lifted
functor K̀ (F) : SetsRel→ SetsRel.

2. Further, the above trace map tracec : X → P(L?), considered as a homomorphism

DRAFT

206 Chapter 5. Monads, comonads and distributive laws206 Chapter 5. Monads, comonads and distributive laws206 Chapter 5. Monads, comonads and distributive laws

X → L? in SetsRel, is a homomorphism of K̀ (F)-coalgebras in SetsRel:

F (X)
Rel(F)(tracec)

// F (L?)

X

c

OO

tracec
// L?

∼= Graph(α−1)

OO

(5.15)

where α = [nil, cons] : F (L?)
∼=−→ L? is the initial algebra map, and the graph

functor Graph(−) : Sets → SetsRel is the canonical map J : Sets → K̀ (P)
described in Proposition 5.2.2. Commutation of the diagram (5.15) amounts to:

σ ∈ tracec(x) ⇐⇒ ∃u ∈ c(x). 〈u, α−1(σ)〉 ∈ Rel(F)(tracec).

This may be split in two cases, depending on whether the list σ ∈ L? is empty or
not:

nil ∈ tracec(x) ⇐⇒ ∃u ∈ c(x). 〈u, ∗〉 ∈ Rel(F)(tracec)

⇐⇒ ∗ ∈ c(x)

⇐⇒ x −→ ∗
cons(a, σ) ∈ tracec(x) ⇐⇒ ∃u ∈ c(x). 〈u, (a, σ)〉 ∈ Rel(F)(tracec)

⇐⇒ ∃x′ ∈ X. (a, x′) ∈ c(x) ∧ 〈x′, σ〉 ∈ tracec

⇐⇒ ∃x′ ∈ X.x a−→ x′ ∧ σ ∈ tracec(x
′).

This shows that the trace map tracec in (5.15) indeed makes the diagram commute.

3. Finally, this trace map tracec is obtained by coinduction since the graph of the initial
F -algebra Graph(α−1) : L?

∼=−→ F (L?) is a final K̀ (F)-coalgebra in SetsRel.
We have already seen that there is a homomorphism tracec for an arbitrary K̀ (F)-
coalgebra c in SetsRel. Here we check that it is unique: if a relation S ⊆ X ×
L? also satisfies S ; Graph(α−1) = c ; Rel(F)(S), then S = tracec. Recall that
we write ; for composition in the Kleisli category K̀ (P), which we identify with
relational composition. Uniqueness holds, since for x ∈ X one obtains σ ∈ S(x)⇔
σ ∈ tracec(x) by induction on σ ∈ L?:

nil ∈ S(x) ⇐⇒ ∃τ ∈ L?. ∗ = α−1(τ) ∧ τ ∈ S(x)

⇐⇒ ∃τ ∈ L?. ∗ ∈ Graph(α−1)(τ) ∧ τ ∈ S(x)

⇐⇒ (x, ∗) ∈ S ; Graph(α−1)

⇐⇒ (x, ∗) ∈ c ; Rel(F)(S)

⇐⇒ ∃u ∈ c(x). ∗ ∈ Rel(F)(S)(u)

⇐⇒ ∗ ∈ c(x)

⇐⇒ nil ∈ tracec(x)

cons(a, σ) ∈ S(x) ⇐⇒ ∃τ ∈ L?. (a, σ) = α−1(τ) ∧ τ ∈ S(x)

⇐⇒ ∃τ ∈ L?. (a, σ) ∈ Graph(α−1)(τ) ∧ τ ∈ S(x)

⇐⇒ (x, (a, σ)) ∈ S ; Graph(α−1)

⇐⇒ (x, (a, σ)) ∈ c ; Rel(F)(S)

⇐⇒ ∃u ∈ c(x). (a, σ) ∈ Rel(F)(S)(u)

⇐⇒ ∃x′ ∈ X.σ ∈ S(x′) ∧ (a, x′) ∈ c(x)
(IH)⇐⇒ ∃x′ ∈ X.σ ∈ tracec(x

′) ∧ x a−→ x′

⇐⇒ cons(a, σ) ∈ tracec(x).

DRAFT

5.3. Trace semantics via finality in Kleisli categories 2075.3. Trace semantics via finality in Kleisli categories 2075.3. Trace semantics via finality in Kleisli categories 207

In the next result we shall describe this situation for the powerset monad in greater
generality, following [190]. Later on we shall describe the situation in still more general
form, for other monads, like in [193]. But we prefer to stick to the powerset monad first,
because it involves a very common situation and because it has a snappy proof that avoids
domain-theoretic complications.

5.3.1. Theorem. Let F : Sets → Sets be a weak-pullback-preserving functor with an
initial algebra α : F (A)

∼=−→ A. Lemma 5.2.7 then yields a distributive K̀ -law FP ⇒ PF
and thus a lifting of F to an endofunctor K̀ (F) on the Kleisli category K̀ (P) = SetsRel.

The map Graph(α−1) : A
∼=−→ K̀ (F)(A) is then a final coalgebra in SetsRel, for the

lifted functor K̀ (F) : SetsRel→ SetsRel.

Proof. Our first observation is that reversal of relations, sending R ⊆ X × Y to R† ⊆
Y×X , makes the (Kleisli) category SetsRel = K̀ (P) self-dual: SetsRel ∼= SetsRelop.
When we combine this duality with the lifting of Corollary 5.2.6 we obtain the following
situation:

Alg(F)

��

Alg(J)
..⊥ Alg(K̀ (F))

��

Alg(U)

mm
∼

Alg(K̀ (F)op) = CoAlg(K̀ (F))op

��

Sets

F

YY

J
--⊥ SetsRel

U

mm
∼

K̀ (F)

EE SetsRelop

K̀ (F)op

FF

First we consider the bottom row. By composing the adjunction J a U from Proposi-
tion 5.2.2 with the isomorphism SetsRel ∼= SetsRelop we obtain an adjunction between
the categories Sets and SetsRelop, say J† a U†, where J† : Sets→ SetsRelop is given
by J†(X) = X and J†(f : X → Y) = Graph(f)† = {(y, x) | f(x) = y} ⊆ Y ×X . In
the reverse direction we have: U†(Y) = P(Y) and U†(R : X → Y) = λU ∈ P(Y). {x ∈
X | ∃y ∈ U.R(x, y)}.

The resulting lifted adjunction in the top row, between the categories of algebra Alg(F)
and Alg(K̀ (F)op) = CoAlg(K̀ (F))op, say Alg(J†) a Alg(U†), allows us to finish
the argument, since left adjoints preserve initial objects. Hence Alg(J†) sends the ini-
tial F -algebra F (A)

∼=→ A to the initial object in Alg(K̀ (F)op), i.e. to the final object
in CoAlg(K̀ (F)), i.e. to the final coalgebra of the lifted functor K̀ (F) : SetsRel →
SetsRel.

This theorem captures traces for transition systems as described in the beginning of this
section. The main application of [190] is the parsed language associated with a context free
grammar, see Example 5.3.2.

5.3.2. Example. Recall from Subsection 2.2.5 that a context-free grammar (CFG) is de-
scribed coalgebraically as a function g : X → P((X + L)?) where X is the state space of
nonterminals, and L is the alphabet of terminals (or tokens). Such a CFG is thus a coalge-
bra in SetsRel of the lifting of the functor F (X) = (X + L)? on Sets. Let us write its
initial F -algebra as:

(L4 + L)?
α
∼=

// L4

Notice that F (X) = (X +L)? =
∐
n∈N(X +L)n =

∐
σ∈(1+L)? X

‖σ‖ where ‖σ‖ ∈ N is
the number of ∗ ∈ 1 occurring in σ ∈ (1 +L)?. Hence an F -algebra F (X)→ X involves
an n-ary operation Xn → X for each σ ∈ (1 + L)? with n = ‖σ‖. An example of such a
σ is 〈if, ∗, then, ∗,else, ∗, fi〉. It may be understood as a ternary operation X3 → X . The

DRAFT

208 Chapter 5. Monads, comonads and distributive laws208 Chapter 5. Monads, comonads and distributive laws208 Chapter 5. Monads, comonads and distributive laws

initial algebra L4 then consists of terms built with such operations. Hence it contains all
structured or parsed words over L (according to the grammar g).

Theorem 5.3.1 gives for each CFG g : X → P((X + L)?) a unique homomorphism
traceg : X → P(L4). It maps a nonterminal x ∈ X to the collection of parsed words
that can be produced from x. Coalgebraic trace semantics was first used to describe the
language of a context-free grammar in [190]; see also [425]. The situation is elaborated
further in Exercise 5.3.2.

At this stage we wish to generalise the result of Theorem 5.3.1 to other monads than
powerset P . The theorem itself says that an initial algebra F (A)

∼=→ A yields a final coal-
gebra A ∼=→ F (A) = K̀ (F)(A) of the lifting K̀ (F) of the functor F to a Kleisli category.
One aspect that we ignored is that the initial algebra F (A)

∼=→ A also yields an initial alge-
bra in the Kleisli category, since the canonical functor J : Sets → K̀ (P) is a left adjoint
(see Proposition 5.2.2) and thus preserves colimits of ω-chains (Exercise 4.6.3). Thus A
carries both an initial algebra and a final coalgebra structure in the Kleisli category. Such
coincidence has been a topic of extensive study, see notably [398, 135, 136, 123]. Here we
concentrate on the essentials and refer to these original sources for further information.

There is one more concept that we need. A category C is called dcpo-enrichedif each
homset C(X,Y) of map X → Y in C forms a directed complete partial order (dcpo)
and the dcpo structure is preserved under composition: both pre- and post-composition
h ◦ (−) and (−) ◦ g are maps in the category Dcpo. Again, the Kleisli category K̀ (P)
is an example: for a collection of maps fi : X → P(Y) we can form the pointwise join∨
i fi : X → P(Y), namely (

∨
i fi)(x) =

⋃
i fi(x). It is not hard to see that h ◦

(∨
i fi
)

=∨
i(h ◦ fi) and similarly

(∨
i fi
)
◦ g =

∨
i(fi ◦ g).

In such a dcpo-enriched category the homsets C(X,Y) carry a partial order ≤ for
which directed joins exist. An arbitrary map f : X → Y is called an embedding if there is
a ‘projection’ map fp : Y → X in the other direction with:

fp ◦ f = idX and f ◦ fp ≤ idY .

This map fp, if it exists, is uniquely determined. As a consequence, (g ◦ f)p = fp ◦
gp. The pair (f, fp) is sometimes called an embedding-projection pair. More formally,
we have an adjunction (Galois connection) with an isomorphism as unit (also known as
coreflection).

The heart of the matter is the following limit-colimit coincidence result from [398].

5.3.3. Proposition. Let C be a dcpo-enriched category. Assume an ω-chain:

X0

f0
// X1

f1
// X2

f2
// · · ·

with colimit A ∈ C. If the maps fi are embeddings, then the colimit A is also a limit in C,
namely of the ω-chain of associated projections fpi : Xi+1 → Xi.

This will be proven via the following useful intermediate results.
(i) The coprojection maps κn : Xn → A associated with the colimitA are embeddings,

and their projections πn = κpn : A→ Xn form a cone, i.e. satisfy fpn ◦ πn+1 = πn.
(ii) These (co)projections satisfy

∨
n∈N κn ◦ πn = idA.

(iii) The projections πn : A→ Xn are jointly monic: if h, h′ : Y → A satisfy πn ◦ h =
πn ◦ h′ for all n ∈ N, then h = h′.

(iv) For a cone gn : Y → Xn, where fpn ◦ gn+1 = gn, there is a unique mediating map
g : Y → A, given by g =

∨
n κn ◦ gn.

Proof. (i) For each n ∈ N we first show that the object Xn forms a cone: for m ∈ N there
is a map fmn : Xm → Xn, namely:

fmn =

{
fn−1 ◦ · · · ◦ fm : Xm → Xm+1 → · · · → Xn if m ≤ n
fpn ◦ · · · ◦ fpm−1 : Xm → Xm−1 → · · · → Xn if m > n.

DRAFT

5.3. Trace semantics via finality in Kleisli categories 2095.3. Trace semantics via finality in Kleisli categories 2095.3. Trace semantics via finality in Kleisli categories 209

These maps fmn commute with the maps fi : Xi → Xi+1 in the chain: f(m+1)n ◦ fm =
fmn, and thus form a cone. Since A is the colimit, there is a unique map πn : A → Xn

with πn ◦ κm = fmn. In particular, for m = n we get πn ◦ κn = fnn = id. We postpone
the proof that κn ◦ πn ≤ idA for a moment.

(ii) The maps κn ◦ πn : A → A form an ascending chain, since: κn ◦ πn = κn+1 ◦
fn ◦ fpn ◦ πn+1 ≤ κn+1 ◦ πn+1. Hence their join exists, which we abbreviate as f =∨
n κn ◦ πn : A→ A. Then for each i ∈ N,

f ◦ κi =
∨
n∈N κn ◦ πn ◦ κi

=
∨
n≥i κn ◦ πn ◦ κi

=
∨
n≥i κn ◦ πn ◦ κn ◦ fin

=
∨
n≥i κn ◦ fin

=
∨
n≥i κi

= κi.

Hence f : A→ A must be the identity, by uniqueness of mediating maps out of colimits.
At this stage we see:

κi ◦ πi ≤
∨
n∈N κn ◦ πn = idA.

Now we can conclude that κi : Xi → A is an embedding, with associated projection κpi =
πi. Further, these projections πi form a cone for the ω-chain fpn : Xn+1 → Xn since:
fpn ◦ πn+1 = fpn ◦ κpn+1 = (κn+1 ◦ fn)p = κpn = πn.

(iii) Assume h, h′ : Y → A satisfy πn ◦ h = πn ◦ h′, for all n ∈ N. Then by (ii):

h = idA ◦ h =
(∨

n κn ◦ πn
)
◦ h =

∨
n κn ◦ πn ◦ h

=
∨
n κn ◦ πn ◦ h′ =

(∨
n κn ◦ πn

)
◦ h′ = h′.

(iv) Assume gn : Y → Xn satisfying fpn ◦ gn+1 = gn. The maps κn ◦ gn : Y → A
then form an ascending chain, since κn ◦ gn = κn+1 ◦ fn ◦ fpn ◦ gn+1 ≤ κn+1 ◦ gn+1.
Hence their join g =

∨
n κn ◦ gn : Y → A exists. It is a mediating map since:

πi ◦ g =
∨
n∈N πi ◦ κn ◦ gn

=
∨
n>i πi ◦ κn ◦ gn

=
∨
n>i fni ◦ πn ◦ κn ◦ gn

=
∨
n>i fni ◦ gn

=
∨
n>i gi

= gi.

Moreover, this g is unique by the previous point.

We now wish to obtain a fixed point F (A)
∼=→ A which is an initial algebra and its

inverse A ∼=→ F (A) is a final coalgebra. The idea is to combine the previous result about
limit-colimit coincidence with the chain-based approach from Proposition 4.6.1, where
one uses a colimit of Fn(0) to obtain the initial algebra and the limit of Fn(1) for the final
coalgebra. But if we are in a situation where we have a zero object 0—which is both initial
and final—then we obtain the same chain with coinciding limit and colimit.

Our next assumption is thus that the category at hand has a zero object, commonly
written as 0. The singleton monoid is an example of a zero object in the category of
monoids, see Exercise 2.1.6. Interestingly, the empty set 0 is also a zero object in the
Kleisli category K̀ (P) = SetsRel of the powerset monad: for each set X there is a

DRAFT

210 Chapter 5. Monads, comonads and distributive laws210 Chapter 5. Monads, comonads and distributive laws210 Chapter 5. Monads, comonads and distributive laws

unique arrow 0→ P(X) in Sets, because 0 is initial in Sets, and there is a unique arrow
X → P(0), since P(0) = 1 is final in Sets.

Given such a zero object 0 in a category C, there is for each pair of objects X,Y ∈ C
an arrow X → Y , which we write as:

⊥X,Y =
(
X

! // 0
! // Y

)
, (5.16)

using that 0 is both initial and final. Such a map⊥X,Y is sometimes called a zero map; it is
typical in an algebraic setting, for instance in a category of groups, or of vector or Hilbert
spaces. The subscripts X,Y are often omitted. Notice that ⊥ ◦ f = ⊥ = g ◦ ⊥, for all
maps f, g.

We use Propositions 5.3.3 and 4.6.1 to generalise Theorem 5.3.1 to more general mon-
ads, as in [193].

5.3.4. Theorem. Assume we have the following data on a category C.

• Both an initial and a final object 0, 1 ∈ C.

• A monad T : C→ C for which

– the Kleisli category K̀ (T) is dcpo-enriched;

– the map T (0) → 1 is an isomorphism, so that 0 ∈ K̀ (T) is a zero object (see
Exercise 5.2.4);

– the resulting zero maps (5.16) in K̀ (T) are least elements in the homset dcpo’s.

• A functor F : C→ C for which:

– there is a distributive K̀ -law FT ⇒ TF , or equivalently by Proposition 5.2.5,
a lifting K̀ (F) : K̀ (T)→ K̀ (T);

– this lifting K̀ (F) : K̀ (T) → K̀ (T) is ‘locally monotone’: f ≤ g implies
K̀ (T)(f) ≤ K̀ (T)(g);

– there is an initial algebra α : F (A)
∼=→ A in C, obtained as colimit of the chain

Fn(0) as in (4.10).

The map J(α−1) : A
∼=−→ F (A) = K̀ (F)(A) is then a final coalgebra in the Kleisli

category K̀ (T), for the lifted functor K̀ (F) : K̀ (T)→ K̀ (T).

Proof. By assumption, the initial algebra structure α : F (A)
∼=→ A is obtained on the col-

imitA of the ω-chain Fn(0), like in (4.10). The functor J : C→ K̀ (T) is a left adjoint, and
thus preserves this colimit, see Exercise 4.6.3. Hence in the Kleisli category K̀ (T) we ob-
tainA = J(A) as colimit of the chain J(Fn(0)) = K̀ (F)n(J(0)) = K̀ (F)n(0) = Fn(0).
This ω-chain in K̀ (T) thus starts from the zero object 0 and can be described explicitly as:

0

⊥
44 F (0)

⊥
tt

K̀ (F)(⊥)

44 F
2(0)

K̀ (F)(⊥)
tt

K̀ (F)2(⊥)

33 · · ·
K̀ (F)2(⊥)
ss

(5.17)

The two maps written as ⊥ are the unique map 0 → F (0) obtained by initiality and the
unique map F (0)→ 0 obtained by finality, like in (5.16). The maps K̀ (F)n(⊥) : Fn(0)→
Fn+1(0) are embeddings, since 0 is zero object (on the left below) and ⊥ is least (on the
right):

0

MMMMMMMMMMMMMMM

MMMMMMMMMMMMMMM
⊥ // F (0)

⊥
��

F (0)

id ++

⊥
≥

""

⊥ // 0

⊥
��

0 F (0)

DRAFT

5.3. Trace semantics via finality in Kleisli categories 2115.3. Trace semantics via finality in Kleisli categories 2115.3. Trace semantics via finality in Kleisli categories 211

After applying K̀ (F)n we obtain a chain of embeddings, by local monotonicity.
Thus, Proposition 5.3.3 applies and the colimit A ∈ K̀ (T) of the ω-chain of embed-

dings K̀ (F)n(⊥) : Fn(0)→ Fn+1(0) in (5.17) is also the limit of the chain of associated
projections K̀ (F)n(⊥) : Fn+1(0) → Fn(0). Hence it carries a final coalgebra structure
J(α−1) : A

∼=→ F (A).
The finality of J(α−1) : A

∼=→ F (A) in K̀ (T) can also be proven directly, using the
points (i)–(iv) listed in Proposition 5.3.3. For a coalgebra c : X → TF (X) in C, that is,
for a coalgebra X → K̀ (F)(X) in K̀ (T) we obtain a map tracec : X → A in K̀ (T) as
join:

tracec =
∨

n∈N
cn ;κn where

{
c0 = ⊥ : X → 0 = F 0(0)

cn+1 = c ; K̀ (F)(cn) : X → F (X)→ Fn+1(0),

and κn : Fn(0) → A form the colimit cone. This map satisfies tracec ;πn = cn, by
construction, see Proposition 5.3.3 (iv). We then get a commuting diagram in K̀ (T):

F (X)
K̀ (F)(tracec)

// F (A)

X

c
OO

tracec
// A

∼= J(α−1)
OO

Commutation is obtained by using that the projections πn = κpn : A → Fn(0) are jointly
monic, see Proposition 5.3.3 (iii):

c ; K̀ (F)(tracec) ;J(α) ;πn = c ; K̀ (F)(tracec) ; K̀ (F)(πn−1)

= c ; K̀ (F)(tracec ;πn−1)

= c ; K̀ (F)(cn−1)

= cn

= tracec ;πn.

In a similar way one obtains uniqueness: assume a map g : X → A in K̀ (T) satisfies
c ; K̀ (F)(g) = g ; J(α−1). Then g = tracec follows if g ;πn = tracec ;πn holds for each
n. This is shown by induction on n, using that tracec ;πn = cn. The case n = 0 is trivial,
and:

g ;πn+1 = c ; K̀ (F)(g) ;J(α) ;πn+1

= c ; K̀ (F)(g) ; K̀ (F)(πn)

= c ; K̀ (F)(g ;πn)
(IH)
= c ; K̀ (F)(cn)

= cn+1.

This result requires that the lifted functor K̀ (F) is only locally monotone, instead of
locally continuous. The latter is a more common assumption in this setting; it leads to a
slightly simpler proof, see Exercise 5.3.4.

5.3.5. Example. The powerset monad P satisfies the assumptions of Theorem 5.3.4. An-
other example is the lift monad L = 1 + (−) on Sets, where maps f, g : X → L(Y) are
ordered via the so-called flat order: f ≤ g iff f(x) = y ∈ Y implies g(x) = y. A more
interesting example is obtained via the infinite subdistribution monad D∞≤1 on Sets. It in-
volves ϕ ∈ D∞≤1(X) given by ϕ : X → [0, 1] satisfying

∑
x ϕ(x) ≤ 1. Notice that there

is no finiteness requirement for the support (but supports have at most countably elements,
like in Exercise 4.1.7). Clearly, D∞≤1(0) ∼= 1. The resulting zero maps ⊥ : X → D∞≤1(Y)

DRAFT

212 Chapter 5. Monads, comonads and distributive laws212 Chapter 5. Monads, comonads and distributive laws212 Chapter 5. Monads, comonads and distributive laws

in the Kleisli category are given by ⊥(x)(y) = 0. Subdistributions ϕ,ψ ∈ D∞≤1(X) can be
ordered pointwise: ϕ ≤ ψ iff ϕ(x) ≤ ψ(x) for all x ∈ X . This yields a dcpo, with ⊥ as
least element.

As functor F : Sets → Sets we take F (X) = 1 + (L × X), like before, with ini-
tial algebra [nil, cons] : F (L?)

∼=→ L? given by lists of labels. There is a distributive law
λ : F (D∞≤1(X))→ D∞≤1(F (X)) by Lemma 5.2.12, since the monad D∞≤1 is commutative.
Explicitly, this λ is given by:

λ(∗)(u) =

{
1 if u = ∗
0 otherwise

and λ(a, ϕ)(u) =

{
ϕ(x) if u = (a, x)

0 otherwise.

The resulting lifting K̀ (F) : K̀ (D∞≤1) → K̀ (D∞≤1) sends a map f : X → D∞≤1(Y) to the
map K̀ (F)(f) : 1 + L×X → D∞≤1(1 + L× Y) given by:

K̀ (f)(∗)(u) =

{
1 if u = ∗
0 otherwise

and K̀ (F)(f)(a, x)(u) =

{
f(x)(y) if u = (a, y)

0 otherwise.

Theorem 5.3.4 now says that we have a final coalgebra η ◦ [nil, cons]−1 : L?
∼=→ F (L?) in

K̀ (D∞≤1). This will be illustrated via an example.
Assume our state spaceX consists of an urn containing black, white and red balls. Thus

X can be described as the set of multisetsMN(3) = {ϕ : 3 → N | supp(ϕ) is finite} ∼=
N3, where 3 = {B,W,R} is the three-element set of balls. A typical state ϕ ∈MN(3) has
the multiset form ϕ = nBB+nWW+nRR, where nB = ϕ(B), nW = ϕ(W), nR = ϕ(R)
describe the number of balls of each colour. We write ‖ϕ‖ = ϕ(B) +ϕ(W) +ϕ(R) for the
total number of balls, and ϕ− B ∈ MN(3) for the multiset with one black ball remove (if
any). Formally,

(ϕ− B)(B) =

{
ϕ(B)− 1 if ϕ(B) > 0

0 otherwise

(ϕ− B)(W) = ϕ(W)

(ϕ− B)(R) = ϕ(R).

The multisets ϕ−W and ϕ− R are defined similarly.
Taking out a ball constitutes a transition. The probability that you take a certain colour

is determined by the relative multiplicities: the balls are taken blindly; they cannot be
chosen. If a black or white ball is taken out, a next ball may be picked, but the process
stops with a red ball. All this is formalised via a coalgebra:

X
c // D∞≤1(1 + 3×X)

ϕ � //
ϕ(B)

‖ϕ‖ (B, ϕ− B) +
ϕ(W)

‖ϕ‖ (W, ϕ−W) +
ϕ(R)

‖ϕ‖ ∗

where ϕ ∈ X = MN(3) is a multiset of coloured balls, representing the contents of the
urn. Notice that in order to describe this coalgebra we could have use the monad D of
ordinary distributions instead of D∞≤1. However, a finite system may have infinitely many
traces, which can be modelled only via D∞≤1.

Theorem 5.3.4 now gives a coalgebra map tracec : X → D∞≤1(3?) in the Kleisli cate-
gory K̀ (D∞≤1). For a filled urn ϕ ∈ X , this map tracec(ϕ) gives a probability distribution
over sequences of (consecutive) balls, described as elements of the set 3? = {B,W,R}?.
For a specific sequence σ of (white and black) balls tracec(ϕ)(σ) gives the probability
of consecutively taking the balls in σ, until a red ball appears. The finality diagram in
K̀ (D∞≤1) precisely captures how to compute these probabilities. This diagram in K̀ (D∞≤1)
is:

1 + 3×X
K̀ (F)(tracec)

// 1 + 3× 3?

X

c
OO

tracec
// 3?

∼= J([nil, cons]−1)
OO

DRAFT

5.3. Trace semantics via finality in Kleisli categories 2135.3. Trace semantics via finality in Kleisli categories 2135.3. Trace semantics via finality in Kleisli categories 213

Commutation says:

tracec(ϕ)(σ) =
(
c ; K̀ (F)(tracec) ;J(α)

)
(ϕ)(σ)

=
∑

u∈1+3×X

∑

v∈1+3×3?

c(ϕ)(u) · K̀ (F)(tracec)(u)(v) · J(α)(v)(σ)

=

{
c(ϕ)(∗) if σ = nil

c(ϕ)(C,ϕ− C) · tracec(ϕ− C)(σ′) if σ = cons(C, σ′)

=

ϕ(R)
‖ϕ‖ if σ = nil
ϕ(B)
‖ϕ‖ · tracec(ϕ− B)(σ′) if σ = cons(B, σ′)
ϕ(W)
‖ϕ‖ · tracec(ϕ−W)(σ′) if σ = cons(W, σ′)

0 if σ = cons(R, σ′).

Thus, for instance, if we start with a state/urn ϕ = 3B + 2W + 1R, then the probability of
a trace 〈B,W,B,B〉 can be calculated as:

tracec
(
3B + 2W + 1R

)(
〈B,W,B,B〉

)

= 3
6 · tracec

(
2B + 2W + 1R

)(
〈W,B,B〉

)

= 3
6 · 2

5 · tracec
(
2B + 1W + 1R

)(
〈B,B〉

)

= 3
6 · 2

5 · 2
4 · tracec

(
1B + 1W + 1R

)(
〈B〉
)

= 3
6 · 2

5 · 2
4 · 1

3 · tracec
(
1W + 1R

)(
〈〉
)

= 3
6 · 2

5 · 2
4 · 1

3 · 1
2

= 1
60 .

5.3.6. Example. Our next illustration again uses the subdistribution monad D∞≤1. It shows
how an unfair coin can be simulated by two fair ones. This is based on [283, 284]. Consider
the coalgebra c : 2→ D∞≤1({H,T}+2), with two-element state space 2 = {0, 1}, described
in the following diagram:

0

1
2
��

1
2

&&
1

1
2

ff

1
2
��

H T

Explicitly, this coalgebra c can be described on the state space 2 via convex sums:

c(0) = 1
2H + 1

21 and c(1) = 1
2T + 1

20.

The coalgebra is of the form 2 → D∞≤1(F (X)) for the functor F (X) = {H,T}+X . The
initial F -algebra is N× {H,T}, with structure map:

{H,T}+ N× {H,T} α
∼=
// N× {H,T} given by

{
α(A) = (0,A)

α(n,A) = (n+ 1,A),

where A ∈ {H,T}.
The theory described above now yields a trace map by finality in the Kleisli category.

It is of the form:

2
tracec // D∞≤1

(
N× {H,T}

)
,

DRAFT

214 Chapter 5. Monads, comonads and distributive laws214 Chapter 5. Monads, comonads and distributive laws214 Chapter 5. Monads, comonads and distributive laws

given by the infinite convex sums:

tracec(0) = 1
2 (0,H) + 1

4 (1,T) + 1
8 (2,H) + 1

16 (3,T) + · · ·

=
∑

n∈N

1

22n+1
(2n,H) +

1

22n+2
(2n+ 1,T)

tracec(1) = 1
2 (0,T) + 1

4 (1,H) + 1
8 (2,T) + 1

16 (3,H) + · · ·

=
∑

n∈N

1

22n+1
(2n,T) +

1

22n+2
(2n+ 1,H)

A summand like 1
8 (2,H) in tracec(0) represents the probability of 1

8 of getting outcome H
via 2 transitions, starting in state 0.

We can add all this summands with the same coin together, by applying the second
projection π2 : N× {H,T} → {H,T} to these sums. The resulting composite map:

unfair-coin =
(

2
tracec // D∞≤1

(
N× {H,T}

) D∞≤1(π2)
// D∞≤1

(
{H,T}

))

is given by:

unfair-coin(0) =

(∑

n∈N

1

22n+1

)
H +

(∑

n∈N

1

22n+2

)
T = 2

3H + 1
3T

unfair-coin(1) =

(∑

n∈N

1

22n+1

)
T +

(∑

n∈N

1

22n+2

)
H = 2

3T + 1
3H.

For these last step we use the familiar equation
∑
n a

n = 1
1−a if |a| < 1, for instance in:

∑
n

1
22n+1 = 1

2

∑
n

(
1
2

)2n
= 1

2

∑
n

(
1
4

)n
= 1

2 · 1
1− 1

4

= 1
2 · 4

3 = 2
3 .

The initial algebra N×{H,T} can be described more abstractly as a copower N·{H,T}.
The second projection π2 used above then becomes a codiagonal∇ : N · {H,T} → {H,T}.
This description is used in [233], where a “monoidal trace operator” in a Kleisli category
is constructed from coalgebraic traces. This monoidal trace can thus be used to compute
the outcome of the unfair coin directly. Alternatively, like in [284] one can use recursive
coalgebras, see [87, 20].

Finally, we briefly return to the transition system example that we used in the beginning
of this section.

5.3.7. Remarks. For the special case of transition systems X → PF (X) = P(1 + (L ×
X)) involving the powerset monad, there are two alternative ways to obtain its trace seman-
tics: one via determinisation, and one via logical interpretation. We briefly review these
constructions.

(i) As already noted—for instance in Exercise 2.2.3—a transition system X → P(1 +
(L×X)) can also be viewed as a non-deterministic automaton 〈δ, ε〉 : X → P(X)L × 2.
As such it may be “determinised” into an automaton 〈δ′, ε′〉 : P(X)→ P(X)L× 2 via the
standard definitions:

δ′(U)(a) =
⋃{δ(x)(a) | x ∈ U} ε′(U) = 1 ⇐⇒ ∃x ∈ U. ε(x) = 1,

See also [393] and Exercise 5.2.6. Since P(L?) is the final deterministic automaton, see
Corollary 2.3.6 (ii), we obtain a unique coalgebra homomorphism h : P(X) → P(L?).
The trace map X → P(L?) is then h ◦ {−}. This approach is elaborated in Exam-
ple 5.4.12 (i), and also in [250].

DRAFT

5.3. Trace semantics via finality in Kleisli categories 2155.3. Trace semantics via finality in Kleisli categories 2155.3. Trace semantics via finality in Kleisli categories 215

(ii) The logically oriented approach uses the fact that the set P(X) of predicates on the
state space of our non-deterministic automaton 〈δ, ε〉 : X → P(X)L×2 carries elementary
logical structure, in the form of an algebra for the functor F = 1 + (L×−). Indeed, there
is an algebra [ε,¬© ¬] : F (P(X)) → P(X) given by ε : 1 → P(X) as a subset of final
states, and by a labelled (strong) nexttime ¬©¬ : L×P(X)→ P(X) operator. It maps a
pair (a, P) ∈ L×P(X) to the predicate ¬©¬(a, P), commonly written as ¬©a ¬(P),
given by:

¬©a ¬(P) = {x ∈ X | ∃x′ ∈ X.x a−→ x′ ∧ P (x′)}.
By initiality of L? we then obtain an algebra homomorphism ` : L? → P(X). The adjunc-
tion Setsop ←−−→ Sets from Exercise 2.5.2 now yields the trace map X → P(L?). This
second approach fits in the “testing” framework of [346] and uses coalgebraic modal logic,
see Section 6.5 for a more general account.

The trace semantics that we have described in this section induces a new type of equiv-
alence on states (of suitable coalgebras), namely trace equivalence, given by the relation
{(x, y) | trace(x) = trace(y)}. Exercise 5.3.5 below shows that bisimilarity implies trace
equivalence, but not the other way around.

Exercises

5.3.1. Suppose we have a monad T : C → C that satisfies T (0) ∼= 0 and T (1) ∼= 1. Use
Exercise 5.2.8 to transform T into a monad T ′ = T (1 + (−)) that satisfies T ′(0) ∼= 1, as
needed in Theorem 5.3.4.
[This transformation trick applies for instance to the ordinary distribution monadD; a non-
trivial dcpo structure on these discrete distributions in D(X) is described in [98].]

5.3.2. Consider the alphabet {a, b} with two non-terminals V,W and productions:

V −→ a · V V −→W W −→ b ·W · a W −→ 〈〉.
(i) Describe this CFG as a coalgebra X → P(FX) with state space X = {V,W} and

functor F =
(
(−) + {a, b}

)?.
(ii) Check that the unparsed language generated by V is the set {anbmam | n,m ∈ N}.
(iii) Consider the parsed language map traceg : X → {a, b}4 from Example 5.3.2 and

show that a term t ∈ traceg(V) can be drawn as a tree:

a

a

:

a

uuuu JJJJ

b
yyyy FFFF a

b : a

uuuu JJJJ

b a

5.3.3. (i) Define a function L4 → L? that maps parsed words to “flat” words by initiality.
Prove that this function is a split epi.

(ii) Prove that the assignment L 7→ L4 is functorial, and that the mapping L4 � L?

from (i) form a natural transformation.
(iii) Let L∧ be the final coalgebra of the functor X 7→ (X + L)? from Example 5.3.2.

It consists of both the finite and infinite parsed words. Define a map L4 → L∧ and
show that it is injective.

[This gives the following fundamental span of languages L? � L4 � L∧. The three
operations involved L 7→ L?, L4, L∧ are all monads and the mappings between them
preserve the monad structure, see [190].]

DRAFT

216 Chapter 5. Monads, comonads and distributive laws216 Chapter 5. Monads, comonads and distributive laws216 Chapter 5. Monads, comonads and distributive laws

5.3.4. Consider the situation as described in Theorem 5.3.4, but with the stronger assumption that
the lifted functor K̀ (F) : K̀ (T) → K̀ (T) is locally continuous. This means that directed
joins in homsets are preserved: K̀ (F)(

∨
i fi) =

∨
i K̀ (F)(fi). Check that under this

assumption the proof of Theorem 5.3.4 can be simplified in the following manner. For
an initial F -algebra α : F (A)

∼=→ A and a coalgebra c : X → K̀ (F)(X), consider the
following two operators on Kleisli homsets:

K̀ (T)
(
A,A

) Φ // K̀ (T)
(
A,A

)
K̀ (T)

(
X,A

) Ψ // K̀ (T)
(
X,A

)

g � // J(α−1) ; K̀ (F)(g) ; J(α) h
� // c ; K̀ (F)(h) ; J(α).

(i) Prove that both Φ and Ψ are continuous.
(ii) Prove that the least fixed point g = fix(Φ) =

∨
n∈N Φn(⊥) is a map of algebras

J(α)→ J(α). Conclude g = id from Proposition 5.2.6.
(iii) Check that the least fixed point h = fix(Ψ) =

∨
n∈N Ψn(⊥) is a map of coalgebras

c→ J(α−1).
(iv) Prove that this h is the unique such map.

[Hint. Use that if h′ is also such a coalgebra map, then h′ ; Φn(⊥) = Ψn(⊥).]

5.3.5. Assume two coalgebras c : X → PF (X) and d : Y → PF (Y), where F : Sets→ Sets
preserves weak pullbacks and has an initial algebraF (A)

∼=→ A (like in Theorem 5.3.1).
(i) Assume f : X → Y is a homomorphisms (ofPF -coalgebras). Prove that f ; traced =

tracec : X → A in K̀ (P).
(ii) Conclude that bisimilarity is included in trace equivalence:

x
c
↔

d y =⇒ tracec(x) = traced(y).

(iii) Check that the reverse implication (⇐=) in (ii) does not hold, for instance via the
following two pictures.

•
a

~~~~ a
@@@@ •

a
•
b

•
c

•
b

~~~~ c
@@@@

• • • •

5.4 Eilenberg-Moore categories and distributive laws

This section introduces the category EM(T), called the Eilenberg-Moore category, for a
monad or comonad T . Its objects are algebras or coalgebras of T , but with some additional
requirements. These requirements make them different from coalgebras of a functor.

5.4.1. Definition. Given a monad T = (T, η, µ) on a category C, see Definition 5.1.1, one
defines an algebra of this monad as an algebra α : T (X)→ X of the functor T satisfying
two additional requirements, expressed via the diagrams:

X
ηX

//

NNNNNNNNNNNNNN

NNNNNNNNNNNNNN T (X)

α
��

T 2(X)
µX

//

T (α)
��

T (X)

α
��

X T (X) α
// X

(5.18)

We shall write EM(T) = EM(T, η, µ) for the category with such monad-algebras as
objects. The morphisms are the same as homomorphisms of functor-algebras: a morphism
from α : T (X)→ X to β : T (Y)→ Y is a map f : X → Y in C with β ◦ T (f) = f ◦ α.

DRAFT

5.4. Eilenberg-Moore categories and distributive laws 2175.4. Eilenberg-Moore categories and distributive laws 2175.4. Eilenberg-Moore categories and distributive laws 217

Similarly, for a comonad S = (S, ε, δ) a coalgebra is a coalgebra α : X → S(X) of
the functor S satisfying:

S(X)
εX // X S(X)

δX // S2(X)

X

α

OO pppppppppppppp

pppppppppppppp
X

α

OO

α
// S(X)

S(α)

OO

(5.19)

We write EM(S) = EM(S, ε, δ) for this category of comonad coalgebras, with homomor-
phisms given by ordinary coalgebra homomorphisms.

There is ample room for confusion at this stage. First of all the same notation EM(T)
is used for both a category of algebras, if T is a monad, and for a category of coalgebras,
if T is a comonad. The context should make clear which option is intended. What might
help a bit is that we generally use the letter T for a monad and S for a comonad. Notice,
by the way, that for Kleisli categories we have the same overloading of notation.

Next, ‘algebra’ or ‘coalgebra’ may be used both for a functor—in which case it is just
a map of a certain form—and for a (co)monad; in the latter case such a map should satisfy
additional equations, as described in (5.18) and (5.19) above. In order to emphasise what
is intended we sometimes explicitly speak of a functor algebra or of a monad algebra /
Eilenberg-Moore algebra—and similarly, we can have a functor coalgebra and a comonad
coalgebra / Eilenberg-Moore coalgebra.

Recall that we use the notation Alg(F) and CoAlg(F) for the categories of algebras
and coalgebras of a functor F . They are related to categories EM(−) of Eilenberg-Moore
algebras and coalgebras via two full and faithful (horizontal) functors in commuting trian-
gles:

EM(T, η, µ) //

��
@@@@@@

Alg(T)

��������
EM(S, ε, δ) //

��
>>>>>>

CoAlg(S)

||zzzzzz

C C

Here, T is a monad and S is a comonad. In writing Alg(T) and CoAlg(S) we consider
them as ordinary functors, forgetting about their (co)unit and (co)multiplication.

5.4.2. Lemma. Assume a monad T and a comonad S on a category C. The obvious for-
getful functors have left and right adjoints:

EM(T)

a
��

EM(S)

a
��

C
F
BB

C
G
\\

given by multiplication and comultiplication:

F(X) =

(
T 2(X)
↓ µX

T (X)

)
and G(Y) =

(
S2(Y)
↑ δY

S(Y)

)
.

These adjunctions give rise to a comonad on the category EM(T) of algebras, and to a
monad on the category EM(S) of coalgebras, see Exercise 5.4.8.

Also the Kleisli categories can be embedded full and faithfully in Eilenberg-Moore
categories, via commuting triangles:

K̀ (T) //

��
;;;;;

EM(T)

��������
K̀ (S) //

��
:::::

EM(S)

��������

C C

DRAFT

218 Chapter 5. Monads, comonads and distributive laws218 Chapter 5. Monads, comonads and distributive laws218 Chapter 5. Monads, comonads and distributive laws

Recall that maps in Kleisli categories are used to represent computations. Through the
full and faithful embeddings into Eilenberg-Moore these computations can also be stud-
ied, between free algebras or cofree coalgebras, in richer universes, with more categorical
structure, see Lemma 5.4.5 and Proposition 5.4.6 below.

Proof. We shall sketch the proof for the comonad case. The monad case is dual. For an ar-
bitrary comonad coalgebra α : X → S(X) we have to produce a bijective correspondence:

(
S(X)
α ↑
X

)
f

//

(
S2(Y)
↑ δY

S(Y)

)

============================
X g

// Y

It is given as follows.

• For a map of coalgebras f : X → S(Y) take f = ε ◦ f : X → Y .

• For an ordinary map g : X → Y in C take g = S(g) ◦ α : X → S(Y). It is a map
of coalgebras since:

S(g) ◦ α = S2(g) ◦ S(α) ◦ α
= S2(g) ◦ δ ◦ α see (5.19)

= δ ◦ S(g) ◦ α by naturality of δ

= δ ◦ g.

These transformations are each other’s inverse—i.e. f = f and g = g—via the coalgebra
laws (5.19).

The functor K̀ (S) → EM(S) is on objects Y 7→ G(Y). A Kleisli map f : Y → Z,
where f : S(Y) → Z in C yields S(f) ◦ δ : S(Y) → S(Z). We skip the proof that this is
a map of coalgebras, and show that each coalgebra map g : G(Y) → G(Z) is of this form.
Take f = ε ◦ g : S(Y)→ Z. Then:

S(f) ◦ δ = S(ε) ◦ S(g) ◦ δ = S(ε) ◦ δ ◦ g = g.

We turn to examples of Eilenberg-Moore categories. It may happen that quite a few
details have to be checked to verify that a certain category is (isomorphic to) an Eilenberg-
Moore category. We sketch only the essentials of the various constructions. In Theo-
rem 6.7.11 in the next chapter we describe a general way to obtain Eilenberg-Moore cat-
egories via specifications (algebras or coalgebras with assertions). In general, one calls a
category algebraic or monadic if it is isomorphic to a category of Eilenberg-Moore alge-
bras.

5.4.3. Examples. (i) For a monoid M = (M, 1, ·) there is an associated monad M ×
(−) : Sets → Sets, see Example 5.1.3 (v) and also Exercise 5.1.7. Recall that the unit is
η(x) = (1, x) and the multiplication µ(m, k, x) = (m ·k, x). An Eilenberg-Moore algebra
α : M × X → X is given by a set X with this operation α. It corresponds to a monoid
action, since the equations (5.18) amount to:

α(1, x) = x α(m,α(k, x)) = α(m · k, x).

Usually such an action is written as a dot, like in a scalar multiplication:

1 •x = x m •(k •x) = (m · k) •x,

where m •x = α(m,x). It is easy to see that homomorphisms of algebras, that is, maps in
EM(M ×−), correspond to scalar product preserving functions f , satisfying f(m •x) =
m • f(x).

DRAFT

5.4. Eilenberg-Moore categories and distributive laws 2195.4. Eilenberg-Moore categories and distributive laws 2195.4. Eilenberg-Moore categories and distributive laws 219

(ii) For a semiring S we have the multiset monadMS , see Lemma 5.1.5. An algebra
α : MS(X)→ X forms a clever encoding of both a scalar multiplication • and a commu-
tative monoid structure (0,+) on X . This structure can be extracted from α as follows.

0 = α(0) where 0 ∈MS(X) on the right hand side is the empty multiset

x+ y = α(1x+ 1y) where 1x = η(x) ∈MS(X) is the singleton multiset

s •x = α(sx).

These operations turn X into a module over the semiring S. As illustration, we check the
zero law for the monoid structure. It involves translating the required equality into one of
the algebra laws (5.18):

x+ 0 = α(1x+ 10)
(5.18)

= α(1α(1x) + 1α(0))

= α
(
MS(α)(1(1x) + 10)

)
(5.18)

= α
(
µ(1(1x) + 10)

)
= α(1x) = x.

Conversely, if Y is a module over S, then we can define an algebra structure β : MS(Y)→
Y by:

β
(
s1y1 + · · ·+ snyn

)
= s1 • y1 + · · ·+ sn • yn.

Notice that the sum on the left is a formal sum (multiset) in MS(Y), whereas the sum
on the right is an actual sum, in the module Y . It is not hard to see that algebra maps
correspond to module maps, preserving scalar multiplication and sums. Thus we have:

EM(MS) ∼= ModS , where ModS is the category of modules over the semiring S.

Some special cases are worth mentioning:

ModN ∼= CMon the category of commutative monoids

ModZ ∼= Ab the category of commutative/Abelian groups

ModK ∼= VectK the category of vector spaces over a field K.

We see that monads and their algebras give a uniform description of these mathematical
structures.

The distribution monad D is similar to the multiset monad, but its algebras are quite
different. They are convex sets, where each formal convex combination

∑
i rixi, with

ri ∈ [0, 1] satisfying
∑
i ri = 1, has an actual sum, see [403, 404, 232].

(iii) Algebras α : P(X) → X of the powerset monad encode complete lattice structure
on the set X . For an arbitrary subset U ⊆ X one defines:

∨
U = α(U) ∈ X.

This is the join wrt. an order onX defined as x ≤ y iff y = x ∨ y =
∨{x, y} = α({x, y}).

This is a partial order. Reflexivity x ≤ x holds because α({x, x}) = α({x}) = x, since the
singleton map is the unit of the powerset monad, see Example 5.1.3 (i). Antisymmetry is
trivial, and for transitivity one proceeds as follows. If x ≤ y and y ≤ z, that is α({x, y}) =

DRAFT

220 Chapter 5. Monads, comonads and distributive laws220 Chapter 5. Monads, comonads and distributive laws220 Chapter 5. Monads, comonads and distributive laws

y and α({y, z}) = z, then x ≤ z since:

α({x, z}) = α
(
{α({x}), α({y, z})

)

= α
(
P(α)({{x}, {y, z}})

)
(5.18)

= α
(⋃{{x}, {y, z}}

)

= α
(
{x, y, z}

)
(5.18)

= α
(⋃{{x, y}, {z}}

)

= α
(
P(α)({{x, y}, {z}})

)

= α
(
{α({x, y}), α({z})

)

= α({y, z})
= z.

Similarly one can prove ∀x ∈ U. x ≤ y iff
∨
U ≤ y. Conversely, each complete lattice L

forms a P-algebra P(L) → L via U 7→ ∨
U . Algebra maps correspond to

∨
-preserving

(aka. linear) maps. Thus we have an isomorphism:

EM(P) ∼= CL, the category of complete lattices and linear maps.

In a similar manner one can show that:

EM(Pfin) ∼= JSL, the category of join semi-lattices and join-preserving maps.

In such join semilattices one only has finite joins (⊥,∨). The situation for meet semilattices
is described in Exercise 5.4.6.

(iv) On the category PoSets one can define the ideal monad Idl. An ideal in a poset
X = (X,≤) is a directed downset I ⊆ X; thus, I is non-empty and satisfies:

• if x ≤ y ∈ I then x ∈ I;

• if y, y′ ∈ I , then there is an element x ∈ I with y ≤ x and y′ ≤ x.

We write Idl(X) for the poset of ideals in X , ordered by inclusion. The mapping X 7→
Idl(X) forms a monad on PoSets, with unit η : X → Idl(X) given by η(x) = ↓x = {y ∈
X | y ≤ x}. Union is multiplication. Like in the previous point, algebras Idl(X)→ X for
this monad are supremum maps. Since they are defined for directed (down)sets only, they
turn the set X into a directed complete partial order (dcpo). Thus:

EM(Idl) ∼= Dcpo, the category of dcpos and continuous maps.

(v) Most of our examples of comonad coalgebras appear in the next chapter, as coal-
gebras satisfying certain assertions. We shall consider one example here. A coalgebra
X → XN of the stream comonad from Example 5.1.10 can be identified with an endomap
f : X → X . The coalgebra is then given by c(x) = 〈x, f(x), f2(x), f3(x), . . .〉. The rea-
son is that such a coalgebra can be identified with a map of monoids c′ : N→ XX . Hence
it is determined by the function f = c′(1) : X → X .

More generally, for a monoid M we know that the functor M × (−) is a monad, by
Example 5.1.3 (v), and also that (−)M is a comonad, by Exercise 5.1.10. In that case it can
be shown that there is a bijective correspondence:

coalgebras X // XM

=====================
algebras M ×X // X

======================
monoid maps M // XX

The structure of categories of Eilenberg-Moore coalgebras is investigated systematically
in [258, 259].

DRAFT

5.4. Eilenberg-Moore categories and distributive laws 2215.4. Eilenberg-Moore categories and distributive laws 2215.4. Eilenberg-Moore categories and distributive laws 221

We continue with some basic categorical facts. Eilenberg-Moore categories inherit
limits (for algebras) and colimits (for coalgebras) from the underlying categories. This is
the same as for functor (co)algebras.

5.4.4. Lemma. The Eilenberg-Moore category EM(T) for a monad T : C → C has the
same kind of limits as the underlying category C. These limits are constructed elementwise,
as in: (

T (X)
α ↓
X

)
×
(
T (Y)
↓ β
Y

)
=

(
T (X × Y)
↓ 〈α◦T (π1), β◦T (π2)〉

X × Y

)

The same holds for colimits in EM(S), for a comonad S.

The following useful result due to Linton depends on some special properties of the
category Sets. For a proof we refer to [56, § 9.3, Prop. 4]. A consequence is that a category
EM(T) of algebras for a monad T on Sets is always both complete and cocomplete.

5.4.5. Lemma. For a monad T on Sets, the category EM(T) of algebras is cocomplete
(and complete).

There are some more pleasant properties of such Eilenberg-Moore categories of monads
on Sets. For instance, they always carry a logical factorisation system, see Exercise 5.4.3,
given by injective and surjective algebra homomorphisms.

Additionally, in [102] it is shown that Eilenberg-Moore EM(T) and Kleisli categories
K̀ (T) have biproducts if and only if the monad T is “additive”, i.e. maps coproducts to
products, like in Exercise 2.1.9 for the (finite) powerset monad P and in Exercise 5.1.15
for the multiset monadsMS .

We mention a related result, also without proof, for monads on Sets. It describes
monoidal closed structure (see [315]) in categories of algebras, like in Proposition 5.2.13
for Kleisli categories. It explains why categories of Abelian groups or vector spaces have
tensors⊗ and associated function spaces. The result can be generalised to other categories,
provided suitable coequalisers of algebras exist.

5.4.6. Proposition (From [278, 277]). Let T be a commutative monad on Sets. The as-
sociated Eilenberg-Moore category EM(T) is then symmetric monoidal closed. The free
functor F : Sets→ EM(T) sends cartesian products (1,×) to monoidal products (I,⊗),
in the sense that F (1) ∼= I is the tensor unit, and F (X × Y) ∼= F (X)⊗ F (Y).

Assume algebras T (X)
α→ X , T (Y)

β→ Y , and T (Z)
γ→ Z. The tensors⊗ for algebras

are constructed in such a way that there is a bijective correspondence:

homomorphisms of algebras α⊗ β // γ
=================================

bihomomorphisms X × Y // Z

Intuitively, a bihomomorphism f : X × Y → Z is a homomorphism in each coordinate
separately: f(x,−) : Y → Z and f(−, y) : X → Z are algebra maps, for each x ∈ X and
y ∈ Y . More formally this is described via a commuting diagram, involving the “double
strength” map dst of a commutative monad (see Definition 5.2.9):

T (X)× T (Y)

α× β
��

dst // T (X × Y)
T (f)

// T (Z)

γ
��

X × Y
f

// Z

Under suitable circumstances one can construct for a functor F the free monad or the
cofree comonad on F . The Eilenberg-Moore categories of these (co)free extensions turn
out to be the same as the categories of (co)algebras of the original functor F . This is the
content of the next result.

DRAFT

222 Chapter 5. Monads, comonads and distributive laws222 Chapter 5. Monads, comonads and distributive laws222 Chapter 5. Monads, comonads and distributive laws

5.4.7. Proposition. LetF : C→ C be an arbitrary functor. Recall the free monadF ∗ : C→
C on F from Proposition 5.1.8, and the cofree comonad the cofree comonad F∞ : C→ C
on F from Exercise 5.1.14, described via the initial algebras and final coalgebras:

X + F
(
F ∗(X)

) αX
∼=
// F ∗(X) and F∞(X)

ζX
∼=
// X × F

(
F∞(X)

)
.

Assuming these constructions exist in C, there are isomorphisms of categories of monad
(co)algebras and functor (co)algebras:

EM(F ∗) ∼= Alg(F) and EM(F∞) ∼= CoAlg(F).

Proof. We do the proof in the coalgebra case only. We first list the relevant structure. The
counit εX : F∞(X)→ X is given by εX = π1 ◦ ζX . The comultiplication δX : F∞(X)→
F∞F∞(X) is obtained by finality in:

F∞(X)× F
(
F∞(X)

) id × F (δX)
//______ F∞(X)× F

(
F∞F∞(X)

)

F∞(X)

〈id, π2 ◦ ζX〉
OO

δX
//____________ F∞F∞(X)

ζF∞(X)∼=
OO

There is a universal natural transformation θ : F∞ ⇒ F by:

θX =
(
F∞(X)

ζX
∼=
// X × F

(
F∞(X)

) π2 // F
(
F∞(X)

) F (εX)
// F (X)

)
.

We now define two functors:

EM(F∞)
L

..
CoAlg(F)

K
mm

The functor L is easy: it takes a comonad coalgebra β : X → F∞(X) and sends it to
θX ◦ β : X → F (X). Naturality of θ makes L a functor.

In the other direction, the functor K sends a functor coalgebra c : X → F (X) to the
map K(c) defined by finality in:

X × F (X)
id × F (K(c))

//________ X × F
(
F∞(X)

)

X

〈id, c〉
OO

K(c)
//____________ F∞(X)

∼= ζX

OO

Then:
εX ◦ K(c) = π1 ◦ ζX ◦ K(c) = π1 ◦ (id × F (K(c))) ◦ 〈id, c〉

= π1 ◦ 〈id, c〉 = id.

Using uniqueness of maps to final coalgebras one can prove that δ ◦ K(c) = F∞(K(c)) ◦
K(c). Hence K(c) : X → F∞(X) is a comonad coalgebra. Also by uniqueness one can
show that maps of functor coalgebras are also maps of monad coalgebras.

We have LK = id since:

LK(c) = θX ◦ K(c) = F (εX) ◦ π2 ◦ ζX ◦ K(c)

= F (εX) ◦ π2 ◦ (id × F (K(c))) ◦ 〈id, c〉
= F (εX) ◦ F (K(c)) ◦ π2 ◦ 〈id, c〉
= F (id) ◦ c
= c.

DRAFT

5.4. Eilenberg-Moore categories and distributive laws 2235.4. Eilenberg-Moore categories and distributive laws 2235.4. Eilenberg-Moore categories and distributive laws 223

We get KL(β) = β because β : X → F∞(X) is a map of coalgebras in the diagram
defining KL(β), namely:

X × F (X)
id × F (β)

// X × F
(
F∞(X)

)

X

〈id, L(β)〉
OO

β
// F∞(X)

∼= ζX

OO

This diagram commutes since:

(id × F (β)) ◦ 〈id, L(β)〉 = 〈id, F (β) ◦ θ ◦ β〉
= 〈id, θ ◦ F ∗(β) ◦ β〉
= 〈id, θ ◦ δ ◦ β〉
= 〈id, F (ε) ◦ π2 ◦ ζ ◦ δ ◦ β〉
= 〈id, F (ε) ◦ π2 ◦ (id × F (δ)) ◦ 〈id, π2 ◦ ζ〉 ◦ β〉
= 〈ε ◦ β, F (ε) ◦ F (δ) ◦ π2 ◦ 〈id, π2 ◦ ζ〉 ◦ β〉
= 〈π1 ◦ ζ ◦ β, π2 ◦ ζ ◦ β〉
= ζ ◦ β.

In Definition 5.2.4 we have seen distributive “K̀ ” laws FT ⇒ TF that correspond to
liftings K̀ (F) : K̀ (T)→ K̀ (T) of the functor F : C→ C to Kleisli categories of a monad
T . There is an analogous result for Eilenberg-Moore categories.

5.4.8. Definition. Let T : C → C be a monad and G : C → C an ordinary functor. A
distributive law or an EM-law of T over G is a natural transformation ρ : TG⇒ GT that
commutes appropriately with the unit and multiplication of the monad T , as in:

G(X)

ηGX
��

G(X)

G(ηX)
��

T 2G(X)

µGX
��

T (ρX)
// TGT (X)

ρTX
// GT 2(X)

G(µX)
��

TG(X) ρX
// GT (X) TG(X) ρX

// GT (X)

(5.20)

We now show that these EM-laws correspond to liftings to Eilenberg-Moore categories.
We repeat the lifting result for Kleisli categories from Proposition 5.2.5 in order to get a
clear picture of the whole situation. A more abstract account in terms of 2-categories may
be found in [305].

5.4.9. Proposition (“laws and liftings”). Assume a monad T and endofunctors F,G on the
same category C, as above. There are bijective correspondences between K̀ /EM-laws and
liftings of F to K̀ /EM-categories, in:

K̀ -law FT
λ +3 TF

==================

K̀ (T)
��

L // K̀ (T)
��

C F // C

EM-law TG
ρ +3 GT

===================

EM(T)
��

R // EM(T)
��

C G // C

We standardly write K̀ (F) = L and EM(G) = R for these liftings, if confusion is
unlikely. Thus we leave the laws λ and ρ implicit.

DRAFT

224 Chapter 5. Monads, comonads and distributive laws224 Chapter 5. Monads, comonads and distributive laws224 Chapter 5. Monads, comonads and distributive laws

Proof. The proof of first part about K̀ -liftings has already been given in Proposition 5.2.5,
so we concentrate on the second part. Thus, assume we have an EM-law ρ : TG ⇒ GT .
It gives rise to a functor R : EM(T)→ EM(T) by:

(
T (X)
↓ α
X

)
7−→

(
T (X)
↓ G(α)◦ρ
X

)
and f 7−→ G(f).

The equations (5.20) guarantee that this yields a new T -algebra.
In the reverse direction, assume a lifting R : EM(T) → EM(T). Applying it to the

multiplication µX yields an algebra R(µX) : TGT (X) → GT (X). We then define ρX =
R(µX) ◦ TG(ηX) : TG(X)→ GT (X). Remaining details are left to the reader.

The previous section illustrated how distributive K̀ -laws are used to obtain final coal-
gebras in Kleisli categories. This requires non-trivial side-conditions, like enrichment in
dcpo’s, see Theorem 5.3.4. For EM-laws the situation is much easier, see below; instances
of this result have been studied in [393], see also [51].

5.4.10. Proposition. Assume a monad T and endofunctor G on a category C, with an
EM-law ρ : TG ⇒ GT between them. If G has a final coalgebra ζ : Z

∼=−→ G(Z) in C,
then Z carries an Eilenberg-Moore algebra structure obtained by finality, as in:

GT (Z)
G(β)

//_____ G(Z)

T (Z)

ρ ◦ T (ζ)
OO

β
//______ Z

∼= ζ
OO

(5.21)

The map ζ then forms a map of algebras as below, which is the final coalgebra for the lifted
functor EM(G) : EM(T)→ EM(T).

(
T (Z)
↓ β
Z

)
ζ
∼=

// EM(G)

(
T (Z)
↓ β
Z

)
=

(
TG(Z)
↓ G(β)◦ρ

G(Z)

)
.

Proof. We leave it to the reader to verify that the map β defined in (5.21) is a T -algebra.
By construction of β, the map ζ is a homomorphism of algebras β → EM(G)(β). Suppose
for an arbitrary algebra γ : T (Y) → Y we have a EM(G)-coalgebra c : γ → EM(G)(γ).
Then c : Y → G(Y) satisfies G(γ) ◦ ρ ◦ T (c) = c ◦ γ. By finality in CoAlg(G) there is
a unique map f : Y → Z with ζ ◦ f = G(f) ◦ c. This f is then the unique map γ → β in
EM(T).

In Section 5.5 we shall see that this result does not only describe a final coalgebra in a
category of algebras, but a final bialgebra.

These EM-laws are used for “state extension”. This involves turning a coalgebra of
the form X → GT (X) into a coalgebra in the category of Eilenberg-Moore algebras, with
the free algebra T (X) as state space. This state extension is functorial, in the following
manner.

5.4.11. Lemma. Given an EM-law TG⇒ GT the free algebra functor F : C→ EM(T)
can be lifted, as in:

CoAlg(GT)

��

FEM // CoAlg(EM(G))

��

CG
%%

T

YY

F // EM(T)
EM(G)

ee

DRAFT

5.4. Eilenberg-Moore categories and distributive laws 2255.4. Eilenberg-Moore categories and distributive laws 2255.4. Eilenberg-Moore categories and distributive laws 225

The functor FEM : CoAlg(GT)→ CoAlg(EM(G)) gives an abstract description of
what is called the generalised powerset construction in [393]. A similar functor exists for
Kleisli categories, see Exercise 5.4.13 below.

Proof. Assuming an EM-law ρ : TG⇒ GT one defines the functorFEM : CoAlg(GT)→
CoAlg(EM(G)) by:

FEM
(
X

c // GT (X)
)

=
(
T (X)

T (c)
// TGT (X)

ρT (X)
// GT 2(X)

G(µ)
// GT (X)

)
. (5.22)

This FEM(c) is a well-defined coalgebra µX → EM(G)(µX) on the free algebra F(X) =
µX since it is a map of algebras:

EM(G)(µX) ◦ T (FEM(c)) = G(µ) ◦ ρ ◦ TG(µ) ◦ T (ρ) ◦ T 2(c)

= G(µ) ◦ GT (µ) ◦ ρ ◦ T (ρ) ◦ T 2(c)

= G(µ) ◦ G(µ) ◦ ρ ◦ T (ρ) ◦ T 2(c)

= G(µ) ◦ ρ ◦ µ ◦ T 2(c)

= G(µ) ◦ ρ ◦ T (c) ◦ µ
= FEM(c) ◦ µ.

On morphisms one simply has FEM(f) = T (f).
Further, if f : X → Y is a map ofGT -algebras, from c : X → GTX to d : Y → GTY ,

then FEM(c)(f) = T (f) is obviously a map of algebras µX → µY , and also a map of
EM(G)-coalgebras:

EM(G)(FEM(f)) ◦ FEM(c) = GT (f) ◦ G(µ) ◦ ρ ◦ T (c)

= G(µ) ◦ GT 2(f) ◦ ρ ◦ T (c)

= G(µ) ◦ ρ ◦ TGT (f) ◦ T (c)

= G(µ) ◦ ρ ◦ T (d) ◦ T (f)

= FEM(d) ◦ FEM(f).

5.4.12. Examples. (i) A non-deterministic automaton can be described as a coalgebra
〈δ, ε〉 : X → (PX)A × 2, which is of the form X → G(TX), where G is the functor
(−)A × 2 and T is the powerset monad P on Sets. Since 2 = {0, 1} is the (carrier of
the) free algebra P(1) on the singleton set 1 = {∗}, there is an EM-law TG ⇒ GT by
Exercise 5.4.4. It is ρ = 〈ρ1, ρ2〉 : P(2×XA)→ P(X)A × 2, given by:

{
x ∈ ρ1(U)(a) ⇐⇒ ∃〈b, h〉 ∈ U. h(a) = x

ρ1(U) = 1 ⇐⇒ ∃h ∈ XA. 〈1, h〉 ∈ U.

Lemma 5.4.11 yields a coalgebra FEM(〈δ, ε〉) = 〈δEM, εEM〉 : P(X) → P(X)A × 2 in
the category EM(P) ∼= CL of complete lattices, see Example 5.4.3 (iii). This coalgebra is
given by: {

δEM(U)(a) =
⋃
x∈U δ(x)(a)

εEM(U) = 1 ⇔ ∃x ∈ U. ε(x) = 1.

By Proposition 5.4.10 the final G-coalgebra 2A
?

= P(A?) of languages is also final for
the lifted functor EM(G) on CL ∼= EM(P). Hence we get a map P(X) → P(A?) of
EM(G)-coalgebras by finality. Applying this map to the singleton set {x} ∈ P(X) yields
the set of words that are accepted in the state x ∈ X . This yields the trace semantics for
a non-deterministic automaton X → 2 × P(X)A, via determinisation in the Eilenberg-
Moore category. This was first described in [393], and elaborated in terms of EM-laws
in [250].

DRAFT

226 Chapter 5. Monads, comonads and distributive laws226 Chapter 5. Monads, comonads and distributive laws226 Chapter 5. Monads, comonads and distributive laws

(ii) Recall from Figure 4.2 that a “simple Segala” system is a coalgebra of the form
X → P(A×D(X)), combining non-deterministic and probabilistic computation. It can be
turned into a non-deterministic transition systemD(X)→ P(A×D(X)) with distributions
as states. Like before this is done via a EM-law, namely of the form DP(A × −) ⇒
P(A×−)D, of the monad D over the functor P(A×−).

In [250] it is shown that such EM-laws exist more generally, as soon as we have a map
of monads. More concretely, each map of monads σ : T ⇒ S induces an EM-law

TS(A×−)
ρ +3 S(A× T (−))

of the monad T over the functor S(A×−). The components of ρ are given by:

ρX =
(
TS(A×X)

σ // S2(A×X)
S2(id × η)

// S2(A× TX)
µ
// S(A× TX)

)
.

Verifications are left to the interested reader. For simple Segala systems we can apply this
general construction with T = D and S = P , and the map of monads D ⇒ P from
Exercise 5.1.9.

We conclude with another result about the free monads F ∗ on a functor F from Propo-
sition 5.1.8.

5.4.13. Lemma. For two endofunctor F,G : C→ C, there is a bijective correspondence:

distributive EM-laws F ∗G
ρ +3 GF ∗

===============================
natural transformations FG τ

+3 GF ∗

where F ∗ is the free monad from Proposition 5.1.8.

Proof. The correspondence is given as follows.

• Starting from an EM-law ρ : F ∗G ⇒ GF ∗ we take ρX = ρX ◦ θGX : FG(X) →
F ∗G(X)→ GF ∗(X), where θ : F ⇒ F ∗ is the universal map.

• Conversely, given a natural transformation τ : FG⇒ GF ∗ we obtain a map τX : F ∗G(X)→
GF ∗(X) by initiality in:

G(X) + F
(
F ∗G(X)

)

αG(X) ∼=
��

id + F
(
τX
)
//______ G(X) + F

(
GF ∗(X)

)

[G(η), G(µ) ◦ τ]
��

F ∗G(X)
τX

//___________ GF ∗(X)

(5.23)

We leave it to the reader to verify that this map τ is natural and commutes with the
F ∗’s unit and multiplication, as required in (5.20).

Proving that ρ = ρ and τ = τ is elementary.

Exercises

5.4.1. Prove that the product of Eilenberg-Moore algebras described in Lemma 5.4.4 forms an
Eilenberg-Moore algebra. Formulate and prove a dual result for coalgebras.

DRAFT

5.4. Eilenberg-Moore categories and distributive laws 2275.4. Eilenberg-Moore categories and distributive laws 2275.4. Eilenberg-Moore categories and distributive laws 227

5.4.2. Let α : T (X) → X be an algebra of a monad T . Prove that α is a coequaliser in the
category EM(T) of algebras, in a diagram:

(
T 3(X)
↓ µ

T 2(X)

) T (α)
//

µ
//

(
T 2(X)
↓ µ

T (X)

)
α // //

(
T (X)
↓ α
X

)

5.4.3. Assume a monad T on a category C with a logical factorisation system (M,E). Prove, like
in Exercise 4.3.2, that if T preserves abstract epis, EM(T) also carries a logical factorisa-
tion system. Check that this is the case for monads on Sets, using the axiom of choice, see
Lemma 2.1.7.

5.4.4. Let T : C → C be an arbitrary monad. Show that for the various functors G : C → C
described below an EM-law TG⇒ GT exists.
(i) If G is the identity functor C→ C;
(ii) If G = KB , the constant functor mapping X 7→ B, where B carries an algebra

β : T (B)→ B;
(iii) If G = G1 ×G2 and there are EM-laws ρi : TGi ⇒ GiT ;
(iv) If G = HA, provided: C is cartesian closed, there is an EM-law TH ⇒ HT , and T

is a strong monad;
(v) If G = G1 ◦ G2 and there are EM-laws ρi : TGi ⇒ GiT ;
(vi) Finally, assuming that T preserves coproducts we also have: if G =

∐
iGi and there

are EM-laws ρi : TGi ⇒ GiT .

5.4.5. For each set X , the function space [0, 1]X is the set of fuzzy predicates.
(i) Check that [0, 1]X is a convex set.
(ii) Produce an algebra D([0, 1]X)→ [0, 1]X of the distribution monad D.

5.4.6. Let MSL be the category of meet semilattices.
(i) Prove that the forgetful functor MSL → Sets has a left adjoint X 7→ Pfin(X)op,

where Pfin(X)op is the poset of finite subsets of X , with reverse inclusion U ⊇ V as
order.

(ii) Describe the unit and multiplication of the monad Pop
fin : Sets → Sets induced by

this adjunction.
(iii) Prove MSL ∼= EM(Pop

fin).

5.4.7. (i) Prove in detail that taking ideals leads to a monad Idl : PoSets → PoSets, as
claimed in Example 5.4.3 (iv), and also that EM(Idl) ∼= Dcpo.

(ii) Define along the same lines a downset monad Dwn on PoSets, which sends a poset
to the set of all its downclosed subsets, ordered by inclusion.

(iii) Prove that EM(Dwn) ∼= CL.

5.4.8. (i) For an arbitrary monad T on a category C, the free algebra adjunction EM(T) � C
induces a comonad T̂ : EM(T)→ EM(T). Describe the counit and comultiplication
of this comonad in detail.

(ii) Write Îdl : Dcpo → Dcpo for the comonad induced in this way by Dcpo �
PoSets, see the previous exercise. Prove that the category EM(Îdl) of Eilenberg-
Moore coalgebras of this comonad is the category of continuous posets.

(iii) WriteM =MR for the multiset monad over the real numbers R, vector spaces over
R as algebras, see Example 5.4.3 (ii). Prove that a coalgebra of the induced comonad
M̂ on a vector space corresponds to a basis for this space.

For a more systematic study of coalgebras of the induced comonad T̂ , see [234] and the
references given there.

5.4.9. Consider the distributive K̀ -law ∇ : (−)?P ⇒ P(−)? from Lemma 5.2.7, for the list
functor (−)?.
(i) Prove that this∇ is in fact a distributive law between two monads, as in Exercise 5.2.7.
(ii) As a result, there is a language monad X 7→ P(X?); describe its unit and multiplica-

tion in detail.
(iii) Verify that the Eilenberg-Moore algebras of this monad P

(
(−)?

)
are complete lat-

tices with a monoid structure where multiplication preserves joins in both arguments
separately. They are known as unital quantales (see [368]) or as Kleene algebras with
arbitrary joins.

DRAFT

228 Chapter 5. Monads, comonads and distributive laws228 Chapter 5. Monads, comonads and distributive laws228 Chapter 5. Monads, comonads and distributive laws

5.4.10. For a semiring S consider the category ModS = EM(MS) of modules over S, as in
Example 5.4.3 (ii).
(i) Show that the (covariant) powerset functor can be lifted to modules as in:

ModS

��

P //ModS

��

Sets
P // Sets

and similarly for the finite powerset functor Pfin.
(ii) Check that P : ModS → ModS is also a monad—with unit and multiplication as

on Sets.
(iii) Describe the EM-lawMSP ⇒ PMS corresponding to this lifting P : ModS →

ModS , as in Proposition 5.4.9.

5.4.11. Let T : Sets → Sets be a monad, and α : T (A) → A an arbitrary (but fixed) Eilenberg-
Moore algebra. Show that there is an adjunction:

Setsop

A(−)

,,> EM(T)

Hom(−, α)

ll

The canonical choice is to take A = T (1), the free monad on the singleton set 1. Elaborate
what the resulting adjoint functors are in the cases Setsop � JSL and Setsop � ModS ,
involving the finite powerset functor Pfin and the multiset functorMS .

5.4.12. (From [51, 250]) Let λ : FT ⇒ TF be a K̀ -law and ρ : TG ⇒ GT an EM-law. Show
that the standard adjunctions C � K̀ (T) from Proposition 5.2.2 and C � EM(T) from
Lemma 5.4.2 lift to adjunctions between categories of, respectively, (functor) algebras and
coalgebras, as described below.

Alg(F)

��

Alg(F)
,,

⊥ Alg(K̀ (F))

��

Alg(U)

ll CoAlg(G)

��

CoAlg(F)
--

⊥ CoAlg(EM(G))

��

CoAlg(U)

mm

C
F

;;

F
,,

⊥ K̀ (T)

K̀ (F)
ee

U
jj C

G

;;

F
,,

⊥ EM(T)

EM(G)
ee

U
kk

[Hint. Use Theorem 2.5.9 and its dual.]

5.4.13. Prove, in analogy with Lemma 5.4.11, that in presence of a K̀ -law FT ⇒ TF the free
functor F : C→ K̀ (T) can be lifted, as in:

CoAlg(TF)

��

FK̀ // CoAlg(K̀ (F))

��

CF
%%

T

YY

F // K̀ (T)

K̀ (F)
ee

5.4.14. Recall that for two sets A,B, the deterministic automaton functor G(X) = XA × B has
final coalgebra BA

?

, see Proposition 2.3.5. Let T : Sets → Sets be an arbitrary monad,
which is automatically strong by Lemma 5.2.10. Assume an algebra β : T (B)→ B.
(i) Give an explicit description of the EM-law T (XA × B) → T (X)A × B, follow-

ing Exercise 5.4.4. The “exponent” version r of strength, from Exercise 5.2.15, is
convenient here.

(ii) Given an explicit description of the resulting lifted functor EM(G) : EM(T) →
EM(T).

(iii) Prove that the T -algebra (5.21) induced on the final G-coalgebra BA
?

is given by:

T
(
BA

?) r // T (B)A
? βA

?

// BA
?

.

DRAFT

5.4. Eilenberg-Moore categories and distributive laws 2295.4. Eilenberg-Moore categories and distributive laws 2295.4. Eilenberg-Moore categories and distributive laws 229

5.4.15. Let σ : T ⇒ S be a map of monads.
(i) Show that it induces a functor (−) ◦ σ : EM(S) → EM(T) that commutes with the

forgetful functors.
(ii) Assume that the category EM(S) has coequalisers. Consider the mapping that sends

a T -algebra α : T (X)→ X to the following coequaliser in EM(S):

(
S2T (X)
↓ µ

ST (X)

) µ ◦ S(σ)
//

S(α)
//

(
S2(X)
↓ µ

S(X)

)
c // //

(
S(Xσ)
↓ ασ
Xσ

)

Prove that α 7→ ασ is the left adjoint to the functor (−) ◦ σ from (i).
(iii) Use Lemma 5.4.5 to conclude that if T, S are monad on Sets, such a a left adjoint

(−)σ always exists. As a result, for instance, the forgetful functor VectR → Ab
from vector spaces to Abelian groups has a left adjoint.

(iv) Assume still that the category EM(S) of S-algebras has coequalisers. Prove that the
coproduct of two Eilenberg-Moore algebras α : S(X) → X and β : S(Y) → Y is
given by the following coequaliser in EM(S).

(
S2(S(X) + S(Y))

↓ µ
S(S(X) + S(Y))

)µ ◦ S([S(κ1), S(κ2)])
//

S(α+ β)
//

(
S2(X + Y)

↓ µ
S(X + Y)

)
// //

(
S(U)
↓
U

)

5.4.16. Use Proposition 5.4.13 to see that there is an EM-law F ∗F ⇒ FF ∗. Check that it can be
described explicitly as:

F ∗F (X)
α−1
F (X)

∼=
// F (X) + F

(
F ∗F (X)

) [F (ηX), F (µX ◦ F ∗(θX))]
// FF ∗(X)

where θ : F ⇒ F ∗ is the universal map as in the proof of Proposition 5.1.8.

5.4.17. Assuming the relevant coproducts + and free monads (−)∗ exist, prove:

(F +G)∗ ∼= F ∗ +G∗,

where the + on the right-hand-side denotes the coproduct in the category of monads.
[In [219, Theorem 4] it is shown that the coproduct of monads F ∗+T , where T is a monad,
is the composite T (FT)∗.]

5.4.18. Let C be a category with a logical factorisation system (M,E), and let F : C → C be a
functor with free monad F ∗ : C→ C.
(i) Deduce from Lemma 4.4.6 that there is a natural transformation Rel(F)⇒ Rel(F ∗),

that the relation lifting functor Rel(F ∗) : Rel(C)→ Rel(C) is a monad, and thus that
there is a map of monads Rel(F)∗ ⇒ Rel(F ∗).

(ii) Use Exercise 4.5.1 and Proposition 5.4.7 to show that F -congruences are the same
as F ∗-congruences. More formally, show that there is an isomorphism between cate-
gories of algebras:

Alg(Rel(F))

##HHHHH
∼= EM(Rel(F ∗))

zzuuuuu

Rel(C)

��
Rel(F)

99
Rel(F ∗)

ee

C
F

;;

F ∗
cc

5.4.19. This exercise deals with an analogon of Proposition 5.2.2 for Eilenberg-Moore categories.
Let T be a monad on an arbitrary category C, and let functor L : C → D have a right
adjointH , so that T = HL is the induced monad. Define a “comparison” functorK : D→
EM(T) in:

D

H ��
88888
K // EM(T)

�������

C

DRAFT

230 Chapter 5. Monads, comonads and distributive laws230 Chapter 5. Monads, comonads and distributive laws230 Chapter 5. Monads, comonads and distributive laws

(i) Check that the functor K̀ (T)→ EM(T) in Lemma 5.4.2 arises in this manner.
(ii) What is the dual statement for comonads?

5.4.20. (See [306, Proposition 26]) Let T : C → C be an arbitrary strong monad on a cartesian
(or monoidal) closed category C. For an object C ∈ C there is the continuation monad
X 7→ C(CX) from Example 5.1.3 (vii). Prove that there is a bijective correspondence be-
tween monad maps T ⇒ C(C(−)) commuting with strength, and Eilenberg-Moore algebras
T (C)→ C.

5.5 Bialgebras and operational semantics

We continue our investigation of distributive laws. The new perspective that will be ex-
plored is that an EM-law TG⇒ GT induces algebraic structure on the final G-coalgebra,
of the kind we have seen before on streams and on processes, namely in Section 1.2 and
Subsection 3.5.2. The connection between distributive laws and specification formats for
algebraic operations was first made in [413], see also [412], with preliminary ideas stem-
ming from [374]. This connection forms one of the main achievements of the discipline
of coalgebras. Traditionally in process algebras these formats are described as “structured
operational semantics” rules (SOS rules), following [352]. A subtle matter is which rule
formats correspond precisely to which rules. This is investigated for instance in [59] and
in [306]. An overview of this material may be found in [274].

We start this section with some categorical results, first on liftings of monads and
comonads, and then on bialgebras wrt. a distributive law. A slightly smoother version
of these results, involving comonads instead of functors, is described in Exercise 5.5.1.
The liftings may also be described for “copointed” functors, see e.g. [306]. Such a co-
pointed functor F comes with a counit (or copoint) ε : F ⇒ id. This notion sits in between
ordinary functors and comonads.

5.5.1. Proposition. Assume a monad T and two endofunctors F and G, all on the same
category C. Distributive K̀ - and EM-laws give rise to liftings of the monad T to new
monads Alg(T) and CoAlg(T) in:

K̀ -law FT
λ +3 TF

Alg(F)
��

Alg(T)
// Alg(F)
��

C T // C

EM-law TG
ρ +3 GT

CoAlg(G)
��

CoAlg(T)
// CoAlg(G)

��

C T // C

Explicitly, these liftings are given by:

(
F (X)
↓ a
X

)
� Alg(T)

//

(
FT (X)
↓ T (a)◦λ

T (X)

)
and

(
G(X)
↑ c
X

)
�CoAlg(T)

//

(
GT (X)
↑ ρ◦T (c)

T (X)

)

On morphisms both functors are given by f 7→ T (f). The unit and multiplication of T are
also unit and multiplication of Alg(T) and CoAlg(T), in the appropriate categories.

Notice that the rules in this proposition only have a single line, indicating a passage
from top to bottom, and not a bidirectional correspondence like in Proposition 5.4.9.

Proof. It is easy to see that Alg(T) and CoAlg(T) are functors. The functor Alg(T) is a
monad, because the unit and multiplication η, µ of T also form maps of F -algebras:

(
F (X)
↓ a
X

)
η
// Alg(T)

(
F (X)
↓ a
X

)
Alg(T)2

(
F (X)
↓ a
X

)
.

µ
oo

DRAFT

5.5. Bialgebras and operational semantics 2315.5. Bialgebras and operational semantics 2315.5. Bialgebras and operational semantics 231

This is checked via the properties of K̀ -laws from (5.6):

Alg(T)(a) ◦ F (η) = T (a) ◦ λ ◦ F (η)

= T (a) ◦ T (η)

= id

Alg(T)(a) ◦ F (µ) = T (a) ◦ λ ◦ F (µ)

= T (a) ◦ µ ◦ T (λ) ◦ λ
= µ ◦ T (T (a) ◦ λ) ◦ λ
= µ ◦ Alg(T)2(a).

Similarly one shows that CoAlg(T) is a monad.

In the remainder of this section we concentrate on EM-laws. First we define bialgebras
for such laws. They are combinations of algebras and coalgebras which interact appro-
priately via the distributive law. This turns out to be a useful notion. Intuitively one can
think of the algebra as describing some programming language, and of the coalgebra as its
operational semantics, in the form of transition steps that the various program constructs
can make.

5.5.2. Definition. Let ρ : TG ⇒ GT be an EM-law, for a monad T and an endofunctor
G. We write BiAlg

(
TG

ρ⇒ GT
)

for the category of ρ-bialgebras. Its objects are algebra-
coalgebra pairs T (X)

α→ X
c→ G(X) on the same carrier, where α is an Eilenberg-Moore

algebra, and the following diagram commutes.

T (X)

T (c)
��

α // X
c // G(X)

TG(X) ρX
// GT (X)

G(α)

OO

(5.24)

A map of bialgebras, from T (X)
α→ X

c→ G(X) to T (Y)
β→ Y

d→ G(Y) is a map f : X →
Y in the underlying category which is both a map of algebras and coalgebras, as in:

T (X)

α
��

T (f)
// T (Y)

β
��

X

c
��

f
// Y

d
��

G(X)
G(f)

// G(Y)

Thus, by construction, there are two forgetful functors:

EM(T) BiAlg
(
TG

ρ⇒ GT
)

oo // CoAlg(G).

The next result comes from [413] and forms the basis for categorical operational se-
mantics.

5.5.3. Theorem. For an EM-law ρ : TG ⇒ GT consider the associated liftings EM(G)
from Proposition 5.4.9 and CoAlg(T) from Proposition 5.5.1 in:

EM(T)

EM(G)

GG
BiAlg

(
TG

ρ⇒ GT
)

//oo CoAlg(G)

CoAlg(T)

WW

DRAFT

232 Chapter 5. Monads, comonads and distributive laws232 Chapter 5. Monads, comonads and distributive laws232 Chapter 5. Monads, comonads and distributive laws

Then there are isomorphism and adjoints as in:

CoAlg(EM(G))
∼

a
��

BiAlg
(
TG

ρ⇒ GT
) ∼ EM(CoAlg(T))

a
��

EM(T)

G
]]

CoAlg(G)

F
AA

(5.25)

The left adjointF is the lifting of the free algebra functorF : C→ EM(T) from Lemma 5.4.2.
The right adjoint G exists if we assume cofree G-coalgebras.

Proof. Diagram (5.24) can be read at the same time as:

• c : X → G(X) is a map of T -algebras:

(
T (X)
↓ α
X

)
c // EM(G)

(
T (X)
↓ α
X

)
=

(
TG(X)
↓ G(α)◦ρ

G(X)

)

• α : T (X)→ X is a map of G-coalgebras:

(
GT (X)

ρ◦T (c) ↑
T (X)

)
= CoAlg(T)

(
G(X)
↑ c
X

)
α //

(
G(X)
↑ c
X

)

This is the essence of the isomorphisms in (5.25).
We also need to check that f : X → Y is a map of bialgebras from T (X)

α→ X
c→ G(X)

to T (Y)
β→ Y

d→ G(Y) iff:

• f is both a map of T -algebras α→ β and a map of EM(G)-coalgebras c→ d;

• f is both a map of G-coalgebras c→ d and a map of CoAlg(T)-algebras α→ β.

This is easy and so we turn to the left adjoint F : CoAlg(G)→ BiAlg
(
TG

ρ⇒ GT
)
.

Assume we have a coalgebra c : X → G(X). We take the free algebra µ : T 2(X)→ T (X)
and change c into a coalgebra CoAlg(T)(c) = ρ ◦ T (c) : T (X) → TG(X) → GT (X).
Together they form a bialgebra, since the next rectangle commutes:

T 2(X)
µ
//

T (ρ ◦ T (c))
��

T (X)
ρ ◦ T (c)

// GT (X)

TGT (X) ρ
// GT 2(X)

G(µ)

OO

Since:
G(µ) ◦ ρ ◦ T (ρ ◦ T (c))

(5.20)
= ρ ◦ µ ◦ T 2(c) = ρ ◦ T (c) ◦ µ.

Moreover, we have an adjoint correspondence between f and h in:

T 2(X)
µ
��

T (f)
// T (Y)

β
��

T (X)

ρ◦T (c)
��

f
// Y

d
��

GT (X)
G(f)

// G(Y)
==========================

G(X)
G(h)

// G(Y)

X

c
OO

h // Y

d
OO

DRAFT

5.5. Bialgebras and operational semantics 2335.5. Bialgebras and operational semantics 2335.5. Bialgebras and operational semantics 233

This the usual free algebra adjoint correspondence, given by f = f ◦ η and h = β ◦ T (h).
Next we assume the existence of cofree coalgebras, in the form of a right adjoint

G : C → CoAlg(G) to the forgetful functor. We show how it can be adapted to a func-
tor G : C→ BiAlg

(
TG

ρ⇒ GT
)
. For an arbitrary object Y ∈ C, we write the cofree

coalgebra as ζY : G(Y)→ G(G(Y)), with counit ε : G(Y)→ Y .
For an Eilenberg-Moore algebra β : T (Y)→ Y consider the map β ◦ T (ε) : T (G(Y))→

T (Y)→ Y . Its carrier can be equipped with aG-coalgebra ρ ◦ T (ζY), and yields a unique
coalgebra map β̂ : T (G(Y))→ G(Y) with εY ◦ β̂ = β ◦ T (ε) in:

GTG(Y)
G(β̂)

// GG(Y)

TGG(Y)

ρ
OO

TG(Y)

T (ζY)
OO

β̂

// G(Y)

ζY

OO

(5.26)

We leave it to the reader to check that β̂ is an Eilenberg-Moore algebra. By construction,
the pair (β̂, ζY) is a bialgebra. Further, for an arbitrary bialgebra (α, c) there is a bijective
correspondence between f and h in:

T (X)

α
��

T (f)
// TG(Y)

β̂��

X
c
��

f
// G(Y)

ζY��

G(X)
G(f)

// GG(Y)
======================

T (X)
α
��

T (h)
// T (Y)

β
��

X
h // Y

This correspondence arises as follows.

• Given a map of bialgebras f : X → G(Y) we take f = ε ◦ f : X → Y . It forms a
map of algebras:

β ◦ T (f) = β ◦ T (ε) ◦ T (f) = ε ◦ β̂ ◦ T (f) = ε ◦ f ◦ α = f ◦ α.

• In the other direction, assume a map of algebras h : X → Y . By cofreeness we
obtain a unique map of coalgebras h : X → G(Y), with ζY ◦ h = G(h) ◦ c and
ε ◦ h = h. This h is a map of bialgebras. The missing equation β̂ ◦ T (h) = h ◦ α
can be obtained as follows. Both sides form a map of coalgebras in:

GT (X) // GG(Y)

T (X)

ρ ◦ T (c)
OO

// G(Y)

ζY

OO

And both side are equal when post-composed with the counit ε:

ε ◦ β̂ ◦ T (h) = β ◦ T (ε) ◦ T (h) = β ◦ T (h) = h ◦ α = ε ◦ h ◦ α.

DRAFT

234 Chapter 5. Monads, comonads and distributive laws234 Chapter 5. Monads, comonads and distributive laws234 Chapter 5. Monads, comonads and distributive laws

By construction we have h = ε ◦ h = h. And f = f holds by uniqueness.

5.5.4. Corollary. Assume an EM-law ρ : TG ⇒ GT for a monad T and an endofunctor
G on a category C.

(i) If C has an initial object 0, then the category BiAlg
(
TG

ρ⇒ GT
)

of bialgebras
has an initial object, namely:

T 2(0)
µ
// T (0)

ρ ◦ T (!)
// GT (0).

It is given by the initial T -algebra T 2(0)→ T (0) and the initial G-coalgebra 0→ G(0).
(ii) If the functor G has a final coalgebras Z

ζ−→∼= G(Z), then there is also a final bial-
gebra:

T (Z)
β
// Z

ζ
∼=
// G(Z),

where the Eilenberg-Moore algebra β : T (Z)→ Z is obtained by finality from the coalge-
bra ρ ◦ T (ζ) : T (Z)→ GT (Z), as in (5.21).

Proof. The left adjoint F in (5.25) preserves initial objects, so applying it to the initial
G-algebra ! : 0→ G(0) yields the initial bialgebra.

Similarly, a final G-coalgebra ζ : Z
∼=→ G(Z) is the cofree coalgebra G(1) at the final

object 1 ∈ C. Hence the final T -algebra ! : T (1) → 1 yields an algebra T (Z) → Z as
in (5.26)—or, equivalently, as in (5.21).

5.5.5. Theorem. Assume the presence of both the initial and final bialgebra as described
in Corollary 5.5.4.

(i) The algebraic semantics obtained by initiality and the coalgebraic semantics by
finality coincide with the unique bialgebra map:

T 2(0)

µ
��

//_________ T (Z)

β
��

T (0)

ρ ◦ T (!)
��

int = beh
//_________ Z
∼= ζ
��

GT (0) //________ G(Z)

(5.27)

(ii) As a result, bisimilarity / observational equivalence on T (0) is a congruence.

Proof. (i) The algebra morphism int : T (0) → Z is obtained by initiality of the algebra
µ : T 2(0) → T (0) in EM(T). We wish to show that it is also a coalgebra map, i.e. that it
satisfies ζ ◦ int = G(int) ◦ ρ ◦ T (!) in (5.27). Then, by uniqueness, int = beh. Define:

β′ =
(
TG(Z)

T (ζ−1)
∼=
// T (Z)

β
// Z

ζ
∼=
// G(Z)

)
.

It is not hard to see that β′ is an Eilenberg-Moore algebra. Hence we are done, by initiality,

DRAFT

5.5. Bialgebras and operational semantics 2355.5. Bialgebras and operational semantics 2355.5. Bialgebras and operational semantics 235

if both ζ ◦ int and G(int) ◦ ρ ◦ T (!) are algebra maps µ→ β′. This is easy:

β′ ◦ T (ζ ◦ int) = ζ ◦ β ◦ T (ζ−1) ◦ T (ζ) ◦ T (int)

= ζ ◦ β ◦ T (int)

= ζ ◦ int ◦ µ
β′ ◦ T (G(int) ◦ ρ ◦ T (!)) = ζ ◦ β ◦ T (ζ−1) ◦ TG(int) ◦ T (ρ) ◦ T 2(!)

(5.21)
= G(β) ◦ ρ ◦ T (ζ) ◦ T (ζ−1) ◦ TG(int) ◦ T (ρ) ◦ T 2(!)

= G(β) ◦ ρ ◦ TG(int) ◦ T (ρ) ◦ T 2(!)

= G(β) ◦ GT (int) ◦ ρ ◦ T (ρ) ◦ T 2(!)

= G(int) ◦ G(µ) ◦ ρ ◦ T (ρ) ◦ T 2(!)
(5.20)

= G(int) ◦ ρ ◦ µ ◦ T 2(!)

= G(int) ◦ ρ ◦ T (!) ◦ µ.

(ii) Consider the following diagram, where the arrow e is an equaliser, describing the
kernel of the (co)algebra map int = beh : T (0)→ Z to the final coalgebra.

T (↔)

γ

��
�
�
�

〈T (π1 ◦ e), T (π2 ◦ e)〉
// T 2(0)× T 2(0)

µ× µ
��

T (int) ◦ π1
//

T (int) ◦ π2

// T (Z)

β
��↔ // e // T (0)× T (0)

int ◦ π1 //

int ◦ π2

// Z

The existence of the map γ follows from an easy diagram chase. It is an Eilenberg-Moore
algebra and shows that bisimilarity↔ on the initial algebra T (0) is a congruence.

In the remainder of this section we show how distributive laws can be used to define
operations on final coalgebras, in the form of an Eilenberg-Moore algebra T (Z) → Z as
above. Such an algebra exists as soon as we have an EM-law TG⇒ GT . In fact, this law
forms a specification format for the algebra. Hence it is important to have a specification
format that is as general as possible. Here we shall not give the most general format, but
the most common format. Such laws are called GSOS rules, because they correspond to
the ‘General Structured Operational Semantics’ (GSOS) specification format introduced
in [75]. Here we we do not go into the syntactic formulation of these rules, but only
consider their categorical counterparts. For more information about the connection, see [59,
274].

5.5.6. Definition. Let T be a monad andG and endofunctor on a category C. A GSOS-law
is an EM-law

T (G× id)
σ +3 (G× id)T satisfying π2 ◦ σ = T (π2).

For such a law we define a category BiAlg
(
T (G× id)

ρ⇒ (G× id)T
)

whose objects are
bialgebras given by a pair of an Eilenberg-Moore algebra α : T (X) → X and a coalgebra
c : X → G(X) making the following diagram commute.

T (X)

〈c, id〉
��

α // X
c // G(X)

T (G(X)×X) σX
// GT (X)× T (X) π1

// GT (X)

G(α)

OO

Morphisms of bialgebras are, as before, pairs of algebra maps and coalgebra maps.

DRAFT

236 Chapter 5. Monads, comonads and distributive laws236 Chapter 5. Monads, comonads and distributive laws236 Chapter 5. Monads, comonads and distributive laws

A GSOS-law is thus a distributive law of the monad T over the functorG×id : C→ C,
given by X 7→ G(X) × X . The formulation used here (following [231]) generalises the
original one from [413] for a free monad F ∗.

5.5.7. Lemma. For two endofunctor F,G : C→ C, there is a bijective correspondence:

GSOS-laws F ∗(G× id)
σ +3 (G× id)F ∗

====================================
natural transformations F (G× id) τ

+3 GF ∗

Thus this GSOS format involves maps F (G(X) × X) → GF ∗(X). These are more
useful than the maps FG(X)→ GF ∗(X) from Lemma 5.4.13. The additional occurrence
of the X on the input side increases the expressive power, as will be illustrated below.
In view of this result we shall also call natural transformations τ : F (G × id) ⇒ GF ∗

GSOS-laws.

Proof. We have the following correspondences:

nat. transf. F (G× id)
τ +3 GF ∗

==

nat. transf. F (G× id)
τ +3 (G× id)F ∗ with π2 ◦ τ = θ ◦ F (π2)

==
EM-laws F ∗(G× id) σ

+3 (G× id)F ∗ with π2 ◦ σ = F ∗(π2)

The first correspondence is easy and the second one is a minor adaptation of Lemma 5.4.13.

For GSOS-laws we do not elaborate analogues of Theorem 5.5.3 and Corollary 5.5.4,
but concentrate on the essentials for what is needed below.

5.5.8. Theorem. Let σ : T (G × id) ⇒ (G × id)T be a GSOS-law. If the underlying
category has an initial object 0, then the initial bialgebra exists with carrier T (0) and
algebra-coalgebra structure:

T 2(0)
µ
// T (0)

T (!)
// T (G(0)× 0)

σ0 // GT (0)× T (0)
π1 // GT (0).

If there is a final coalgebra ζ : Z
∼=→ G(Z), then there is also a final bialgebra with carrier

Z, and structure maps:

T (Z)
β
// Z

ζ
∼=
// G(Z),

where the Eilenberg-Moore algebra structure β : T (Z)→ Z is obtained by finality in:

GT (Z)
G(β)

//______ G(Z)

T (Z)

π1 ◦ σ ◦ T (〈ζ, id〉)
OO

β
//_______ Z

∼= ζ

OO

(5.28)

The analogue of Theorem 5.5.5 holds in this situation: the map T (0) → Z obtained by
initiality is the same as the map T (0)→ Z by finality, and is the unique map of bialgebras
T (0)→ Z. And also: bisimilarity↔ on T (0) is a congruence.

Proof. Assume we have an arbitrary bialgebra T (X)
α→ X

c→ G(X). Put f = α ◦
T (!) : T (0) → T (X) → X . This is a map of bialgebras. Similarly, the unique coalge-
bra map X → Z is a map of bialgebras.

DRAFT

5.5. Bialgebras and operational semantics 2375.5. Bialgebras and operational semantics 2375.5. Bialgebras and operational semantics 237

Suppose we have a final coalgebra ζ : Z → G(Z) and we wish to define function
interpretations fi : Z#i → Z on Z, for some arity #: I → N. That is, we wish to define
a (functor) algebra F#(Z) → Z, or equivalently, by Proposition 5.4.7, a monad algebra
F ∗#(Z) → Z, where F# is the arity functor F#(X) =

∐
i∈I X

#i associated with #. The
associated free monad F ∗# is characterised as the initial algebra:

X +
∐

i∈I
F ∗#(X)#i αX

∼=
// F ∗#(X),

see Proposition 5.1.8. The unit of the free monad F ∗# is then η = α ◦ κ1 : X → F ∗#(X).
Theorem 5.5.8 says that in order to define such an interpretation F ∗#(Z)→ Z it suffices

to define a natural transformation τ : F#(G× id)⇒ (G× id)F ∗#. This means that for each
i ∈ I we need (natural) maps

(
G(X)×X

)#i ∼= G(X)#i ×X#i
τi // GF ∗#(X),

one for each operation fi. This τi describes the relevant behaviour associated with the
operation fi: it sends the appropriate number of behaviours-and-states (uk, xk) ∈ G(X)×
X , for k below the arity #i ∈ N of fi, to a behaviour over terms, in GF ∗#(X).

Now assume we have such τi as described above. Together they correspond to a co-
tuple natural transformation τ = [τi]i∈I : F#(G × id) ⇒ GF ∗#, which corresponds by
Lemma 5.5.7 to a GSOS-law τ : F ∗#(G× id)⇒ (G× id)F ∗#. By Theorem 5.5.8 we have
a final bialgebra:

F ∗#(Z)
β
// Z

ζ
∼=
// G(Z).

where the map β is obtained by finality as in (5.28). The interpretation fi : Zn → Z of
each operation fi with arity #i ∈ N can then be described as the composite:

Z#i
η#i

// F ∗#(Z)#i κi //
∐
i∈I F

∗
#(Z)#i α ◦ κ2 // F ∗#(Z)

β
// Z.

We claim that these maps fi : Z#i → Z are determined by the following equation.

ζ ◦ fi = G(β ◦ µ) ◦ τi ◦ 〈G(η) ◦ ζ, η〉#i. (5.29)

It follows from a diagram chase:

Z#i

η#i
//

〈ζ, id〉#i
��

fi

**F ∗#(Z)#i α ◦ κ2 ◦ κi //

F ∗#(〈ζ, id〉)#i

��

F ∗#(Z)
β
//

F ∗#(〈ζ, id〉)
��

Z
ζ
∼=
// G(Z)

i1 i2 i3
(
G(Z)× Z

)#i η#i
//

(G(η)× η)#i **

F ∗#(G(Z)× Z)#i

α ◦ κ2 ◦ κi
//

τ#i

��

F ∗#(G(Z)× Z) τ // GF ∗#(Z)

G(β)

OO

i4 i5
(
GF ∗#(Z)× F ∗#(Z)

)#i
τi

// GF ∗#F
∗
#(Z)

G(µ)

OO

We list why the various subdiagrams commute:i1 by naturality of η;

DRAFT

238 Chapter 5. Monads, comonads and distributive laws238 Chapter 5. Monads, comonads and distributive laws238 Chapter 5. Monads, comonads and distributive laws

i2 by definition of F ∗# on maps, see (5.2);i3 because the pair (β, ζ) is a bialgebra, by construction of β in (5.28);i4 and i5 by definition of τ in (5.23), using that η = α ◦ κ1.

Bisimilarity on the set F ∗#(0) of closed terms is then a congruence.

5.5.9. Examples. We briefly review several ways of employing the above uniform ap-
proach to obtain algebraic operations on final coalgebras and coalgebraic structure on
closed terms.

(i) Recall from Section 1.2 the final coalgebra of finite and infinite sequences:

A∞
next
∼=

// 1 +
(
A×A∞

)
,

for the functor G(X) = 1 + A × X on Sets. Suppose we wish to define a sequential
composition operation on such sequences, as a function comp : A∞ × A∞ → A∞. We
expect the following rules for composition comp(s, t) of two sequences s, t ∈ A∞.

s9 t9

comp(s, t) 9
s9 t

a−→ t′

comp(s, t)
a−→ comp(s, t′)

s
a−→ s′

comp(s, t)
a−→ comp(s′, t)

where we recall from (1.5) that s 9 means next(s) = ∗ and s a−→ s′ means next(s) =
(a, s′). Hence comp(s, t) is s if s is infinite, otherwise it is s · t, where · is prefixing.

The arity functor for this single, binary composition operation is F (X) = X ×X . The
associated free monad on F is written as F ∗, like in Proposition 5.1.8, and determined as
the initial algebra:

X + F ∗(X)× F ∗(X)
αX
∼=

// F ∗(X)

We now define a GSOS-law τ : F (G× id)⇒ GF ∗ for sequential composition as follows.
(

(1 +A×X)×X
)
×
(

(1 +A×X)×X
) τX // 1 +A× F ∗(X)

(〈∗, x〉, 〈∗, y〉) � // ∗
(〈∗, x〉, 〈〈b, y′〉, y〉) � // 〈b, α(η(x), η(y′))〉
(〈〈a, x′〉, x〉, 〈u, y〉) � // 〈b, α(η(x′), η(y))〉.

The three cases of this GSOS law clearly resemble the above three rules for comp.
Like above we now get an algebra β : F ∗(A∞)→ A∞, via (5.28). The actual function

comp : A∞ ×A∞ → A∞ is the composite:

A∞ ×A∞
η × η

// F ∗(A∞)× F ∗(A∞)
α ◦ κ2 // F ∗(A∞)

β
// A∞

It satisfies, like in (5.29):

next ◦ comp = G(β ◦ µ) ◦ τ ◦ (〈G(η) ◦ next, η〉 × 〈G(η) ◦ next, η〉).
It allows use to check that if next(s) = next(t) = ∗, then:

next(comp(s, t)) =
(
G(β ◦ µ) ◦ τ ◦ (〈G(η) ◦ next, η〉 × 〈G(η) ◦ next, η〉)

)
(s, t)

=
(
G(β ◦ µ) ◦ τ

)(
〈G(η)(next(s)), η(s)〉, 〈G(η)(next(t)), η(t)〉

)

=
(
G(β ◦ µ) ◦ τ

)(
〈G(η)(∗), η(s)〉, 〈G(η)(∗), η(t)〉

)

= G(β ◦ µ)
(
τ(〈∗, η(s)〉, 〈∗, η(t)〉)

)

= G(β ◦ µ)(∗)
= ∗.

DRAFT

5.5. Bialgebras and operational semantics 2395.5. Bialgebras and operational semantics 2395.5. Bialgebras and operational semantics 239

In a similar manner one can prove:

next(comp(s, t)) =

{
(a, comp(s, t′)) if next(s) = ∗, next(t) = (a, t′)

(a, comp(s′, t)) if next(s) = (a, s′).

Hence we have obtained a sequential composition function, described informally via the
above three rules, and defined precisely via the GSOS-law / natural transformation τ .

(ii) In Subsection 3.5.2 we have seen a final coalgebra of processes:

ZA
ζA
∼=
// Pfin(ZA)A

for the functor G(X) = Pfin(X)A on Sets, where A is a (fixed) set of labels. A simple
process language was defined via an arity functor:

ΣA(X) = 1 + (A×X) + (X ×X)

with initial algebra ξA : ΣA(PA)
∼=→ PA. Alternatively, we can describe this set PA of

process terms as initial monad algebra Σ∗A(0). Here we shall describe the situation in terms
of bialgebras and distributive laws.

To start, there is an EM-law ΣAPfin(−)A ⇒ Pfin(−)AΣ∗A, via Lemma 5.4.13, namely:

1 +
(
A× Pfin(X)A

)
+
(
Pfin(X)A × Pfin(X)A

) τX // Pfin
(
Σ∗A(X)

)A

given by the following three clauses:

∗ 7−→ λb ∈ A. ∅

(a, h) 7−→ λb ∈ A.
{
h(b) if a = b

∅
(h, k) 7−→ λb ∈ A. h(b) ∪ k(b).

Corollary 5.5.4 now tells us that there is a unique map PA → ZA that is both a map of
algebras and a map of coalgebras. This map that sends a process term to its interpretation
as a process is thus compositional. Moreover, by Theorem 5.5.5 bisimilarity on PA is a
congruence. Earlier in this book, in Propositions 3.5.2 and 3.5.3, we had to prove these
results by hand.

(iii) In [231] it is described how regular languages and automata can be understood in
terms of bialgebras and distributive laws. The arity functor for regular languages is:

R(X) = 1︸︷︷︸
zero

+ 1︸︷︷︸
one

+ (X ×X)︸ ︷︷ ︸
sum +

+ (X ×X)︸ ︷︷ ︸
product ·

+ X︸︷︷︸
star (−)∗

For an arbitrary set A, the free monad R∗(A) captures the regular expressions with ele-
ments a ∈ A as atomic expressions. There is the familiar interpretation R∗(A) → P(A?)
of regular expressions as languages. This set of languages P(A?) is the final coalgebra
of the deterministic automaton functor G(X) = XA × 2, see Corollary 2.3.6 (ii). This
interpretationR∗(A)→ P(A?) can then be described as a bialgebra for the GSOS-law:

R(XA × 2×X) // R∗(X)A × 2

0
� zero // (λa ∈ A. 0, 0)

1
� one // (λa ∈ A. 0, 1)

〈(h1, b1, x1), (h2, b2, x2)〉 � plus
// (λa ∈ A. h1(a) + h2(a), b1 ∨ b2)

〈(h1, b1, x1), (h2, b2, x2)〉 � product
// (λa ∈ A. h1(a) · x2 + b1 · h2(a), b1 ∧ b2)

(h, b, x)
� star // (λa ∈ A. h(a) · x∗, 1).

DRAFT

240 Chapter 5. Monads, comonads and distributive laws240 Chapter 5. Monads, comonads and distributive laws240 Chapter 5. Monads, comonads and distributive laws

More details can be found in [231].

We conclude this section with a strengthened form of coinduction for distributive EM-
laws. We shall refer to this generalised form as “EM-coinduction”. An even stronger
“corecursive” version that builds on it is described in Exercise 5.5.4.

5.5.10. Proposition. Assume we have:

• a functor G : C→ C with a final coalgebra ζ : Z
∼=→ G(Z);

• a monad T : C→ C, on the same category, with an EM-law ρ : TG⇒ GT .

Then the following “EM-coinduction” principle holds: for each map e : X → GT (X)
there is a unique map s : X → Z making the following diagram commute.

GT (X)
GT (s)

// GT (Z)

G(β)
��

G(Z)

X

e

OO

s
// Z

∼= ζ
OO

where β : T (Z)→ Z is the induced Eilenberg-Moore algebra as in (5.21).

Proof. There is a direct way to prove the result, and an indirect way via bialgebras. We
shall present both proofs.

For the direct proof, first transform e into a G-coalgebra e as in:

e = FEM(e) =
(
T (X)

T (e)
// TGT (X)

ρT (X)
// GT 2(X)

G(µX)
// GT (X)

)
,

where FEM : CoAlg(GT) → CoAlg(EM(G)) is the state extension functor defined
in (5.22). This coalgebra satisfies e ◦ η = e. By finality we get a unique coalgebra map
f : T (X)→ Z with ζ ◦ f = G(f) ◦ e. One can then show that s = f ◦ η : X → Z is the
required map.

G(β) ◦ GT (s) ◦ e = G(β) ◦ GT (f) ◦ GT (η) ◦ e
(∗)
= G(f) ◦ G(µ) ◦ GT (η) ◦ e
= G(f) ◦ e
= G(f) ◦ e ◦ η
= ζ ◦ f ◦ η
= ζ ◦ s

The marked equation holds because β ◦ T (f) = f ◦ µ by uniqueness of coalgebra maps
(ρ ◦ T (e))→ ζ.

The indirect proof uses the following bijective correspondence.

maps X
c // GT (X)

===================================
bialgebras T 2(X) µ

// T (X)
d
// GT (X)

(5.30)

This correspondence sends e to e as defined above. In the reverse direction d is mapped to
d = d ◦ η.

DRAFT

5.5. Bialgebras and operational semantics 2415.5. Bialgebras and operational semantics 2415.5. Bialgebras and operational semantics 241

Corollary 5.5.4 says that the pair (β, ζ) is a final bialgebra. Hence we get a unique map
of bialgebras (µ, e) → (β, ζ). It involves a map f : T (X) → Z which is both a map of
algebras and of coalgebras. Then s = f ◦ η is the desired map, since:

G(β) ◦ GT (s) ◦ e = G(β) ◦ GT (f ◦ η) ◦ e ◦ η
= G(f) ◦ G(µ) ◦ GT (η) ◦ e ◦ η
= G(f) ◦ e ◦ η
= ζ ◦ f ◦ η
= ζ ◦ s.

In this result we have used letters ‘e’ and ‘s’ for ‘equation’ and ‘solution’. Indeed, maps
of the form X → GT (X) can be understood as abstract recursive equations, with maps
s : X → Z as solutions in a final coalgebra. This view is elaborated in a series of papers,
see e.g. [329, 10, 24, 25, 26], formalising and extending in coalgebraic terms earlier work
of especially Elgot, Bloom and Esik (see [76]). Of particular interest in this setting is the
so-called free iterative monad F∞ on a functor F , where F∞(X) is the final coalgebra
of the functor X + F (−). The connections between this monad, distributive laws and
EM-coinduction are elaborated in [231].

Exercises

5.5.1. This exercise gives a more symmetric version of the situation described in the beginning
of this section, not dealing with a monad and a functor, but with a monad and a comonad.
So assume a monad T = (T, η, µ) and a comonad S = (S, ε, δ), on the same category
C. A distributive law of the monad T over the comonad S is a natural transformation
ρ : TS ⇒ ST which commutes both with the monad and with the comonad structure, as
in:

S

η
��

S

S(η)
��

T 2S

µ
��

T (ρ)
// TST

ρ
// ST 2

S(µ)
��

TS

T (ε)
��

ρ
// ST

ε
��

TS

T (δ)
��

ρ
// ST

δ
��

T T TS2
ρ
// STS

S(ρ)
// S2T

(i) Define a suitable category of bialgebras BiAlg
(
TS

ρ⇒ ST
)
, together with two for-

getful functors EM(T)← BiAlg
(
TS

ρ⇒ ST
)
→ EM(S)

(ii) Define liftings of the monad T to a monad EM(T) and of the comonad S to a comonad
EM(S) in diagrams:

EM(S)

��

EM(T)
// EM(S)

��

EM(T)

��

EM(S)
// EM(T)

��

C
T

// C C
S

// C

(iii) Strengthen the previous point by proving that there are bijective correspondences be-
tween distributive laws and liftings of (co)monads to (co)monads in:

distributive laws TS
ρ +3 ST

========================

EM(S)
��

L // EM(S)
��

C
T // C

distributive laws TS
ρ +3 ST

========================

EM(T)
��

R // EM(T)
��

C
S // C

DRAFT

242 Chapter 5. Monads, comonads and distributive laws242 Chapter 5. Monads, comonads and distributive laws242 Chapter 5. Monads, comonads and distributive laws

(iv) Show that there are isomorphisms of categories:

EM
(
EM(T)

) ∼= BiAlg
(
TS

ρ⇒ ST
) ∼= EM

(
EM(S)

)
.

(v) Prove that the (downward-pointing) forgetful functors have adjoints in:

BiAlg
(
TS

ρ⇒ ST
)

awwooooooooo

a ''OOOOOOOOO

EM(T)

BB

EM(S)

\\

(vi) Conclude that if the category C has a final object 1 and a initial object 0, then, in the
category of bialgebra one has both:

final object: TS(1)
ρ
// ST (1)

S(!)
// S(1)

δ // S2(1)

initial object: T 2(0)
µ
// T (0)

T (!)
// TS(0)

ρ
// ST (0).

(vii) Let G : C → C be an arbitrary functor, with cofree comonad G∞. Show that each
EM-law TG⇒ GT gives rise to a distributive law TG∞ ⇒ G∞T .

5.5.2. Recall the operation merge : A∞×A∞ → A∞ on sequences from Subsection 1.2. Define
a GSOS-law corresponding to the three rules describing the behaviour of merge, like for
sequential composition in Example 5.5.9 (i).

5.5.3. Elaborate the details of the bijective correspondence (5.30). Show it can be used to construct
a functor CoAlg(GT)→ BiAlg

(
TG

ρ⇒ GT
)
.

5.5.4. Let G : C → C be a functor with final coalgebra ζ : Z
∼=→ G(Z), and let T : C → C be a

monad with an EM-law ρ : TG⇒ GT .
(i) Recall from Exercise 5.2.8 that TZ = T (Z + (−)) is also a monad. Transform ρ into

an EM-law ρZ : TZG⇒ GTZ .
(This works for any G-coalgebra on Z, not necessarily the final one.)

(ii) Let β : T (Z)→ Z be the Eilenberg-Moore algebra induced by ρ, as in (5.21). Check
that the algebra induced by ρZ is β ◦ T ([id, id]) : T (Z + Z)→ Z.

(iii) Deduce the following “EM-corecursion” principle: for each map e : X → T (Z+X)
there is a unique map s : X → Z in:

GT (Z +X)
GT ([id, s])

// GT (Z)

G(β)
��

G(Z)

X

e

OO

s
// Z

∼= ζ
OO

(iv) Conclude that this yields the dual of recursion, as described in Proposition 2.4.7, when
T is the identity monad.

(v) Is there also a strengthened form of “EM-induction”, dual to point (iii), involving a
comonad and a suitable distributive law?

5.5.5. Let A be a set and L a complete lattice, and consider the deterministic automaton functor
G(X) = XA × L. What follows comes essentially from [59].
(i) Use Exercise 5.4.4 to construct an EM-law ρ : PG ⇒ GP , where P is the powerset

monad.
(ii) Recall from Proposition 2.3.5 that the final G-coalgebra is LA

?

. Describe the induced
P-algebra β : P(LA

?

)→ LA
?

according to (5.21).
(iii) Prove that via this EM-law and the EM-coinduction principle from Proposition 5.5.10

one can obtain trace semantics for non-deterministic automata, when L is the two-
element lattice 2.

DRAFT
Chapter 6

Invariants and Assertions

The second important notion in the logic of coalgebras, beside bisimulation, is invariance.
Whereas a bisimulation is a binary relation on state spaces that is closed under transitions,
an invariant is a predicate, or unary relation if you like, on a state space which is closed
under transitions. This means, once an invariant holds, it will continue to hold no matter
which state transition operations are applied. That is: coalgebras maintain their invariants.

Invariants are important in the description of systems, because they often express cer-
tain implicit assumptions, like: this integer value will always be non-zero (so that dividing
by this integer is safe), or: the contents of this tank will never be below a given minimum
value. Thus, invariants are “safety properties”, which express that something bad will never
happen.

This chapter will introduce a general notion of invariant for a coalgebra, via predicate
lifting. Predicate lifting is the unary analogue of relation lifting. First it will be introduced
for polynomial functors on sets, but later also for more general functors, using the cate-
gorical logic introduced in Section 4.3. Various properties of invariants are established, in
particular their intimate relation to subcoalgebras. An important application of invariants
lies in a generic temporal logic for coalgebras, involving henceforth � and eventually ♦
operators on predicates (on a state space for a coalgebra), that will be introduced in Sec-
tion 6.4. It uses �P as the greatest invariant that is contained in the predicate P . Further,
invariants play a role in the construction of equalisers and products for coalgebras.

The operator �P involves closure of the predicate P under all operations of a coal-
gebra. In many situations one also likes to express closure under specific operations only.
This can be done via the modal logic for coalgebras introduced in Section 6.5. The modal
operators are themselves described via a functor as signature, and the meaning of the oper-
ators is given by a suitable natural transformation. In examples it is shown how to use such
operations to describe coalgebras satisfying certain logical assertions.

The semantics of such assertions—in a set-theoretic context—is the topic of the second
part of this chapter, starting in Section 6.6. First, the relatively familiar situation of alge-
bras satisfying assertions is reviewed. In the style of Lawvere’s functorial semantics it is
shown that monad/functor algebras correspond to finite product preserving functors from
a Kleisli category to Sets. Subsequently, Section 6.7 describes assertions as axioms for
a monad (or functor). This leads to an important conceptual result, namely that functor
algebras satisfying certain assertions correspond to Eilenberg-Moore algebras of an asso-
ciated (quotient) monad. A dual result for coalgebras is described in Section 6.8: functor
coalgebras satisfying assertions correspond to Eilenberg-Moore coalgebras of an associated
(subset) comonad. This will be illustrated by actually determining these subset comonads
in concrete cases. In order to obtain these results we use earlier work on congruences and
invariants, in order to turn the given axioms into suitable least congruences and greatest in-
variants, so that quotient and subset constructions can be applied. The chapter (and book)
closes with Section 6.9, illustrating coalgebras and assertions in the context of specification

243

DRAFT

244 Chapter 6. Invariants and Assertions244 Chapter 6. Invariants and Assertions244 Chapter 6. Invariants and Assertions

of classes, like in object-oriented programming languages.

6.1 Predicate lifting

This section will introduce the technique of predicate lifting. It will be used in the next
section in the definition of invariance for (co)algebras. Here we will first establish various
elementary, useful properties of predicate lifting. Special attention will be paid to the left
adjoint to predicate lifting, called predicate lowering.

Predicate lifting for a Kripke polynomial functor F : Sets → Sets is an operation
Pred(F) which sends a predicate P ⊆ X on a setX to a “lifted” predicate Pred(F)(P) ⊆
F (X) on the result of applying the functor F to X . The idea is that P should hold on all
occurrences of X inside F (X), as suggested in:

F (X) = · · · X · · · A · · · X · · ·

Pred(F)(P) =

P P

(6.1)

The formal definition proceeds by induction on the structure of the functor F , just like for
relation lifting in Definition 3.1.1.

6.1.1. Definition (Predicate lifting). Let F : Sets → Sets be a Kripke polynomial func-
tor, and let X be an arbitrary set. The mapping Pred(F) which sends a predicate P ⊆ X
to a “lifted” predicate Pred(F)(P) ⊆ F (X) is defined by induction on the structure of F ,
in accordance with the steps in Definition 2.2.1.

(1) For the identity functor id : Sets→ Sets we have:

Pred(id)(P) = P

(2) For a constant functor KA : Sets→ Sets, given by KA(Y) = A,

Pred(KA)(P) = >A = (A ⊆ A).

(3) For a product functor,

Pred(F1 × F2)(P)

= {(u, v) ∈ F1(X)× F2(X) | Pred(F1)(P)(u) ∧ Pred(F2)(P)(v)}.

(4) For a set-indexed coproduct,

Pred(
∐
i∈I Fi)(P) =

⋃
j∈I{κj(u) ∈∐i∈I Fi(X) | Pred(Fj)(P)(u)}.

(5) For an exponent functor,

Pred(FA)(P) = {f ∈ F (X)A | ∀a ∈ A.Pred(F)(P)(f(a))}.

(6) For powerset functor

Pred(P(F))(P) = {U ⊆ X | ∀u ∈ U.Pred(F)(P)(u)}.

This same formula will be used for a finite powerset Pfin(F).

DRAFT

6.1. Predicate lifting 2456.1. Predicate lifting 2456.1. Predicate lifting 245

First we show that predicate and relation lifting are closely related.

6.1.2. Lemma. (i) Relation lifting Rel(F) and predicate lifting Pred(F) for a polynomial
functor F : Sets→ Sets are related in the following way.

Rel(F)(
∐

∆X
(P)) =

∐
∆F (X)

(Pred(F)(P)),

where ∆X = 〈id, id〉 : X → X ×X is the diagonal, and so
∐

∆X
(P) = {∆X(x) | x ∈

P} = {(x, x) | x ∈ P}.
(ii) Similarly,

Pred(F)(
∐
πi

(R)) =
∐
πi

(Rel(F)(R)),

where
∐
π1

(R) = {x1 | ∃x2. R(x1, x2)} is the domain of the relation R, and
∐
π2

(R) =
{x2 | ∃x1. R(x1, x2)} is its codomain.

(iii) As a result, predicate lifting can be expressed in terms of relation lifting:

Pred(F)(P) =
∐
πi

(
Rel(F)(

∐
∆(P))

)

for both i = 1 and i = 2.

Proof. (i) + (ii) By induction on the structure of F .
(iii) Since

∐
πi
◦∐∆ =

∐
πi◦∆ =

∐
id = id we use the previous point to get:

Pred(F)(P) =
∐
πi

∐
∆ Pred(F)(P) =

∐
πi

Rel(F)(
∐

∆ P).

Despite this last result, it is useful to study predicate lifting on its own, because it has
some special properties that relation lifting does not enjoy—like preservation of intersec-
tions, see the next result, and thus existence of a left adjoint, see Subsection 6.1.1.

6.1.3. Lemma. Predicate lifting Pred(F) w.r.t. a Kripke polynomial functor F : Sets →
Sets satisfies the following properties.

(i) It preserves arbitrary intersections: for every collection of predicates (Pi ⊆ X)i∈I ,

Pred(F)(
⋂
i∈I Pi) =

⋂
i∈I Pred(F)(Pi).

A special case (intersection over I = ∅) worth mentioning is preservation of truth:

Pred(F)(>X) = >F (X).

Another consequence is that predicate lifting is monotone:

P ⊆ Q =⇒ Pred(F)(P) ⊆ Pred(F)(Q).

(ii) It preserves inverse images: for a function f : X → Y and predicate Q ⊆ Y ,

Pred(F)(f−1(Q)) = F (f)−1(Pred(F)(Q)).

(iii) Relation lifting also preserves direct images: for f : X → Y and P ⊆ X ,

Pred(F)(
∐
f (P)) =

∐
F (f)(Pred(F)(P)).

Proof. (i) + (ii) By induction on the structure of F .
(iii) This is easily seen via the link with relation lifting:

Pred(F)(
∐
f P) =

∐
π1

Rel(F)(
∐

∆

∐
f P) by Lemma 6.1.2 (iii)

=
∐
π1

Rel(F)(
∐
f×f

∐
∆ P)

=
∐
π1

∐
F (f)×F (f) Rel(F)(

∐
∆ P) by Lemma 3.2.2 (ii)

=
∐
F (f)

∐
π1

Rel(F)(
∐

∆ P)

=
∐
F (f)(Pred(F)(P)) again by Lemma 6.1.2 (iii).

DRAFT

246 Chapter 6. Invariants and Assertions246 Chapter 6. Invariants and Assertions246 Chapter 6. Invariants and Assertions

6.1.4. Corollary. Predicate lifting Pred(F) may be described as a natural transformation,
both with the contra- and co-variant powerset functor: by Lemma 6.1.3 (ii) it forms a map:

P
Pred(F)

+3 PF for the contravariant Setsop P // Sets (6.2)

and also, by Lemma 6.1.3 (iii),

P
Pred(F)

+3 PF for the covariant Sets
P // Sets. (6.3)

Predicate liftings are described as natural transformations (6.2) wrt. the contravariant
powerset functor in [343], as starting point for temporal logics, like in Section 6.4.

Relation lifting for polynomial functors is functorial, on the category Rel = Rel(Sets)
of relations (see Definition 3.2.3, and more generally Definition 4.3.3). Similarly, predi-
cate lifting yields a functor on the category Pred = Pred(Sets) of predicates on sets.
Explicitly, the category Pred has subsets P ⊆ X as objects. A morphism (P ⊆ X) −→
(Q ⊆ Y) consists of a function f : X → Y with P (x) =⇒ Q(f(x)) for all x ∈ X . This
amounts to the existence of the necessarily unique dashed map in:

P
��

��

//______ Q
��

��

X
f

// Y

Equivalently, P ⊆ f−1(Q), or
∐
f (P) ⊆ Q, by the correspondence (2.15). There is a

forgetful functor Pred→ Sets which is so obvious that it does not get its own name.

6.1.5. Corollary. Predicate lifting for a polynomial functor F : Sets → Sets yields a
functor Pred(F) in a commuting square:

Pred

��

Pred(F)
// Pred

��

Sets
F // Sets

Proof. Given a map f : (P ⊆ X) → (Q ⊆ Y) in Pred we get F (f) : (Pred(F)(P) ⊆
F (X))→ (Pred(F)(Q) ⊆ F (Y)). This works as follows, using Lemma 6.1.3.

P ⊆ f−1(Q) =⇒ Pred(F)(P) ⊆ Pred(F)(f−1(Q))

since predicate lifting is monotone

=⇒ Pred(F)(P) ⊆ F (f)−1
(
Pred(F)(Q)

)

since predicate lifting commutes with substitution.

The next result is the analogue for predicate lifting of Lemma 3.3.1 for relation lifting.
It relies on considering predicates as sets themselves, and may be understood as: predicate
lifting commutes with comprehension, see Lemma 6.3.9. This is described in a more gen-
eral logical setting in Subsection 6.1.2 below, and in [205]. But in the current set-theoretic
context the connection between predicate lifting and functor application is extremely sim-
ple.

6.1.6. Lemma. For a Kripke polynomial functor F , predicate lifting Pred(F)(P) for a
predicate m : P � X is the same as functor application in:

Pred(F)(P)
%%

%%LLLLLLL
F (P)
||

F (m)||yyyyyy

F (X)

DRAFT

6.1. Predicate lifting 2476.1. Predicate lifting 2476.1. Predicate lifting 247

Note that from the fact that Kripke polynomial functors preserve weak pullbacks (Proposi-
tion 4.2.6) we can already conclude that F (m) is a mono, see Lemma 4.2.2.

Proof. Formally, one proves for z ∈ F (X),

z ∈ Pred(F)(P) ⇐⇒ ∃!z′ ∈ F (P). F (m)(z′) = z.

This is obtained by induction on the structure of the polynomial functor F .

6.1.1 Predicate lowering as liftings left adjoint

We continue this section with a Galois connection involving predicate lifting. In the next
section we shall use predicate lifting for a nexttime operator © in a temporal logic of
coalgebras. There is also a lasttime operator ©←− (see Subsection 6.4.1), for which we
shall need this left adjoint (or lower Galois adjoint) to predicate lifting Pred(F). We shall
write this left (or lower) adjoint as Pred←−−(F), and shall call it “predicate lowering”. By
Lemma 6.1.3 (i), predicate lifting preserves arbitrary intersections, and thus has such a left
adjoint for abstract reasons, see e.g. [319] or [256, I, Theorem 4.2]. But the adjoint can also
be defined concretely, by induction on the structure of the functor. This is what we shall
do.

6.1.7. Proposition (From [224, 229]). Predicate lifting for a Kripke polynomial functor
F : Sets → Sets forms a monotone function Pred(F) : P(X) → P(F (X)) between
powerset posets. In the opposite direction there is also an operation Pred←−−(F) : P(F (X))→
P(X) satisfying

Pred←−−(F)(Q) ⊆ P ⇐⇒ Q ⊆ Pred(F)(P)

Hence Pred←−−(F) is the left adjoint of Pred(F) in a Galois connection Pred←−−(F) a Pred(F).

Proof. One can define Pred←−−(F)(Q) ⊆ X for Q ⊆ F (X) by induction on the structure of
the functor F .

(1) For the identity functor id : Sets→ Sets,

Pred←−−(id)(Q) = Q.

(2) For a constant functor KA(Y) = A,

Pred←−−(KA)(Q) = ⊥A = (∅ ⊆ A).

(3) For a product functor,

Pred←−−(F1 × F2)(Q) = Pred←−−(F1)(
∐
π1

(Q)) ∪ Pred←−−(F2)(
∐
π2

(Q))

= Pred←−−(F1)({u ∈ F1(X) | ∃v ∈ F2(X). Q(u, v)})
∪ Pred←−−(F2)({v ∈ F2(X) | ∃u ∈ F1(X). Q(u, v)}).

(4) For a set-indexed coproduct functor,

Pred←−−(
∐
i∈I Fi)(Q) =

⋃
i∈I Pred←−−(Fi)(κ

−1
i (Q))

=
⋃
i∈I Pred←−−(Fi)({u | Q(κi(u))}).

(5) For an exponent functor,

Pred←−−(FA)(Q) = Pred←−−(F)({f(a) | a ∈ A and f ∈ F (X)A with Q(f)}).

DRAFT

248 Chapter 6. Invariants and Assertions248 Chapter 6. Invariants and Assertions248 Chapter 6. Invariants and Assertions

(6) For a powerset functor,

Pred←−−(P(F))(Q) = Pred←−−(F)(
⋃
Q).

This same formula will be used for a finite powerset Pfin(F).

Being a left adjoint means that functions Pred←−−(F) preserve certain “colimit” structures.

6.1.8. Lemma. Let F be a polynomial functor. Its operations Pred←−−(F) : P(F (X)) →
P(X) preserve:

(i) unions
⋃

of predicates;
(ii) direct images

∐
, in the sense that for f : X → Y ,

Pred←−−(F)(
∐
F (f)(Q)) =

∐
f Pred←−−(F)(Q).

This means that Pred←−−(F) forms a natural transformation:

PF
Pred←−−(F)

+3 P for the covariant Sets
P // Sets

like in Corollary 6.1.4.

Proof. (i) This is a general property of left (Galois) adjoints, as illustrated in the beginning
of Section 2.5.

(ii) One can use a “composition of adjoints” argument, or reason directly with the ad-
junctions:

Pred←−−(F)(
∐
F (f)(Q)) ⊆ P

⇐⇒ ∐
F (f)(Q) ⊆ Pred(F)(P)

⇐⇒ Q ⊆ F (f)−1Pred(F)(P) = Pred(F)(f−1(P)) by Lemma 6.1.3 (ii)

⇐⇒ Pred←−−(F)(Q) ⊆ f−1(Q)

⇐⇒ ∐
f Pred←−−(F)(Q) ⊆ P.

This left adjoint to predicate lifting gives rise to a special kind of mapping sts from an
arbitrary Kripke polynomial functorF to the powerset functorP . The maps stsX : F (X)→
P(X) collect the states insides F (X)—as suggested in the picture (6.1). With this mapping
each coalgebra can be turned into an unlabelled transition system.

6.1.9. Proposition. For a polynomial functor F and a set X , write stsX : F (X)→ P(X)
for the following composite.

stsX
def
=
(
F (X)

{−}
// P(F (X))

Pred←−−(F)
// P(X)

)

These sts maps form a natural transformation F ⇒ P: for each function f : X → Y the
following diagram commutes.

F (X)
stsX //

F (f)
��

P(X)

P(f) =
∐
f

��

F (Y)
stsY

// P(Y)

DRAFT

6.1. Predicate lifting 2496.1. Predicate lifting 2496.1. Predicate lifting 249

Proof. We only need to prove naturality. For u ∈ F (X):

∐
f

(
stsX(u)

)
=
∐
f Pred←−−(F)({u})

= Pred←−−(F)(
∐
F (f){u}) by Lemma 6.1.8 (ii)

= Pred←−−(F)({F (f)(u)})
= stsY

(
F (f)(u)

)
.

6.1.10. Example. Consider the deterministic automaton functor (−)A × B. The states
contained in (h, b) ∈ XA × B can be computed by following the inductive clauses in the
proof of Proposition 6.1.7:

sts(h, b) = Pred←−−((−)A ×B)({(h, b)})
= Pred←−−((−)A)(h) ∪ Pred←−−(B)(b)

= Pred←−−(id)({h(a) | a ∈ A}) ∪ ∅
= {h(a) | a ∈ A} ⊆ X.

By combining Propositions 6.1.9 and 2.5.5 we obtain a functor:

CoAlg(F)
sts ◦ (−)

// CoAlg(P) (6.4)

from coalgebras of a polynomial functor to unlabelled transition systems. This translation
will be further investigated in Section 6.4. As can be seen in Exercise 6.1.3, the translation
removes much of the structure of the coalgebra. However, it makes the intuitive idea precise
that states of a coalgebra can make transitions.

6.1.2 Predicate lifting, categorically

We have defined relation lifting concretely for polynomial functors, and more abstractly
for functors on a category C carrying a logical factorisation system, see Definition 4.4.1.
Here we shall now give a similarly abstract definition of predicate lifting. It involves the
category Pred(C) of predicates wrt. such a logical factorisation system (M,E) on C, see
Definition 4.3.3.

6.1.11. Definition. Let F : C → C be an endofunctor on a category C with a logical
factorisation system (M,E). For a predicate (m : U

� ,2 // X) ∈ Pred(C), wherem ∈M, we
define a new predicate Pred(F)(P) � ,2 // F (X) on F (X) via factorisation in:

F (U)

F (m) ""EEEEEE

e(F (m)) � ,2 Pred(F)(U)5v�

m(F (m))zzuuuuuuu

F (X)

This yields a functor

Pred(C)

��

Pred(F)
// Pred(C)

��

C F // C

DRAFT

250 Chapter 6. Invariants and Assertions250 Chapter 6. Invariants and Assertions250 Chapter 6. Invariants and Assertions

since for a map of predicates f : (m : U
� ,2 // X)→ (n : V

� ,2 // X) the map F (f) is a map
Pred(F)(U)→ Pred(F)(V) via diagonal-fill-in:

F (U)

��

e(F (m)) � ,2 Pred(F)(U)_��
m(F (m))
��

zzu
u

u
u

u
u

u
u

u
u

F (X)

F (f)
��

F (V)
� ,2

m(F (n))
// F (Y)

where the vertical map F (U) → F (V) on the left is obtained by applying F to the map
U → V that exists since f is a map of predicates (see in Definition 4.3.3).

Some of the properties we have seen earlier on in this section also hold for the abstract
form of predicate lifting, under additional assumptions.

6.1.12. Proposition. Assume F : C → C, where C is a category with a logical factorisa-
tion system (M,E).

(i) Predicate lifting is monotone and preserves truth >.
(ii) If diagonals ∆ = 〈id, id〉 : X → X ×X are in M—that is, if internal and external

equality coincide, see Remark 4.3.6—then
∐

∆ Pred(F) = Rel(F)
∐

∆, as in the square
on the left below.

Pred(X)

Pred(F)
��

∐
∆ // Rel(X)

Rel(F)
��

Pred(X)

Pred(F)
��

Rel(X)

Rel(F)
��

∐
πioo

Pred(F (X)) ∐
∆

// Rel(F (X)) Pred(F (X)) Rel(F (X))∐
πi

oo

(iii) If the functor F preserves abstract epis, then the rectangle on the right also com-
mutes, for i ∈ {1, 2}.

(iv) If F preserves abstract epis predicate lifting commutes with sums (direct images)∐
, as in:

Pred(F)(
∐
f (U)) =

∐
F (f) Pred(F)(U).

(v) If E ⊆ SplitEpis and F preserves weak pullbacks, then predicate lifting commutes
with inverse images:

Pred(F)(f−1(V)) = F (f)−1
(
Pred(F)(V)

)
.

Additionally, predicate lifting preserves meets ∧ of predicates.

Proof. (i) Obvious.
(ii) We use some properties of images m(−): for a predicate (m : U

� ,2 // X),

Rel(F)(
∐

∆(U)) = Rel(F)(m(∆ ◦ m))

= Rel(F)(∆ ◦ m) since ∆,m ∈M

= Rel(F)(〈m,m〉)
= m(〈F (m), F (m)〉)
= m(∆ ◦ F (m))

= ∆ ◦ m(F (m)) by Exercise 4.3.1 (iii)

=
∐

∆(Pred(F)(P)).

DRAFT

6.1. Predicate lifting 2516.1. Predicate lifting 2516.1. Predicate lifting 251

(iii) We recall the basic constructions involved: for a relation 〈r1, r2〉 : R � ,2 // X ×X,

F (R)
� ,2

〈F (r1), F (r2)〉
DDD

""DDD

Rel(F)(R)
� ,2

5v�

zzuuuuuuuuu

∐
πi

Rel(F)(()R)
_��

��

R_��

〈r1, r2〉
��

ei � ,2
∐
πi

(R)
_��

��

F (X)× F (X) πi
// F (X) X ×X πi

// X

By assumption F preserves abstract epis. Thus F (ei) ∈ E, which yields two dashed
diagonals in the following rectangle—and thus the required equality of subobjects—since
the south-east diagonal equals F (ri).

F (R) � ,2

F (ei)_��

Rel(F)(R) � ,2
∐
πi

Rel(F)(R)
_��

��uul l l l l l l l l l l l l l l

F (
∐
πi

(R))

_��
Pred(F)(

∐
πi

(R)) � ,2 //

55lllllllllllllll
F (X)

(iv) One first forms the sum by factorisation:

U_��
m
��

e � ,2
∐
f (U)

_��

��

X
f

// Y

The required equality follows since F (e) ∈ E, using:

F (U)

_��

F (e) � ,2 F (
∐
f (U))

_��
Pred(F)(U)_��

��

� ,2
∐
F (f) Pred(F)(U)

_��

��

//___ Pred(F)(
∐
f (U))oo_ _ _

)qx

ttiiiiiiiiiiiiii

F (X)
F (f)

// F (Y)

One sees that the south-east map F (f ◦ m) : F (U)→ F (Y) is factorised in two ways.
(v) Preservation of inverse images is proven as in Proposition 4.4.3. Preservation of

meets works as follows. Assume we have predicates (m : U
� ,2 // X) and (n : V

� ,2 // X) with
meet given by:

P
_�

� ,2 q //
_��
p
��

��%

m∧n
@@@@

@@@

V_��

n
��

U
� ,2
m
// X

We show that Pred(F)(W) is the pullback of Pred(F)(U) and Pred(F)(V), using that

DRAFT

252 Chapter 6. Invariants and Assertions252 Chapter 6. Invariants and Assertions252 Chapter 6. Invariants and Assertions

abstract epis split, via the maps s in:

A g

""

f

''

F (P)

eP

�!)LLLLLLLLLL
//

��

F (V)

eV
_��

Pred(F)(P)
q′
//

p′
��

�#+
mP

''OOOOOOOOOOOO
Pred(F)(V)_��

mV

��

sV

\\

F (V)
eU � ,2 Pred(F)(U)

� ,2
mU

//

sU

gg
F (X)

We assume that mU ◦ f = mV ◦ g. The two maps f ′ = sU ◦ f : A → F (U) and
g′ = sV ◦ g : A → F (V) satisfy F (m) ◦ f ′ = F (n) ◦ g′, since eU ◦ sU = id (and
similarly for V). Since F preserves weak pullbacks, there is a map h : A → F (P) with
F (p) ◦ h = f ′ and F (q) ◦ h = g′. We claim that h′ = eP ◦ h : A → Pred(F)(P) is the
required mediating map. The equation p′ ◦ h′ = f holds, since mU is monic:

mU ◦ p′ ◦ h′ = mP ◦ eP ◦ h
= F (m ∧ n) ◦ h
= F (m) ◦ F (p) ◦ h
= F (m) ◦ f ′
= mU ◦ eU ◦ sU ◦ f
= mU ◦ f.

Analogously one shows q′ ◦ h′ = g. Uniqueness of h′ is obvious, since mP is monic.

Exercises

6.1.1. Show for a list functor F ?—using the description (2.17)—that for P ⊆ X ,

Pred(F ?)(P) = {〈u1, . . . , un〉 ∈ F (X)? | ∀i ≤ n.Pred(F)(P)(ui)}.

And also that for Q ⊆ Y ,

Pred←−−(F ?)(Q)

=
⋃

n∈N
Pred←−−(F)({ui | i ≤ n, 〈u1, . . . , un〉 ∈ F (Y)n with Q(〈u1, . . . , un〉)}).

6.1.2. Use Lemmas 6.1.6 and 3.3.1 to check that relation lifting can also be expressed via predicate
lifting. For a relation 〈r1, r2〉 : R ↪→ X × Y ,

Rel(F)(R) =
∐
〈F (r1),F (r2)〉 Pred(F)(R).

6.1.3. Let X
〈δ,ε〉−→ XA × B be a deterministic automaton. Prove that the associated unlabelled

transition system, according to (6.4), is described by:

x −→ x′ ⇐⇒ ∃a ∈ A. δ(x)(a) = x′.

6.1.4. Recall the multisetMM and distributionD functors from Section 4.1. Use Definition 6.1.11,
with the standard factorisation system on Sets of injections and surjections, to prove that
the associated predicate liftings are:

Pred(MM)(P ⊆ X) = {ϕ ∈MM (X) | ∀x. ϕ(x) 6= 0⇒ P (x)}
Pred(D)(P ⊆ X) = {ϕ ∈ D(X) | ∀x. ϕ(x) 6= 0⇒ P (x)}.

DRAFT

6.2. Invariants 2536.2. Invariants 2536.2. Invariants 253

[Hint. Recall from Propositions 4.2.9 and 4.2.10 that the functors MM and D preserve
weak pullbacks, and thus injections, by Lemma 4.2.2.]

6.1.5. (From [385, Proposition 16]) Let F : Sets → Sets be an arbitrary functor. Prove that
there is a bijective correspondence between natural transformations P ⇒ PF like in (6.2)
and subsets of F (2)—where 2 = {0, 1}.
[Hint. Use that predicates P ⊆ X can be identified with their characteristic functions
X → 2.]

6.1.6. Prove functoriality of predicate lifting—like in Exercise 4.4.6 for relation lifting: a natural
transformation σ : F ⇒ G gives a lifting as in:

Pred(C)

Pred(F)
,,

Pred(G)

22

��

⇓ Pred(σ) Pred(C)

��

C
F

,,

G

22⇓ σ C

Prove also the existence of a natural transformation Rel(FG)⇒ Rel(F)Rel(G), for arbi-
trary functors F,G : C→ C.

6.2 Invariants

Invariants are predicates on the state space of a coalgebra with the special property that
they are closed under transitions: once they are true, they remain true no matter which
steps are taken (using the coalgebra). This section will introduce invariants via predicate
lifting (from the previous section). It will first concentrate on invariants for coalgebras
of polynomial functors, and later deal with more general functors. Invariants are closely
related to subcoalgebras. Many of the results we describe for invariants occur in [378,
Section 6], but with subcoalgebra terminology, and thus with slightly different proofs.

We shall define the notion of invariant, both for coalgebras and for algebras, as coal-
gebra or algebra of a predicate lifting functor Pred(F). In both cases an invariant is a
predicate which is closed under the state transition operations. There does not seem to be
an established (separate) terminology in algebra, so we simply use the phrase ‘invariant’
both for algebras and for coalgebras.

6.2.1. Definition. Let F : Sets → Sets be a Kripke polynomial functor, with predicate
lifting functor Pred(F) : Pred→ Pred as in Corollary 6.1.5. Abstractly, an invariant is
either a Pred(F)-coalgebra P → Pred(F)(P), or a Pred(F)-algebra Pred(F)(P)→ P ,
as in:

P
��

��

//______ Pred(F)(P)
��

��

Pred(F)(P)
��

��

//______ P
��

��

X // F (X) F (X) // X

More concretely, this means the following.
(i) An invariant for a coalgebra c : X → F (X) is a predicate P ⊆ X satisfying for

all x ∈ X ,
x ∈ P =⇒ c(x) ∈ Pred(F)(P).

Equivalently,

P ⊆ c−1(Pred(F)(P)) or
∐
c(P) ⊆ Pred(F)(P).

DRAFT

254 Chapter 6. Invariants and Assertions254 Chapter 6. Invariants and Assertions254 Chapter 6. Invariants and Assertions

(ii) An invariant for an algebra a : F (X)→ X is a predicate P ⊆ X satisfying for all
u ∈ F (X),

u ∈ Pred(F)(P) =⇒ a(u) ∈ P.

That is,
Pred(F)(P) ⊆ a−1(P) or

∐
a(Pred(F)(P)) ⊆ P.

This section concentrates on invariants for coalgebras, but occasionally invariants for
algebras are also considered. We first relate invariants to bisimulations. There are similar
results for congruences, see Exercise 6.2.1.

6.2.2. Lemma. Consider two coalgebras c : X → F (X) and d : Y → F (Y) of a Kripke
polynomial functor F . Then:

(i) if R ⊆ X × Y is a bisimulation, then both its domain
∐
π1
R = {x | ∃y.R(x, y)}

and codomain
∐
π2
R = {y | ∃x.R(x, y)} are invariants.

(ii) an invariant P ⊆ X yields a bisimulation
∐

∆ P = {(x, x) | x ∈ P} ⊆ X ×X .

Proof. (i) If the relationR is a bisimulation, then the predicate
∐
π1
R ⊆ X is an invariant,

since: ∐
c

∐
π1
R =

∐
π1

∐
c×dR

⊆ ∐π1
Rel(F)(R) because R is a bisimulation

= Pred(F)(
∐
π1
R) by Lemma 6.1.2 (ii).

Similarly,
∐
π2
R ⊆ Y is an invariant for the coalgebra d.

(ii) Suppose now that P ⊆ X is an invariant. Then:

∐
c×c
∐

∆ P =
∐

∆

∐
c P

⊆ ∐∆ Pred(F)(P) since P is an invariant

= Rel(F)(
∐

∆ P) by Lemma 6.1.2 (i).

6.2.3. Example. We consider invariants for both deterministic and non-deterministic au-
tomata.

(i) As is well-known by now, a deterministic automaton 〈δ, ε〉 : X → XA × B is a
coalgebra for the functor F = idA × B. Predicate lifting for this functor yields for a
predicate P ⊆ X a new predicate Pred(F)(P) ⊆

(
XA ×B

)
, given by:

Pred(F)(P)(f, b) ⇐⇒ ∀a ∈ A.P (f(a)).

A predicate P ⊆ X is thus an invariant w.r.t. the coalgebra 〈δ, ε〉 : X → XA×B if, for all
x ∈ X ,

P (x) =⇒ Pred(F)(P)
(
(δ(x), ε(x))

)

⇐⇒ ∀a ∈ A.P (δ(x)(a))

⇐⇒ ∀a ∈ A.∀x′ ∈ X.x a−→ x′ ⇒ P (x′).

Thus, once a state x is in an invariant P , all its—immediate and non-immediate—successor
states are also in P . Once an invariant holds, it will continue to hold.

(ii) A non-deterministic automaton 〈δ, ε〉 : X → P(X)A × B is a coalgebra for the
functor F = P(id)A×B. Predicate lifting for this functor sends a predicate P ⊆ X to the
predicate Pred(F)(P) ⊆

(
P(X)A ×B

)
given by:

Pred(F)(P)(f, b) ⇐⇒ ∀a ∈ A.∀x′ ∈ f(a). P (x′)

DRAFT

6.2. Invariants 2556.2. Invariants 2556.2. Invariants 255

ThisP ⊆ X is then an invariant for the non-deterministic automaton 〈δ, ε〉 : X → P(X)A×
B if for all x ∈ X ,

P (x) =⇒ Pred(F)(P)
(
(δ(x), ε(x))

)

⇐⇒ ∀a ∈ A.∀x′ ∈ δ(x)(a). P (x′)

⇐⇒ ∀a ∈ A.∀x′ ∈ X.x a−→ x′ ⇒ P (x′).

6.2.4. Proposition. Let X c→ F (X) and Y d→ F (Y) be two coalgebras of a polynomial
functor F : Sets→ Sets.

(i) Invariants are closed under arbitrary unions and intersections: if predicates Pi ⊆
X are invariants for i ∈ I , then their union

⋃
i∈I Pi and intersection

⋂
i∈I Pi are invari-

ants.
In particular, falsity ⊥ (union over I = ∅) and truth > (intersection over I = ∅) are

invariants.
(ii) Invariants are closed under direct and inverse images along homomorphisms: if

f : X → Y is a homomorphism of coalgebras, and P ⊆ X and Q ⊆ Y are invariants,
then so are

∐
f (P) ⊆ Y and f−1(Q) ⊆ X .

In particular, the image Im(f) =
∐
f (>) of a coalgebra homomorphism is an invari-

ant.

Proof. (i) First we note that inverse images preserve both unions and intersections. Clo-
sure of invariants under unions then follows from monotonicity of predicate lifting: Pi ⊆
c−1(Pred(F)(Pi)) ⊆ c−1(Pred(F)(

⋃
i∈I Pi) for each i ∈ I , so that we may conclude⋃

i∈I Pi ⊆ c−1Pred(F)(
⋃
i∈I Pi). Similarly, closure under intersection follows because

predicate lifting preserves intersections, see Lemma 6.1.3 (i).
(ii) For preservation of direct images assume that P ⊆ X is an invariant. Then:

∐
d

∐
f P =

∐
F (f)

∐
c P because f is a homomorphism

⊆ ∐F (f) Pred(F)(P) since P is an invariant

= Pred(F)(
∐
f P) by Lemma 6.1.3 (iii).

Similarly, if Q ⊆ Y is an invariant, then:

f−1(Q) ⊆ f−1d−1(Pred(F)(Q)) because Q is an invariant

= c−1F (f)−1(Pred(F)(Q)) because f is a homomorphism

= c−1(Pred(F)(f−1(Q)) by Lemma 6.1.3 (ii).

The next result readily follows from Lemma 6.1.6. It is the analogue of Theorem 3.3.2,
and has important consequences.

6.2.5. Theorem. Let F : Sets→ Sets be a Kripke polynomial functor.
(i) A predicate m : P � X on the state space of a coalgebra c : X → F (X) is

an invariant if and only if P � X is a subcoalgebra: there is a (necessarily unique)
coalgebra structure P → F (P) making m : P � X a homomorphism of coalgebras:

F (P) //
F (m)

// F (X)

P

OO

//
m

// X

c

OO

Uniqueness of this coalgebraP → F (P) follows becauseF (m) is injective by Lemma 4.2.2.

DRAFT

256 Chapter 6. Invariants and Assertions256 Chapter 6. Invariants and Assertions256 Chapter 6. Invariants and Assertions

(ii) Similarly, a predicate m : P � X is an invariant for an algebra a : F (X)→ X if
P carries a (necessarily unique) subalgebra structure F (P) → P making m : P � X a
homomorphism of algebras.

Earlier we have seen a generic “binary” induction principle in Theorem 3.1.4. At this
stage we can prove the familiar “unary” induction principle for initial algebras.

6.2.6. Theorem (Unary induction proof principle). An invariant on an initial algebra is al-
ways true.

Equivalently, the truth predicate is the only invariant on an initial algebra. The proof is
a generalisation of the argument we have used in Example 2.4.4 to derive induction for the
natural numbers from initiality.

Proof. Assume m : P � A is an invariant on the initial algebra F (A)
∼=→ A. This means

by the previous theorem that P itself carries a subalgebra structure F (P)→ P , making the
square below on the right commute. This subalgebra yields a homomorphism f : A → P
by initiality, as on the left:

F (A)

∼=
��

F (f)
// F (P)

��

//
F (m)

// F (A)

∼=
��

A
f

// P // m
// A

By uniqueness we then get m ◦ f = idA, which tells that t ∈ P , for all t ∈ A.

6.2.7. Example. Consider the binary trees from Example 2.4.5 as algebras of the functor
F (X) = 1 + (X ×A×X), with initial algebra

1 +
(
BinTree(A)×A× BinTree(A)

) [nil,node]
∼=

// BinTree(A)

Predicate lifting Pred(F)(P) ⊆ F (X) of an arbitrary predicate P ⊆ X is given by:

Pred(F)(P) = {κ1(∗)} ∪ {κ2(x1, a, x2) | a ∈ A ∧ P (x1) ∧ P (x2)}.

Therefore, a predicate P ⊆ BinTree(A) on the initial algebra is an invariant if both:
{
P (nil)

P (x1) ∧ P (x2)⇒ P (node(x1, a, x2))

The unary induction principle then says that such a P must hold for all binary trees t ∈
BinTree(A). This may be rephrased in rule form as:

P (nil) P (x1) ∧ P (x2)⇒ P (node(x1, a, x2))

P (t)

6.2.1 Invariants, categorically

The description of invariants as (co)algebras of a predicate lifting functor Pred(F) in Def-
inition 6.2.1 generalises immediately from polynomial functors to arbitrary functors: if
the underlying category C carries a logical factorisation system (M,E), a predicate lifting
functor Pred(F) : Pred(C)→ Pred(C) exists as in Definition 6.1.11. An invariant is then

DRAFT

6.2. Invariants 2576.2. Invariants 2576.2. Invariants 257

a predicate (m : U
� ,2 // X) ∈ Pred(C) on the carrier X ∈ C of a coalgebra c : X → F (X),

or of an algebra a : F (X)→ X , for which there are (dashed) maps in C:

P_��

��

//______ Pred(F)(P)_��

��

Pred(F)(P)_��

��

//______ P_��

��

X // F (X) F (X) // X

This is the same as in Definition 6.2.1. Not all of the results that hold for invariants of
(co)algebras of polynomial functors also hold in the abstract case. In particular, the tight
connection between invariants of a coalgebra and subcoalgebras is lost — but it still holds
in the algebraic case. We briefly discuss the main results.

6.2.8. Lemma. Let F : C → C be an endofunctor on a category C with a logical factori-
sation system (M,E). Assume predicates m : U

� ,2 // X and n : V
� ,2 // Y , on the carriers of a

coalgebra c : X → F (X) and an algebra a : F (Y)→ Y .
(i) If U � ,2 // X carries a subcoalgebra c′ : U → F (U), then U is an invariant. The

converse holds if abstract epis are split, i.e. if E ⊆ SplitEpis .
(ii) The predicate V � ,2 // Y carries an subalgebra if and only if it is an invariant.

Proof. (i) A subcoalgebra c′ : U → F (U) gives rise to a dashed map U → Pred(F)(U)
by composition:

F (U)

eU
_��

F (m)

yy

U_��
m
��

//______

c′
55kkkkkkkkkkkkkkk

Pred(F)(U)_��
mU
��

X
c // F (X)

If the map eU ∈ E is a split epi, say via s : Pred(F)(U)→ F (U), then an invariant yields
a subcoalgebra, by post composition with s.

(ii) For algebras an invariant Pred(F)(V) → V gives rise to a subalgebra via pre-
composition with eV : F (V) � ,2 Pred(F)(V). In the reverse direction, from a subalgebra
a′ : F (U)→ U to an invariant, we use diagonal-fill-in:

F (V)

a′

��

eV � ,2 Pred(F)(V)_��
mV
��

zzu
u

u
u

u
u

u
u

u
u

F (X)

a
��

V
� ,2 // X

Exercises

6.2.1. Let F (X)
a→ X and F (Y)

b→ Y be algebras of a Kripke polynomial functor F . Prove, in
analogy with Lemma 6.2.2 that:
(i) If R ⊆ X × Y is a congruence, then both its domain

∐
π1
R ⊆ X and its codomain∐

π2
R ⊆ Y are invariants.

(ii) If P ⊆ X is an invariant, then
∐

∆ P ⊆ X ×X is a congruence.

6.2.2. Use binary induction in Theorem 3.1.4, together with the previous exercise, to give an
alternative proof of unary induction from Theorem 6.2.6.

6.2.3. Prove in the general context of Subsection 6.2.1 that for a coalgebra homomorphism f
direct images

∐
f , as in defined in Proposition 4.3.5, preserve invariants.

Conclude that the image Im(f) =
∐
f (>) � ,2 // Y of a coalgebra homomorphism f : X →

Y is an invariant.

DRAFT

258 Chapter 6. Invariants and Assertions258 Chapter 6. Invariants and Assertions258 Chapter 6. Invariants and Assertions

6.2.4. The next result from [144] is the analogue of Exercise 3.2.7; it describes when a function is
definable by coinduction.
Let Z ∼=−→ F (Z) be final coalgebra of a polynomial functor F . Prove that an arbitrary
function f : X → Z is defined by finality (i.e. is behc for some coalgebra c : X → F (X)
on its domain X) if and only if its image Im(f) ⊆ Z is an invariant.
[Hint. Use the splitting of surjective functions from Lemma 2.1.7.]

6.2.5. Let S : C → C be a comonad on a category C with a logical factorisation system (M,E).

(i) Use the Exercise 6.1.6 to derive that Pred(S) is a comonad on the category Pred(C)
via:

id = Pred(id) Pred(S)ks +3 Pred(S2) +3 Pred(S)2.

(ii) Assume a pair of maps in a commuting square:

U_��

��

γ′
// Pred(S)(U)_��

��

X γ
// S(X)

Prove that if γ is an Eilenberg-Moore coalgebra for the comonad S, then the pair
(γ, γ′) is automatically an Eilenberg-Moore coalgebra for the comonad Pred(S)—
and thus an invariant for γ.

(iii) Let
(
X

γ→ S(X)
) f−→

(
Y

β→ S(Y)
)

be a map of Eilenberg-Moore coalgebras. Prove,
like in Exercise 6.2.3 for functor coalgebras, that ifP

� ,2 // X is an invariant, i.e. Pred(S)-
coalgebra, for the Eilenberg-Moore coalgebra γ, then so is

∐
f (P) for β.

6.2.6. Let T : C→ C now be a monad on a category C with a logical factorisation system (M,E).
Assume T preserves abstract epis, i.e. e ∈ E⇒ T (e) ∈ E.
(i) Prove, using Exercise 4.4.6, that relation lifting Rel(T) : Rel(C) → Rel(C) is a

monad. Describe its unit and multiplication explicitly.
(ii) Assume a commuting square:

Rel(T)(R)_��

��

γ
// R_��

��

T (X)× T (Y)
α× β

// X × Y

Prove that if α and β are algebras for the monad T , then the above square is automat-
ically an Eilenberg-Moore algebra for the monad Rel(T)—and thus a congruence for
α, β.

6.3 Greatest invariants and limits of coalgebras

In the first chapter—in Definition 1.3.2 to be precise—we introduced the predicate �P ,
describing “henceforth P ” for a predicate P on sequences. The meaning of (�P)(x) is
that P holds in state x and for all of its successor states. Here we shall extend this same idea
to arbitrary coalgebras by defining the predicate �P in terms of greatest invariants. These
greatest invariants are useful in various constructions. Most importantly in this section, in
the construction of equalisers and products for coalgebras. In the next section it will be
shown that they are important in a temporal logic for coalgebras.

6.3.1. Definition. Let c : X → F (X) be a coalgebra of a Kripke polynomial functor
F : Sets → Sets. For an arbitrary predicate P ⊆ X on the state space of c, we define a
new predicate �P ⊆ X , called henceforth P , as:

(
�P

)
(x) iff ∃Q ⊆ X.Q is an invariant for c ∧ Q ⊆ P ∧ Q(x),

DRAFT

6.3. Greatest invariants and limits of coalgebras 2596.3. Greatest invariants and limits of coalgebras 2596.3. Greatest invariants and limits of coalgebras 259

that is,
�P =

⋃{Q ⊆ P | Q is an invariant}.

Since invariants are closed under union—by Proposition 6.2.4 (i)—�P is an invariant
itself. Among all the invariants Q ⊆ X , it is the greatest one that is contained in P .

The definition of henceforth resembles the definition of bisimilarity (see Definition 3.1.5).
In fact, one could push the similarity by defining for an arbitrary relation R, another rela-
tion �R as the greatest bisimilarity contained in R—so that bisimilarity↔ would appear
as �>. But there seems to be no clear use for this extra generality.

The next lemma lists some obvious properties of �. Some of these are already men-
tioned in Exercise 1.3.3 for sequences.

6.3.2. Lemma. Consider the henceforth operator � for a coalgebra c : X → F (X). The
first three properties below express that � is an interior operator. The fourth property says
that its opens are invariants.

(i) �P ⊆ P ;
(ii) �P ⊆ ��P ;

(iii) P ⊆ Q⇒ �P ⊆ �Q;
(iv) P is an invariant if and only if P = �P .

Proof. (i) Obvious: if �P (x), thenQ(x) for some invariantQwithQ ⊆ P . Hence P (x).
(ii) If �P (x), then we have an invariant Q, namely �P , with Q(x) and Q ⊆ �P .

Hence ��P (x).
(iii) Obvious.
(iv) The (if)-part is clear because we have already seen that �P is an invariant. For the

(only if)-part, by (i) we only have to prove P ⊆ �P , if P is an invariant. So assume P (x),
then we have an invariant Q, namely P , with Q(x) and Q ⊆ P . Hence �P (x).

The following result gives an important structural property of greatest invariants. It
may be understood abstractly as providing a form of comprehension for coalgebras, as
elaborated in Subsection 6.3.1 below.

6.3.3. Proposition. Consider a coalgebra c : X → F (X) of a Kripke polynomial functor
F with an arbitrary predicate P ⊆ X . By Theorem 6.2.5 (i) the greatest invariant �P ⊆
P ⊆ X carries a subcoalgebra structure, say cP , in:

F (�P) � � F (m)
// F (X)

�P

cP

OO

� �

m
// X

c

OO

This subcoalgebra has the following universal property: each coalgebra homomorphism
f :
(
Y

d→ F (Y)
)
−→

(
X

c→ F (X)
)

which factors through P ↪→ X—i.e. satisfies f(y) ∈
P for all y ∈ Y—also factors through �P , namely as (unique) coalgebra homomorphism
f ′ :

(
Y

d→ F (Y)
)
→
(
�P

cP→ F (�P)
)

with m ◦ f ′ = f .

Proof. The assumption that f factors through P ⊆ X may be rephrased as an inclusion
Im(f) =

∐
f (>) ⊆ P . But since the image along a homomorphism is an invariant, see

Proposition 6.2.4 (ii), we get an inclusion Im(f) ⊆ �P . This gives the factorisation:

(
Y

f
// X
)

=
(
Y

f ′
// �P

� � m // X
)
.

DRAFT

260 Chapter 6. Invariants and Assertions260 Chapter 6. Invariants and Assertions260 Chapter 6. Invariants and Assertions

We only have to show that f ′ is a homomorphism of coalgebras. But this follows because
F (m) is injective, see Lemma 4.2.2. It yields cP ◦ f ′ = F (f ′) ◦ d since:

F (m) ◦ cP ◦ f ′ = c ◦ m ◦ f ′
= c ◦ f
= F (f) ◦ d
= F (m) ◦ F (f ′) ◦ d.

In this section we shall use greatest invariants to prove the existence of limits (equalisers
and cartesian products) for coalgebras of Kripke polynomial functors. The constructions
can be adapted easily to more general functors, provided the relevant structure, like � and
cofree coalgebras, exist.

Recall from Proposition 2.1.5 and Exercise 2.1.14 that colimits (coproducts and co-
equalisers) of coalgebras are easy: they are constructed just like for sets. The product struc-
ture of coalgebras, however, is less trivial. First results appeared in [429], for “bounded”
endofunctors on Sets, see Definition 4.6.5 later on. This was generalised in [175, 259, 217]
and [228] (which is followed below). We begin with equalisers, which are easy using
henceforth �.

6.3.4. Theorem (Equalisers of coalgebras). The category CoAlg(F) of coalgebras of a
Kripke polynomial functor F : Sets → Sets has equalisers: for two coalgebras X c→
F (X) and Y d→ F (Y) with two homomorphisms f, g : X → Y between them, there is an
equaliser diagram in CoAlg(F),

F (�E(f, g))

↑
�E(f, g)

 // m //

F (X)
↑ c
X

f
//

g
//

F (Y)
↑ d
Y

where E(f, g) ↪→ X is the equaliser {x ∈ X | f(x) = g(x)} as in Sets. The greatest
invariant invariant �E(f, g) ↪→ E(f, g) carries a subcoalgebra structure by the previous
proposition.

Proof. We show that the diagram above is universal in CoAlg(F): for each coalgebra
e : Z → F (Z) with homomorphism h : Z → X satisfying f ◦ h = g ◦ h, the map h
factors through Z → E(f, g) via a unique function. By Proposition 6.3.3 this h restricts to
a (unique) coalgebra homomorphism Z → �E(f, g).

The next result requires a restriction to finite polynomial functors because the proof
uses cofree coalgebras, see Proposition 2.5.3.

6.3.5. Theorem (Products of coalgebras). For a finite Kripke polynomial functorF : Sets→
Sets, the category CoAlg(F) of coalgebras has arbitrary products

∏
.

Proof. We shall construct the product of two coalgebras ci : Xi → F (Xi), for i = 1, 2, and
leave the general case to the reader. We first form the product X1 ×X2 of the underlying
sets, and consider the cofree coalgebra on it, see Proposition 2.5.3. It will be written as
e : UG(X1 ×X2) → F (UG(X1 ×X2)), where U : CoAlg(F) → Sets is the forgetful
functor, and G its right adjoint. This coalgebra e comes with a universal map ε : UG(X1×
X2)→ X1 ×X2. We write εi = πi ◦ ε : UG(X1 ×X2)→ Xi.

Next we form the following equaliser (in Sets).

E = {u ∈ UG(X1 ×X2) | ∀i ∈ {1, 2}.
(
ci ◦ εi

)
(u) =

(
F (εi) ◦ e

)
(u)}.

DRAFT

6.3. Greatest invariants and limits of coalgebras 2616.3. Greatest invariants and limits of coalgebras 2616.3. Greatest invariants and limits of coalgebras 261

Then we take its greatest invariant �E ⊆ E, as in the diagram below, describing E explic-
itly as equaliser:

F (UG(X1 ×X2))
〈F (ε1), F (ε2)〉

**VVVVVVVVV

�E
� � n // E

� �m // UG(X1 ×X2)

e 44iiiiiiiii

ε **VVVVVVVVV
F (X1)× F (X2)

X1 ×X2
c1 × c2

44hhhhhhhhhh

(6.5)

By Proposition 6.3.3, the subset �E ↪→ UG(X1 ×X2) carries an F -subcoalgebra struc-
ture, for which we write c1 ×̇ c2 in:

F (�E) //
F (m ◦ n)

// F (UG(X1 ×X2))

�E

c1 ×̇ c2
OO

//
m ◦ n // UG(X1 ×X2)

e

OO

(6.6)

The dot in ×̇ is ad hoc notation used to distinguish this product of objects (coalgebras)
from the product c1 × c2 of functions, as used in the equaliser diagram above.

We claim this coalgebra c1 ×̇ c2 : �E → F (�E) is the product of the two coalge-
bras c1 and c2, in the category CoAlg(F). We thus follow the categorical description of
product, from Definition 2.1.1. The two projection maps are:

pi
def
=
(
�E

n // E
m // UG(X1 ×X2)

εi // Xi

)
.

We have to show that they are homomorphisms of coalgebras c1 ×̇ c2 → ci. This follows
from easy calculations:

F (pi) ◦ (c1 ×̇ c2) = F (εi) ◦ F (m ◦ n) ◦ (c1 ×̇ c2)

= F (εi) ◦ e ◦ m ◦ n see the above diagram (6.6)

= πi ◦ (c1 × c2) ◦ ε ◦ m ◦ n since m is an equaliser in (6.5)

= ci ◦ πi ◦ ε ◦ m ◦ n
= ci ◦ pi.

Next we have to construct pairs, for coalgebra homomorphisms fi :
(
Y

d→ F (Y)
)
−→(

Xi
ci→ F (Xi)

)
. To start, we can form the ordinary pair 〈f1, f2〉 : Y → X1 ×X2 in Sets.

By cofreeness it gives rise to unique function g : Y → UG(X1 ×X2) forming a coalgebra
homomorphism d→ e, with ε ◦ g = 〈f1, f2〉. This g has the following equalising property
in (6.5):

〈F (ε1), F (ε2)〉 ◦ e ◦ g = 〈F (π1 ◦ ε), F (π2 ◦ ε)〉 ◦ F (g) ◦ d
since g is a coalgebra homomorphism d→ e

= 〈F (π1 ◦ ε ◦ g) ◦ d, F (π2 ◦ ε ◦ g) ◦ d〉
= 〈F (f1) ◦ d, F (f2) ◦ d〉
= 〈c1 ◦ f1, c2 ◦ f2〉

because fi is a coalgebra map d→ ci

= 〈c1 ◦ π1 ◦ ε ◦ g, c2 ◦ π2 ◦ ε ◦ g〉
= (c1 × c2) ◦ ε ◦ g.

DRAFT

262 Chapter 6. Invariants and Assertions262 Chapter 6. Invariants and Assertions262 Chapter 6. Invariants and Assertions

As a result, g factors through m : E ↪→ UG(X1 × X2), say as g = m ◦ g′. But then,
by Proposition 6.3.3, g′ also factors through �E. This yields the pair we seek: we write
〈〈f1, f2〉〉 for the unique map Y → �E with n ◦ 〈〈f1, f2〉〉 = g′.

We still have to show that this pair 〈〈f1, f2〉〉 satisfies the required properties.

• The equations pi ◦ 〈〈f1, f2〉〉 = fi hold, since:

pi ◦ 〈〈f1, f2〉〉 = πi ◦ ε ◦ m ◦ n ◦ 〈〈f1, f2〉〉
= πi ◦ ε ◦ m ◦ g′
= πi ◦ ε ◦ g
= πi ◦ 〈f1, f2〉
= fi.

• The pair 〈〈f1, f2〉〉 is the unique homomorphism with pi ◦ 〈〈f1, f2〉〉 = fi. Indeed,
if h : Y → �E is also a coalgebra map d → (c1 ×̇ c2) with pi ◦ h = fi, then
m ◦ n ◦ h is a coalgebra map d→ e which satisfies:

ε ◦ m ◦ n ◦ h = 〈π1 ◦ ε ◦ m ◦ n ◦ h, π2 ◦ ε ◦ m ◦ n ◦ h〉
= 〈p1 ◦ h, p2 ◦ h〉
= 〈f1, f2〉.

Hence by definition of g:

m ◦ n ◦ h = g = m ◦ g′ = m ◦ n ◦ 〈〈f1, f2〉〉,

Because both m and n are injections we get the required uniqueness: h = 〈〈f1, f2〉〉.

Since we have already seen that equalisers exist for coalgebras, we now know that all
limits exist (see for instance [315, V,2]). Proposition 2.1.5 and Exercise 2.1.14 showed that
colimits also exist. Hence we can summarise the situation as follows.

6.3.6. Corollary. The category CoAlg(F) of coalgebras of a finite Kripke polynomial
functor is both complete and cocomplete.

Structure in categories of coalgebras is investigated further in [259], for endofunctors on
more general categories than Sets. For instance, a construction of a “subobject classifier”
is given. It captures the correspondence between predicates P ⊆ X and classifying maps
X → 2 in general categorical terms. Such subobject classifiers are an essential ingredient
of a “topos”. However, not all topos structure is present in categories of coalgebras (of
functors preserving weak pullbacks): effectivity of equivalence relations may fail.

6.3.1 Greatest invariants and subcoalgebras, categorically

The goal of the remainder of this section is to define in the abstract categorical setting
of factorisation systems what it means to have greatest invariants �. Since in this set-
ting invariants and subcoalgebras need not be the same—see Lemma 6.2.8—we shall also
describe greatest subcoalgebras (via comprehension). In principle, an easy direct charac-
terisation of �P is possible, namely as the greatest invariant Q ≤ P . Below we shall
give a more fancy description via an adjunction. This subsection is mostly an exercise in
categorical formulations and is not of direct relevance in the sequel. It starts by describing
the set-theoretic situation that we have dealt with so far a bit more systematically.

DRAFT

6.3. Greatest invariants and limits of coalgebras 2636.3. Greatest invariants and limits of coalgebras 2636.3. Greatest invariants and limits of coalgebras 263

For an endofunctor F : Sets → Sets we introduce a category PredCoAlg(F) of
“predicates on coalgebras”. Its objects are coalgebra-predicate pairs 〈X → F (X), P ⊆
X〉. And its morphisms 〈X → F (X), P ⊆ X〉 −→ 〈Y → F (Y), Q ⊆ Y 〉 are coal-
gebra homomorphisms f : (X → F (X)) −→ (Y → F (Y)) which are at the same time
morphisms of predicates: P ⊆ f−1(Q), or equivalently,

∐
f (P) ⊆ Q.

From this new category PredCoAlg(F) there are obvious forgetful functors to the
categories of coalgebras and of predicates. Moreover, one can show that they form a pull-
back of categories:

PredCoAlg(F)

��

//

_� Pred

��

CoAlg(F) // Sets

(6.7)

6.3.7. Lemma. For a Kripke polynomial functor F : Sets → Sets in the context de-
scribed above, the greatest invariant operation � yields a right adjoint in a commuting
triangle:

PredCoAlg(F)

''OOOOOOOO

�
++

CoAlg(Pred(F))

wwooooooooo

>oo

Sets

Proof. Assume two coalgebras X c→ F (X) and Y d→ F (Y) and a map of coalgebras
f : X → Y between them. Let P ⊆ X be an invariant, and Q ⊆ Y an ordinary predicate.
The above adjunction then involves a bijective correspondence:

(c, P)
f
// (d,Q) in PredCoAlg(F)

=================
(c, P)

f
// (d,�Q) in CoAlg(Pred(F))

Above the double lines we have
∐
f (P) ⊆ Q. But since P is an invariant and

∐
f preserves

invariants, this is equivalent to having
∐
f (P) ⊆ �Q, like below the lines.

This leads to the following obvious generalisation.

6.3.8. Definition. Let F : C→ C be a functor on a category C with a factorisation system
(M,E), inducing a lifting Pred(F) : Pred(C) → Pred(C) as in Definition 6.1.11. Form
the category PredCoAlg(F) as on the left below.

PredCoAlg(F)

��

//

_� Pred(C)

��

PredCoAlg(F)

$$JJJJJJJJ

�
**

CoAlg(Pred(F))

yysssssssss

>oo

CoAlg(F) // C C

We say that the functor F admits greatest invariants if there is a right adjoint � making
the triangle on the right commute.

We turn to greatest subcoalgebras. Recall from Theorem 6.2.5 that they coincide with
invariants in the set-theoretic case. But more generally, they require a different description,
which we provide in terms of a comprehension functor {−}. As before, we first recall the
set-theoretic situation. A systematic account of comprehension can be found in [225].

Consider the forgetful functor Pred → Sets that sends a predicate (P ⊆ X) to its
underlying setX . There is an obvious “truth” predicate functor> : Sets→ Pred sending

DRAFT

264 Chapter 6. Invariants and Assertions264 Chapter 6. Invariants and Assertions264 Chapter 6. Invariants and Assertions

a set X to the truth predicate>(X) = (X ⊆ X). It is not hard to see that> is right adjoint
to the forgetful functor Pred→ Sets.

In this situation there is a “comprehension” or “subset type” functor {−} : Pred →
Sets, given by (P ⊆ X) 7→ P . One can prove that {−} is right adjoint to >, so that there
is a situation:

Pred

a
��

{−}
uu

Sets

>a
bb

(6.8)

6.3.9. Lemma. For a Kripke polynomial functor F : Sets→ Sets, consider the category
PredCoAlg(F) described in (6.7).

(i) There is a truth predicate functor > : CoAlg(F) → PredCoAlg(F) which is
right adjoint to the forgetful functor PredCoAlg(F)→ CoAlg(F).

(ii) This functor > has a right adjoint {−} : PredCoAlg(F) → CoAlg(F) given
by:

〈X c−→ F (X), P ⊆ X〉 7−→
(
�P

cP−→ F (�P)
)

using the induced coalgebra cP on the greatest invariant �P from Proposition 6.3.3.

Proof. The truth functor > : CoAlg(F)→ PredCoAlg(F) is given by:

(
X

c−→ F (X)
)
7−→ (c,>) and f 7−→ f.

Next assume two coalgebras c : X → F (X) and d : Y → F (Y), with a predicate Q ⊆
Y . We write dQ : �Q → F (�Q) for the induced coalgebra on the greatest invariant
πQ : �Q� Y . We prove the comprehension adjunction:

〈
(
F (X)
↑ c
X

)
,>〉 f

// 〈
(
F (Y)
↑ d
Y

)
, Q〉

===================================(
F (X)
↑ c
X

)

g
//

(
F (�Q)
↑ d′
�Q

)

This correspondence works as follows.

• Given a map f in the category PredCoAlg(F), we have > ⊆ f−1(Q), so that
f(x) ∈ Q, for all x ∈ X . By Proposition 6.3.3 f then restricts to a unique coalgebra
homomorphism f : X → �Q with πQ ◦ f = f .

• Conversely, given a coalgebra homomorphism g : X → �Q, we get a homomor-
phism g = πQ ◦ g : X → Y . By construction its image is contained in Q.

It is easy to generalise this situation.

6.3.10. Definition. For a functor F : C → C on a category C with a factorisation system
(M,E), consider the category PredCoAlg(F) described in Definition 6.3.8. There is an
obvious “truth” functor > : CoAlg(F) → PredCoAlg(F). We say that the functor F
admits greatest subcoalgebras if this truth functor > has a right adjoint {−}.

Exercises

6.3.1. Fix two sets A,B and consider the associated functor F (X) = XA × B for deterministic
automata.
(i) Check that the cofree coalgebra functor G : Sets → CoAlg(F) is given by Y 7→

(B × Y)A
?

.

DRAFT

6.4. Temporal logic for coalgebras 2656.4. Temporal logic for coalgebras 2656.4. Temporal logic for coalgebras 265

(ii) Assume two automata 〈δi, εi〉 : Xi → XA
i × B. Show that the product coalgebra, as

constructed in the proof of Theorem 6.3.5, has carrier W given by the pullback of the
maps to the final coalgebra:

W //

��

_� X2

beh〈δ2,ε2〉
��

X1
beh〈δ1,ε1〉

// BA
?

(Proposition 2.3.5 describes BA
?

as the final F -coalgebra.)
(iii) Describe the product coalgebra structure on W explicitly.
(iv) Explain this pullback outcome using Proposition 4.2.5, Proposition 4.2.6 (i) and the

construction of products from pullbacks in Diagram (4.4).

6.3.2. Let c : X → F (X) be a coalgebra of a Kripke polynomial functor F . For two predicates
P,Q ⊆ X define a new predicate P andthen Q = P ∧ �Q. Prove that andthen forms
a monoid on the poset P(X) of predicates on X , with truth as neutral element.

6.3.3. The next categorical result is a mild generalisation of [378, Theorem 17.1]. It involves an
arbitrary functor K between categories of coalgebras, instead of a special functor induced
by a natural transformation, like in Proposition 2.5.5. Also the proof hint that we give leads
to a slightly more elementary proof than in [378] because it avoids bisimilarity and uses an
equaliser (in Sets) instead, much like in the proof of Theorem 6.3.5.
Consider two finite Kripke polynomial functors F,H : Sets→ Sets. Assume that there is
a functorK between categories of coalgebras, commuting with the corresponding forgetful
functors UF and UH , like in:

CoAlg(F)

UF

a
++

K // CoAlg(H)

UHss
Sets

G
hh

Prove that if F has cofree coalgebras, given by a right adjointG to the forgetful functor UF
as in the diagram (and like in Proposition 2.5.3), then K has a right adjoint.
[Hint. For an arbitrary H-coalgebra d : Y → H(Y), first consider the cofree F -coalgebra
on Y , say e : UFG(Y)→ F (UFG(Y)), and then form the equaliser

E = {u ∈ UFG(Y) | (K(e) ◦ H(εY))(u) = (d ◦ εY)(u)}.

The greatest invariant �E is then the carrier of the required F -coalgebra.]

6.4 Temporal logic for coalgebras

Modal logic is a branch of logic in which the notions of necessity and possibility are inves-
tigated, via special modal operators. It has developed into a field in which other notions like
time, knowledge, program execution and provability are analysed in comparable manners,
see for instance [119, 157, 214, 285, 186, 402, 74]. The use of temporal logic for reasoning
about (reactive) state-based systems is advocated especially in [356, 357, 314], concentrat-
ing on temporal operators for transition systems—which may be seen as special instances
of coalgebras (see Subsection 2.2.4). The coalgebraic approach to temporal logic extends
these operators from transition systems to other coalgebras, in a uniform manner, following
ideas first put forward by Moss [328], Kurz [294] and Pattinson [343], and many others, see
the overview papers [290, 295, 91]. This section will consider what we call temporal logic
of coalgebras, involving logical modalities that cover all possible transitions by a particu-
lar coalgebra. Section 6.5 deals with a more refined modal logic, with modalities capturing
specific moves to successor states. In this section we focus on (Kripke) polynomial functors
on Sets.

DRAFT

266 Chapter 6. Invariants and Assertions266 Chapter 6. Invariants and Assertions266 Chapter 6. Invariants and Assertions

We have already seen a few constructions with predicate lifting and invariants. Here we
will elaborate the logical aspects, and will in particular illustrate how a tailor-made tempo-
ral logic can be associated with a coalgebra, via a generic definition. This follows [229].
The exposition starts with “forward” temporal operators, talking about future states, and
will continue with “backward” operators in Subsection 6.4.1.

The logic in this section will deal with predicates on the state spaces of coalgebras. We
extend the usual boolean connectives to predicates, via pointwise definitions: for P,Q ⊆
X ,

¬P = {x ∈ X | ¬P (x)}
P ∧ Q = {x ∈ X | P (x) ∧ Q(x)}
P ⇒ Q = {x ∈ X | P (x)⇒ Q(x)} etc.

In Section 1.3 we have described a nexttime operator© for sequences. We start by gener-
alising it to other coalgebras. This© will be used to construct more temporal operators.

6.4.1. Definition. Let c : X → F (X) be a coalgebra of a Kripke polynomial functor F .
We define the nexttime operator© : P(X)→ P(X) as:

©P = c−1
(
Pred(F)(P)

)
= {x ∈ X | c(x) ∈ Pred(F)(P)}.

That is, the operation© : P(X)→ P(X) is defined as the composite:

© =
(
P(X)

Pred(F)
// P(FX)

c−1
// P(X)

)
.

We understand the predicate ©P as true for those states x, all of whose immediate
successor states, if any, satisfy P . This will be made precise in Proposition 6.4.7 below.
Notice that we leave the dependence of the operator© on the coalgebra c (and the functor)
implicit. Usually, this does not lead to confusion.

Here are some obvious results.

6.4.2. Lemma. The above nexttime operator© satisfies the following properties.
(i) It is monotone: P ⊆ Q ⇒ ©P ⊆ ©Q. Hence it is an endofunctor P(X) →

P(X) on the poset category of predicates ordered by inclusion.
(ii) It commutes with inverse images: ©(f−1Q) = f−1(©Q).

(iii) It has invariants as its coalgebras: P ⊆ X is an invariant if and only if P ⊆ ©P .
(iv) It preserves meets (intersections) of predicates.
(v) The greatest invariant �P from Definition 6.3.1 is the “cofree ©-coalgebra” on

P : it is the final coalgebra—or greatest fixed point—of the operator S 7→ P ∧ ©S on
P(X).

Proof. We only illustrate the second and the last point. For a homomorphism of coalgebras

(X
c→ FX)

f−→ (Y
d→ FY) and a predicate Q ⊆ Y we have:

©(f−1Q) = c−1Pred(F)(f−1Q)

= c−1F (f)−1Pred(F)(Q) by Lemma 6.1.3 (ii)

= f−1d−1Pred(F)(Q) since f is a homomorphism

= f−1(©Q).

For the last point of the lemma, first note that the predicate �P is a coalgebra of the
functor P ∧ ©(−) on P(X). Indeed, �P ⊆ P ∧ ©(�P), because �P is contained in
P and is an invariant. Next, �P is the greatest such coalgebra, and hence the final one: if
Q ⊆ P ∧ ©Q, then Q is an invariant contained in P , so that Q ⊆ �P . We conclude that
�P is the cofree©(−)-coalgebra.

DRAFT

6.4. Temporal logic for coalgebras 2676.4. Temporal logic for coalgebras 2676.4. Temporal logic for coalgebras 267

Notation Meaning Definition

©P nexttime P c−1Pred(F)(P)

�P henceforth P νS. (P ∧ ©S)

♦P eventually P ¬�¬P

P U Q P until Q µS. (Q ∨ (P ∧ ¬©¬S))

Figure 6.1: Standard (forward) temporal operators.

The nexttime operator© is fundamental in temporal logic. By combining it with nega-
tions, least fixed points µ, and greatest fixed points ν one can define other temporal opera-
tors. For instance ¬©¬ is the so-called strong nexttime operator. It holds for those states
for which there actually is a successor state satisfying P . The table in Figure 6.4 mentions
a few standard operators.

We shall next illustrate the temporal logic of coalgebras in two examples.

6.4.3. Example. Douglas Hofstadter explains in his book Gödel, Escher, Bach [210] the
object- and meta-level perspective on formal systems using a simple “MU-puzzle”. It con-
sists of a simple “Post” production system (see e.g. [105, Section 5.1]) or rewriting system
for generating certain strings containing the symbols M, I, U. The meta-question that is
considered is whether the string MU can be produced. Both this production system and this
question (and also its answer) can be (re)formulated in coalgebraic terminology.

Let therefore our alphabet A be the set {M, I,U} of relevant symbols. We will describe
the production system as an unlabelled transition system (UTS) A? → Pfin(A?) on the the
set A? of strings over this alphabet. This is given by the following transitions (from [210]),
which are parametrised by strings x, y ∈ A?.

xI −→ xIU Mx −→ Mxx xIIIy −→ xUy xUUy −→ xy.

Thus, the associated transition system A? → Pfin(A?) is given by:

w 7−→ {z ∈ A? | ∃x ∈ A?. (w = xI ∧ z = xIU)

∨ (w = Mx ∧ z = Mxx)

∨ ∃x, y ∈ A?. (w = xIIIy ∧ z = xUy)

∨ (w = xUUy ∧ z = xy)}

It is not hard to see that for each word w ∈ A? this set on the right-hand-side is finite.
The question considered in [210] is whether the string MU can be obtained from MI.

That is, whether MI −→∗ MU. Or, to put it into temporal terminology, whether the predi-
cate “equal to MU” eventually holds, starting from MI:

♦({x ∈ A? | x = MU})(MI)

⇐⇒ ¬�(¬{x ∈ A? | x = MU})(MI)

⇐⇒ ¬∃P invariant. P ⊆ ¬{x ∈ A? | x = MU} ∧ P (MI)

⇐⇒ ∀P invariant.¬
(
∀x ∈ P. x 6= MU) ∧ P (MI)

)

⇐⇒ ∀P invariant. P (MI) =⇒ ∃x ∈ P. x = MU

⇐⇒ ∀P invariant. P (MI) =⇒ P (MU).

DRAFT

268 Chapter 6. Invariants and Assertions268 Chapter 6. Invariants and Assertions268 Chapter 6. Invariants and Assertions

Hofstadter [210] provides a counter example, by producing an invariant P ⊆ A? for which
P (MI), but not P (MU), namely:

P (x)
def⇐⇒ the number of I’s in x is not a multiple of 3.

This P is clearly an invariant: of the above four parametrised transitions, the first and last
one do not change the number of I’s; in the second transition Mx −→ Mxx, if the number
of I’s in the right-hand-side, i.e. in xx, is 3n, then n must be even, so that the number of I’s
in x (and hence in Mx) must already be a multiple of 3; a similar argument applies to the
third transition. Thus, property P is an invariant. Once we have reached this stage we have
P as counter example: clearly P (MI), but not P (MU). Thus MU cannot be obtained from
MI.

This proof is essentially the same proof that Hofstadter provides, but of course he does
not use the same coalgebraic formulation and terminology. However, he does call the
property P ‘hereditary’.

This concludes the example. The relation we have used between −→∗ and ♦ will be
investigated more systematically below, see especially in Proposition 6.4.7.

Here is another, more technical, illustration.

6.4.4. Example. This example assumes some familiarity with the untyped lambda-calculus,
and especially with its theory of Böhm trees, see [54, Chapter 10]. It involves an opera-
tional model for head normal form reduction, consisting of a final coalgebra of certain
trees. Temporal logic will be used to define an appropriate notion of “free variable” on
these trees.

We fix a set V , and think of its elements as variables. We consider the polynomial
functor F : Sets→ Sets given by

F (X) = 1 +
(
V ? × V ×X?

)
(6.9)

In this example we shall often omit the coprojections κi and simply write ∗ for κ1(∗) ∈
1 + (V ? × V ×X?) and (~v, w, ~x) for κ2(~v, w, ~x) ∈ 1 + (V ? × V ×X?). Also, we shall
write ζ : B ∼=−→ F (B) for the final F -coalgebra—which exists by Theorem 2.3.9.

Lambda terms are obtained from variables x ∈ V , application MN of two λ-terms
M,N , and abstraction λx.M . The main reduction rule is (λx.M)N → M [N/x]. By
an easy induction on the structure of λ-terms one then sees that an arbitrary term can be
written of the form λx1 . . . xn. yM1 . . .Mm. The set Λ of λ-terms thus carries an F -
coalgebra structure, given by the head-normal-form function hnf : Λ → F (Λ), see [54,
Section 8.3]: for M ∈ Λ,

hnf(M) =

∗ if M has no head normal form

(〈x1, . . . , xn〉, y, 〈M1, . . . ,Mm〉)
if M has head normal form
λx1 . . . x1. yM1 . . .Mm

We can now define the Böhm tree BT(M) of a λ-term M via finality:

1 + (V ? × V × Λ?) //_________
id + (id× id× BT?)

1 + (V ? × V × B?)

Λ

hnf
OO

//________________
BT

B

ζ∼=
OO

DRAFT

6.4. Temporal logic for coalgebras 2696.4. Temporal logic for coalgebras 2696.4. Temporal logic for coalgebras 269

We call the elements of B (abstract1) Böhm trees. We do not really need to know what
these elements look like, because we can work with the universal property of B, namely
finality. But a picture may be useful. For A ∈ B we can write:

ζ(A) = ⊥ or ζ(A) =

λx1 . . . xn. y

wwwwww
HHHHHH

ζ(A1) · · · ζ(Am)

where the second picture applies when ζ(A) = (〈x1, . . . , xn〉, y, 〈A1, . . . , Am〉). The ‘λ’
is just syntactic sugar, used to suggest the analogy with the standard notation for Böhm
trees [54]. The elements of B are thus finitely branching, possibly infinite, rooted trees,
with labels of the form λx1 . . . xn. y, for variables xi, y ∈ V .

Using the inverse ζ−1 : 1+(B?×V ×B?)→ B of the final coalgebra we can explicitly
construct Böhm trees. We give a few examples.

• Let us write ⊥B ∈ B for ζ−1(∗). This the “empty” Böhm tree.

• The Böhm tree λx. x is obtained as ζ−1(〈x〉, x, 〈〉). In a similar way one can con-
struct various kind of finite Böhm trees. For instance, the S combinator λxyz. xz(yz)
is obtained as:

ζ−1(〈x, y, z〉, x, 〈ζ−1(〈〉, z, 〈〉), ζ−1(〈〉, y, 〈ζ−1(〈〉, z, 〈〉)〉)〉).

Its picture is:
λxyz. x

����
<<<<

z y

z

• Given an arbitrary Böhm tree A ∈ B, we can define a new tree λx.A ∈ B via
λ-abstraction:

λx.A =

{
⊥B if ζ(A) = ∗
ζ−1(x · ~y, z, ~B) if ζ(A) = (~y, z, ~B).

We proceed by using temporal logic to define free variables for Böhm trees. Such
a definition is non-trivial since Böhm trees may be infinite objects. Some preliminary
definitions are required. Let x ∈ V be an arbitrary variable. It will be used in the auxiliary
predicates Absx and Hvx on Böhm trees, which are defined as follows: for B ∈ B,

Absx(B) ⇐⇒ ∃x1, . . . , xn.∃B1, . . . , Bm.

B = λx1 . . . xn. yB1 . . . Bm and x = xi for some i

Hvx(B) ⇐⇒ ∃x1, . . . , xn.∃B1, . . . , Bm.

B = λx1 . . . xn. yB1 . . . Bm and x = y.

Thus Absx describes the occurrence of x in the abstracted variables, and Hvx that x is the
head variable.

1One may have a more restricted view and call “Böhm tree” only those elements in B which actually come
from λ-terms, i.e. which are in the image of the function BT : Λ → B. Then one may wish to call the elements
of the whole set B “abstract” Böhm trees. We shall not do so. But it is good to keep in mind that the function BT
is not surjective. For example, Böhm trees coming from λ-terms can only have a finite number of free variables
(as defined below), whereas elements of B can have arbitrarily many.

DRAFT

270 Chapter 6. Invariants and Assertions270 Chapter 6. Invariants and Assertions270 Chapter 6. Invariants and Assertions

For a Böhm tree A ∈ B we can now define the set FV(A) ⊆ V of free variables in A
via the until operator U from Figure 6.4:

x ∈ FV(A) ⇐⇒
(
¬Absx U (Hvx ∧ ¬Absx)

)
(A).

In words: a variable x is free in a Böhm tree A if there is a successor tree B of A in which
x occurs as “head variable”, and in all successor trees of A until that tree B is reached,
including B itself, x is not used in a lambda abstraction. This until formula then defines a
predicate on B, namely ‘x ∈ FV(−)’.

There are then two crucial properties that we would like to hold for a Böhm tree A.

1. If A = ⊥B, then
FV(A) = ∅.

This holds because if A = ⊥B, then both Absx(A) and Hvx(A) are false, so that the
least fixed point in Figure 6.4 defining U at A in x ∈ FV(A) is µS. ¬©¬S. This
yields the empty set.

2. If A = λx1 . . . xn. yA1 . . . Am, then

FV(A) =
(
{y} ∪ FV(A1) ∪ · · · ∪ FV(Am)

)
− {x1, . . . , xn}.

This result follows from the fixed point property (indicated as ‘f.p.’ below) defining
the until operator U in Figure 6.4:

x ∈ FV(A)
def⇐⇒

[
¬Absx U (Hvx ∧ ¬Absx)

]
(A)

f.p.⇐⇒
[
(Hvx ∧ ¬Absx) ∨ (¬Absx ∧ ¬©¬(x ∈ FV(−)))

]
(A)

⇐⇒ ¬Absx(A) ∧
(
Hvx(A) ∨ ¬©¬(x ∈ FV(−))(A)

)

⇐⇒ x 6∈ {x1, . . . , xn} ∧
(
x = y ∨ ∃j ≤ m.x ∈ FV(Aj)

)

⇐⇒ x ∈
(
{y} ∪ FV(A1) ∪ · · · ∪ FV(Am)

)
− {x1, . . . , xn}.

This shows how temporal operators can be used to define sensible predicates on infinite
structures. The generic definitions provide adequate expressive power in concrete situa-
tions. We should emphasise however that the final coalgebra B of Böhm trees is only an
operational model of the lambda calculus and not a denotational one: for instance, it is not
clear how to define an application operation B × B → B on our abstract Böhm trees via
coinduction. Such application is defined on the Böhm model used in [54, Section 18.3] via
finite approximations. For more information on models of the (untyped) λ-calculus, see
e.g. [54, Part V], [225, Section 2.5], or [127].

Our next application of temporal logic does not involve a specific functor, like for Böhm
trees above, but is generic. It involves an (unlabelled) transition relation for an arbitrary
coalgebra. Before we give the definition it is useful to introduce some special notation, and
some associated results.

6.4.5. Lemma. For an arbitrary setX and an element x ∈ X we define a “singleton” and
“non-singleton” predicate on X as:

(· = x) = {y ∈ X | y = x} = {x}.
(· 6= x) = {y ∈ X | y 6= x} = ¬(· = x).

Then:

DRAFT

6.4. Temporal logic for coalgebras 2716.4. Temporal logic for coalgebras 2716.4. Temporal logic for coalgebras 271

(i) For a predicate P ⊆ X ,

P ⊆ (· 6= x) ⇐⇒ ¬P (x).

(ii) For a function f : Y → X ,

f−1
(
· 6= x

)
=

⋂

y∈f−1(x)

(· 6= y).

(iii) And for a Kripke polynomial functor F and a predicate Q ⊆ F (X),

Pred←−−(F)(Q) = {x ∈ X | Q 6⊆ Pred(F)(· 6= x)}

where Pred←−−(F) is the “predicate lowering” left adjoint to predicate lifting Pred(F) from
Subsection 6.1.1.

These “non-singletons” (· 6= x) are also called coequations, for instance in [166, 16,
388], and pronounced as “avoid x”. They are used for a sound and complete logical deduc-
tion calculus for coalgebras via a “child” rule (capturing henceforth �) and a “recolouring”
rule (capturing �, see Exercise 6.8.8). Here these coequation (· 6= x) arise naturally in a
characterisation of predicate lowering in point (iii).

Proof. Points (i) + (ii) follow immediately from the definition. For (iii) we use (i) in:

x ∈ Pred←−−(F)(Q) ⇐⇒ Pred←−−(F)(Q) 6⊆ (· 6= x)

⇐⇒ Q 6⊆ Pred(F)(· 6= x).

In Proposition 6.1.9 we have seen an abstract way to turn an arbitrary coalgebra into an
unlabelled transition system. Here, and later on in Theorem 6.4.9, we shall reconsider this
topic from a temporal perspective.

6.4.6. Definition. Assume we have a coalgebra c : X → F (X) of a polynomial functor
F . On states x, x′ ∈ X we define a transition relation via the strong nexttime operator, as:

x −→ x′ ⇐⇒ x ∈
(
¬©¬

)
(· = x′)

⇐⇒ x 6∈ ©(· 6= x′)

⇐⇒ c(x) 6∈ Pred(F)((· 6= x′)).

This says that there is a transition x −→ x′ if and only if there is successor state of x which
is equal to x′. In this way we turn an arbitrary coalgebra into an unlabelled transition
system.

We shall first investigate the properties of this new transition system−→, and only later
in Theorem 6.4.9 show that it is actually the same as the earlier translation from coalgebras
to transition systems from Subsection 6.1.1.

So let us first consider what we get for a coalgebra c : X → P(X) of the powerset
functor. Then the notation x −→ x′ is standardly used for x′ ∈ c(x). This coincides with
Definition 6.4.6 since:

x 6∈ ©(· 6= x′) ⇐⇒ x 6∈ c−1
(
Pred(P)(· 6= x′)

)

⇐⇒ c(x) 6∈ {a | a ⊆ (· 6= x′)}
⇐⇒ c(x) 6∈ {a | x′ 6∈ a}, by Lemma 6.4.5 (i)

⇐⇒ x′ ∈ c(x).

Now that we have gained some confidence in this temporal transition definition, we
consider further properties. It turns out that the temporal operators can be expressed in
terms of the new transition relation.

DRAFT

272 Chapter 6. Invariants and Assertions272 Chapter 6. Invariants and Assertions272 Chapter 6. Invariants and Assertions

6.4.7. Proposition. The transition relation−→ from Definition 6.4.6, induced by a coalge-
bra X → F (X), and its reflexive transitive closure −→∗, satisfy the following properties.

(i) For a predicate P ⊆ X ,

(a) ©P = {x ∈ X | ∀x′. x −→ x′ =⇒ P (x′)}
(b) �P = {x ∈ X | ∀x′. x −→∗ x′ =⇒ P (x′)}
(c) ♦P = {x ∈ X | ∃x′. x −→∗ x′ ∧ P (x′)}.

This says that the temporal operators on the original coalgebra are the same as the
ones on the induced unlabelled transition system.

(ii) For a predicate P ⊆ X , the following three statements are equivalent.

(a) P is an invariant;
(b) ∀x, x′ ∈ X.P (x) ∧ x −→ x′ =⇒ P (x′);
(c) ∀x, x′ ∈ X.P (x) ∧ x −→∗ x′ =⇒ P (x′).

(iii) For arbitrary states x, x′ ∈ X , the following are equivalent.

(a) x −→∗ x′;
(b) P (x)⇒ P (x′), for all invariants P ⊆ X;
(c) x ∈ ♦(· = x′), i.e. eventually there is a successor state of x that is equal to

x′.

Proof. (i) We reason as follows.

x ∈ ©P ⇐⇒ c(x) ∈ Pred(F)(P)

⇐⇒ {c(x)} ⊆ Pred(F)(P)

⇐⇒ Pred←−−(F)({c(x)}) ⊆ P
⇐⇒ ∀x′. x′ ∈ Pred←−−(F)({c(x)})⇒ P (x′)

⇐⇒ ∀x′. {c(x)} 6⊆ Pred(F)(· 6= x′)⇒ P (x′), by Lemma 6.4.5 (iii)

⇐⇒ ∀x′. c(x) 6∈ Pred(F)(· 6= x′)⇒ P (x′)

⇐⇒ ∀x′. x −→ x′ ⇒ P (x′).

For the inclusion (⊆) of (b) we can use (a) an appropriate number of times since �P ⊆
©�P and �P ⊆ P . For (⊇) we use that the predicate {x | ∀x′. x −→∗ x′ =⇒ P (x′)}
contains P and is an invariant, via (a); hence it is contained in �P .

The third point (c) follows directly from (b) since ♦ = ¬�¬.
(ii) Immediate from (i) since P is an invariant if and only if P ⊆ ©P , if and only if

P ⊆ �P .
(iii) The equivalence (b) ⇔ (c) follows by unfolding the definitions. The implication

(a)⇒ (b) follows directly from (ii), but for the reverse we have to do a bit of work. Assume
P (x) ⇒ P (x′) for all invariants P . In order to prove x −→∗ x′, consider the predicate
Q(y)

def⇐⇒ x −→∗ y. Clearly Q(x), so Q(x′) follows once we have established that Q
is an invariant. But this is an easy consequence using (ii): if Q(y), i.e. x −→∗ y, and
y −→ y′, then clearly x −→∗ y′, which is Q(y′).

6.4.1 Backward reasoning

So far in this section we have concentrated on “forward” reasoning, by only considering
operators that talk about future states. However, within the setting of coalgebras there is
also a natural way to reason about previous states. This happens via predicate lowering
instead of via predicate lifting, i.e. via the left adjoint Pred←−−(F) to Pred(F), introduced in
Subsection 6.1.1.

DRAFT

6.4. Temporal logic for coalgebras 2736.4. Temporal logic for coalgebras 2736.4. Temporal logic for coalgebras 273

It turns out that the forward temporal operators have backward counterparts. We shall
use notation with backwards underarrows for these analogues: ©←−, �←− and ♦←− are backward
versions of©, � and ♦.

6.4.8. Definition. For a coalgebra c : X → F (X) of a polynomial functor F , and a predi-
cate P ⊆ X on its carrier X , we define a new predicate lasttime P on X by

©←−P = Pred←−−(F)(
∐
c P) = Pred←−−(F)({c(x) | x ∈ P}).

Thus:

©←− =
(
P(X)

∐
c // P(FX)

Pred←−−(F)
// P(X)

)
.

This is the so-called strong lasttime operator, which holds of a state x if there is an (im-
mediate) predecessor state of x which satisfies P . The corresponding weak lasttime is
¬©←−¬.

One can easily define an infinite extension of ©←−, called earlier:

♦←−P = “the least invariant containing P ”

= {x ∈ X | ∀Q, invariant. P ⊆ Q =⇒ Q(x)}
=
⋂{Q ⊇ P | Q is an invariant}.

This predicate ♦←−P holds of a state x if there is some (non-immediate) predecessor state
of x for which P holds.

Figure 6.4.1 gives a brief overview of the main backward temporal operators. In the re-
mainder of this section we shall concentrate on the relation between the backward temporal
operators and transitions.

But first we give a result that was already announced. It states an equivalence between
various (unlabelled) transition systems induced by coalgebras.

6.4.9. Theorem. Consider a coalgebra c : X → F (X) of a Kripke polynomial functor F .
Using the lasttime operator ©←− one can also define an unlabelled transition system by

x −→ x′ ⇐⇒ “there is an immediate predecessor state of x′ which is equal to x”

⇐⇒ x′ ∈ ©←−(· = x).

This transition relation is then the same as
(i) x 6∈ ©(· 6= x′) from Definition 6.4.6;

(ii) x′ ∈ sts(c(x)) = Pred←−−(F)({c(x)}), used in the translation in (6.4).

Proof. All these forward and backward transition definitions are equivalent because:

x′ ∈ ©←−(· = x) ⇐⇒ x′ ∈ Pred←−−(F)(
∐
c(· = x)) by Definition 6.4.8

⇐⇒ x′ ∈ Pred←−−(F)({c(x)}) as used in (6.4)

⇐⇒ {c(x)} 6⊆ Pred(F)(· 6= x′) by Lemma 6.4.5 (iii)

⇐⇒ x 6∈ ©(· 6= x′) as used in Definition 6.4.6.

Finally we mention the descriptions of the backward temporal operators in terms of
transitions, like in Proposition 6.4.7 (i).

6.4.10. Proposition. For a predicate P ⊆ X on the state space of a coalgebra,
(i) ©←−P = {x ∈ X | ∃y. y −→ x ∧ P (y)}

(ii) ♦←−P = {x ∈ X | ∃y. y −→∗ x ∧ P (y)}

DRAFT

274 Chapter 6. Invariants and Assertions274 Chapter 6. Invariants and Assertions274 Chapter 6. Invariants and Assertions

Notation Meaning Definition Galois connection

©←−P lasttime P Pred←−−(F)(
∐
c P) ©←− a ©

♦←−P (sometime) earlier P µS. (P ∨ ©←−S) ♦←− a �

�←−P (always) before P ¬♦←−¬P ♦ a �←−
P S Q P since Q µS. (Q ∨ (P ∧ ©←−S))

Figure 6.2: Standard (backward) temporal operators.

(iii) �←−P = {x ∈ X | ∀y. y −→∗ x =⇒ P (y)}.

Proof. Assume that c : X → F (X) is the coalgebra we are dealing with.
(i) ©←−P = Pred←−−(F)({c(y) | y ∈ P})

= Pred←−−(F)(
⋃
y∈P {c(y)})

=
⋃
y∈P Pred←−−(F)({c(y)}) since Pred←−−(F) is a left adjoint

= {x ∈ X | ∃y ∈ P. x ∈ ©←−(· = y)}
= {x ∈ X | ∃y. y −→ x ∧ P (y)}.

(ii) Let us write P ′ = {x ∈ X | ∃y. y −→∗ x ∧ P (y)} for the right hand side. We
have to prove that P ′ is the least invariant containing P .

• Clearly P ⊆ P ′, by taking no transition.

• Also P ′ is an invariant, by Proposition 6.4.7 (ii): if P ′(x), say with y −→∗ x where
P (y), and x −→ x′, then also y −→∗ x′ and thus P ′(x′).

• If Q ⊆ X is an invariant containing P , then P ′ ⊆ Q: if P ′(x), say with y −→∗ x
where P (y); then Q(y), and thus Q(x) by Proposition 6.4.7 (ii).

(iii) Immediately from the definition �←− = ¬♦←−¬.

Exercises

6.4.1. Consider the transition system A? → Pfin(A
?) from Example 6.4.3, and prove:

�({x ∈ A? | ∃y ∈ A?. x = My})(MI).

This property is also mentioned in [210]. In words: each successor of MI starts with M.

6.4.2. Prove the following “induction rule of temporal logic”:

P ∧ �(P ⇒©P) ⊆ �P.

[Aside: using the term ‘induction’ for a rule that follows from a greatest fixed point property
is maybe not very fortunate.]

6.4.3. Prove that for a predicate P on the state space of coalgebra of a Kripke polynomial functor,

�P =
⋂

n∈N
©n P and ♦←−P =

⋃

n∈N
©←−
nP.

(Where©0 P = P , and©n+1 P =©©n P , and similarly for ©←−.)

6.4.4. Prove that:

�(f−1Q) = f−1(�Q) ©←−(
∐
f P) =

∐
f (©←−P) ♦←−(

∐
f P) =

∐
f (♦←−P)

when f is a homomorphism of coalgebras.

DRAFT

6.4. Temporal logic for coalgebras 2756.4. Temporal logic for coalgebras 2756.4. Temporal logic for coalgebras 275

6.4.5. Consider coalgebras c : X →MM (X) and d : Y → D(Y) of the multiset and distribution
functors. Use Exercise 6.1.4 to prove:

©(P ⊆ X) = {x | ∀x′. c(x)(x′) 6= 0⇒ P (x′)}.

What is �(Q ⊆ Y)?

6.4.6. Prove that the least fixed point µ© of the nexttime operator© : P(X) → P(X) can be
characterised as:

µ© = {x ∈ X | there are no infinite paths x −→ x1 −→ x2 −→ · · · }.

6.4.7. Consider the transition relation −→ from Definition 6.4.6, and use Lemma 6.4.5 (ii) to
prove that for a homomorphism f : X → Y of coalgebras,

f(x) −→ y ⇐⇒ ∃x′. x −→ x′ ∧ f(x′) = y.

Note that this states the functoriality of the translation from coalgebras to transition systems
like in (6.4).

6.4.8. Show that each subset can be written as intersection of non-singletons (coequations): for
U ⊆ X ,

U =
⋂

x∈¬U
(· 6= x).

This result forms the basis for formulating a (predicate) logic for coalgebras in terms of
these “coequations” (· 6= x), see [166].

6.4.9. Prove—and explain in words—that

x −→∗ x′ ⇐⇒ x′ ∈ ♦←−(· = x).

[The notation 〈x〉 = {x′ | x −→∗ x′} and 〈P 〉 = {x′ | ∃x ∈ P. x −→∗ x′} is used
in [378] for the least invariants ♦←−{x} = ♦←−(· = x) and ♦←−P containing an element x or
a predicate P .]

6.4.10. Verify the Galois connections in Figure 6.4.1.
[Such Galois connections for temporal logic are studied systematically in [264, 229].]

6.4.11. Check that P U P = P .

6.4.12. The following is taken from [111, Section 5], where it is referred to as the Whisky Problem.
It is used there as a challenge in proof automation in linear temporal logic. Here it will be
formulated in the temporal logic of an arbitrary coalgebra (of a Kripke polynomial functor).
Consider an arbitrary set A with an endofunction h : A → A. Let P : A → P(X) be a
parametrised predicate on the state space of a coalgebra X , satisfying for a specific a ∈ A
and y ∈ X:
(i) P (a)(y);
(ii) ∀b ∈ A.P (b)(y)⇒ P (h(b))(y);
(iii) �

(
{x ∈ X | ∀b ∈ A.P (h(b))(x)⇒©(P (b))(x)}

)
(y).

Prove then that �(P (a))(y).

[Hint. Use Exercise 6.4.3.]

6.4.13. Describe the nexttime operator© as a natural transformation PU ⇒ PU , like in Corol-
lary 6.1.4, where U : CoAlg(F)→ Sets is the forgetful functor and P is the contravari-
ant powerset functor. Show that it can be described as a composition of natural transforma-
tions:

PU
© +3

Pred(F)U �&
DDDDDD

DDDDDD PU

PFU
c−1U

8@zzzzzz
zzzzzz

DRAFT

276 Chapter 6. Invariants and Assertions276 Chapter 6. Invariants and Assertions276 Chapter 6. Invariants and Assertions

6.4.14. Prove that the “until” and “since” operators U ,S : P(X) × P(X) → P(X) on the state
space X of a coalgebra (see Figures 6.4 and 6.4.1) can be described in the following way
in terms of the transition relation −→⊆ X ×X from Definition 6.4.6.

P U Q = {x | ∃n.∃x0, . . . , xn. x0 = x ∧ (∀i < n. xi −→ xi+1) ∧ Q(xn)

∧ ∀i < n. P (xi)}
P S Q = {x | ∃n.∃x0, . . . , xn. xn = x ∧ (∀i < n. xi −→ xi+1) ∧ Q(x0)

∧ ∀i > 0. P (xi)}.

6.4.15. We consider the strong nexttime operator ¬©¬ associated with a coalgebra, and call a
predicate P maintainable if P ⊆ ¬©¬P . Notice that such a predicate is a ¬©¬-
coalgebra.
(i) Investigate what this requirement means, for instance for a few concrete coalgebras.
(ii) Let us use the notation EAP for the greatest maintainable predicate contained in P .

Describe EAP in terms of the transition relation −→ from Definition 6.4.6.
(iii) Similarly for AEP def

= ¬EA¬P
[Operators like EA and AE are used in computation tree logic (CTL), see e.g. [119] to
reason about paths in trees of computations. The interpretations we use here involve infinite
paths.]

6.5 Modal logic for coalgebras

In the previous section we have seen a temporal logic for coalgebras based on the nexttime
operator ©, see Definition 6.4.1. The meaning of ©P is that the predicate P holds in
all direct successor states. This operator is very useful for expressing safety and liveness
properties, via the derived henceforth and eventually operators � and ♦, expressing “for
all/some future states . . . ”. But this temporal logic is not very useful for expressing more
refined properties dealing for instance with one particular branch. Modal logics (including
dynamic logics [186]) are widely used in computer science, to reason about various kinds
of dynamical systems. Often they are tailored to a specific domain of reasoning. As usual in
coalgebra, the goal is to capture many of these variations in a common abstract framework.

Consider a simple coalgebra c = 〈c1, c2〉 : X → X ×X involving two transition maps
c1, c2 : X → X . The meaning of©(P) from temporal logic for this coalgebra is:

©(P) = {x | c1(x) ∈ P ∧ c2(x) ∈ P}.

Thus it contains those states x all of whose successors c1(x) and c2(x) satisfy P . It would
be useful to have two separate logical operators, say©1 and©2 talking specifically about
transition maps c1 and c2 respectively, as in:

©1(P) = {x | c1(x) ∈ P} and ©2(P) = {x | c2(x) ∈ P}. (6.10)

Coalgebraic modal logic allows us to describe such operators.
To see another example/motivation, consider a coalgebra c : X →MN(X) of the mul-

tiset (or bag) functorMN, counting in the natural numbers N. Thus we may write x n−→ x′

if c(x)(x′) = n ∈ N, expressing a transition which costs for instance n resources. For each
N ∈ N, a so-called graded modality©N , see [122], is defined as:

©N (P) = {x | ∀x′. c(x)(x′) ≥ N ⇒ P (x′)}.

This section describes how to obtain such operators in the research field known as ‘coalge-
braic modal logic’. The approach that we follow is rather concrete and “hands-on”. The
literature on the topic is extensive, see e.g. [328, 294, 371, 343, 289, 272, 287, 251], or the
overview papers [290, 295, 91], but there is a tendency to wander off into meta theory and
to omit specific examples (and what the modal logic might be useful for).

DRAFT

6.5. Modal logic for coalgebras 2776.5. Modal logic for coalgebras 2776.5. Modal logic for coalgebras 277

We begin with an abstract definition describing the common way that coalgebraic logics
are now understood. It involves a generalised form of predicate lifting, as will be explained
and illustrated subsequently. An even more abstract approach will be described later on, in
Subsection 6.5.1.

6.5.1. Definition. For a functor F : Sets→ Sets, a coalgebraic modal logic is given by
a “modal signature functor” L : Sets→ Sets and a natural transformation:

LP δ +3 PF,

where P = 2(−) : Setsop → Sets is the contravariant powerset functor.
Given such a δ : LP ⇒ PF , each F -coalgebra c : X → F (X) yields an L-algebra on

the set of predicates P(X), namely:

L(P(X))
δX // P(F (X))

c−1 = P(c)
// P(X).

This yields a functor CoAlg(F)op → Alg(L).

Recall from Corollary 6.1.4 that predicate lifting yields a functor Pred(F) : P ⇒ PF .
In the above definition this is generalised by adding a functor L in front, yielding LP ⇒
PF . This L makes more flexible liftings—and thus more flexible modal operators—
possible, as will be illustrated next. A less general, and more clumsy approach, using
“ingredients” of functors is used in [227]. One can think of the L as describing the type of
these ingredient operators, which becomes explicit if one considers the induced L-algebra
L(P(X))→ P(X). For instance, for two operators (6.10) we use L(Y) = Y + Y , so that
we can describe the pair of nexttime operators in (6.10) as L-algebra:

L(P(X)) = P(X) + P(X)
[©1,©2]

// P(X)

arising according to the pattern in the definition via a map δ in:

L(P(X)) = P(X) + P(X)
δ // P(X ×X)

〈c1, c2〉−1

// P(X)

where δ = [δ1, δ2] : L(P(X))→ P(X ×X) is given by:

δ1(P) = π−1
1 = P(π1) δ2(P) = π−1

2 = P(π2)

= {(x1, x2) ∈ X ×X | P (x1)} = {(x1, x2) ∈ X ×X | P (x2)}.

Then indeed,©i(P) = 〈c1, c2〉−1 ◦ δ ◦ κi = c−1
i .

We turn to a more elaborate illustration.

6.5.2. Example. Suppose we wish to describe a simple bank account coalgebraically. It in-
volves a state space X , considered as black box, accessible only via the next three balance,

DRAFT

278 Chapter 6. Invariants and Assertions278 Chapter 6. Invariants and Assertions278 Chapter 6. Invariants and Assertions

deposit and withdraw operations.

bal : X −→ N

{ for learning the balance of the account, which,
for simplicity, is represented as a natural num-
ber;

dep : X × N −→ X

{
for depositing a certain amount of money, given
as parameter, into the account;

wdw : X × N −→ X +X

for withdrawing a certain amount of money,
given as parameter, from the account; the
first/left output option of + is used for a suc-
cessful withdrawal, when the balance before the
withdrawal exceeds the retrieved amount. The
second/right +-option is used for unsuccessful
withdrawals; in that case the balance remains
unchanged.

Together these maps form a coalgebra of the form:

X
〈bal,dep,wdw〉

// F (X) for F (X) = N×XN × (X +X)N.

We would like to express the above informal descriptions of the behaviour of this coalgebra
in precise logical terms, using modal operators. Therefore we define predicates:

bal ↓n = {x ∈ X | bal(x) = n}
[dep(n)](P) = {x ∈ X | dep(x, n) ∈ P}.

Now we can require:
bal ↓m ` [dep(n)]

(
bal ↓(m+ n)

)
,

where ` should be understood as subset inclusion ⊆. Obviously this captures the intended
behaviour of “deposit”.

The modal operator for withdrawal is more subtle because of the two output options in
X +X . Therefore we define two modal operators, one for each option:

[wdw(n)]1(P) = {x ∈ X | ∀x′.wdw(x, n) = κ1x
′ ⇒ P (x′)}

[wdw(n)]2(P) = {x ∈ X | ∀x′.wdw(x, n) = κ2x
′ ⇒ P (x′)}.

One may now expect a requirement:

bal ↓(m+ n) ` [wdw(n)]1
(
bal ↓m

)
.

But a little thought reveals that this is too weak, since it does not enforce that a successful
withdrawal yields an output in the first/left +-option. We need to use the derived operator
〈f〉(P) = ¬[f](¬P) so that:

〈wdw(n)〉i(P) = ¬[wdw(n)]i(¬P) = {x ∈ X | ∃x′.wdw(x, n) = κix
′ ∧ P (x′)}.

Now we can express the remaining requirements as:

bal ↓(m+ n) ` 〈wdw(n)〉1
(
bal ↓m

)
bal ↓(m) ` 〈wdw(m+ n+ 1)〉2

(
bal ↓m

)
.

Thus we have used four logical operators to lay down the behaviour of a bank account,
via restriction of the underlying coalgebra X → F (X). Such restrictions will be studied
more systematically in Section 6.8. Here we concentrate on the modal/dynamic operations.

DRAFT

6.5. Modal logic for coalgebras 2796.5. Modal logic for coalgebras 2796.5. Modal logic for coalgebras 279

The four of them can be described jointly in the format of Definition 6.5.1, namely as
4-cotuple: [

bal ↓(−), [dep(−)], [wdw1(−)], [wdw1(−)]
]
,

forming an algebra:

N + (N× P(X)) + (N× P(X)) + (N× P(X)) // P(X). (6.11)

It is an algebra L(P(X))→ P(X) for the modal signature functor L : Sets→ Sets given
by:

L(Y) = N + (N× Y) + (N× Y) + (N× Y).

The algebra of operators (6.11) is the composition of two maps:

L(P(X))
δ // P(F (X))

c−1
// P(X),

where c = 〈bal,dep,wdw〉 : X → F (X) = N×XN×(X+X)N is the coalgebra involved.
The map δ : L(P(X))→ P(F (X)) is a 4-cotuple δ = [δbal, δdep, δwdw,1, δwdw,2], where:

δbal(n) = {(m, f, g) ∈ F (X) | m = n}
δdep(n, P) = {(m, f, g) ∈ F (X) | f(n) ∈ P}

δwdw,1(n, P) = {(m, f, g) ∈ F (X) | ∀x. g(n) = κ1x⇒ P (x)}
δwdw,2(n, P) = {(m, f, g) ∈ F (X) | ∀x. g(n) = κ2x⇒ P (x)}.

It is not hard to see that this δ is a natural transformation LP ⇒ PF .

A next step is to see how the modal signature functor L and the natural transformation
δ : LP ⇒ PF in Definition 6.5.1 arise. In general, this is a matter of choice. But in many
cases, for instance when the functor is a polynomial, there are some canonical choices. We
shall illustrate this in two steps, namely by first defining coalgebraic logics for several basic
functors, and subsequently showing that coalgebraic logics can be combined via several
constructions, like composition and (co)product. A similar, but more language-oriented,
modular approach is described in [92].

6.5.3. Definition. Coalgebraic logics (L,LP δ⇒ PF) can be defined when F is the iden-
tity / constant / powerset / multiset / distribution functor in the following manner.

(i) For the identity functor id : Sets → Sets we take L = id, with identity natural
transformation:

L(P(X)) = P(X)
δ = id

// P(X) = P(id(X)).

(ii) For a constant functor KA : Sets → Sets, given by KA(X) = A, we also take
L = KA, with singleton (unit) map:

L(P(X)) = A
δ = {−}

// P(A) = P(KA(X)).

(iii) For the (covariant) powerset functor P we take L = id, with:

L(P(X)) = P(X)
δ // P(P(X))

given by δ(P) = {U ∈ P(X) | U ⊆ P}. For the finite powerset functor Pfin an analogous
map P(X)→ P(Pfin(X)) is used.

DRAFT

280 Chapter 6. Invariants and Assertions280 Chapter 6. Invariants and Assertions280 Chapter 6. Invariants and Assertions

(iv) For the distribution functor D : Sets → Sets take L(Y) = [0, 1]Q × Y , where
[0, 1]Q = [0, 1] ∩ Q is the unit interval of rational numbers. The associated natural trans-
formation follows the ideas of [196]:

L(P(X)) = [0, 1]Q × P(X)
δ // P(DX),

where δ(r, P) = {ϕ ∈ D(X) | ∀x′. ϕ(x)(x′) ≥ r ⇒ P (x′)}.
(v) The same coalgebraic modal logic can be used for the multiset functor MM , as-

suming the monoid carries an order. This yields the graded operators, as sketched in the
beginning of this section for the multiset/bag functorMN over the natural numbers.

(vi) For the neighbourhood functor N (X) = 2(2X) from Exercise 2.2.7 one takes L =
id with natural transformation:

L(P(X)) = P(X)
δ // P(NX) = PPP(X),

given by δ(P) = {V ∈ PP(X) | P ∈ V }.

6.5.4. Lemma. Coalgebraic modal logics can be combined in the following ways.
(i) For two functors F1, F2 : Sets → Sets, with coalgebraic modal logics (Li, δi),

there is also a coalgebraic modal logic for the composite functor F1 ◦ F2, namely L1 ◦ L2

with natural transformation given by:

L1L2P(X)
L1(δ2,X)

// L1PF2(X)
δ1,F2(X)

// PF1F2(X).

(ii) Given an I-indexed collection of functors (Fi)i∈I with logics (Li, δi) we define a
modal signature functor L(Y) =

∐
i∈I Li(Y) for the coproduct functor

∐
i∈I Fi, with

natural transformation:

L(P(X)) =
∐
i∈I Li(P(X))

[P(κi) ◦ δi]i∈I
// P(
∐
i∈I Fi(X)).

(Here we write P(κi) : P(Fi(X)) → P(
∐
i Fi(X)) for the direct image, using P as a

covariant functor.)
(iii) Similarly, for a product functor

∏
i∈I Fi we use the coproduct

∐
i∈I Li of associ-

ated modal signature functors, with:

L(P(X)) =
∐
i∈I Li(P(X))

[π−1
i ◦ δi]i∈I

// P(
∏
i∈I Fi(X)).

(iv) As special case of the previous point we make the exponent functor FA explicit. It
has a modal signature functor A × L(−), assuming a coalgebraic modal logic (L, δ) for
F , with natural transformation:

A× L(P(X)) // P(F (X)A),

given by (a, u) 7→ {f ∈ F (X)A | f(a) ∈ δ(u)}.

Proof. One only has to check that the new δ’s are natural transformations; this is easy.

As a result, each Kripke polynomial functor has a (canonical) coalgebraic modal logic.

DRAFT

6.5. Modal logic for coalgebras 2816.5. Modal logic for coalgebras 2816.5. Modal logic for coalgebras 281

6.5.1 Coalgebraic modal logic, more abstractly

In Definition 6.5.1 we have introduced a coalgebraic modal logic for a functor F as a
pair (L, δ), where δ : LP ⇒ PF . As we have seen, this approach works well for many
endofunctors on Sets. Still, the picture is a bit too simple, for two reasons.

• Modal operators usually satisfy certain preservation properties. In particular, almost
all of them preserve finite conjunctions (>,∧). This can be captured by restricting
the modal signature functor L, from an endofunctor on Sets to an endofunctor on
the category MSL of meet semilattices.

• The approach is defined for endofunctors on Sets, and not for endofunctors on an
arbitrary category. In order to take care of this additional generality we will use the
more general logic described in terms of factorisation systems in Section 4.3.

We will tackle both these issues at the same time. We proceed in a somewhat informal
manner, and refer to the literature [295] for further details and ramifications.

Let F : C → C be an endofunctor on a category C with a logical factorisation system
(M,E). Recall from Lemma 4.3.4 that it gives rise to an indexed category:

Cop
Pred(−)

//MSL

since for each object X ∈ C the poset Pred(X) of predicates (U
� ,2 // X) ∈ M on X has

finite meets >,∧; additionally, a map f : X → Y in C yields a finite meet preserving
substitution functor Pred(f) = f−1 : Pred(Y)→ Pred(X) by pullback.

In this general situation, a coalgebraic modal logic for F : C→ C consists of a functor
L : MSL → MSL together with a natural transformation δ : LPred ⇒ PredF . Thus, δ
is a natural transformation between the following two parallel functors:

MSL L
**

Cop

Pred 00

F
//

MSL

Cop
Pred

44

In Exercise 6.5.9 it is shown that all coalgebraic models described in Definition 6.5.3 live
in this way in the category MSL, except the neighbourhood functor N . Also, by Exer-
cise 6.5.8 all the constructions on coalgebraic modal logics in Lemma 6.5.4 can be per-
formed in the category MSL.

A coalgebra c : X → F (X) in the base category C gives rise to an L-algebra, as before
in Definition 6.5.1, but this time in the category MSL:

L
(
Pred(X)

) δ // Pred(F (X))
c−1 = Pred(c)

// Pred(X).

As before, this yields a functor Pred: CoAlg(F)op → Alg(L).
Next assume that the functor L : MSL →MSL has an initial algebra. We shall write

it as:

L
(
Form)

∼= // Form (6.12)

where ‘Form’ stands for ‘formulas’. This set Form ∈ MSL is by construction closed
under finite conjunctions (>,∧) and comes equipped with modal operators via the above
algebra L(Form)→ Form . By initiality we get a unique homomorphism in MSL:

L(Form)

∼=
��

L([[−]]c)
//______ L(Pred(X))

Pred(c) ◦ δ
��

Form
[[−]]c

//_______ Pred(X)

(6.13)

DRAFT

282 Chapter 6. Invariants and Assertions282 Chapter 6. Invariants and Assertions282 Chapter 6. Invariants and Assertions

It maps a formula ϕ ∈ Form to its interpretation [[ϕ]]c ∈ Pred(X), as an M-subobject of
the state spaceX . This map [[−]] preserves finite meets and preserves the modal operators.

6.5.5. Remark. The collection Form ∈ MSL of logical formulas defined in (6.12) has
finite meets by construction. What if would like to have all Boolean operations on formu-
las? The obvious way would be to construct Form as an initial algebra in the category
BA of Boolean algebras. But this approach does not work, because in general the modal
operations L(Form)→ Form only preserve finite meets, and for instance not ¬ or ∨.

There is a neat trick around this, see e.g. [251, 295]. We use that the forgetful functor
U : BA→MSL from Boolean algebras to meet semilattices has a left adjointF : MSL→
BA—which follows from Exercise 5.4.15 (iii). Now we consider the functor:

L′ =
(
BA

U //MSL
L //MSL

F // BA
)
.

There is now a direct (adjoint) correspondence between L′- and L-algebras: for a Boolean
algebra B,

FLU(B) = L′(B) // B in BA
===============
L(UB) // UB in MSL

Thus if we now define the collection Form ′ as initial algebra of the functor L′ in BA,
then Form ′ carries all Boolean structure and has modal operators L(Form ′) → Form ′

that preserve only finite meets.

In order to proceed further we need another assumption, namely that the predicate
functor Pred: Cop →MSL has a left adjoint S. Thus we have an adjoint situation:

Cop

Pred
++

> MSL

S
jj (6.14)

Exercise 6.5.7 deals with some situations where this is the case. Such “dual” adjunctions
form the basis for many dualities, see [256], relating predicates and states, for instance in
domain theory [5], probabilistic computing [281], or in quantum computing [112, 239], see
also Exercise 5.4.11.

In presence of this adjunction (6.14), two things are relevant.

• The natural transformation δ : LPred ⇒ PredF , forming the modal coalgebraic
logic for the functor F , bijectively corresponds to another natural transformation δ,
as in:

LPred
δ +3 PredF

================
FS

δ
+3 SL

(6.15)

Working out this correspondence is left to the interested reader, in Exercise 6.5.10.

• We can take the transpose of the interpretation map [[−]]c : Form → Pred(X)
from (6.13). It yields a “theory” map thc : X → S(Form) that intuitively sends
a state to the formulas that hold for this state. The relation containing the states for
which the same formulas hold is given as kernel/equaliser ≡c� X ×X in C:

≡c = Ker(thc) // // X ×X
thc ◦ π1 //

thc ◦ π2

// S(Form) (6.16)

DRAFT

6.5. Modal logic for coalgebras 2836.5. Modal logic for coalgebras 2836.5. Modal logic for coalgebras 283

An important question is how this relation ≡c relates to the notions of indistinguishability
that we have seen for coalgebras. It turns out that the behavioural equivalence (cospan)
definition works best in this situation. The next result is based on [385] and also, in more
categorical form, on [346, 273, 251].

6.5.6. Theorem. Consider the situation described above, where the functor F : C → C
has a modal coalgebraic logic δ : LPred ⇒ PredF with initial algebra L(Form)

∼=→
Form , and where there is a left adjoint S to the indexed category Pred: Cop → MSL
associated with the logical factorisation system (M,E) on C, like in (6.14).

(i) Observationally equivalent states satisfy the same logical formulas: each kernel of
a coalgebra map factors through the equaliser ≡c� X ×X in (6.16).

(ii) If the functor F preserves abstract monos (in M) and the transpose δ : FS ⇒ SL
in (6.15) consists of abstract monos, then the converse is also true: states that make the
same formulas true are observationally equivalent.

The latter property is usually called expressivity of the logic, or also the Hennessy-
Milner property. Originally, this property was proven in [198], but only for finitely branch-
ing transition systems. The most significant assumption in this much more general theorem
for coalgebras is the δ-injectivity property of the coalgebra modal logic.

Proof. (i) Assume a map of coalgebra f : X → Y , from c : X → F (X) to d : Y →
F (Y), with kernel:

Ker(f) //
〈k1, k2〉

// X ×X
f ◦ π1

//

f ◦ π2

// Y.

By initiality we get Pred(f) ◦ [[−]]d = [[−]]c in:

L(Form)

∼=
��

// L(Pred(Y))

Pred(d) ◦ δY
��

// L(Pred(X))

Pred(c) ◦ δX
��

Form
[[−]]d

//

[[−]]c

22Pred(Y)
Pred(f)

// Pred(X)

Now we can see that Ker(f) factors through the equaliser ≡c� X ×X in (6.16):

thc ◦ k1 = S([[−]]c) ◦ η ◦ k1

= S
(
Pred(f) ◦ [[−]]d

)
◦ S(Pred(k1)) ◦ η

= S
(
Pred(k1) ◦ Pred(f) ◦ [[−]]d

)
◦ η

= S
(
Pred(f ◦ k1) ◦ [[−]]d

)
◦ η

= S
(
Pred(f ◦ k2) ◦ [[−]]d

)
◦ η

= · · ·
= thc ◦ k2.

(ii) We first observe that the transpose δ makes the following diagram commute:

F (X)
F (thc)

// FS(Form)
� ,2 δ // SL(Form)

X
thc

//

c

OO

S(Form)

∼= S(α)

OO

DRAFT

284 Chapter 6. Invariants and Assertions284 Chapter 6. Invariants and Assertions284 Chapter 6. Invariants and Assertions

where we write the initial algebra map in (6.12) as α : L(Form)
∼=→ Form . Commutation

of this rectangle follows from the explicit description δ = SL(η) ◦ S(δ) ◦ ε in Exer-
cise 6.5.10:

δ ◦ F (thc) ◦ c = SL(η) ◦ S(δ) ◦ ε ◦ F (thc) ◦ c
= SL(η) ◦ S(δ) ◦ SPred

(
F (thc) ◦ c

)
◦ ε

= S
(
Pred(c) ◦ PredF (thc) ◦ δ ◦ L(η)

)
◦ ε

= S
(
Pred(c) ◦ δ ◦ LPred(thc) ◦ L(η)

)
◦ ε

= S
(
Pred(c) ◦ δ ◦ L([[−]]c)

)
◦ ε

= S
(
[[−]]c ◦ α

)
◦ ε by (6.13)

= S(α) ◦ S(Pred(thc) ◦ η) ◦ ε
= S(α) ◦ S(η) ◦ SPred(thc) ◦ ε
= S(α) ◦ S(η) ◦ ε ◦ thc
= S(α) ◦ thc.

Next we take the factorisation of the theory map thc in:

thc =
(
X

e � ,2 Y
� ,2 m // S(Form)

)
.

Since the functor F preserves maps in M a coalgebra d can be defined on the image Y via
diagonal-fill-in:

X

c
��

e � ,2 Y_��
m
��

d

wwn n n n n n n n n n n n n n

F (X)

F (e)
��

S(Form)

S(α)∼=
��

F (Y) � ,2
F (m)

// FS(Form) � ,2
δ
// SL(Form)

In particular, the abstract epi e is a map of coalgebras c→ d.
If we write 〈r1, r2〉 : ≡c� X ×X for the equaliser map in (6.16), then, by construc-

tion:
m ◦ e ◦ r1 = thc ◦ r1 = thc ◦ r2 = m ◦ e ◦ r2.

Since m is monic, this yields e ◦ r1 = e ◦ r2. Thus ≡c is contained in the kernel Ker(e)
of a map of coalgebras. Hence, states related by ≡c are behaviourally equivalent.

6.5.2 Modal logic based on relation lifting

What we have described above is coalgebraic modal logic based on (an extension of) pred-
icate lifting. The first form of coalgebraic modal logic, introduced by Moss [328], was
however based on relation lifting. This lifting is applied to the set membership relation ∈,
like in Lemma 5.2.7. In fact, the distributive law ∇ : FP ⇒ PF described there captures
the essence of the logic. This ∇ is understood as a so-called logical “cover” operator. It
leads to a non-standard syntax, which we briefly illustrate.

• Consider the functor F (X) = X × X , as used in the beginning of this section. It
leads to an operator∇ : P(X)× P(X)→ P(X ×X), given by:

∇(P,Q) = {(x, x′) | P (x) ∧ Q(x′)}.

We see that ∇ works on multiple predicates at the same time, and also returns a
predicate that combines the application of these predicates. (In fact, in this case we
get the “double strength” operator dst for the powerset from Exercise 5.2.12.)

DRAFT

6.5. Modal logic for coalgebras 2856.5. Modal logic for coalgebras 2856.5. Modal logic for coalgebras 285

• Next consider the “bank account” functor F (X) = N × XN × (X + X)N from
Example 6.5.2. The associated∇ : F (P(X))→ P(F (X)) takes the form:

∇(n, P,Q) = {(m, f, g) ∈ F (X) |m = n ∧ ∀k ∈ N. f(k) ∈ P (k) ∧
∀x, U. g(k) = κix⇒ Q(k) = κiU ∧ x ∈ U}

With some effort one can recognise within this formulation the four logical operators
bal ↓(−), [dep(−)], [wdw1(−)], [wdw1(−)] that we used in Example 6.5.2. But
certainly, this∇ is not very convenient or illuminating: just try to formulate the bank
requirements using∇.

Hence this ∇-based modal logic is mostly of theoretical interest. There are ways of
translating between modal logic based on predicate lifting and this ∇-logic bases on re-
lation lifting, see [295]. In that case it is convenient to use also n-ary coalgebraic modal
logics, involving maps δ : P(Xn)→ P(FX).

One advantage that is sometimes claimed for this ∇-logic is that it is generic, in the
sense that the logical syntax is obtained directly from the functor and does not require
a choice of (L, δ) like in Definition 6.5.1. However, this argument is hardly convincing
if it leads to such a non-standard syntax. Moreover, having more choice and flexibility
can be both useful and convenient—in the presence of good default choices, as offered by
Definition 6.5.3 and Lemma 6.5.4. For instance, consider the multiset/bag functorMN. If
we wish for n,m ∈ N a modality ©n,m that selects the outcomes in the interval [n,m],
we can do so easily via the predicate lifting based coalgebraic modal logic, via the functor
L(Y) = N× N× Y , with δ : LP ⇒ PMN given by:

δ(n,m,P) = {ϕ ∈MN(X) | ∀x. n ≤ ϕ(x) ≤ m⇒ P (x)}.

Here we conclude our brief introduction to coalgebraic modal logic. It is one of the
more active subfields in coalgebra, involving much more than was covered here, like proof
theory, decidability, and extensions like fixed point logic. We refer to [290] for more infor-
mation and references.

Exercises

6.5.1. Check that coalgebraic temporal logic (see Section 6.4) is a special case of coalgebraic
modal logic.

6.5.2. Show that a coalgebraic modal logic δ : LP ⇒ PF induces a functor CoAlg(F)op →
Alg(L), as claimed in Definition 6.5.1, and that it makes the following diagram commute.

CoAlg(F)op //

��

Alg(L)

��

Setsop P // Sets

6.5.3. Consider in Example 6.5.2 the (senseless) action wdw(0) of withdrawing nothing. Accord-
ing to the requirements given there, does wdw(0) end up in the left or in the right option in
X + X? Reformulate the requirements in such a way that wdw(0) is handled differently,
via the other +-option.

6.5.4. Give two different implementations of the bank account coalgebra in Example 6.5.2:
(i) one with the natural numbers N as state space, and bal = id : N→ N;
(ii) and a “history” model with non-empty lists N+ of natural numbers as states, where

bal = last : N+ → N.
Of course, the requirements in Example 6.5.2 must hold for these implementations.

6.5.5. Recall from Proposition 2.2.3 that each simple polynomial functor F can be written as
an arity functor of the form F#(X) =

∐
i∈I X

#, for an arity #: I → N. Show that

DRAFT

286 Chapter 6. Invariants and Assertions286 Chapter 6. Invariants and Assertions286 Chapter 6. Invariants and Assertions

the modal signature functor for this arity is L#(Y) =
∐
i∈I(#i) × X and describe the

natural transformation δ# : L#(P(X)) → P(F#(X)) according to Definition 6.5.3 and
Lemma 6.5.4.

6.5.6. Apply the previous exercise to the functor F (X) = 1 +X + (E ×X) used in Section 1.1
for a simplified representation statements of the Java programming language. What are the
associated modal operations, and how do you interpret them in a Java context?

6.5.7. (i) Show that the powerset functor P : Setsop → MSL has a left adjoint S, that sends
a meet semilattice D to the set of filters in D: upwards closed subsets U ⊆ D with
> ∈ U and x, y ∈ U ⇒ x ∧ y ∈ U .

(ii) Sending a topological space X to its opens O(X) yields a functor Top → MSL
from the category of topological spaces and continuous maps to MSL. Show that it
also has the filter functor S as left adjoint, where S(D) carries the smallest topology
that makes the subsets of filters η(a) = {U ∈ S(L) | a ∈ U} open, for a ∈ D.

(iii) (See also [251]) Similarly, sending a measurable space to its measurable subsets yields
a functor Meas→MSL, with the filter functor S as left adjoint.

6.5.8. This exercise looks at products and coproducts in the category MSL of meet semilat-
tices.
(i) Check that MSL has products

∏
i∈I Di as in Sets, with componentwise order.

(ii) Show that there is an inclusion functor MSL → CMon of meet semilattices in
commutative monoids, and that the category MSL has finite biproducts ⊕—just like
CMon has, see Exercise 2.1.6.

(iii) For arbitrary, set-indexed products, show that the following construction works.

∐
i∈I Di = {ϕ : I → ⋃

iDi | ∀i. ϕ(i) ∈ Di and supp(ϕ) is finite},

where supp(ϕ) = {i | ϕ(i) 6= >}. Top and meet are defined pointwise.
(iv) For a set A, describe the copower A ·D =

∐
a∈AD and power DA =

∏
a∈AD for

D ∈MSL explicitly.

6.5.9. Prove that the various functors L : Sets → Sets introduced in Definition 6.5.3 can in
fact be understood as functors L : MSL → MSL; and also that the associated maps
δX : LP(X) → P(F (X)) are maps in MSL, i.e. preserve finite conjunctions—except
for the neighbourhood functorN .

6.5.10. In the bijective correspondence (6.15), one defines δ as:

δ
def
=
(
FS εFS +3 SPredFS SδS +3 SLPredS

SLη +3 SL
)

Define the correspondence also in the other direction, and prove that these constructions are
each others inverses.

6.5.11. Check that δ : FS ⇒ LS is injective, forF#, L#, δ# from Exercise 6.5.5, and S : MSL→
Setsop as in Exercise 6.5.7 (i).

6.6 Algebras and terms

At this stage we take a step back and look at the traditional way to handle logical asser-
tions. Such assertions ares predicates (or, more generally, relations) on carriers describing
restrictions for algebraic (or coalgebraic) operations. This section starts with algebras and
first reviews some basic constructions and definitions involving terms. The next section
will look at assertions in an algebraic context. Subsequent sections will deal with the coal-
gebraic situation.

Traditionally in universal algebra, the material at hand is presented using terms and
equations between them. Here we quickly move to a more abstract level and use (free)
monads, culminating in Theorem 6.6.3, as the main result of this section. But we make a
gentle start by first describing free algebras for arity functors F#. The elements of such a
free algebra can be described as terms, built up inductively from variables and operations.

DRAFT

6.6. Algebras and terms 2876.6. Algebras and terms 2876.6. Algebras and terms 287

This yields an explicit description of the free monad F ∗# on the functor F#, see Proposi-
tion 5.1.8. The term description will be used to introduce equational logic for algebras.

Let #: I → N be an arity, as introduced in Definition 2.2.2, with associated endofunc-
tor F#(X) =

∐
i∈I X

#i on Sets. For each i ∈ I we choose a function symbol, say fi, and
consider it with arity #i. This yields a collection (fi)i∈I . If V is a set “of variables”, we
can form terms in the familiar way: we define the set T#(V) to be the least set satisfying
the following two requirements.

• V ⊆ T#(V)

• For each i ∈ I , if t1, . . . t#i ∈ T#(V), then fi(t1, . . . , t#i) ∈ T#(V).

The first requirement yields a map V → T#(V).The second requirement provides the set
of terms with an algebra structure F#(T#(V)) → T#(V) of the functor F# associated
with the arity, as in (2.18). Together these two maps yield a (cotuple) algebra structure,

V + F#

(
T#(V)

)
// T#(V)

v � // v

〈i, (t1, . . . , t#i)〉 � // fi(t1, . . . , t#i),

Thus we have an algebra of the functor V + F#(−). It turns out that terms T#(V) form
the initial algebra, and thus yield the free monad on the functor F#, following the charac-
terisation of such monads in Proposition 5.1.8.

6.6.1. Proposition. The set of terms T#(V) built from an arity #: I → N and a set of
variables V is the free F#-algebra on the set V . The induced monad is the free monad F ∗#
on F# with Alg(F#) ∼= EM(F ∗#) by Proposition 5.4.7, as summarised in:

Alg(F#) ∼= EM(F ∗#)

Ua
��

Sets F ∗# = UT#cc

T#

CC

In essence this adjunction captures inductively defined compositional semantics, writ-
ten as interpretation map [[−]]: given an arbitrary algebra F#(X) → X , for each “valua-
tion” function ρ : V → X that sends variables to elements of the algebra’s carrier X , there
is a unique homomorphism of algebras [[−]]ρ : T#(V)→ X with [[−]]ρ ◦ ηV = ρ, where
the unit ηV : V → T#(V) is obtained from the first bullet above.

Proof. For an algebra F#(X) → X , the interpretation map [[−]]ρ : T#(V) → X extends
the valuation function ρ : V → X from variables to terms, via the (inductive) definition:

[[v]]ρ = ρ(v), for v ∈ V
[[fi(t1, . . . , t#i)]]ρ = fi([[t1]]ρ, . . . , [[t#i]]ρ),

where the function fi : X#i → X is the i-th component of the algebra structure F#(X) =∐
j∈I X

#j → X . By construction [[−]]ρ is a homomorphism of algebras T#(V) → X
such that V ↪→ T#(V) → X is ρ. Uniqueness is trivial. We have an adjunction because
we have established a bijective correspondence:

V
ρ

// X
=================================(
F#(T#(V))

↓
T#(V)

)

[[−]]ρ
//

(
F#(X)
↓
X

)

DRAFT

288 Chapter 6. Invariants and Assertions288 Chapter 6. Invariants and Assertions288 Chapter 6. Invariants and Assertions

From the uniqueness of the interpretation maps [[−]] we can easily derive the following
properties.

{
[[t]]η = t

h([[t]]ρ) = [[t]]h◦ρ,
i.e.

{
[[−]]η = id

h ◦ [[−]]ρ = [[−]]h◦ρ,
(6.17)

where η is the inclusion V ↪→ T#(V) and h is a homomorphism of algebras. (Implicitly,
these properties already played a role in Exercise 2.5.17.)

From now on we shall use the free monad notation F ∗# instead of the terms notation
T#. More generally, for an arbitrary functor F : Sets → Sets, we understand F ∗(V) as
the algebra of terms with operations given by the functor F . These terms can be organ-
ised in a category, via a basic categorical construction described in the previous chapter,
namely the Kleisli category K̀ (−). Since terms only contain finitely many variables we
restrict the objects to finite sets n = {0, 1, . . . , n − 1}. We shall write K̀ N(−) when such
restrictions are applied. One can understand the number/set n as a context with n variables
v0, . . . , vn−1.

6.6.2. Definition. For a monad T on Sets, we write K̀ N(T) ↪→ K̀ (T) for the full subcat-
egory with n ∈ N as objects. It will be called the finitary Kleisli category of T . We write
Law(T) = K̀ N(T)op for the Lawvere theory associated with the monad T .

A model of this monad is a finite product preserving functor Law(T) → Sets. We
write Model(T) = [Law(T),Sets]fp for the category of finite product preserving func-
tors Law(T)→ Sets, and natural transformations between them.

Lawvere theories have been introduced in [302], see also [280, 220], as categories with
natural numbers n ∈ N as objects and finite products given by (0,+). The main examples
are opposites of finitary Kleisli categories, as above. Since these theories involve both the
opposite (−)op and the Kleisli construction K̀ N(−) it requires some unravelling to get a
handle on their morphisms. Below we argue step by step that, nevertheless, these categories
Law(T) form a natural way of representing terms.

• The category K̀ N(T) has coproducts, inherited from Sets, see Proposition 5.2.2 (iii).
They can simply be described as sums of natural numbers: n + m ∈ K̀ N(T) is the
coproduct of objects n,m ∈ K̀ N(T), and 0 ∈ K̀ N(T) is the initial object. As a result
(0,+) yield products in the opposite category K̀ N(T)op = Law(T).

• Using that n = 1 + · · ·+ 1 there are bijective correspondences:

m // n in Law(T)
=========
n // m in K̀ N(T)

============
n // T (m) in Sets

======================================
n “terms” t1, . . . , tn ∈ T (m) with m “free variables”

Since free variables form inputs and are usually positioned on the left (of a turnstile
` or of an arrow), the direction of arrows in the category Law(T) is the most natural
one for organising terms.

Speaking of “terms” and “free variables” is justified for the free monad F ∗# on an
arity functor F#, see Proposition 6.6.1. Here we stretch the terminology and use it
for an arbitrary monad T on Sets.

• The coprojections κi : 1 → m in Sets yield coprojections η ◦ κi : 1 → m in
K̀ N(T), see point (iii) in the proof of Proposition 5.2.2. In the category Law(T) this
map m → 1 is a projection, which may be understood as the i-th variable vi which
is projected out of a context of m variables v1, . . . , vm.

DRAFT

6.6. Algebras and terms 2896.6. Algebras and terms 2896.6. Algebras and terms 289

• Kleisli composition corresponds to substitution in terms. This can best be illustrated
for a free monad F ∗# on an arity functor F#. Assume we have composable maps in
the Lawvere theory Law(F ∗#):

k
s = 〈s1, . . . , sm〉

// m and m
t = 〈t1, . . . , tn〉

// n.

That is, we have maps of cotuples:

n
t = [t1, . . . , tn]

// F ∗#(m) and m
s = [s1, . . . , sm]

// F ∗#(k).

The Kleisli composition t ; s : n→ F ∗#(k) is given by the n-cotuple of maps:

ti[s1/v1, . . . , sm/vm] ∈ F ∗#(k),

where we write v1, . . . , vm for the m variables in the terms ti ∈ F ∗#(m). Thus in the
Lawvere theory Law(F ∗#) we have as composite:

k
t ◦ s = 〈t1[~s/~v], . . . , tn[~s/~v]〉

// n.

These terms ti[~s/~v] are the result of substituting sj for all occurrences of vj in ti (if
any). The are defined by induction on the structure:

w[~s/~v] =

{
si if w = vi

w otherwise

f(r1, . . . , rm)[~s/~v] = f(r1[~s/~v], . . . , rm[~s/~v]),

(6.18)

where f is a function symbol with arity m = #f.

• Weakening involves moving a term to bigger context with additional variables (which
don’t occur in the term). In Kleisli categories this happens via post composition with
a coprojection κ1 : m→ m+ k, as in:

n
t // T (m)

T (κ1)
// T (m+ k).

That is, weakening in Law(T) is described as:

m+ k
π1 // m

t // n.

Similarly, contraction involves replacing multiple occurrences v, v′ of variables by a
single variable via substitution [w/v,w/v′]. In Kleisli categories this is done via post
composition with a codiagonal ∇ = [id, id], and in the associated Lawvere theory
via a diagonal ∆ = 〈id, id〉.

• As mentioned, categories with natural numbers as objects and finite products given
by sums (0,+) are called Lawvere theories, see [302, 280, 355, 219, 220]. A (set-
theoretic) model of such a theory is a finite product preserving functor to Sets. Here
we only consider such models in Sets, but the definition of model of a Lawvere
easily generalises to arbitrary categories with finite products. Understanding theories
as categories and models as structure-preserving functors is the essence of Lawvere’s
functorial semantics.

(Sometimes people use as an “opposite” description of Lawvere theories, as cate-
gories with natural numbers as objects and finite coproducts, see [102]; in that case
the finitary Kleisli categories K̀ N(T) are prime examples.)

DRAFT

290 Chapter 6. Invariants and Assertions290 Chapter 6. Invariants and Assertions290 Chapter 6. Invariants and Assertions

We have described algebras of a functor or monad as models of certain operations.
This model-theoretic aspect is made explicit in the next two (standard) results, connecting
algebras and functorial semantics. For more general, enriched, versions, see [360]. The
proof of the theorem below is quite long, even if we leave many details to the reader. A
non-finitary analogue of this result is described in Exercise 6.6.5.

6.6.3. Theorem. For a monad T : Sets→ Sets there is a faithful functor from Eilenberg-
Moore algebras to models:

EM(T)
L //Model(T) =

[
Law(T),Sets

]
fp

(
T (X)

α→ X
) � //

(
n Xn� //

)
.

This L is an equivalence if T is finitary functor.

Each category of Eilenberg-Moore algebras (over Sets) can thus be embedded in a
category of presheaves.

Proof. On objects, the functor L : EM(T) → [Law(T),Sets]fp is described as follows.
Given an Eilenberg-Moore algebra α : T (X)→ X , we obtain a functor:

Law(T)
L(X,α)

// Sets

n � // Xn

(
n
〈t1,...,tm〉−−−−−−→ m

) � //
(
Xn 〈[[t1]],...,[[tm]]〉−−−−−−−−−→ Xm

)
.

The interpretation [[t]] : Xn → X of a term t ∈ T (n) is obtained on h ∈ Xn as:

[[t]](h) = α
(
T (h)(t)

)
= α ◦ T (h) ◦ t : 1 −→ T (n) −→ T (X) −→ X.

The identity n→ n in Law(T) is given by the unit η : n→ T (n) in K̀ N(T), consisting of
n terms η(i) ∈ T (n), for i ∈ n. They are interpreted as projections πi since:

[[η(i)]](h) = α ◦ T (h) ◦ η ◦ κi = α ◦ η ◦ h ◦ κi = h(i) = πi(h).

HenceL(X,α) preserves identities. Similarly, it preserves composition in Law(T). Clearly,
the functorL(X,α) preserves products, i.e. it sends products (0,+) in Law(T) to products
in Sets: L(X, a)(0) = X0 ∼= 1 and:

L(X, a)(n+m) = Xn+m ∼= Xn ×Xm = L(X, a)(n)× L(X, a)(m).

For a map of algebras f :
(
T (X)

α→ X
)
→
(
T (Y)

β→ Y
)

one obtains a natural
transformation L(f) : L(X,α)⇒ L(Y, β) with components:

L(X, a)(n) = Xn
L(f)n = fn

// Y n = L(Y, b).

This is natural in n: for a map t = 〈t1, . . . , tm〉 : n → m in Law(T) one easily checks
that there is a commuting diagram:

Xn
fn

//

〈[[t1]]α, . . . , [[tm]]α〉
��

Y m

〈[[t1]]β , . . . , [[tm]]β〉
��

Xm

fm
// Y m

DRAFT

6.6. Algebras and terms 2916.6. Algebras and terms 2916.6. Algebras and terms 291

Obviously, the mapping f 7→ L(f) =
(
fn
)
n

is injective, making L a faithful functor.
We now assume that T is finitary. Our first goals is to show that the functorL : EM(T)→

[Law(T),Sets]fp is full: if we have a natural transformation σ : L(X,α)→ L(Y, β), then
the component at the object 1 yields a map between the two carriers:

X = X1 = L(X,α)(1)
σ1 // L(Y, β)(1) = Y 1 = Y.

We show in a moment that σ1 is an algebra map. But first we check that L(σ1) = σ. For
each n ∈ N and i ∈ n we have a term η(i) ∈ T (n), forming a map n → 1 in Law(T),
with interpretation [[η(i)]] = πi. Therefore, the following naturality square commutes.

Xn = L(X,α)(n)

πi = [[η(i)]]α

��

σn // L(Y, β)(n) = Y n

[[η(i)]]β = πi
��

X = L(X,α)(1) σ1

// L(Y, β)(1) = Y

Hence σn = σn1 = L(σ1)n.
We can now check that σ1 is an algebra map. For an element u ∈ T (X) we need to

prove β
(
T (σ1)(u)

)
= σ1

(
α(u)

)
. Since T is finitary, we may assume u = T (h)(t), for

some n ∈ N, h : n ↪→ X and t ∈ T (n). Hence:

β
(
T (σ1)(u)

)
= β

(
T (σ1)(T (h)(t))

)

= β
(
T (σ1 ◦ h)(t))

)

= [[t]]β(σ1 ◦ h)

= [[t]]β
(
(σ1)n(h)

)

= [[t]]β
(
σn(h)

)
as just shown

= σ1

(
[[t]]α(h)

)
by naturality of σ

= σ1

(
α
(
T (h)(t)

))

= σ1

(
α(u)

)
.

In order to show that L : EM(T) → [Law(T),Sets]fp is an equivalence, it suf-
fices to show that it is “essentially surjective”, see e.g. [46, Prop. 7.25]: for each M ∈
[Law(T),Sets]fp we need to find an Eilenberg-Moore algebra α : F (X) → X such that
L(X,α) ∼= M .

Given a finite product preserving M : Law(T) → Sets, we take X = M(1) ∈ Sets
as carrier. On this carrier X an algebra structure αM : T (X)→ X can be defined by using
(again) that T is finitary. For u ∈ T (X) there is a n ∈ N and h : n ↪→ X with t ∈ T (n)
such that T (h)(t) = u. This t forms a map t : n→ 1 in Law(T). By applying the functor
M we get in Sets:

Xn = M(1)n
ϕ−1
n

∼=
// M(n)

M(t)
// M(1) = X.

where the product-preservation isomorphism ϕn : M(n) → M(1)n can be described ex-
plicitly as ϕn(y)(i) = M

(
n
πi→ 1

)
(y).

Thus we define an algebra structure αM : T (X) → X as αM (u) = M(t)
(
ϕ−1
n (h)

)
.

This outcome does not depend on the choice of n, h, t, as long as T (h)(t) = u.
We check that αM ◦ η = id. Fix x ∈ X and consider η(x) ∈ T (X). We can take

t = η(∗) ∈ T (1) and h = x : 1→ X satisfying:

T (h)(t) = T (h)(η(∗)) = η(h(∗)) = η(x).

DRAFT

292 Chapter 6. Invariants and Assertions292 Chapter 6. Invariants and Assertions292 Chapter 6. Invariants and Assertions

Hence we get our required equality:

αM
(
η(x)

)
= αM

(
T (h)(t)

)
= M(t)

(
ϕ−1

1 (h)
)

= M(η(∗))(h) = M(id)(x) = x.

Similarly one proves αM ◦ µ = αM ◦ T (αM).
Finally, in order to show that L(X,αM) ∼= M , we have on objects n ∈ N:

L(X,αM)(n) = Xn = M(1)n ∼= M(n).

On morphisms one has [[t]]αM = M(t) ◦ ϕ−1
n : Xn → X , for t ∈ F ∗(n).

The previous result is stated for monads, but can be adapted to endofunctors F , via the
associated free monad F ∗. In order to do so we use the following result.

6.6.4. Lemma. Assume for a functor F : Sets→ Sets the free monad F ∗ on F exists. If
F is finitary, then so is F ∗.

Proof. We use initiality of the algebra αX : X + F (F ∗(X))
∼=→ F ∗(X), defining the free

monad F ∗, see Proposition 5.4.7. Fix a set X and define the subset/predicate i : P ↪→
F ∗(X) as:

P = {u ∈ F ∗(X) | ∃(n, h, t). n ∈ N, h ∈ Xn, t ∈ F ∗(n) with F ∗(h)(t) = u}.

Our aim is to define an algebra structure b : X +F (P)→ P making the inclusion i : P ↪→
F ∗(X) a map of algebras b → αX . Then by initiality we also get a map of algebras
intb : F ∗(X)→W with i ◦ intb = id. This yields P = F ∗(X) and makes F ∗ finitary.

We define the required algebra b = [b1, b2] : X + F (P)→ P in two steps.

• For x ∈ X we define b1(x) = ηX(x) ∈ F ∗(X), where ηX = αX ◦ κ1 : X →
F ∗(X) is the unit of the monad F ∗. This b1(x) is in the subset P via the triple
(1, x, η1(∗)), where x : 1→ X , since by naturality of η:

F ∗(x)
(
η(∗)

)
=
(
η ◦ x

)
(∗) = η(x).

Moreover, by construction, i(b1(x)) = η(x) = α(κ1x).

• For an element v ∈ F (P) we use that the functor F is finitary to get m ∈ N with
g : m → P and s ∈ F (m) such that F (g)(s) = v. For each i ∈ m we pick a triple
(ni, hi, ti) with F ∗(hi)(ti) = g(i) ∈ F ∗(X). Next we take n = n1 + · · · + nm
and h = [h1, . . . , hm] : n → X and t = [F ∗(κ1) ◦ t1, . . . F ∗(κm) ◦ tm] : m →
F ∗(n), where κi : ni → n is the appropriate insertion/coprojection map. We use the
universal map θ : F ⇒ F ∗ from the proof of Proposition 5.1.8 to get θ(s) ∈ F ∗(m)
and then r = α ◦ κ2 ◦ F (t) ◦ s : 1 → F ∗(n). This yields a new element b2(v) =
α(κ2v) ∈ F ∗(X), which is in P via the triple (n, h, r), since:

F ∗(h) ◦ r = F ∗(h) ◦ α ◦ κ2 ◦ F (t) ◦ s
= α ◦ κ2 ◦ F (F ∗(h)) ◦ F (t) ◦ s
= α ◦ κ2 ◦ F ([F ∗(h1) ◦ t1, . . . , F ∗(hn) ◦ tn]) ◦ s
= α ◦ κ2 ◦ F (g) ◦ s
= b2(v).

The following is now an easy consequence of Theorem 6.6.3.

DRAFT

6.6. Algebras and terms 2936.6. Algebras and terms 2936.6. Algebras and terms 293

6.6.5. Corollary. Let F : Sets→ Sets be a functor with free monad F ∗. Then there is a
faithful functor from functor algebras to models:

Alg(F)
L //Model(F ∗) =

[
Law(F ∗),Sets

]
fp
,

This L is an equivalence if the functor F is finitary.

Proof. Proposition 5.4.7 describes an isomorphism of categories Alg(F) ∼= EM(F ∗),
which immediately gives the first part of the result. For the second part we use the previous
lemma.

With these results in place we are ready to consider assertions relating terms in the next
section.

Exercises

6.6.1. Show that the action of the functor F ∗# = T# from Propositions 6.6.1 on functions f can
be described by simultaneous substitution:

F#(f)(t) = t[f(x1)/x1, . . . , f(xn)/xn],

if x1, . . . , xn are the free variables in the term t.

6.6.2. Conclude from the fact that each term t ∈ F ∗#(V) contains only finitely many (free) vari-
ables that the functor/monad F ∗# is finitary.

6.6.3. Consider the functor L : Alg(F) → [Law(F ∗),Sets]fp from Corollary 6.6.5. Assume
an algebra a : F (X) → X and consider the functor L(X, a) : Law(F ∗) → Sets. Show
that the interpretation [[t]] : Xm → X of a term t ∈ F ∗(m), considered as a map m→ 1
in the Lawvere theory Law(F ∗), is obtained by initiality in:

m+ F
(
F ∗(m)

)

αm ∼=
��

//______ m+ F
(
XXm)

am
��

F ∗(m)
[[−]]

//_________ XXm

where the algebra am = [am,1, am,2] : m+ F
(
XXm)→ XXm

on the right-hand-side is
given by:

am,1 = λi ∈ m.λh ∈ Xm. h(i) : m −→ XXm

am,2 =
(
F
(
XXm) r−→ F (X)X

m aX
m

−−−→ XXm
)
.

The r map is the “exponent version” of strength from Exercise 5.2.15.

6.6.4. The aim of this exercise is to elaborate a concrete instance of Corollary 6.6.5, stating the
correspondence between algebras and models. We chose a simple (arity) functor F (X) =
A+X , for a fixed set A.
(i) Check that the free monad F ∗ on F is given by F ∗(V) = N × (V + A). Describe

the unit η : V → F ∗(V), multiplication µ : F ∗F ∗(V)→ F ∗(V), and universal map
θ : F (V)⇒ F ∗(V) explicitly.

(ii) Describe morphisms t : n → m in the categories K̀ N(F ∗) and Law(F ∗) explicitly.
Especially, give a concrete description of identity maps and of composition.

(iii) Describe the two functors Alg(F) �
[
Law(F ∗),Sets

]
fp

of the equivalence of
Corollary 6.6.5 concretely.

6.6.5. Let T : C → C be a strong monad on a category C which is bicartesian closed (i.e. has
finite products and coproducts, and exponents). Write

[
K̀ (T)op,C

]
fp

for the category of
finite product preserving functors K̀ (T)op → C, with natural transformations between
them.

DRAFT

294 Chapter 6. Invariants and Assertions294 Chapter 6. Invariants and Assertions294 Chapter 6. Invariants and Assertions

(i) Prove, much like in Theorem 6.6.3, that each Eilenberg-Moore algebra α : T (X) →
X yields a functor L(X,α) : K̀ (T)op → C given on objects by U 7→ XU .

(ii) Check that the mapping (X,α) 7→ L(X,α) is functorial.
(iii) Show that the resulting functor L : EM(T)→

[
K̀ (T)op,C

]
fp

is faithful.
(iv) Prove for C = Sets, via pointwise reasoning, that the functor L is also full.

6.6.6. Show that each term t ∈ F ∗(V) gives rise to a functor in a commuting triangle:

Alg(F)

##GGGGGGG
[[t]]

// Alg
(
(−)V

)

yyttttttt

Sets

This view on terms is elaborated in [126].

6.7 Algebras and assertions

This section covers logical assertions in an algebraic context, at first in the form of equa-
tions between terms. This material forms the basic theory of (untyped, single-sorted) alge-
braic specifications, and may be found in many places in the literature such as [424, 117,
426, 365, 312]. Our presentation follows the monad-based approach from the previous
section, so that the similarity / duality with the coalgebraic situation in subsequent sec-
tions becomes clear. The main result of this section, Theorem 6.7.11, shows how logical
assertions give rise to a quotient monad, whose Eilenberg-Moore algebras are models of
the assertions. These are standard results in the theory of monads. What is new here is the
systematic presentation in terms of relation lifting and quotients (of equivalence relations
and of congruence equivalences).

In the end, the most important point is that operations are captured by algebras of
functors and that operations with assertions require algebras of monads. This same point
applies in the coalgebraic case.

We start with an illustration, giving a formal description of groups. Their arity function
can be seen as a map #: {e,m, i} → N, where:

• e is the symbol of the unit element, with arity #e = 0;

• m is used for multiplication, with #m = 2;

• i is the symbol for the inverse operation, whose arity is one: #i = 1.

An algebra for the arity functor F#(X) = 1 + (X + X) + X associated with # consists
of a set A with a map 1 + (A×A) +A→ A, i.e. with interpretations 1→ A, A×A→ A
and A→ A of the three function symbols e,m, i.

Until now we have talked only about interpretation of the function symbols, and not
about validity of the familiar group axioms:

m(e, v) = v m(i(v), v) = e

m(v,e) = v m(v, i(v)) = e

m(v1,m(v2, v3)) = m(m(v1, v2), v3)

(6.19)

These equations consist of pairs of terms (t1, t2) in the free algebra F ∗#(V), for a set of
variables V .

Such axioms form a relation AxV ⊆ F ∗#(V)×F ∗#(V) on the carrier of the free algebra
on V , given explicitly as:

AxV = {〈m(e, v), v〉 | v ∈ V } ∪ {〈m(v,e), v〉 | v ∈ V }
∪ {〈m(i(v), v),e〉 | v ∈ V } ∪ {〈m(v, i(v)),e〉 | v ∈ V }
∪ {〈m(v1,m(v2, v3)),m(m(v1, v2), v3)〉 | v1, v2, v3 ∈ V }.

(6.20)

DRAFT

6.7. Algebras and assertions 2956.7. Algebras and assertions 2956.7. Algebras and assertions 295

In the computer science literature such a pair (#,Ax) is usually called an algebraic specifi-
cation.

Our main focus will be on models of such specifications. But we also wish to use
axioms for reasoning and proving results like uniqueness of inverses:

m(v, w) = e ⇒ v = i(w). (6.21)

In order to do so we need derivation rules for equations t1 = t2. In general, assuming an
arity # and a set of axioms AxV ⊆ F ∗#(V) × F ∗#(V), like in (6.19), one standardly uses
the following logical rules.

(a)
Ax

t1 = t2

(
if (t1, t2) ∈ AxV ; but see (6.23) below

)

(b)
t = t

t1 = t2

t2 = t1

t1 = t2 t2 = t3

t2 = t3

(c)
t1 = t′1 · · · tm = t′m

f(t1, . . . tm) = f(t′1, . . . t
′
m)

(
for a function symbol f of arity m

)

(6.22)

The rules in (b) turn the equality relation = into an equivalence relations. And the rules
in (c) turn it into a congruence. This can be expressed as: the equality relation = is an alge-
bra of the relation lifting functor EqRel(F#) : EqRel(Sets) → EqRel(Sets), restricted
to equivalence relations as in Corollary 4.4.4.

In general an equation t1 = t2 is said to be derivable from a collection Ax = (AxV)V
of relations on terms if there is a derivation tree structured by these rules with t1 = t2
as conclusion. One then often writes Ax ` t1 = t2. Derivable equations are also called
theorems. We write Th(Ax) ⊆ F ∗#(V) × F ∗#(V) for the relation containing precisely the
equations that are derivable from Ax. It is the free congruence equivalence on Ax, and is
sometimes called the theory of Ax.

6.7.1. Example. The implication m(v, w) = e ⇒ v = i(w) from (6.21) has a formal
derivation in the theory of groups: Figure 6.3 shows a derivation tree with the equation
v = i(w) as conclusion, and with m(v, w) = e as only assumption. In this tree the term
i(v) is written as iv in order to spare on parentheses. The relation GrAx refers to the group
axioms from (6.19).

6.7.2. Remark. The meticulous reader may have noticed that we have cheated a bit, namely
in the two rightmost occurrences of the “axiom” rule in Figure 6.3. They use instantiations
of axioms. For instance the rightmost rule involves an equation m(e, iw) = iw. Strictly
speaking this is not an axiom, but a substitution instance m(e, v)[iw/v] = v[iw/v] of the
axiom m(e, v) = v, namely with iw in place of v. This can be formalised as follows.

The improved “axiom rule” (1) in (6.22) now reads:

(a′)
Ax

t1[~s/~v] = t2[~s/~v]
(for (t1, t2) ∈ Ax) (6.23)

For convenience we will assume from now on that our sets of axioms are closed under
substitutions, so that there is no difference between the rules (a) in (6.22) and (a′) in (6.23).
Basically this means that the axioms are formulated in a slightly different manner. For
groups this would involve replacing the formulation used in (6.20) by:

AxV = {〈m(e, t), t〉 | t ∈ F ∗#(V)} ∪ {〈m(t,e), t〉 | t ∈ F ∗#(V)}
∪ {〈m(i(t), t),e〉 | t ∈ F ∗#(V)} ∪ {〈m(t, i(t)),e〉 | t ∈ F ∗#(V)}
∪ {〈m(t1,m(t2, t3)),m(m(t1, t2), t3)〉 | t1, t2, t3 ∈ F ∗#(V)}.

DRAFT

296 Chapter 6. Invariants and Assertions296 Chapter 6. Invariants and Assertions296 Chapter 6. Invariants and Assertions

G
rA

x

m
(v
,e

)
=
v

v
=

m
(v
,e

)

v
=
v

G
rA

x

m
(w
,i
w

)
=

e

e
=

m
(w
,i
w

)

m
(v
,e

)
=

m
(v
,m

(w
,i
w

))

v
=

m
(v
,m

(w
,i
w

))

G
rA

x

m
(v
,m

(w
,i
w

))
=

m
(m

(v
,w

),
iw

)

m
(v
,w

)
=

e
iw

=
iw

m
(m

(v
,w

),
iw

)
=

m
(e
,i
w

)

G
rA

x

m
(e
,i
w

)
=

iw

m
(m

(v
,w

),
iw

)
=

iw

m
(v
,m

(w
,i
w

))
=

iw

v
=

iw

Figure 6.3: Derivation of the implication (6.21) from the group axioms GrAx

DRAFT

6.7. Algebras and assertions 2976.7. Algebras and assertions 2976.7. Algebras and assertions 297

If we assume that axioms Ax are closed under substitution, then also derivable equations
are closed under substitution, in the sense that:

Ax ` t1 = t2 =⇒ Ax ` t1[~s/~v] = t2[~s/~v]. (6.24)

This is obtained by induction on the length of the derivation.

In more categorical fashion one can formulate axioms as a functor. We shall do so
for the finitary Kleisli categories K̀ N(T) from Definition 6.6.2, because (terms in) axioms
only involve finitely many variables. Closure of axioms under substitution is guaranteed,
by construction.

6.7.3. Definition. An axiom system for a monad T on Sets is a functorA in a commuting
triangle:

EnRel

��

K̀ N(T)
U

//

A
66mmmmmmmmmmmmm
Sets

where EnRel is the category with endorelations R � X × X on a single carrier as
objects, and where U : K̀ N(T)→ Sets is the standard (right adjoint) functor from Propo-
sition 5.2.2.

An axiom system for an endofunctor F is an axiom system for the associated free
monad F ∗, and is thus given by a functor A : K̀ N(F ∗)→ EnRel as above.

In a (functorial) model of the monad T , in the form of a finite product preserving functor

Law(T) = K̀ N(T)op M // Sets,

the axioms hold—or, equivalently, M satisfies the axioms—if for each parallel pair of
maps:

n
s = 〈s1, . . . , sm〉

//

t = 〈t1, . . . , tm〉
// m

in Law(T), one has:

[
∀i ∈ m. (si, ti) ∈ A(n)

]
=⇒ M(s) = M(t).

In that case we write M |= A. This determines a full subcategory

Model(T,A) ↪→Model(T)

of models in which the axioms A hold.
Similarly, for a monad T and functor F , we have full subcategories

EM(T,A) ↪→ EM(T) and Alg(F,A) ↪→ Alg(F)

of monad and functor algebras satisfying A. This means that the axioms A hold in the
corresponding functorial models, obtained via Theorem 6.6.3 and Corollary 6.6.5.

The functorial description of axioms can be unravelled as follows. For each n ∈ N,
considered as object n ∈ K̀ N(T) in the finitary Kleisli category, there is a relationA(n) �
T (n)× T (n) on U(n) = T (n) ∈ Sets, containing the pairs of terms with n variables that

DRAFT

298 Chapter 6. Invariants and Assertions298 Chapter 6. Invariants and Assertions298 Chapter 6. Invariants and Assertions

are equated by the axioms in A. And for each Kleisli map f : n → T (m) there is a
commuting diagram:

A(n)
��

��

//_________ A(m)
��

��

T (n)× T (n)
f$ × f$

// T (m)× T (m)

where U(f) = f$ = µ ◦ T (f) is the Kleisli extension of f , see Proposition 5.2.3. This
guarantees that the relations A(n) are closed under substitution. If this is too abstract, it
may be helpful to elaborate the details of this closure condition for the special case when
T is a free monad F ∗# on an arity functor.

A slightly different formulation of axiom systems is given in Exercise 6.7.3.
We briefly reformulate validity of axioms in more traditional terms, along the lines of

the free construction in Proposition 6.6.1 using terms.

6.7.4. Lemma. Assume an arity # and an axiom system A : K̀ N(F ∗#) → EnRel for the
associated arity functor F#. For an algebra a : F#(X)→ X the following two statements
are equivalent.

• The axiom system A holds in the algebra a : F#(X)→ X;

• For each n ∈ N and for each pair of terms t, s ∈ F ∗#(n) containing at most n
variables, if (t, s) ∈ A(n), then [[t]]ρ = [[s]]ρ for each valuation function ρ : n →
X , with interpretations [[−]]ρ as defined in the proof of Proposition 6.6.1.

Diagrammatically this means that each valuation yields a map of relations, from
axioms to equality:

A(n)
��

��

//___________ Eq(X) = X
��

∆ = 〈id, id〉
��

F ∗#(n)× F ∗#(n)
[[−]]ρ × [[−]]ρ

// X ×X

Proof. The functor L(X, a) : Law(F ∗#) → Sets associated in Corollary 6.6.5 with the
algebra sends the terms t, s ∈ F#(n) to functions [[t]], [[s]] : Xn → X , as described ex-
plicitly in Exercise 6.6.4. Validity of A in the model L(X, a) means that [[t]] = [[s]].
The resulting mapping ρ 7→ [[t]](ρ) yields the adjoint transpose in the setting of Proposi-
tion 6.6.1, since [[η(i)]](ρ) = πi(ρ) = ρ(i). Thus, the (validity) equation [[t]] = [[s]] is
equivalent to: [[t]]ρ = [[t]]ρ for any valuation ρ : n→ X .

6.7.5. Example. For the functor F (X) = 1+(X×X)+X capturing the group operations
and the group axioms GrAx described in (6.19) we obtain that the category Grp of groups
and group homomorphisms can be described as Grp = Alg(F,GrAx).

We now generalise from free monads F ∗# on arity functors to arbitrary monads T (on
Sets) and consider congruences for such monads. Recall that such congruences corre-
spond to algebras of a relation lifting functor—defined here with respect to the standard
set-theoretic logical factorisation system of injections and surjections. For a monad T
we use Eilenberg-Moore algebras of the associated lifting Rel(T) as T -congruences. Re-
call that Rel(T) is a monad by Exercise 4.4.6. Using Eilenberg-Moore algebras properly
generalises the situation for endofunctors F because Alg(Rel(F)) ∼= EM(Rel(F ∗)), by
Exercise 5.4.18. In the remainder we restrict to liftings to endorelations; more specifically,
we consider liftings EqRel(T) to equivalence relations, like in Corollary 4.4.4.

DRAFT

6.7. Algebras and assertions 2996.7. Algebras and assertions 2996.7. Algebras and assertions 299

6.7.6. Lemma. Let T : Sets→ Sets be a monad, with associated monad

EqRel
EqRel(T)

// EqRel

obtained by lifting to equivalence relations. For an axiom system A : K̀ N(T) → EnRel
we define for each n ∈ N:

Th(A)(n) =
[

the free EqRel(T)-algebra on A(n)
]
.

This yields a new axiom system Th(A) of congruence equivalences in:

EM(EqRel(T))

��

EqRel EqRel(T)cc

��

K̀ N(T)
U

//

Th(A)

66lllllllllllllllllllll
Sets Tcc

If T is finitary, then for each model M ∈Model(T) =
[
Law(T),Sets

]
fp

we have:

M |= A ⇐⇒ M |= Th(A).

Proof. For each n ∈ N there is a monotone function between posets of relations:

P
(
T (n)× T (n)

) A(n) ∨∐µ×µ EqRel(T)(−)
// P
(
T (n)× T (n)

)

where A(n) is the least equivalence relation containing the axioms A(n) ⊆ T (n)× T (n).
This function has a least fixed point, by the Knaster-Tarski Fixpoint Theorem (see e.g. [110,
Chapter 4]). By Proposition 5.1.8 this is the free algebra

∐
µ×µ EqRel(T)(Th(A(n))) ⊆

Th(A)(n) on A(n). The inclusion expresses that Th(A)(n) is a Rel(T)-functor algebra
in:

EqRel(T)(Th(A)(n))
��

��

//______ Th(A)(n)
��

��

T 2(n)× T 2(n)
µ× µ

// T (n)× T (n)

By Exercise 6.2.6 this relation Th(A)(n) is automatically an Eilenberg-Moore algebra, and
thus a T -congruence.

Suppose M |= A. We wish to prove M |= Th(A). The other direction is trivial since
A(n) ⊆ A(n) ⊆ Th(A)(n). For each pair of terms t, s ∈ A(n), considered as parallel
maps n⇒ 1 in Law(T), we have M(s) = M(t) : M(n)→M(1). The relation

R =
{

(s, t)
∣∣ s, t ∈ T (n) with M(s) = M(t)

}

thus contains A(n). This R is clearly an equivalence relation, so also A(n) ⊆ R. In order
to show that R is also a T -congruence, we need to define an Eilenberg-Moore algebra
structure β : T (R)→ R. First we name the inclusion explicitly as 〈r1, r2〉 : R ↪→ T (n)×
T (n). Since T is finitary, an element u ∈ T (R) can be written as u = T (h)(v), for some
m ∈ N, h : m → R and v ∈ T (m). Write h(i) = (si, ti) ∈ R. Then M(si) = M(ti).
Moreover, these terms yield cotuples [t1, . . . , tm] = r1 ◦ h and [s1, . . . , sm] = r2 ◦ h,
forming functions m → T (n), and thus tuples n → m in Law(T). Since the model M
preserves products, we get M(r1 ◦ h) = M(r2 ◦ h), as functions M(n) → M(m) ∼=
M(1)m.

DRAFT

300 Chapter 6. Invariants and Assertions300 Chapter 6. Invariants and Assertions300 Chapter 6. Invariants and Assertions

Now we can prove that the pair 〈µ(T (r1)(u)), µ(T (r2)(u))〉 ∈ T (n) × T (n) is in the
relation R:

M
(
µ(T (r1)(u))

)
= M

(
µ ◦ T (r1) ◦ T (h) ◦ v

)
= M(v ;(r1 ◦ h))

= M(v) ◦M(r1 ◦ h)

= M(v) ◦M(r2 ◦ h)

= M(v ;(r2 ◦ h))

= M
(
µ(T (r2)(u))

)
.

We thus get a unique β(u) ∈ R with 〈r1, r2〉(β(u)) = 〈µ(T (r1)(u)), µ(T (r2)(u))〉. It is
easy to check that the resulting function β : T (R)→ R is an Eilenberg-Moore algebra.

Thus we have that R is a congruence containing A(n). Hence Th(A)(n) ⊆ R. This
means M |= Th(A).

The next lemma is a categorical analogue of Exercise 6.7.2, saying that simultaneous
substitution of equal terms yields equal results.

6.7.7. Lemma. Let T be a monad with axiom system A. Then:

Th(A)(m)
��

��

n
〈f, g〉

//

55kkkkkkk T (m)× T (m)

implies

Th(A)(m)
��

��

T (n)
〈f$, g$〉

//

44jjjjjjj
T (m)× T (m)

Proof. We use that f$ = µ ◦ T (f), and that the theory is a congruence. Let h : n →
Th(A)(m) be the dashed map in the above triangle on the left. Then:

T
(
Th(A)(m)

)

����

EqRel(T)(Th(A)(m))
��

��

//______ Th(A)(m)
��

��

T (n)
〈T (f), T (g)〉

//

T (h)

44

T 2(m)× T 2(m)
µ× µ

// T (m)× T (m)

We continue with quotients in Sets, and first collect some basic results. We use the
description of quotients as left adjoint to equality from Definition 4.5.7. Such quotients
exist for Sets by Exercise 4.5.5.

6.7.8. Lemma. Consider the quotient functor Q, as left adjoint to equality in:

EqRel

Q
��

Sets

Eqa
OO

so that
R // Eq(Y)

=============
Q(R) // Y

This functor Q sends an equivalence relation R ⊆ X ×X to the quotient Q(R) = X/R,
with canonical (unit) map [−]R : X → Q(R). This set-theoretic quotient Q satisfies the
following three properties.

(i) Each equivalence relation R ⊆ X ×X is the kernel of its quotient map [−]R:

R = Ker([−]R) = ([−]R × [−]R)−1
(
Eq(Q(R))

)
.

More concretely, this means:

R(x, x′) ⇐⇒ [x]R = [x′]R.

DRAFT

6.7. Algebras and assertions 3016.7. Algebras and assertions 3016.7. Algebras and assertions 301

(ii) Each surjection f : X � Y is (isomorphic to) the quotient map of its kernel
Ker(f) ⊆ X ×X , as in:

Ker(f) //
// X

[−]
// //

f
((((QQQQQQQQQQQQQQQQ Q(Ker(f))

∼=
��
�
�
�

Y

(iii) For each weak pullback preserving functor F : Sets → Sets, with associated lift-
ing EqRel(F) : EqRel→ EqRel, one has:

Q
(
EqRel(F)(R)

) ∼= F
(
Q(R)

)
.

Proof. The first two points are completely standard, so we concentrate on the third one,
using Proposition 4.4.3: it says that equality relations are preserved by set-theoretic relation
lifting, and that inverse images (−)−1 are preserved because the functor preserves weak
pullbacks. Thus:

Q
(

EqRel(F)(R)
)
∼= Q

(
EqRel(F)

(
([−]R × [−]R)−1(Eq(Q(R)))

))
by (i)

∼= Q
((
F ([−]R)× F ([−]R)

)−1(
EqRel(F)(Eq(Q(R)))

))

= Q
((
F ([−]R)× F ([−]R)

)−1(
Eq(F (Q(R)))

))

= Q
(
Ker(F ([−]R))

)

∼= F
(
Q(R)

)
by (ii).

The final step is justified because by the axiom of choice (“each surjection is split”) the
functor F preserves surjections, see Lemma 2.1.7.

These observations are used to show that quotients lift to algebras.

6.7.9. Proposition. For a weak pullback preserving functor F : Sets→ Sets the quotient
functor Q lifts to (functor) algebras as on the left below.

Alg(F)

��

Eq
⊥ // Alg(EqRel(F))

��

Q
tt

EM(T)

��

Eq
⊥ // EM(EqRel(T))

��

Q
tt

Sets

F

;; Eq
⊥ // EqRel

EqRel(F)

ee

Q
uu

Sets

T

:: Eq
⊥ // EqRel

EqRel(T)

ee

Q
uu

For a weak pullback preserving monad T : Sets→ Sets this lifting specialises to (monad)
algebras as on the right above.

Proof. The lifted adjunction is a consequence of Theorem 2.5.9, using the isomorphism
FQ ∼= QEqRel(F) from the previous lemma. For the restriction to monad algebras we
need to show that the algebra equations remain valid. But this is obvious because the unit
and multiplication of T and EqRel(T) are essentially the same, see Exercise 4.4.6.

It is useful to extend axioms from relations on carriers T (n) for n ∈ N to carriers T (X)
with arbitrary sets X .

DRAFT

302 Chapter 6. Invariants and Assertions302 Chapter 6. Invariants and Assertions302 Chapter 6. Invariants and Assertions

6.7.10. Lemma. Let T be a monad on Sets that is finitary and preserves weak pullbacks,
and let A be an axiom system for T . For an arbitrary set X define a relation AX ⊆
T (X)× T (X) as:

AX =
⋃

n∈N

⋃

h∈Xn

{
〈T (h)(s), T (h)(t)〉

∣∣∣ 〈s, t〉 ∈ Th(A)(n)
}
.

(i) These relations AX are congruence equivalences.
(ii) For m ∈ N one has Am = Th(A)(m).

(iii) The axioms A hold in an arbitrary Eilenberg-Moore algebra α : T (X) → X iff
there is a map of relations:

AX
��

��

//________ Eq(X) = X
��

∆ = 〈id, id〉
��

T (X)× T (X)
α× α

// X ×X

(iv) For each Kleisli map f : X → T (Y) there is a map of relations:

AX
��

��

//__________ AY
��

��

T (X)× T (X)
f$ × f$

// T (Y)× T (Y)

where f$ = µ ◦ T (f) is the Kleisli extension of f . The mapping X 7→ AX thus yields a
functor K̀ (T)→ EM(EqRel(T)).

Proof. (i) Showing that AX is a congruence equivalence involves some low-level rea-
soning, where weak pullback preservation is used for transitivity. Details are left to the
interested reader.

(ii) The inclusion Th(A)(m) ⊆ Am is obvious. For the other direction, assume
〈u, v〉 ∈ Am, say with u = T (h)(s), v = T (h)(t) for h : n → m and 〈s, t〉 ∈ Th(A)(n).
Since T (h) = (η ◦ h)$, functoriality of Th(A) in Lemma 6.7.6 yields that T (h) is a map
of relations Th(A)(n)→ Th(A)(m). Then 〈u, v〉 = 〈T (h)(s), T (h)(t)〉 ∈ Th(A)(m).

(iii) Validity of A in an algebra α : T (X) → X means that for each pair (s, t) ∈ A(n)
one has [[s]] = [[t]] : Xn → X , where [[s]](h) = α(T (h)(s)). This precisely means for
each pair (u, v) ∈ AX one has α(u) = α(v).

(iv) Assume f : X → T (Y) and (u1, u2) ∈ AX , say with ui = T (h)(si) for h ∈ Xn

and (s1, s2) ∈ Th(A)(n). We get f ◦ h ∈ T (Y)n. Since T is finitary we can choose for
each j ∈ n a gj ∈ Y mj and rj ∈ T (mj) with T (gj)(rj) = f(h(j)). Put m = m1 + · · ·+
mn and g = [g1, . . . , gn] : m → Y , and r = [T (κ1) ◦ r1, . . . , T (κn) ◦ rn] : n → T (m),
where κi : mi � m is the appropriate insertion map. Since axioms are closed under
substitution we get (r$(s1), r$(s2)) ∈ Th(A)(m). These elements prove that the pair
(f$(u1), f$(u2)) is in AY , since:

f$(ui) = µ ◦ T (f) ◦ T (h) ◦ si
= µ ◦ T ([T (g1) ◦ r1, . . . , T (gn) ◦ rn]) ◦ si
= µ ◦ T 2(g) ◦ T ([T (κ1) ◦ r1, . . . , T (κn) ◦ rn]) ◦ si
= T (g) ◦ µ ◦ T (r) ◦ si
= T (g)

(
r$(si)

)
.

We now come to the main technical result of this section, showing that axioms can be
captured by quotient monads.

DRAFT

6.7. Algebras and assertions 3036.7. Algebras and assertions 3036.7. Algebras and assertions 303

6.7.11. Theorem. Let T : Sets→ Sets be a monad that is finitary and weak pullback pre-
serving, with an axiom system A : K̀ N(T) → EnRel. Then there is a “quotient” monad
T/A : Sets → Sets with a monad map [−] : T ⇒ T/A, giving rise to an isomorphism
EM(T/A)

∼=−→ EM(T,A) in:

EM(T)

a
&&MMMMMMMMMM
EM(T,A)? _oo

��

∼= // EM(T/A)

a
wwooooooooooo

Sets
T

::

T/A
cc

ZZ
33

Proof. For a setX consider the relationAX ↪→ T (X)×T (X) from the previous lemma, as
algebra of the lifted monad EqRel(T). The lifted quotient functor Q : EM(EqRel(F))→
EM(T) from Proposition 6.7.9 yields a map of Eilenberg-Moore algebras:

T 2(X)

µ
��

T ([−]AX
)
// // T
(
T/A(X)

)

ξX
��

T (X)
[−]AX

// // T/A(X)
def
= Q(AX) = T (X)/AX

The mapping X 7→ T/A(X) is functorial, since X 7→ AX is functorial, so that [−] : T ⇒
T/A becomes a natural transformation. Moreover, by construction, the axioms A hold
in the algebra ξX : T

(
T/A(X)

)
→ T/A(X): assume (u, v) ∈ AT/A(X), say u =

T (h)(s), v = T (h)(t) for h ∈
(
T/A(X)

)n
and (s, t) ∈ Th(A)(n). We need to show

ξX(u) = ξX(v). We can choose a g ∈ T (X)n with h = [−] ◦ g. Define:

s′ = µ
(
T (g)(s)

)
= g$(s) t′ = µ

(
T (g)(t)

)
= g$(t).

By Lemma 6.7.10 (iv) we get (s′, t′) ∈ AX . Hence [s′] = [t′] ∈ T/A(X). But now we
can finish the validity argument:

ξ(u) = ξ ◦ T (h) ◦ s = ξ ◦ T ([−]) ◦ T (g) ◦ s = [−] ◦ µ ◦ T (g) ◦ s
= [−] ◦ g$ ◦ s
= [−] ◦ g$ ◦ t = · · · = ξ(v).

Next we show that the mappingX 7→ ξX is left adjoint to the forgetful functor EM(T,A)→
Sets. For an Eilenberg-Moore algebra β : T (Y)→ Y satisfyingAwe have a bijective cor-
respondence:

X
ρ

// Y
================================(
T (T/A(X))
ξX ↓
T/A(X)

)

[[−]]ρ
//

(
T (Y)
↓ β
Y

) (6.25)

Given a “valuation” ρ : X → Y , we obtain β ◦ T (ρ) : T (X) → Y , forming a map of
algebras µX → β. By Lemma 6.7.10 (iv) the function T (ρ) = (η ◦ ρ)$: T (X) → T (Y)
is a map of relations on the left below. The map on the right exists because β |= A.

AX
��

��

//__________ AY
��

��

//________ Eq(Y) = Y
��

〈id, id〉
��

T (X)× T (X)
T (ρ)× T (ρ)

// T (Y)× T (Y)
β × β

// Y × Y

DRAFT

304 Chapter 6. Invariants and Assertions304 Chapter 6. Invariants and Assertions304 Chapter 6. Invariants and Assertions

Hence there is a unique map [[−]]ρ : T/A(X)→ Y with [[−]]ρ ◦ [−] = β ◦ T (ρ).
The monad arising from this adjunction EM(T,A) � Sets is what we call the quo-

tient monad T/A : Sets→ Sets. We have as unit ηT/A = [−] ◦ ηT , and as multiplication
µT/A = [[−]]id : (T/A)2(X) → T/A(X); this is the map associated via the correspon-
dence (6.25) with the identity map on T/A(X) as valuation. Thus, µT/A is the unique map
with µT/A ◦ [−] = ξX . This allows us to show that [−] : T ⇒ T/A is a map of monads
(see Definition 5.1.7):

µT/A ◦ [−] ◦ T ([−]) = ξ ◦ T ([−]) = [−] ◦ µT .

Our next step is to prove that the comparison functor K : EM(T,A) → EM(T/A)—
see Exercise 5.4.19—is an isomorphism. It sends an algebra β : T (Y) → Y satisfying A
to the interpretation [[−]]id : T/A(Y)→ Y arising from the identity Y → Y as valuation.
This K(β) is thus the unique map with K(β) ◦ [−] = β.

In the other direction, given an Eilenberg-Moore algebra α : T/A(X) → X there is a
map K−1(α) = α ◦ [−] : T (X) → X , which is an algebra because [−] : T ⇒ T/A is a
map of monads. We have K−1(α) |= A since:

AX
��

��

//___________ T/A(X)
��

〈id, id〉
��

//_________ X
��

〈id, id〉
��

T (X)× T (X)
[−]× [−]

// T/A(X)× T/A(X)
α× α

// X ×X

This functor K is an isomorphism, since:

K−1
(
K(β)

)
= [[−]]id ◦ [−] = β ◦ T (id) = β.

The equation K
(
K−1(α)

)
= α follows directly from the definition of K.

Before describing things more abstractly we consider terms from arities again, together
with axioms. Quotienting terms by axioms gives another free construction, analogously to
Proposition 6.6.1.

6.7.12. Corollary. Let # be an arity with axioms A. Then there is a finitary monad
T : Sets → Sets with a natural transformation F# ⇒ T , such that F#-algebras sat-
isfying A correspond to Eilenberg-Moore T -algebras, as in:

Alg(F#,A) ∼= EM(T)

a
��

Sets Tcc

BB

Proof. The free monad F ∗# is finitary by Exercise 6.6.2 and it preserves weak pullbacks
by Exercise 6.7.4. Hence we can take T to be the quotient monad F ∗#/A from Theo-
rem 6.7.11, giving us a natural transformation F# ⇒ F ∗# ⇒ F ∗#/A = T , and an isomor-
phism Alg(F#,A) ∼= EM(F ∗#,A) ∼= EM(T). The monad T is finitary because F ∗# is
finitary and the map F ∗# ⇒ T consists of surjective quotient maps [−].

The monad T in this corollary can be defined explicitly on a finite set n ∈ N as the
quotient:

T (n) = F ∗#(n)/Th(A)(n).

This holds since An = Th(A)(n) by Lemma 6.7.10 (ii).
For a term [t] ∈ T (n) and a valuation ρ : n→ T (m) with ρ(i) = [si] we get:

[[t]]ρ =
[
t[s1/v1, . . . , sn/vn]

]
Th(A)

, (6.26)

where v1, . . . , vn are used as variables in t. It is used in the following basic result.

DRAFT

6.7. Algebras and assertions 3056.7. Algebras and assertions 3056.7. Algebras and assertions 305

6.7.13. Theorem (Soundness and completeness). Consider an arity # with axiomsA. For
two terms t1, t2 ∈ F ∗#(n) the following are equivalent.

(i) A ` t1 = t2;
(ii) for each model M ∈Model(F#,A) one has M(t1) = M(t2);

(iii) for each algebra F#(X)
a→ X in Alg(F#,A) one has [[t1]]ρ = [[t2]]ρ, for every

ρ : n→ X .

Proof. The implication (i) ⇒ (ii) is soundness and follows from the implication M |=
A ⇒ M |= Th(A) from Lemma 6.7.6. The implication (ii) ⇒ (iii) is based on Corol-
lary 6.6.5 (and Exercise 6.6.4), relating algebras and models. For the implication (iii) ⇒
(i) we choose the quotient T (n) = F ∗#(n)/Th(A)(n) from Corollary 6.7.12, with algebra
structure:

F#

(
T (n)

) θ // F ∗#
(
T (n)

) ξn
// T (n),

as in the proof of Theorem 6.7.11. We now take the monad’s unit as valuation η : n →
T (n). It yields [[t1]]η = [[t2]]η , by assumption. This means [t1] = [t2], by (6.26), and thus
(t1, t2) ∈ Th(A)(n). The latter says A ` t1 = t2, as required.

In Corollary 6.7.12 we have seen that an arity with equations can be described by a
finitary monad. We conclude this section by showing that each finitary monad is essentially
given by an arity with equations.

Recall from Lemma 4.7.3 that for a functor F : Sets → Sets there is an arity #F =
π1 :

(∐
i∈N F (i)

)
→ N, together with a natural transformation ap: F#F

⇒ F . This
natural transformation has components apn : F (n)×Xn → F (X) given by apn(u, h) =
F (h)(u). Lemma 4.7.3 states that these components are surjective if and only if F is
finitary.

If we apply these constructions to a monad T : Sets→ Sets we get an arity #T and a
natural transformation ap: F#T

⇒ T . The free monad F ∗#T
on F#T

thus yields a map of
monads ap: F ∗#T

⇒ T with ap ◦ θ = ap, see Proposition 5.1.8. It can be described also
via initiality, as in:

X + F#T

(
F ∗#T

(X)
)

αX ∼=
��

//______ X + F#T

(
T (X)

)

[η, µ ◦ ap]
��

F ∗#T
(X)

apX
//___________ T (X)

(6.27)

6.7.14. Proposition. For a monad T on Sets with monad map ap: F ∗#T
⇒ T as de-

scribed above, we define the theory of T as the axiom system Th(T) : K̀ N(F ∗#T
) →

EqRel defined as follows. For n ∈ N,

Th(T)(n) = Ker(apn) =
{

(t1, t2) ∈ F ∗#T
(n)× F ∗#T

(n)
∣∣ apn(t1) = apn(t2)

}
.

Then:
(i) the relations Th(T)(n) are congruence equivalences (and hence theories);

(ii) assuming T is finitary, the maps apX : F ∗#T
(X)⇒ T (X) are surjective.

Proof. (i) For convenience we shall write F for F#T
. We first need to check that the

mapping n 7→ Th(T)(n) yields a functor K̀ N(F ∗) → EqRel. The relations Th(T)(n)
are obviously equivalence relations. We check functoriality: for a map f : n→ F ∗(m) we
need to show 〈t1, t2〉 ∈ Th(T)(n) ⇒ 〈f$(t1), f$(t2)〉 ∈ Th(T)(m), where f$ = µF

∗ ◦

DRAFT

306 Chapter 6. Invariants and Assertions306 Chapter 6. Invariants and Assertions306 Chapter 6. Invariants and Assertions

F ∗(f) is the Kleisli extension of f . We have:

apm(f$(t1) =
(
apm ◦ µF

∗ ◦ F ∗(f)
)
(t1)

=
(
µT ◦ T (apm) ◦ apm ◦ F ∗(f)

)
(t1) since ap is a map of monads

=
(
µT ◦ T (apm) ◦ T (f) ◦ apn

)
(t1)

=
(
µT ◦ T (apm) ◦ T (f) ◦ apn

)
(t2) because 〈t1, t2〉 ∈ Th(T)(n)

= · · ·
= apm(f$(t2)).

Next we need to check that Th(T)(n) is a congruence. We do so by defining an algebra
b : F

(
Th(T)(n)

)
→ Th(T)(n). So assume we have a triple 〈m ∈ N, t ∈ T (m), h ∈

Th(T)(n)m〉 ∈ F
(
Th(T)(n)

)
, using that F is the arity functor F#T

. We can consider h
as a tuple h = 〈h1, h2〉 of maps hi : m→ F ∗(n). Hence we get two elements:

〈
m ∈ N, t ∈ T (m), hi ∈ F ∗(n)m

〉
∈ F

(
F ∗(n)

)
.

By applying the second component of the initial algebra αn : n+ F (F ∗(n))
∼=→ F ∗(n) we

can define:
b(m, t, h) =

〈
αn
(
κ2(m, t, h1

)
, αn

(
κ2(m, t, h2

)〉
.

Using Diagram (6.27) one can show b(m, t, h) ∈ Th(T)(n).
(ii) Assuming the monad T is finitary, the maps ap: F ∗(X) ⇒ T (X) are surjective:

for u ∈ T (X) we can find n ∈ N, h ∈ Xn and t ∈ T (n) with T (h)(t) = u. The triple
〈n, t, h〉 is then an element of F#T

(X), which we simply write as F (X). Using the free
extension map θ : F ⇒ F ∗ from Proposition 5.1.8 we get θ(n, t, h) ∈ F ∗(X). It proves
surjectivity of ap:

ap
(
θ(n, t, h)

)
= ap(n, t, h) by definition of ap

= T (h)(t) by definition of ap, see Lemma 4.7.3

= u.

We now obtain a standard result in the theory of monads, see e.g. [315, 312]. The re-
striction to finitary monads can be avoided if one allows operations with arbitrary arities—
and not just finite arities as we use here.

6.7.15. Corollary. Each finitary monad T can be described via operations and equations,
namely: via the arity #T and theory Th(T) from the previous result one has

T ∼= F ∗#T
/Th(T),

using the quotient monad of Theorem 6.7.11.

Proof. Since both F ∗#T
and T are finitary, it suffices to prove the isomorphism for finite

sets n ∈ N. We know the maps ap: F ∗#T
(n) → T (n) are surjective. Hence, by Proposi-

tion 6.7.8 (ii), T (n) is isomorphic to the quotient F ∗#T
(n)/Th(T)(n), via the kernel:

Ker(ap) = {(s, t) ∈ F ∗#T
(n)× F ∗#T

(n) | ap(s) = ap(t)} = Th(T)(n).

6.7.16. Remark. A more abstract approach may be found in [306]. There, equations
for a monad T are given by an endofunctor E together with two natural transformations
τ1, τ2 : E ⇒ T . Terms t, s ∈ T (X) are then related if they are in the image of the tu-
ple 〈τ1, τ2〉 : E(X) → T (X) × T (X). The free monad E∗ yields two maps of monads
τ1, τ2 : E∗ ⇒ T , like in Proposition 5.1.8. Next, a quotient monad T/E is obtained by
taking the coequaliser of τ1, τ2 in the category of monads.

The approach followed here, especially in Theorem 6.7.11, a bit more concrete. More-
over, the notion of equation that we use, in Definition 6.7.3, has closure under substitution
built in.

DRAFT

6.8. Coalgebras and assertions 3076.8. Coalgebras and assertions 3076.8. Coalgebras and assertions 307

Exercises

6.7.1. Let a : F (X) → X and b : F (Y) → Y be two algebras with a surjective homomorphism
X � Y between them. Use (6.17) to prove:

a |= A =⇒ b |= A.

6.7.2. Assume an axiom system A for an arity functor F#. Prove:

A ` si = ri =⇒ A ` t[~s/~v] = t[~r/~v].

6.7.3. For a monad T on Sets consider the category EnRelN(T) obtained by pullback in:

EnRelN(T)

��

//

_� EnRel

��
K̀ N(T) // Sets

(i) Give an explicit description of this category EnRelN(T).
(ii) Check that an axiom system as introduced in Definition 6.7.3 corresponds to a section

of the forgetful functor in:
EnRelN(T)

��

K̀ N(T)

A
CC

6.7.4. Consider an arity #: I → N with associated arity functor F# and free monad F ∗#, send-
ing a set V to the set of terms F ∗#(V) = T#(V), like in Proposition 6.6.1. Prove that
F ∗# : Sets→ Sets preserves weak pullbacks.
[Hint. Recall Exercise 6.6.1.]

6.8 Coalgebras and assertions

This section returns to the study of coalgebras, in particular, coalgebras with assertions.
It follows the main lines of the previous two sections on algebras and assertions, using
predicates instead of relations as axioms.

First we look into cofree coalgebras for arity functors. They always exist, by Proposi-
tion 2.5.3, and are built from suitable observations. The explicit construction is a bit more
complicated than for free algebras.

For an arity #: I → N and a set C we shall consider infinite, finitely branching trees
of the form:

(c, i) ∈ C × I

xxqqqqqqqqqqqqqq

''NNNNNNNNNNNNNN

m = #i
subtrees

(c1, i1) ∈ C × I

||xxxxx
##FFFFF

· · · (cm, im) ∈ C × I

zzvvvvvv
$$HHHHHH

#i1 subtrees
· · ·

#im subtrees
· · ·

(6.28)

More formally, we describe the set of these trees as:

O#(C) =
{
ϕ : N→ (C × I)?

∣∣∣ |ϕ(0)| = 1 ∧ ∀n. |ϕ(n+ 1)| = #ϕ(n)
}
, (6.29)

where |σ| ∈ N denotes the length of a list σ, and:

#〈(c1, i1), . . . , (cn, in)〉 = #i1 + · · ·+ #in.

DRAFT

308 Chapter 6. Invariants and Assertions308 Chapter 6. Invariants and Assertions308 Chapter 6. Invariants and Assertions

The elements of the set C are sometimes called colours, because they occur as labels
throughout the trees in O#(C). They give rise to the following dual version of Propo-
sition 6.6.1, see also [28].

6.8.1. Proposition. For an arity #: I → N and a set C, the above set of trees O#(C)
describes the cofree coalgebra on C for the arity functor F#. This gives rise to a right
adjoint, as below, where the induced comonad is the cofree comonad F∞# on the arity
functor F#, with isomorphism CoAlg(F#) ∼= EM(F∞#) from Proposition 5.4.7.

EM(F∞#) ∼= CoAlg(F#)

U a
��

F∞# = UO# == Sets

O#

]]

Proof. The map εC : O#(C)→ C takes the C-element at the root of the tree, as in:

εC(ϕ) = π1ϕ(0) ∈ C.

The coalgebra ζC : O#(C) → ∐
i∈I O#(C)#i sends a tree ϕ to i = π2ϕ(0) ∈ I with its

m = #i subtrees ϕ1, . . . , ϕm, as described in (6.28).
If we have an arbitrary coalgebra d : X → F#(X) with a function f : X → C, there is

a map of coalgebras behd : X → O#(C) given as:

behd(x) =

(f(x), i)

||xxxxxxxx

##GGGGGGGG

· · ·

behd(x1) behd(xm)

where d(x) = (i, 〈x1, . . . , xm〉) with m = #i ∈ N. Clearly, εC ◦ behd = f . It is not hard
to see that behd is the unique coalgebra homomorphism X → O#(C).

The next result is the analogue of Theorem 6.6.3 for comonads, in the style of Exer-
cise 6.6.5. It shows that coalgebras can also be understood as functorial models. In the
algebraic case we restricted ourselves to finitary Kleisli categories K̀ N(T), with natural
numbers as objects. This is natural because terms in an algebraic context typically involve
only finitely many variables. In a coalgebraic context the corresponding restriction to only
finitely many observable outcomes is less natural. Therefore we use ordinary Kleisli cat-
egories in the coalgebraic setting. A consequence is that we do not get exactly the same
result as Theorem 6.6.3.

6.8.2. Theorem. For a comonad S : Sets→ Sets there is a full and faithful functor from
Eilenberg-Moore coalgebras to models:

EM(S)op L //
[
K̀ (S),Sets

]
fp

(
X

γ→ S(X)
) � //

(
U UX

� //
)
.

Proof. The actionL(X, γ)(U) = UX is functorial inU , since each Kleisli map f : S(U)→
V yields a map L(X, γ)(f) : UX → V X given by abstraction and strength as:

Λ
(
UX ×X id × γ

// UX × S(X)
st′ // S(UX ×X)

S(ev)
// S(U)

f
// V
)
,

where the swapped strength map st′ is as in (5.12). Explicitly,

L(X, γ)(f) = λg ∈ UX . λx ∈ X. f
(
S(g)(γ(x))

)
. (6.30)

DRAFT

6.8. Coalgebras and assertions 3096.8. Coalgebras and assertions 3096.8. Coalgebras and assertions 309

We show that (Kleisli) identities are preserved, using that comonads on Sets are strong, see
Exercise 5.2.13; preservation of composition is proven similarly, and is left to the reader.

L(X, γ)(id) = Λ
(
ε ◦ S(ev) ◦ st′ ◦ (id × γ)

)

= Λ
(
ev ◦ ε ◦ st′ ◦ (id × γ)

)

= Λ
(
ev ◦ (id × ε) ◦ (id × γ)

)

= Λ(ev)

= id.

This L is also functorial: for a map of coalgebras
(
X

γ→ S(X)
) h−→

(
Y

β→ S(Y)
)

we
get a natural transformation L(h) : L(Y, β) ⇒ L(X, γ) with components L(h)U = Uh =
(−) ◦ h : UY → UX .

Clearly, this yields a faithful functor: if Uh = Uk : UY → UX for each U , then
by taking U = Y and precomposing with the identity on Y we get h = Y h(idY) =
Y k(idY) = k. For fullness we have to do more work. Assume a natural transformation
σ : L(Y, β) ⇒ L(X, γ). Applying the component σY : Y Y → Y X at Y to the identity
function yields a map h = σY (idY) : X → Y . We must show two things: h is a map of
coalgebras, and σU = Uh : UY → UX . We start with the latter.

• First we notice that for a function f : U → V we have:

L(X, γ)(f ◦ ε) = fX : UX −→ V X .

We need to show σU (g) = Uh(g) = g ◦ h for each g : Y → U . But such a function
g yields a naturality square:

L(Y, β)(Y) = Y Y

L(Y, β)(g ◦ ε) = gY

��

σY // Y X = L(X, γ)(Y)

gX = L(X, γ)(g ◦ ε)
��

L(Y, β)(V) = UY σU
// UX = L(X, γ)(U)

Now we are done:

Uh(g) = g ◦ h = gX(h) =
(
gX ◦ σY

)
(idY) =

(
σU ◦ gY

)
(idY) = σU (g).

• In order to show that h = σY (idY) : X → Y is a map of coalgebras we use the nat-
urality diagram below. It involves the identity function S(Y) → S(Y), considered
as map Y → S(Y) in the Kleisli category K̀ (S).

L(Y, β)(Y) = Y Y

L(Y, β)(idS(Y))
��

σY // Y X = L(X, γ)(Y)

L(X, γ)(idS(Y))
��

L(Y, β)(S(Y)) = S(Y)Y σS(Y)

// UX = L(X, γ)(S(Y))

The description (6.30) now yields the required equation:

S(h) ◦ γ = L(X, γ)(idS(Y))(h) by (6.30)

=
(
L(X, γ)(idS(Y)) ◦ σY

)
(idY)

=
(
σS(Y) ◦ L(Y, β)(idS(Y))

)
(idY) by naturality

= σS(Y)(β) by (6.30)

= S(Y)h(β) by the previous point

= β ◦ h.

DRAFT

310 Chapter 6. Invariants and Assertions310 Chapter 6. Invariants and Assertions310 Chapter 6. Invariants and Assertions

We turn to assertions for coalgebras. Here we are not interested in the way that as-
sertions are formed syntactically, e.g. via modal operators like in Section 6.5, but in their
meaning. There are several significant differences with the approach for algebras.

• In the coalgebraic case we will be using predicates instead of relations (as for alge-
bras).

• We distinguish axioms and axiom systems. Axioms are simply given by a subset of
a final coalgebra. Axiom systems on the other hand involve collections of subsets,
given in a functorial manner, like in Definition 6.7.3.

Axioms are easier to work with in the kind of coalgebraic “class-style” specifications
that we are interested in here—see also the next section—and will thus receive most
attention. Following [172] they may be called behavioural axioms (or sinks, like
in [372]).

In particular, this emphasis on subsets of a final coalgebra as axioms means that
arbitrary cofree coalgebras on colours (and “recolouring”, see Exercise 6.8.8) do not
play a big role here—unlike in many other papers [172, 47, 16].

• We do not describe a deductive calculus for predicates on coalgebras. Such a calcu-
lus is described in [16, 388] via a “child” and a “recolouring” rule, corresponding to
the temporal operators � and � (see Exercise 6.8.8). These rules are defined via clo-
sure under all operations of some sort (successor and recolouring) and thus involve
greatest fixed points. Hence they are not deductive logics in a traditional sense, with
finite proof trees.

• As already explained above, before Theorem 6.8.2, we use ordinary (non-finitary)
Kleisli categories in the coalgebraic case, since it is natural to have finitely many
variables in (algebraic) terms, but not to restrict observations to finite sets.

6.8.3. Definition. (i) Let F : Sets→ Sets be a functor with final coalgebra Z ∼=→ F (Z).
Axioms for F are given by a (single) subset A ⊆ Z.

A coalgebra c : X → F (X) satisfies A if the image of the unique coalgebra map
behc : X → Z is contained in A. That is, if there is a map of predicates >(X)→ A in:

X

>(X)

//______ A
��

��

X
behc

// Z
or

∐
behc

(>) ≤ A or beh−1
c (A) = >.

where >(X) = (X ⊆ X) for the truth predicate on X . In that case we write c |= A.
(ii) Similarly, axioms for a comonad S : Sets→ Sets are given by a subsetA ⊆ S(1)

of the carrier of the final coalgebra δ : S(1) → S2(1), that is, of the cofree coalgebra on a
final/singleton set 1.

An Eilenberg-Moore coalgebra γ : X → S(X) satisfies these axioms, written as γ |=
A, if the image of the unique coalgebra map S(!X) ◦ γ : X → S(1) is contained in A.

(iii) In this way we get full subcategories:

CoAlg(F,A) ↪→ CoAlg(F) and EM(S,A) ↪→ EM(S)

of functor and comonad coalgebras satisfying A.

In case the comonad S is a cofree comonad F∞ on a functor F , then the two ways
of describing attributes coincide, because the final F -coalgebra Z is the cofree comonad
F∞(1) at 1. Moreover, validity for a functor coalgebra X → F (X) is the same as validity
for the associated Eilenberg-Moore coalgebra X → F∞(X), see Exercise 6.8.2.

Axioms as defined above can also be described in a functorial manner. We shall do so
below for comonads, and leave the analogue for functors as exercise below.

DRAFT

6.8. Coalgebras and assertions 3116.8. Coalgebras and assertions 3116.8. Coalgebras and assertions 311

6.8.4. Lemma. Let S : Sets→ Sets be a comonad with axiomsA ⊆ S(1). Then one can
define two functors AK̀ and AEM as below.

Pred

��

Pred

��

K̀ (S) //

AK̀
66nnnnnnnnnnnnn
Sets EM(S) //

AEM
66mmmmmmmmmmmm
Sets

Applying these functors to an arbitrary morphism yields a pullback diagram (between pred-
icates).

For an Eilenberg-Moore coalgebra γ : X → S(X) the following statements are then
equivalent.

(a). γ |= A;

(b). AEM(X, γ) = >;

(c). γ is a map of predicates >(X)→ AK̀ (X), i.e. Im(γ) =
∐
γ(>) ≤ AK̀ (X);

(d). for each f : X → U , the Kleisli extension S(f) ◦ γ : X → S(U) is a map of
predicate >(X)→ AK̀ (U).

This last formulation is the coalgebraic analogue of validity of axiom systems in al-
gebras from Definition 6.7.3. Hence in the present context we shall call a collection of
predicates B(U) ⊆ S(U) forming a functor B : K̀ (S) → Pred as in the above triangle
on the left an axiom system. Such a system is automatically closed under substitution—
and in particular under recolourings, see Exercise 6.8.8. The system holds in a coalgebra
X → S(X) if the image of the coalgebra is contained in B(X) ⊆ S(X), like in (c) above.
Equivalently, condition (d) may be used.

Proof. (i) For an object (set) U ∈ K̀ (S) use the unique map !U : U → 1 to define a
predicate by pullback:

AK̀ (U) = S(!U)−1
(
A
)
⊆ S(U).

We have to show that for each map g : U → V in the Kleisli category K̀ (S), the resulting
Kleisli extension g$ = S(g) ◦ δ : S(U) → S(V) is a map of predicates AK̀ (U) →
AK̀ (V). But this holds because the equation:

S(!V) ◦ g$ = S(!V ◦ g) ◦ δ = S(!S(U)) ◦ δ = S(!U ◦ ε) ◦ δ = S(!U)

yields the required dashed map in:

AK̀ (U)
��

��

**//_____ AK̀ (V)
��

��

_�
// A
��

��

S(U)
g$

//

S(!U)

44S(V)
S(!V)

// S(1)

By the Pullback Lemma (Exercise 4.2.6) the rectangle on the left is a pullback.
(ii) Similarly, for an Eilenberg-Moore algebra γ : X → S(X) one defines a predicate:

AEM(X, γ) =
(
S(!X) ◦ γ

)−1
(A) ⊆ X.

DRAFT

312 Chapter 6. Invariants and Assertions312 Chapter 6. Invariants and Assertions312 Chapter 6. Invariants and Assertions

For a map of coalgebras
(
X

γ→ S(X)
) h−→

(
Y

β→ S(Y)
)

one obtains a pullback on the
left below.

AEM(X, γ)
��

��

**//_____ AEM(Y, β)
��

��

_�
// A
��

��

X
h //

S(!X) ◦ γ

33Y
S(!Y) ◦ β

// S(1)

This works since:

S(!Y) ◦ β ◦ h = S(!Y) ◦ S(h) ◦ γ = S(!X) ◦ γ.

(iii) Finally, γ |= A in (a) means
∐
S(!X)◦γ(>) ≤ A. Equivalently, > =

(
S(!X) ◦

γ
)−1

(A) = AEM(X, γ) as in (b). But since
(
S(!X) ◦ γ

)−1
(A) = γ−1S(!X)−1(A) =

γ−1
(
AK̀ (X)

)
this is equivalent to the statement in (c):

∐
γ(>) ⊆ AK̀ (X). For each

function f : X → U the map S(f) = (f ◦ ε)$: S(X) → S(Y) is a map of predicates
AK̀ (X) → AK̀ (U) by functoriality of AK̀ . Hence by precomposing this map with the
map in (c) we get (d). In order to get from (d) to (a) one instantiates with f = idX .

6.8.5. Example. We consider a simplified version of the bank account specification from
Example 6.5.2, with only a balance bal : X → N and deposit operation dep : X×N→ X .
The relevant assertion:

bal
(
dep(x, n)

)
= bal(x) + n (6.31)

was written in Example 6.5.2 in modal logic style as:

bal ↓m ` [dep(n)]
(
bal ↓(m+ n)

)
.

The assertion (6.31) can be interpreted directly in any coalgebra 〈dep,bal〉 : X → F (X),
for F = (−)N × N, namely as subset of the state space:

{x ∈ X | ∀n ∈ N.bal
(
dep(x, n)

)
= bal(x) + n}. (6.32)

One expects that assertion (6.31) holds in the coalgebra if this set is the whole of X . We
investigate this situation in some detail.

Definition 6.8.3 involves assertions as subsets of final coalgebras. By Proposition 2.3.5
the final F -coalgebra is NN?

with operations:

bal(ϕ) = ϕ(〈〉) and dep(ϕ, n) = λσ ∈ N?. ϕ(n · σ).

The assertion (6.31) can be described as subset of this final coalgebra:

A = {ϕ ∈ NN? | ∀n ∈ N. ϕ(〈n〉) = ϕ(〈〉) + n}.

For an arbitrary coalgebra 〈dep,bal〉 : X → XN×N the unique coalgebra map beh : X →
NN?

is, following the proof of Proposition 2.3.5, given by:

beh(x) = λσ ∈ N?.bal
(
dep∗(x, σ)

)

= λ〈n1, . . . , nk〉 ∈ N?.bal
(
dep(· · · dep(x, n1) · · · , nk)

)
.

We can now see that the predicate (6.32) is simply beh−1(A). Hence our earlier statement
that validity of the assertion means that the predicate (6.32) is all of X is precisely what is
formulated in Definition 6.8.3.

We add two more observations.

DRAFT

6.8. Coalgebras and assertions 3136.8. Coalgebras and assertions 3136.8. Coalgebras and assertions 313

(i) A simple example of a model of this specification takes the natural numbers N as
state space. The balance operation bal : N → N is the identity function, and the deposit
operation dep : N × N → N is addition. Clearly, assertion (6.31) holds. It is not hard
to see that this model is the final one satisfying this assertion: for an arbitrary coalgebra
c : X → XN × N satisfying (6.31), its “balance” map π2 ◦ c : X → N is a map of
coalgebras. Exercise 6.8.4 deals with an alternative “history” model that keeps track of
past transactions.

(ii) We briefly describe the functorial descriptionAK̀ : K̀ (F∞)→ Pred of assertions,
from Lemma 6.8.4, for this bank example. An explicit description of the cofree comonad
F∞(U) = (U × N)N

?

is obtained via Propositions 2.5.3 and 2.3.5. Its operations are:

bal(ϕ) = π2ϕ(〈〉) and dep(ϕ, n) = λσ ∈ N?. ϕ(n · σ).

The axiom system AK̀ : K̀ (F∞) → Pred from Lemma 6.8.4 determined by (6.31) is
given by:

AK̀ (U) = F∞(!U)−1
(
A
)

= {ϕ ∈ F∞(U) | ∀n ∈ N. π2ϕ(〈n〉) = π2ϕ(〈〉) + n}.

This bank account will be investigated further in Example 6.8.10 below.

Recall from Exercise 6.2.5 that for a comonad S on Sets the associated predicate
lifting Pred(S) : Pred → Pred is also a comonad. Hence we can consider its category
of coalgebras. These Eilenberg-Moore coalgebras capture S-invariants.

6.8.6. Lemma. Let S : Sets→ Sets be a comonad with axiom system A ⊆ S(1). Recall
the induced functor AK̀ : K̀ (S) → Pred from Lemma 6.8.4. For each set U we define a
new predicate �AK̀ (U) ⊆ S(U) via the Knaster-Tarski Fixpoint Theorem (see e.g. [110,
Chapter 4]), namely as greatest fixed point of the following monotone operator.

P
(
S(U)

) AK̀ (U) ∧ δ−1
(
Pred(S)(−)

)
// P
(
S(U)

)

Hence, �AK̀ (U) is the greatest invariant for the coalgebra δ : S(U)→ S2(U), contained
in AK̀ (U), see Figure 6.4.

This yields a functor (or axiom system) �AK̀ in a situation:

EM(Pred(S))

��

Pred Pred(S)cc

��

K̀ (S) //

�AK̀
66llllllllllllllllllll AK̀
22ffffffffffffffffffff
Sets Scc

For a coalgebra γ : X → S(X) one has:

γ |= A ⇐⇒ γ |= �AK̀ .

The role of invariants (or subcoalgebras) for validity, as expressed by the last result, is
emphasised in [47].

Proof. The (greatest) fixed point �AK̀ (U) = AK̀ (U) ∧ δ−1
(
Pred(S)(�AK̀ (U))

)
is by

construction contained in AK̀ (U); the inclusion �AK̀ (U) ⊆ δ−1
(
Pred(S)(�AK̀ (U))

)

gives a factorisation:

�AK̀ (U)
��

��

//______ Pred(S)(�AK̀ (U))
��

��

S(U)
δ

// S2(U)

DRAFT

314 Chapter 6. Invariants and Assertions314 Chapter 6. Invariants and Assertions314 Chapter 6. Invariants and Assertions

By Exercise 6.2.5 this is actually an Eilenberg-Moore coalgebra of the comonad Pred(S),
and thus an S-invariant.

In order to show that �AK̀ is a functor, assume a map f : S(U) → V . We have to
show f$ = S(f) ◦ δ is a map of predicates �AK̀ (U)→ �AK̀ (V). We have:

∐
f$(�AK̀ (U)) ⊆ ∐f$(AK̀ (U)) ⊆ AK̀ (V).

The second inclusion follows from the fact that AK̀ is a functor. Since
∐
f$ preserves

invariants, by Exercise 6.2.5, we get
∐
f$(�AK̀ (U)) ⊆ �AK̀ (V)), because the latter is

the greatest invariant contained in AK̀ (V).
Assume a coalgebra γ : X → S(X). If γ |= �AK̀ , then γ |= A because of the

inclusions �AK̀ (1) ⊆ AK̀ (1) = A, as subsets of S(1). For the other direction, from
γ |= A we obtain

∐
γ(>) ⊆ AK̀ (X) as in Lemma 6.8.4 (c). But since the image

∐
γ(>)

is an invariant, again by Exercise 6.2.5, we get
∐
γ(>) ⊆ �AK̀ (X).

We recall from (6.8) that comprehension {−} can be described categorically as a func-
tor Pred → Sets, sending a predicate P � X to its domain P , considered as a set
itself. This functor {−} is right adjoint to the truth functor > : Sets → Sets. Also in
the present context comprehension is a highly relevant operation, that takes invariants to
(sub)coalgebras.

6.8.7. Proposition. Let S be a comonad on Sets.
(i) As a functor, S preserves injections.

(ii) Thus: {Pred(S)(P)} ∼= S({P}).
(iii) Comprehension {−} lifts to Eilenberg-Moore coalgebras in:

EM(S)

��

>
⊥

// EM(Pred(S))

��

{−}
jj

Sets

S

;;

>
⊥

// Pred

Pred(S)

dd

{−}
ii

Proof. (i) By Lemma 2.1.7 S preserves injections f : X → Y with X 6= ∅. There is a
counit map S(∅)→ ∅, which gives S(∅) = ∅ since ∅ is a strict initial object in Sets. Hence
S preserves all injections.

(ii) Recall that predicate lifting Pred(S) applied to a predicate m : P � X is obtained
by epi-mono factorisation of S(m) : S(P)→ S(X). But since S(m) is injective by (i), we
get Pred(S)(P) = S(P). Or, a bit more formally, {Pred(S)(m)} = S({m}).

(iii) By Exercise 2.5.13, using the isomorphism from the previous point.

6.8.8. Theorem. Let S : Sets → Sets be a comonad with an axiom system A ⊆ S(1).
Then there is a “subset” comonad {S |A} : Sets→ Sets with a comonad map π : {S |A} ⇒
S, and with an isomorphism of categories EM({S |A}) ∼=−→ EM(S,A) in:

EM(S)

a
&&MMMMMMMMMM
EM(S,A)? _oo

��

∼= // EM({S |A})

a
wwnnnnnnnnnnnn

Sets
S

::

{S |A}
cc

ll
AA

A similar result involving an induced subcomonad occurs in [159], starting from a
covariety (a suitably closed class of coalgebras), instead from axioms.

DRAFT

6.8. Coalgebras and assertions 3156.8. Coalgebras and assertions 3156.8. Coalgebras and assertions 315

Proof. On a set X , define {S |A}(X) to be the carrier of the Eilenberg-Moore subcoalge-
bra obtained by comprehension from the invariant �AK̀ (X) from Lemma 6.8.6, in:

S
(
{S |A}(X)

)
//
S(πX)

// S2(X)

{�AK̀ (X)} = {S |A}(X) // πX
//

ϑX

OO

S(X)

δX

OO

The axioms A hold by construction in the coalgebra ϑX : by functoriality of AK̀ we get a
map {S |A}(X)→ A(S(X)) in:

{S |A}(X) = �AK̀ (X)
� � //

��

πX
��

???????
AK̀ (X)
��

��������

// AK̀ (S(X))
��

��

S(X)
δ = id$

// S2(X)

It gives us the required factorisation below, using the pullback property from Lemma 6.8.4:

{S |A}(X)

((RRRRR

**

ϑX
''

AK̀ ({S |A})
��

��

//

_� AK̀ (S(X))
��

��

S({S |A}(X))
S(πX)

// S2(X)

Next we show that the mapping X 7→ ϑX forms a right adjoint to the forgetful functor
EM(S,A) → Sets. For a coalgebra β : Y → S(Y) satisfying A there is a bijective
correspondence:

Y
g

// X
==================================(
S(Y)
β ↑
Y

)

h
//

(
S({S |A}(X))

↑ ϑX

{S |A}(X)

)

This works as follows.

• Given a function g : Y → X we obtain S(g) ◦ β : Y → S(X), which is a map of
coalgebras β → δ. We get

∐
S(g)◦β(>) ⊆ AK̀ (X) in:

AK̀ (Y)
��

��

//_______ AK̀ (X)
��

��

Y
β

//

77ooooo
S(Y)

S(g) = (g ◦ ε)$
// S(X)

Since
∐
S(g)◦β(>) is an invariant by Exercise 6.2.5, it is included in the greatest

invariant:
∐
S(g)◦β(>) ⊆ �AK̀ (X) = {S |A}(X). Hence there is a unique map of

coalgebras g : Y → {S |A}(X) with πX ◦ g = S(g) ◦ β.

• Given a map of coalgebras h : Y → {S |A}(X), take h = ε ◦ πX ◦ h : Y → X .

DRAFT

316 Chapter 6. Invariants and Assertions316 Chapter 6. Invariants and Assertions316 Chapter 6. Invariants and Assertions

We leave it to the reader to check the remaining details of this correspondence, and proceed
to show that {S |A} is a comonad. We have a counit and comultiplication:

ε
{S |A}
X =

(
{S |A}(X)

πX // S(X)
εSX // X

)

δ
{S |A}
X =

(
{S |A}(X)

id{S |A}
// {S |A}2(X)

)
.

The comultiplication is obtained as map of coalgebras via the above adjoint correspon-
dence. Then, by construction it satisfies: π ◦ δ{S |A}X = ϑX . This makes π : {S |A} ⇒ S
a map of comonads, since:

S(π) ◦ π ◦ δ{S |A} = S(π) ◦ ϑ = δS ◦ π.

What remains is to show that the comparison functor K : EM(S,A) → EM({S |A})
is an isomorphism. This functor K sends a coalgebra β : Y → S(Y) satisfying A to the
coalgebra K(β) = idY : Y → {S | A}(Y) obtained via the above adjunction. Thus, by
construction, K(β) is unique with π ◦ K(β) = β.

In the other direction we have a functorK−1 that sends a coalgebra γ : X → {S |A}(X)
to K−1(γ) = π ◦ γ : X → S(X). This coalgebra satisfies A since its image is contained
in AK̀ (X), see:

AK̀ (X)
��

��

X γ
// {S |A}(X)

*

77ooooooooo

π
// S(X)

Obviously,K−1(K(β)) = β. And the equationK(K−1(β)) = β holds sinceK(K−1(β))
is the unique map f with π ◦ f = K−1(β). Since K−1(β) = π ◦ β this unique map must
be β itself.

The next result comes from [222], where it occurs in more limited form, with a direct
proof (not via the previous theorem).

6.8.9. Corollary. Let F : Sets→ Sets be a functor with cofree comonad F∞ and axioms
A ⊆ F∞(1). Then there is a comonad S with natural transformation S ⇒ F and an
isomorphism of categories:

CoAlg(F,A) ∼= EM(S)

a
��

Sets Scc

\\

Proof. Of course one defines S as subset comonad S = {F@ | A} from Theorem 6.8.8,
with isomorphism CoAlg(F∞,A) ∼= EM(S) and (composite) natural transformations
S ⇒ F∞ ⇒ F . Further, by Exercise 6.8.2, and Proposition 5.4.7 there is an isomorphism
CoAlg(F,A) ∼= EM(F∞,A). Hence we are done.

We return to our earlier bank account example, in order to determine the associated
comonad.

6.8.10. Example. In the context of Example 6.8.5 we will explicitly calculate what the
comonad is whose Eilenberg-Moore coalgebras are precisely the models of the bank asser-
tion bal(dep(x, n)) = bal(x) + n from (6.31), for coalgebras 〈dep,bal〉 : X → F (X) =
XN × N. We already saw the cofree comonad comonad F∞ is given by F∞(X) =
(X × N)N

?

, with predicates:

AK̀ (X) = {ϕ ∈ F∞(X) | ∀n ∈ N. π2ϕ(〈n〉) = π2ϕ(〈〉) + n}.

DRAFT

6.8. Coalgebras and assertions 3176.8. Coalgebras and assertions 3176.8. Coalgebras and assertions 317

It is not hard to see that the greatest invariant contained in it is:

�AK̀ (X) = {ϕ ∈ F∞(X) | ∀σ ∈ N?.∀n ∈ N. π2ϕ(n · σ) = π2ϕ(σ) + n}.

For elements ϕ in this subset the function π2 ◦ ϕ : N? → N is thus completely determined
by the value π2ϕ(〈〉) ∈ N on the empty sequence. Hence this invariant can be identified
with:

S(X) = XN? × N.

This is the comonad we seek. Its counit and comultiplication are:

ε(ϕ,m) = ϕ(〈〉) δ(ϕ,m) = 〈λσ ∈ N?. 〈λτ ∈ N?. ϕ(σ · τ), m+ Σσ〉 , m 〉,

where Σσ ∈ N is the sum of all the numbers in the sequence σ ∈ N?.
Now assume we have an Eilenberg-Moore coalgebra γ = 〈γ1, γ2〉 : X → S(X) =

XN? × N. The coalgebra equations ε ◦ γ = id and S(γ) ◦ γ = δ ◦ γ amount to the
following two equations:

γ1(x)(〈〉) = x

〈λσ. γ(γ1(x)(σ)), γ2(x) 〉 = 〈λσ. 〈λτ. γ1(x)(σ · τ), γ2(x) + Σσ 〉, γ2(x) 〉.

The latter equation can be split into two equations: for all σ, τ ∈ N?,

γ2

(
γ1(x)(σ)

)
= γ2(x) + Σσ γ1

(
γ1(x)(σ)

)
(τ) = γ1(x)(σ · τ).

These equations show that γ2 is the balance operation bal and that γ1 is the iterated deposit
operation dep∗, from (2.22), described as monoid action.

We conclude with some additional observations.

6.8.11. Remarks. (i) In Corollary 6.7.15 we have seen that each finitary monad can be
described via operations and assertions. There is no similar result for comonads. The
construction for a monad T relies on natural maps

∐
n∈N T (n) × Xn → T (X) from an

arity functor to T , which are surjective if and only if T is finitary. Dually, for a comonad
S, one may consider maps of the form:

S(X) //
∏
n∈N S(n)(nX)

u � // λn. λh ∈ nX . S(h)(u).

One can require that these maps are injective, and then proceed with the functor F (X) =∏
n∈N S(n)(nX) on the right-hand-side. However, this functor F does not seem to have

cofree coalgebras, so that the subset comonad construction from Theorem 6.8.8 does not
work here. Additionally, the functor F is not a standard arity functor of the form that
we have worked with in this book. The associated (non-standard) operations have been
investigated to some extent in [296], to which we refer for further information.

(ii) Much work has been done towards a “coalgebraic Birkhoff theorem”, characterising
a class of coalgebras that is defined by assertions via suitable closure properties, see for
instance [172, 378, 158, 372, 293, 47, 28, 16, 159, 388]. Colours and cofree coalgebras
play an important role in this work—unlike here.

(iii) In the end, the categorically inclined reader may wish to try to describe the quotient
monad T/A from Theorem 6.7.11 and the subset comonad {S | A} from Theorem 6.8.8
via quotient and comprehension adjunctions between suitable categories of (co)monads.

DRAFT

318 Chapter 6. Invariants and Assertions318 Chapter 6. Invariants and Assertions318 Chapter 6. Invariants and Assertions

Exercises

6.8.1. Describe the action on morphisms of the functor O# from Proposition 6.8.1.

6.8.2. Let F : Sets → Sets be a functor with cofree comonad F∞ and axioms A ⊆ F∞(1),
where F∞(1) is the final F -coalgebra. Recall from the proof of Proposition 5.4.7 how the
Eilenberg-Moore coalgebra K(c) : X → F∞(X) associated with the functor coalgebra
c : X → F (X) is obtained. Prove: c |= A ⇐⇒ K(c) |= A.

6.8.3. Let F : Sets → Sets be a functor with axioms A ⊆ Z, where Z ∼=→ F (Z) is a final
coalgebra. Define, like in Lemma 6.8.4, a functor:

Pred

��
CoAlg(F) //

A 44jjjjjjjjjjjjj
Sets

6.8.4. Consider the bank account specification from Example 6.8.5. Use the set N+ of non-empty
sequences of natural numbers as state space for a “history” model, with balance opera-
tion bal = last : N+ → N; define a deposit operation dep : N+ × N → N+ such that
assertion (6.31) holds.

6.8.5. Prove explicitly that the functor S with ε, δ, as described in Example 6.8.10, is a comonad
on Sets.

6.8.6. Let S : Sets → Sets be a comonad with axiom system A. Define validity of A in a
functorial model K̀ (S)→ Sets, in such a way that for a coalgebra γ : X → S(X),

γ |= A ⇐⇒ L(X, γ) |= A,

where L is the functor from Theorem 6.8.2.

6.8.7. Consider the more elaborate bank account from Example 6.5.2, with balance, deposit and
withdraw operations combined as coalgebra of the functor:

F (X) = N×XN × (X +X)N.

(i) Prove that this functor can be massaged into the isomorphic form:

X 7−→ N× P(N)×XN+N,

(ii) Use Propositions 2.5.3 and 2.3.5 to determine the cofree coalgebra F∞ on F as:

F∞(X) =
(
X × N× P(N)

)(N+N)?

.

Describe the balance, deposit and withdraw operations from Example 6.5.2 explicitly
on F∞(X).

(iii) Interpret the assertions from Example 6.5.2 as subsetA ⊆ F∞(1), and also as invari-
ant �AK̀ (X) ⊆ F∞(X).

(iv) Prove that the resulting comonad, as in Corollary 6.8.9, is S(X) = X(N+N)? × N.
(Thus, the final coalgebra S(1) is N, like for the bank account specification in Exam-
ple 6.8.5.)

6.8.8. Let S be a comonad on Sets. Following [47], we write, for a subset P ⊆ S(X),

�P =
⋂
{h−1(P) | h : S(X)→ S(X) is a coalgebra map}.

(i) Check that �P ⊆ P . This �P is the greatest subset of P closed under all recolourings
h of P .

(ii) Axiom systems are automatically closed under �: prove that for an axiom system
A : K̀ (S)→ Pred, where A(X) ⊆ S(X), one has �A(X) = A(X).

DRAFT

6.9. Coalgebraic class specifications 3196.9. Coalgebraic class specifications 3196.9. Coalgebraic class specifications 319

Coalgebraic Specification Fibonacci

Operations
val : X −→ N
next : X −→ X

Assertions
val(next(next(x))) = val(next(x)) + val(x)

Creation
val(new) = 1

val(next(new)) = 1

Figure 6.4: A coalgebraic specification of a Fibonacci system

6.9 Coalgebraic class specifications

This final section illustrates the use of assertions for coalgebras in the description of state-
based systems in computer science. After a simple example of such system specifications,
the so-called bakery algorithm (introduced by Lamport [299]) is elaborated. Its aim is to
guarantee mutually exclusive access to crucial resources. Several (temporal) properties are
derived from the assertions, given as axioms.

We start with the well-known mathematical structure of Fibonacci numbers, formulated
coalgebraically. Figure 6.4 presents a simple illustration of a “coalgebraic specification”.
It will be explained step-by-step. A coalgebraic specification is a structured text with a
name (here: ‘Fibonacci’) that describes coalgebras with an initial state satisfying asser-
tions. More formally, a coalgebraic specification consists of three parts or sections, labelled
‘operations’, ‘assertions’, ‘creation’. Here we only give an informal description, and refer
to [373, 408] for more details.

The operations section consists of a finite list of coalgebras ci : X → Fi(X) of simple
polynomial functors Fi. Of course, they can be described jointly as a single coalgebra
of the product functor F1 × · · · × Fn, but in these specifications it is clearer to describe
these operations separately, with their own names. Among the operations one sometimes
distinguishes between “fields” (or “observers”) and “methods”. Fields are coalgebras of
the form X −→ A whose result type A is a constant that does not contain the state space
X . Hence these fields do not change the state, but only give some information about it. In
contrast, methods have the state X in their result type and can change the state, i.e. have a
side-effect. Hence, in Figure 6.4, the operation val is a field and next is a method.

In object-oriented programming languages a class is a basic notion that combines data
with associated operations on such data. A coalgebraic specification can be seen as speci-
fication of such a class, where the fields capture the data and the methods their operations.

The assertions section contains assertions about the coalgebras in the operations sec-
tion. They involve a distinguished variable x : X , so that they can be interpreted as pred-
icates on the state space X , much like in Example 6.8.5. The assertions are meant to
constrain the behaviour of the coalgebras in a suitable manner.

Finally, the creation section of a coalgebraic specification contains assertions about the
assumed initial state new. These assertions may involve the coalgebras from the operations
section.

A model of a coalgebraic specification consists of (1) a coalgebra c of the (combined,
product) type described in the operations section of the specification, that satisfies the as-
sertions, and (2) an initial state that satisfies the creation conditions.

Here is a possible model of the Fibonacci specification from Figure 6.4. As state space

DRAFT

320 Chapter 6. Invariants and Assertions320 Chapter 6. Invariants and Assertions320 Chapter 6. Invariants and Assertions

class Fibonacci {

private int current_value;
private int previous_value;

public int val() {
return current_value;

}

public void next() {
int next_value = current_value + previous_value;
previous_value = current_value;
current_value = next_value;

}

public Fibonacci() {
current_value = 1;
previous_value = 0;

}
}

Figure 6.5: A Java implementation for the Fibonacci specification from Figure 6.4

we take

X = {(f, n) ∈ NN × N | ∀m ≥ n. f(m+ 2) = f(m+ 1) + f(m)} (6.33)

with operations:

val(f, n) = f(n) and next(f, n) = (f, n+ 1).

It is clear that the resulting coalgebra 〈val,next〉 : X → N × X satisfies the assertion
from Figure 6.4. As initial state we can take new = (fib, 0) ∈ X , where fib : N → N is
the well-known recursively defined Fibonacci function satisfying fib(0) = 1, fib(1) = 1,
and fib(m + 2) = fib(m + 1) + fib(m), for all m ∈ N. Notice that our states (f, n) ∈
X implicitly keep track of the stage n in the infinite sequence of Fibonacci numbers
〈fib(0), fib(1), fib(2), . . .〉. But this stage is not directly visible from the outside. The
specification only requires that the current value is available, and that a next state can be
computed.

Earlier we mentioned that coalgebraic specifications can be understood as specifications
of classes in object-oriented programming languages. We shall sketch how this works, by
describing a class in the object-oriented programming language Java [43] that can be under-
stood as “implementation” of the Fibonacci specification from Figure 6.4. It is presented
in Figure 6.5. First we note that this Java implementation uses bounded integers int
where the specification uses (unbounded) natural numbers N, since N is not available in
Java.2 This already leads to a mismatch. Further, the Java implementation uses an auxil-
iary field previous value which is not present in the specification. However, since it
is private and since it has no “get” method, this previous value is not visible from
the outside. Apart from overflow (caused by the bounded nature of int), the assertion
from Figure 6.4 seems to hold for the implementation. Also, the creation conditions seem
to hold for the initial state resulting from the constructor Fibonacci() in Figure 6.5.

Continuing the discussion of this Java implementation a bit further, one can ask whether
there is a way to make it mathematically precise that the Java implementation from Fig-
ure 6.5 yields a model (as defined above) for the coalgebraic specification in Figure 6.4.

2The integral type int in Java uses 32-bit “signed” numbers, which are in the interval [−231, 231 − 1] =
[−2147483648, 2147483647].

DRAFT

6.9. Coalgebraic class specifications 3216.9. Coalgebraic class specifications 3216.9. Coalgebraic class specifications 321

class Fibonacci {

//@ invariant previous_value >= 0 &&
//@ current_value >= previous_value;

private int current_value;
private int previous_value;

//@ ensures \result == current_value;
public int val() {

return current_value;
}

//@ assignable previous_value, next_value;
//@ ensures previous_value == \old(current_value) &&
//@ current_value == \old(current_value) +
//@ \old(previous_value);
public void next() {

int next_value = current_value + previous_value;
previous_value = current_value;
current_value = next_value;

}

//@ assignable previous_value, next_value;
//@ ensures previous_value == 0 && current_value == 1;
public Fibonacci() {

current_value = 1;
previous_value = 0;

}
}

Figure 6.6: The Java Fibonacci class from Figure 6.5 with JML annotations

One way is to give a “coalgebraic semantics” to Java by interpreting Java programs as
suitable coalgebras. This happened for instance in [67, 245, 238]. However, from a pro-
gramming perspective it makes more sense to incorporate assertions as used in coalge-
braic specification into the programming language. This can be done for instance via the
specification language JML [85]. It involves assertions, like class invariants and pre- and
post-conditions for methods, that can be checked and verified with the aid of various tools.
Figure 6.6 contains an annotated version of the Java Fibonacci class, where logical asser-
tions are preceded by special comment signs //@ making them recognisable for special
JML compilers and tools. The assertions themselves are mostly self-explanatory, except
possibly for two keywords: \old(-) that refers to the value of a field before a method
call, and \result refers to the outcome of a (non-void) method.

We return to our more mathematically oriented approach to coalgebraic specifications,
and ask ourselves what the final coalgebra is satisfying the assertion from Figure 6.4—
ignoring the initial state for a moment. The general approach of Theorem 6.8.8, con-
cretely described in Example 6.8.10, tells that we should first look at the final coalge-
bra of the functor X 7→ N × X—which is NN by Proposition 2.3.5—and consider the
greatest invariant P = �(assertion) ⊆ NN as subcoalgebra. It is not hard to see that
P = {f ∈ NN | ∀m. f(m + 2) = f(m + 1) + f(m)}. This means that any f ∈ P
is completely determined by its first to values f(0) and f(1). Hence the final coalgebra
satisfying the assertions can be identified with N2 = N×N, with operations val : N2 → N

DRAFT

322 Chapter 6. Invariants and Assertions322 Chapter 6. Invariants and Assertions322 Chapter 6. Invariants and Assertions

and next : N2 → N2 given by

val(n1, n2) = n2 and next(n1, n2) = (n2, n2 + n1).

It satisfies the assertion from Figure 6.4:

val(next(next(n1, n2))) = val(next(n2, n2 + n1))

= val(n1 + n2, (n2 + n1) + n2)

= (n2 + n1) + n2

= val(next(n1, n2)) + val(n1, n2).

Within this final coalgebra we also find the initial state new = (0, 1) ∈ N2 satisfying the
creation condition from Figure 6.4.

Interestingly, this final coalgebra with initial state corresponds closely to the Java im-
plementation from Figure 6.5. It forms the “minimal realisation” of the required behaviour,
which only needs to involve two natural numbers.

6.9.1 Bakery algorithm

We now consider a more elaborate example of a coalgebraic specification. Imagine a situa-
tion where different, distributed systems need to share access to a scarce common resource,
such as a printer. The access is required to be exclusive: only one system may be at a “crit-
ical stage”, i.e. have access to the resource, at any time. Mutual exclusion is a fundamental
issue in distributed computing, for which many different algorithms have been proposed.
We shall consider one particular solution: the bakery algorithm of [299]. It is a classic,
decentralised protocol, based on the idea of regulating access via a ticket system as used
for example in bakeries: upon entrance each customer takes a ticket; when customers want
to access the common resource (the clerk behind the counter), the numbers on their slips
are compared, and the one with the lowest numbered slip wins.

The basic idea of this algorithm is quite simple. But a precise formalisation and verifi-
cation is far from trivial. Here we shall present a coalgebraic formalisation using assertions.
The format will use coalgebraic specifications as introduced earlier in this section, involv-
ing an unbounded number of processes that may be in one of three states: ‘idle’, ‘trying’,
‘critical’. We do not focus on obtaining a model of this specification, but on deriving logical
consequences. Our verification will concentrate on the following two crucial properties.

• Safety: at most one process is ‘critical’ at any time.

• Liveness: a process that is ‘trying’ will eventually become ‘critical’

These properties will be formulated via the temporal logic of coalgebras from Section 6.4.
In our coalgebraic description of the bakery algorithm there is a class bakery in Fig-

ure 6.8, which contains a field procs : X × N → process describing in each state x ∈ X
processes process(x, n) indexed by n ∈ N, each with their own state. These processes have
an identity, namely n, and share a ticket list. The ticket of process n appears at position n
in this ticket list. The formalisation of processes is given in Figure 6.7. We use, as before,
the symbol ‘X’ to describe the state space. There is no connection betweenX’s in different
specifications.

In the process specification there are four fields, and one method next : X → X + X .
The use of the structured output type X + X is typically coalgebraic. It says that the
method may result in two different modes, each time producing a successor state. In this
specification we underspecify the coproduct outcomes, and thus introduce a modest amount
of non-determinism: the assertions do not prescribe in which of the outcomes of + the
result next(x) will be. This is somehow left to the environment, which is not included in

DRAFT

6.9. Coalgebraic class specifications 3236.9. Coalgebraic class specifications 3236.9. Coalgebraic class specifications 323

Coalgebraic Specification process

Operations
state : X −→ {idle, trying, critical}
processid : X −→ N
ownticket : X −→ N
ticketlist : X × N −→ N
next : X −→ X +X

Assertions
state(x) = idle⇒

CASES next(x) OF

κ1(y) 7−→ // remain idle

processid(y) = processid(x) ∧
state(y) = idle ∧
ownticket(y) = 0

κ2(z) 7−→ // become trying, with highest ticket

processid(z) = processid(x) ∧
state(z) = trying ∧
∀n ∈ N. n 6= processid(z)⇒

ticketlist(z, n) < ownticket(z)

state(x) = trying⇒
CASES next(x) OF

κ1(y) 7−→ // give up trying, and become idle

processid(y) = processid(x) ∧
state(y) = idle ∧
ownticket(y) = 0

κ2(z) 7−→ // become critical if own ticket is lowest

processid(z) = processid(x) ∧
(IF ∀n ∈ N. n 6= processid(z)⇒

(ticketlist(x, n) = 0 ∨ ownticket(x) < ticketlist(x, n))

THEN state(z) = critical ∧ ownticket(z) = 0

ELSE state(z) = trying ∧ ownticket(z) = ownticket(x))

state(x) = critical⇒
CASES next(x) OF

κ1(y) 7−→ // only one tick critical allowed

false

κ2(z) 7−→ // become idle

processid(z) = processid(x) ∧
state(z) = idle ∧
ownticket(z) = 0

Figure 6.7: The specification of a process in the bakery algorithm

DRAFT

324 Chapter 6. Invariants and Assertions324 Chapter 6. Invariants and Assertions324 Chapter 6. Invariants and Assertions

Coalgebraic Specification bakery

Operations
procs : X × N −→ process // see Figure 6.7

next : X −→ X

Assertions
(1) ∀n,m, k ∈ N. ticketlist(procs(x, n), k) = ticketlist(procs(x,m), k)

(2) ∀n ∈ N. ticketlist(procs(x, n), n) = ownticket(procs(x, n))

(3) ∀n ∈ N.processid(procs(x, n)) = n

(4) ∀n ∈ N.procs(next(x)) = CASES next(procs(x, n)) OF

κ1(y) 7−→ y

κ2(z) 7−→ z

Creation
(1) ∀n ∈ N.ownticket(procs(new, n)) = 0

(2) ∀n ∈ N. state(procs(new, n)) = idle

Figure 6.8: A specification of the bakery algorithm

the specification. The assertion only tells that what is the case when next(x) ends up in the
left or right +-component.

The assertion in Figure 6.7 captures the relevant properties. It involves explanatory
comments after the comment marker ‘//’. The intended cycle of a process is idle →
trying → critical → idle. The first +-option in the output of next(x) is for stagnation
or fall-back, and the second one is for progress.

We briefly review the process assertions, in Figure 6.7. First we note that the processid
never changes by moving to a successor state. What does change are the process’s ticket
ownticket(x) ∈ N and state state(x) ∈ {idle, trying, critical}. The assertion block con-
tains a conjunction of three implications. The first one says that if the current state state(x)
is idle and next(x) ends up in the first +-option, i.e. is of the form κ1(y), then the resulting
successor state y is still idle, with the same processid, and with ticket 0. If however next(x)
is of the form κ2(z) in the second +-option, then the state has become trying, the processid
is unchanged, and its own ticket is bigger than all the others.

The second implication tells that if the current state is trying, and next(x) is of the form
κ1(y), then the process falls back and is again idle. If next(x) = κ2(z) then the process
is either still trying, or has become critical. The latter is only possible if its ticket is lower
than all the others. Notice that in becoming critical the ticket is reset to 0.

The final implication deals with the case when the process’ state is critical. The result
next(x) is then forced to be of the form κ2(z), with z’s state idle. This says that after a
‘next’, a critical process must have become idle.

The use of coalgebras in this specification is not essential. It is convenient because it
exploits the typing to clearly distinguish different forms of termination for the ‘next’ oper-
ation. Different processes are combined in the bakery specification itself, see Figure 6.8.
It combines a countable number of processes in a field procs, with its own next method.
The latter behaves for each process as the process’s own next, see assertion (4). The first
two assertions (1) and (2) ensure that all processes share the same ticket list, in which the
ticket of process n occurs at index n. The third assertion says that the identity of process n
is indeed n. The creation condition say that in the initial state of the whole bakery system
each process is in state idle with ticket equal to 0.

In the remainder of this section we shall list some consequences of the specification

DRAFT

6.9. Coalgebraic class specifications 3256.9. Coalgebraic class specifications 3256.9. Coalgebraic class specifications 325

in Figure 6.8—where we assume that the assertions from Figure 6.7 hold for each process
procs(x, n). The most important consequences are ‘safety’ and ‘liveness’ (see Proposi-
tions 6.9.2 and 6.9.3 below). All these results have been proven formally using the theorem
prover PVS [337],indexStheorem!— prover after the automatic translation of coalgebraic
class specifications to logical theories from [200, 199, 408, 373]. This translation generates
in particular appropriate definitions for bisimilarity, invariance, and temporal operators. We
shall especially use the latter.

The first results link the ticket with the state of a process, in all reachable states.

6.9.1. Lemma. The following two results can be derived from the bakery assertions in
Figure 6.8.

�
(
{x ∈ X | ownticket(procs(x, n)) = 0⇐⇒

(state(procs(x, n)) = idle ∨ state(procs(x, n)) = critical)}
)

(new)

�
(
{x ∈ X | ownticket(procs(x, n)) > 0⇐⇒

state(procs(x, n)) = trying}
)

(new)

Statements of the form �(P)(new) express that P holds for all successor states of the
initial state, i.e. for all reachable states.

Proof. We shall sketch the proof only of the first statement, since the second one readily
follows from the first one. According to the meaning of the henceforth operator �−, see
Definition 6.3.1, we need to provide a predicate P ⊆ X with:

1. P (new)

2. P is an invariant, i.e. P (x)⇒ P (y) when next(x) = κ1(y), and also P (x)⇒ P (z)
when next(x) = κ2(z).

3. P (x) =⇒
(
ownticket(procs(x, n)) = 0⇐⇒
(state(procs(x, n)) = idle ∨ state(procs(x, n)) = critical)

)

It is not hard to see that we can take for P the predicate inside the �(−) operator, i.e. the
predicate on the right-hand-side of the implication =⇒ in (3).

6.9.2. Proposition (Safety). No two processes are critical at the same time: for all process
indices n,m ∈ N,

�
(
{x ∈ X | state(procs(x, n)) = critical ∧

state(procs(x,m)) = critical =⇒ n = m}
)
(new).

Proof. Like before, the predicate inside �(−) is an invariant.

6.9.3. Proposition (Liveness). A process that is trying—and does not give up in such a
situation—will eventually become critical:

�
(
{x ∈ X | state(procs(x, n)) = trying⇒

state(procs(next(x), n)) 6= idle}
)
(new)

=⇒
�
(
{x ∈ X | state(procs(x, n)) = trying⇒

♦({y ∈ X | state(procs(y, n)) = critical})(x)}
)
(new)

DRAFT

326 Chapter 6. Invariants and Assertions326 Chapter 6. Invariants and Assertions326 Chapter 6. Invariants and Assertions

Proof. The proof uses Lemma 6.9.1 together with the following auxiliary statement about
uniqueness of tickets: for all process indices n,m ∈ N,

�
(
{x ∈ X |ownticket(procs(x, n)) = ownticket(procs(x,m)) ∧

ownticket(procs(x, n)) > 0 =⇒ n = m}
)
(new).

The argument centres around the fact that in each reachable state the number of processes
with non-zero ticket below process n’s ticket is finite, and decreases with every next-step.
Hence eventually it will become process n’s turn.

As already mentioned, the above coalgebraic presentation of Lamport’s bakery algo-
rithm relies on the formalisation of the coalgebraic class specification language ‘CCSL’.
and its translation to logical theories. Similar techniques have become also available as
an extension (called ‘CoCASL’) of the common algebraic specification language ‘CASL’,
see [333].

This coalgebraic formalism is more powerful than the one originally used by Lam-
port, namely TLA, for temporal logic of actions [300]. TLA involves variables v and their
primed version v′ describing their value in a successor state. These variables can be un-
derstood as fields v : X → A on a state space X , with a method next : X → X so that
v′ = v ◦ next. In a coalgebraic setting there can be much more complicated and expressive
methods than just X → X .

Exercises

6.9.1. Describe the unique coalgebra map from the state space (6.33) to the final coalgebra N2 of
the Fibonacci specification in Figure 6.4. Check that it preserves the initial state.

6.9.2. Derive from the Fibonacci specification in Figure 6.4:

�
(
{x ∈ X | val(next(x)) ≥ val(x)}

)
(new).

6.9.3. Consider the functor F (X) = N×X for the Fibonacci specification in Figure 6.4.
(i) Show that the cofree comonad F∞ on F is given by F∞(X) = (X × N)N; describe

the coalgebra structure F∞(X)→ F
(
F∞(X)

)
.

(ii) Interpret the assertion from Figure 6.4 as a subset A(X) ⊆ F∞(X) and determine
the greatest invariant �A(X) ⊆ F∞(X).

(iii) Prove that the comonad induced by Corollary 6.8.9 is:

S(X) = XN × N× N,

with counit and comultiplication:

ε(ϕ,m, n) = ϕ(0)

δ(ϕ,m, n) = 〈λk ∈ N. 〈ϕ(k + (−)), Fib(k,m, n) 〉, m, n 〉,

where Fib(k,−) : N2 → N2 is the outcome of the monoid action obtained by doing k
Fibonacci steps starting from the input:

Fib(0,m, n) = (m,n) Fib(k + 1,m, n) = Fib(k, n,m+ n).

Check that the Eilenberg-Moore coalgebras of S correspond to Fibonacci coalgebras
(without initial state).

6.9.4. Consider a coalgebra 〈val, next〉 : X → N×X satisfying the assertion from the Fibonacci
specification in Figure 6.4. Prove that for each x ∈ X and ε > 0,

♦
(
�
(
{y ∈ X |

∣∣∣∣
val(next(y))

val(y)
− 1 +

√
5

2

∣∣∣∣ < ε}
))

(x)

[This is coalgebraic/temporal way of saying the the limit of the quotient val(next(n+1)(x))

val(next(n)(x))
is

the golden ratio 1+
√

5
2

, as n goes to infinity.]

DRAFT

6.9. Coalgebraic class specifications 3276.9. Coalgebraic class specifications 3276.9. Coalgebraic class specifications 327

6.9.5. What is the functor associated with the process specification from Figure 6.7? Describe
the associated modal operators (see Exercise 6.5.5). Use these operators to reformulate the
assertions in Figure 6.7.

6.9.6. Prove the ‘uniqueness of tickets’ assertion in the beginning of the proof of Proposition 6.9.3.

DRAFT

328 Chapter 6. Invariants and Assertions328 Chapter 6. Invariants and Assertions328 Chapter 6. Invariants and Assertions

DRAFT
Bibliography

[1] M. Abott, T. Altenkirch, and N. Ghani. Containers: Constructing strictly positive
types. Theor. Comp. Sci., 342:3–27, 2005.

[2] M. Abott, T. Altenkirch, N. Ghani, and C. McBride. Categories of containers. In
A.D. Gordon, editor, Foundations of Software Science and Computation Structures,
number 2620 in Lect. Notes Comp. Sci., pages 23–38. Springer, Berlin, 2003.

[3] M. Abott, T. Altenkirch, N. Ghani, and C. McBride. Derivatives of containers. In
M. Hofmann, editor, Typed Lambda Calculi and Applications, number 2701 in Lect.
Notes Comp. Sci., pages 23–38. Springer, Berlin, 2003.

[4] S. Abramsky. A domain equation for bisimulation. Inf. & Comp., 92:161–218, 1990.

[5] S. Abramsky. Domain theory in logical form. Ann. Pure & Appl. Logic, 51(1/2):1–
77, 1991.

[6] S. Abramsky. Coalgebras, Chu spaces, and representations of physical systems. In
Logic in Computer Science, pages 411–420. IEEE, Computer Science Press, 2010.

[7] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In
K. Engesser, Dov M. Gabbai, and D. Lehmann, editors, Handbook of Quantum Logic
and Quantum Structures: Quantum Logic, pages 261–323. North Holland, Elsevier,
Computer Science Press, 2009.

[8] P. Aczel. Non-well-founded sets. CSLI Lecture Notes 14, Stanford, 1988.

[9] P. Aczel. Final universes of processes. In S. Brookes, M. Main, A. Melton, M. Mis-
love, and D. Schmidt, editors, Math. Found. of Programming Semantics, number
802 in Lect. Notes Comp. Sci., pages 1–28. Springer, Berlin, 1994.

[10] P. Aczel, J. Adámek, S. Milius, and J. Velebil. Infinite trees and completely iterative
theories: a coalgebraic view. Theor. Comp. Sci., 300 (1-3):1–45, 2003.

[11] P. Aczel and N. Mendler. A final coalgebra theorem. In D. Pitt, A. Poigné, and
D. Rydeheard, editors, Category Theory and Computer Science, number 389 in Lect.
Notes Comp. Sci., pages 357–365. Springer, Berlin, 1989.

[12] J. Adámek. Free algebras and automata realizations in the language of categories.
Comment. Math. Univ. Carolinae, 15:589–609, 1974.

[13] J. Adámek. Observability and Nerode equivalence in concrete categories. In
F. Gécseg, editor, Fundamentals of Computation Theory, number 117 in Lect. Notes
Comp. Sci., pages 1–15. Springer, Berlin, 1981.

[14] J. Adámek. On final coalgebras of continuous functors. Theor. Comp. Sci., 294:3–29,
2003.

329

DRAFT

330 Bibliography330 Bibliography330 Bibliography

[15] J. Adámek. Introduction to coalgebra. Theory and Applications of Categories,
14(8):157–199, 2005.

[16] J. Adámek. A logic of coequations. In L. Ong, editor, Computer Science Logic,
number 3634 in Lect. Notes Comp. Sci., pages 70–86. Springer, Berlin, 2005.

[17] J. Adámek and V. Koubek. On the greatest fixed point of a set functor. Theor. Comp.
Sci., 150:57–75, 1995.

[18] J. Adámek and C. Kupke, editors. Coalgebraic Methods in Computer Science
(CMCS 2008), volume 203(5) of Elect. Notes in Theor. Comp. Sci., 2008.

[19] J. Adámek and C. Kupke, editors. Coalgebraic Methods in Computer Science
(CMCS 2008), volume 208(12) of Inf. & Comp., 2010.

[20] J. Adámek, D. Lücke, and S. Milius. Recursive coalgebras of finitary functors.
RAIRO-Theor. Inform. and Appl., 41:447–462, 2007.

[21] J. Adámek and S. Milius, editors. Coalgebraic Methods in Computer Science
(CMCS’04), number 106 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam,
2004.

[22] J. Adámek and S. Milius, editors. Coalgebraic Methods in Computer Science
(CMCS 2004), volume 204(4) of Inf. & Comp., 2006.

[23] J. Adámek, S. Milius, and J. Velebil. A general final coalgebra theorem. Math.
Struct. in Comp. Sci., 15(3):409–432, 2005.

[24] J. Adámek, S. Milius, and J. Velebil. Elgot algebras. Logical Methods in Comp. Sci.,
2(5), 2006.

[25] J. Adámek, S. Milius, and J. Velebil. Algebras with parametrized iterativity. Theor.
Comp. Sci., 388:130–151, 2007.

[26] J. Adámek, S. Milius, and J. Velebil. Equational properties of iterative monads. Inf.
& Comp., 208(12):1306–1348, 2010.

[27] J. Adámek and H.-E. Porst. From varieties of algebras to varieties of coalgebras. In
A. Corradini, M. Lenisa, and U. Montanari, editors, Coalgebraic Methods in Com-
puter Science, number 44(1) in Elect. Notes in Theor. Comp. Sci. Elsevier, Amster-
dam, 2001.

[28] J. Adámek and H.-E. Porst. On tree coalgebras and coalgebra presentations. Theor.
Comp. Sci., 311:257–283, 2004.

[29] J. Adámek and V. Trnková. Automata and Algebras in Categories. Kluwer Academic
Publishers, 1990.

[30] J. Adámek and J. Velebil. Analytic functors and weak pullbacks. Theory and Appli-
cations of Categories, 21(11):191–209, 2008.

[31] L. Adleman. Computing with DNA. Scientific American, 279(2):54–61, 1998.

[32] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, Reading, Massachusetts, 1985.

[33] R. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Number 46 in Tracts
in Theor. Comp. Sci. Cambridge Univ. Press, 1998.

[34] M. Arbib and E. Manes. Foundations of system theory: Decomposable systems.
Automatica, 10:285–302, 1974.

DRAFT

Bibliography 331Bibliography 331Bibliography 331

[35] M. Arbib and E. Manes. Adjoint machines, state-behaviour machines, and duality.
Journ. of Pure & Appl. Algebra, 6:313–344, 1975.

[36] M. Arbib and E. Manes. Arrows, Structures and Functors. The Categorical Impera-
tive. Academic Press, New York, 1975.

[37] M. Arbib and E. Manes. Foundations of system theory: the Hankel matrix. Journ.
Comp. Syst. Sci, 20:330–378, 1980.

[38] M. Arbib and E. Manes. Generalized Hankel matrices and system realization. SIAM
J. Math. Analysis, 11:405–424, 1980.

[39] M. Arbib and E. Manes. Machines in a category. Journ. of Pure & Appl. Algebra,
19:9–20, 1980.

[40] M. Arbib and E. Manes. Parametrized data types do not need highly constrained
parameters. Inf. & Control, 52:139–158, 1982.

[41] M. Arbib and E. Manes. Algebraic Approaches to Program Semantics. Texts and
Monogr. in Comp. Sci. Springer, Berlin, 1986.

[42] M.A. Arbib. Theories of Abstract Automata. Prentice Hall, 1969.

[43] K. Arnold and J. Gosling. The Java Programming Language. The Java Series.
Addison-Wesley, 2nd edition, 1997.

[44] R. Atkey, N. Ghani, B. Jacobs, and P. Johann. Fibrational induction meets effects.
In L. Birkedal, editor, Foundations of Software Science and Computation Structures,
number 7213 in Lect. Notes Comp. Sci., pages 42–57. Springer, Berlin, 2012.

[45] R. Atkey, P. Johann, and N. Ghani. When is a type refinement an inductive type? In
M. Hofmann, editor, Foundations of Software Science and Computation Structures,
number 6604 in Lect. Notes Comp. Sci., pages 72–87. Springer, Berlin, 2011.

[46] S. Awodey. Category Theory. Oxford Logic Guides. Oxford Univ. Press, 2006.

[47] S. Awodey and J. Hughes. Modal operators and the formal dual of Birkhoff’s com-
pleteness theorem. Math. Struct. in Comp. Sci., 13:233–258, 2003.

[48] E. Bainbridge. A unified minimal realization theory with duality. PhD thesis, Univ.
Michigan, Ann Arbor, 1972. Techn. rep. 140, Dep. of Comp. and Comm. Sci.

[49] E. Bainbridge, P. Freyd, A. Scedrov, and P. Scott. Functorial polymorphism. Theor.
Comp. Sci., 70(1):35–64, 1990. Corrigendum in Theor. Comp. Sci. 71(3):431, 1990.

[50] J. de Bakker and E. Vink. Control Flow Semantics. MIT Press, Cambridge, MA,
1996.

[51] A. Balan and A. Kurz. On coalgebras over algebras. Theor. Comp. Sci.,
412(38):4989–5005, 2011.

[52] A-L. Barabási. Linked. The New Science of Networks. Perseus Publishing, 2002.

[53] L. Barbosa. Towards a calculus of state-based software components. Journ. of
Universal Comp. Sci., 9(8):891–909, 2003.

[54] H. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-Holland,
Amsterdam, 2nd rev. edition, 1984.

[55] M. Barr. Terminal coalgebras in well-founded set theory. Theor. Comp. Sci.,
114(2):299–315, 1993. Corrigendum in Theor. Comp. Sci. 124:189–192, 1994.

DRAFT

332 Bibliography332 Bibliography332 Bibliography

[56] M. Barr and Ch. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985.
Revised and corrected version available from URL: www.cwru.edu/artsci/
math/wells/pub/ttt.html.

[57] M. Barr and Ch. Wells. Category Theory for Computing Science. Prentice Hall,
1990.

[58] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-Chr. Filliâtre, E. Giménez, H. Her-
belin, G. Huet, C. Muñoz, C. Murthy, C. Parent, C. Paulin-Mohring, A. Saı̈bi, and
B. Werner. The Coq Proof Assistant User’s Guide Version 6.1. Technical Report
203, INRIA Rocquencourt, France, May 1997.

[59] F. Bartels. On generalised coinduction and probabilistic specification formats. Dis-
tributive laws in coalgebraic modelling. PhD thesis, Free Univ. Amsterdam, 2004.

[60] F. Bartels, A. Sokolova, and E. de Vink. A hierarchy of probabilistic system types.
In H.-P. Gumm, editor, Coalgebraic Methods in Computer Science, number 82(1) in
Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2003.

[61] F. Bartels, A. Sokolova, and E. de Vink. A hierarchy of probabilistic system types.
Theor. Comp. Sci., 327(1-2):3–22, 2004.

[62] J. Barwise and L. Moss. Vicious Circles: On the Mathematics of Non-wellfounded
Phenomena. CSLI Lecture Notes 60, Stanford, 1996.

[63] J. Beck. Distributive laws. In B. Eckman, editor, Seminar on Triples and Categorical
Homolgy Theory, number 80 in Lect. Notes Math., pages 119–140. Springer, Berlin,
1969.

[64] J. van Benthem. Correspondence theory. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic II, pages 167–247, Dordrecht, 1984. Reidel.

[65] N. Benton, G. Bierman, M. Hyland, and V. de Paiva. Linear lambda calculus and
categorical models revisited. In E. Börger, G. Jäger, H. Kleine Büning, S. Martini,
and M.M. Richter, editors, Computer Science Logic, number 702 in Lect. Notes
Comp. Sci., pages 61–84. Springer, Berlin, 1993.

[66] N. Benton, J. Hughes, and E. Moggi. Monads and effects. In G. Barthe, P. Dybjer,
L. Pinto, and J. Saraiva, editors, Applied Semantics, number 2395 in Lect. Notes
Comp. Sci., pages 923–952. Springer, Berlin, 2002.

[67] J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. In T. Mar-
garia and W. Yi, editors, Tools and Algorithms for the Construction and Analysis of
Systems, number 2031 in Lect. Notes Comp. Sci., pages 299–312. Springer, Berlin,
2001.

[68] J. Bergstra, A. Ponse, and S.A. Smolka, editors. Handbook of Process Algebra.
North-Holland, Amsterdam, 2001.

[69] M. Bidoit and R. Hennicker. Proving the correctness of behavioural implementa-
tions. In V.S. Alagar and M. Nivat, editors, Algebraic Methods and Software Tech-
nology, number 936 in Lect. Notes Comp. Sci., pages 152–168. Springer, Berlin,
1995.

[70] M. Bidoit, R. Hennicker, and A. Kurz. On the duality between observability and
reachability. In F. Honsell and M. Miculan, editors, Foundations of Software Science
and Computation Structures, number 2030 in Lect. Notes Comp. Sci., pages 72–87.
Springer, Berlin, 2001.

DRAFT

Bibliography 333Bibliography 333Bibliography 333

[71] M. Bı́lková, A. Kurz, D. Petrişan, and J. Velebil. Relation liftings on preorders and
posets. In B. Klin and C. Cı̂rstea, editors, Conference on Algebra and Coalgebra in
Computer Science (CALCO 2011), number 6859 in Lect. Notes Comp. Sci., pages
115–129. Springer, Berlin, 2011.

[72] R. Bird. Introduction to Functional Programming using Haskell. Prentice Hall Press,
2nd edition, 1998.

[73] R. Bird and O. de Moor. Algebra of Programmming. Prentice Hall Int. Series in
Comput. Sci., 1996.

[74] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Number 53 in Tracts in
Theor. Comp. Sci. Cambridge Univ. Press, 2001.

[75] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Journ. ACM,
42(1):232–268, 1988.

[76] S.L. Bloom and Z. Ésik. Iteration Theories: The Equational Logic of Iterative Pro-
cesses. EATCS Monographs. Springer, Berlin, 1993.

[77] M. Bonsangue, J. Rutten, and A. Silva. Coalgebraic logic and synthesis of Mealy
machines. In R. Amadio, editor, Foundations of Software Science and Computation
Structures, number 4962 in LNCS, pages 231–245. Springer, Berlin, 2008.

[78] F. Borceux. Handbook of Categorical Algebra, volume 50, 51 and 52 of Encyclope-
dia of Mathematics. Cambridge Univ. Press, 1994.

[79] F. van Breugel and J. Worrell. An algorithm for quantitative verification of proba-
bilistic transition systems in Java for smart cards. In K.G. Larsen and M. Nielsen,
editors, CONCUR 2001 – Concurrency Theory, number 2154 in Lect. Notes Comp.
Sci., pages 336–350. Springer, Berlin, 2001.

[80] R. Brown. Topology. John Wiley & Sons, New York, 2nd rev. edition, 1988.

[81] K.B. Bruce, L. Cardelli, G. Castagna, The Hopkins Objects Group (J. Eifrig,
S. Smith, V. Trifonov), G. Leavens, and B. Pierce. On binary methods. Theory
& Practice of Object Systems, 1(3):221–242, 1996.

[82] T. Brzezinski and R. Wisbauer. Corings and Comodules. Number 309 in London
Math. Soc. Lect. Note Series. Cambridge Univ. Press, 2003.

[83] J.A. Brzozowski. Derivatives of regular expressions. Journ. ACM, 11(4):481–494,
1964.

[84] P. Buchholz. Bisimulation relations for weighted automata. Theor. Comp. Sci.,
393(1-3):109–123, 2008.

[85] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K. Leino, and E. Poll.
An overview of JML tools and applications. Int. Journ. on Software Tools for Tech-
nology Transfer, 7(3):212–232, 2005.

[86] P.J. Cameron. Sets, Logic and Categories. Undergraduate Mathematics. Springer,
1999.

[87] V. Capretta, T. Uustalu, and V. Vene. Recursive coalgebras from comonads. Theor.
Comp. Sci., 204:437–468, 2006.

[88] A. Carboni, M. Kelly, and R. Wood. A 2-categorical approach to change of base and
geometric morphisms I. Cah. de Top. et Géom. Diff., 32(1):47–95, 1991.

DRAFT

334 Bibliography334 Bibliography334 Bibliography

[89] V. Ciancia. Accessible functors and final coalgebras for named sets. PhD thesis,
Univ. Pisa, 2008.

[90] C. Cı̈rstea. Integrating observational and computational features in the specification
of state-based dynamical systems. Inf. Théor. et Appl., 35(1):1–29, 2001.

[91] C. Cı̈rstea, A. Kurz, D. Pattinson, L. Schröder, and Y. Venema. Modal logics are
coalgebraic. The Computer Journal, 54:31–41, 2011.

[92] C. Cı̈rstea and D. Pattinson. Modular construction of complete coalgebraic logics.
Theor. Comp. Sci., 388(1-3):83–108, 2007.

[93] R. Cockett. Introduction to distributive categories. Math. Struct. in Comp. Sci.,
3:277–307, 1993.

[94] R. Cockett. Deforestation, program transformation, and cut-elimination. In A. Cor-
radini, M. Lenisa, and U. Montanari, editors, Coalgebraic Methods in Computer
Science, number 44(1) in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam,
2001.

[95] R. Cockett and T. Fukushima. About Charity. Technical Report 92/480/18, Dep.
Comp. Sci., Univ. Calgary, 1992.

[96] R. Cockett and D. Spencer. Strong categorical datatypes I. In R. Seely, editor,
Category Theory 1991, number 13 in CMS Conference Proceedings, pages 141–
169, 1992.

[97] R. Cockett and D. Spencer. Strong categorical datatypes II: A term logic for cate-
gorical programming. Theor. Comp. Sci., 139:69–113, 1995.

[98] B. Coecke and K. Martin. A partial order on classical and quantum states. In B. Co-
ecke, editor, New Structures in Physics, number 813 in Lect. Notes Physics, pages
593–683. Springer, Berlin, 2011.

[99] A. Corradini, B. Klin, and C. Cı̈rstea, editors. Coalgebra and Algebra in Computer
Science (CALCO’11), number 6859 in Lect. Notes Comp. Sci. Springer, Berlin,
2011.

[100] A. Corradini, M. Lenisa, and U. Montanari, editors. Coalgebraic Methods in Com-
puter Science (CMCS’01), number 44(1) in Elect. Notes in Theor. Comp. Sci. Else-
vier, Amsterdam, 2001.

[101] A. Corradini, M. Lenisa, and U. Montanari, editors. Coalgebraic Methods in Com-
puter Science, volume 13(2) of Math. Struct. in Comp. Sci., 2003. Special issue on
CMCS’01.

[102] D. Coumans and B. Jacobs. Scalars, monads and categories. In C. Heunen and
M. Sadrzadeh, editors, Compositional methods in Physics and Linguistics. Oxford
Univ. Press, 2012.

[103] S. Coupet-Grimal and L. Jakubiec. Hardware verification using co-induction in
COQ. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors,
Theorem Proving in Higher Order Logics, number 1690 in Lect. Notes Comp. Sci.,
pages 91–108. Springer, Berlin, 1999.

[104] R. Crole. Categories for Types. Cambridge Mathematical Textbooks. Cambridge
Univ. Press, 1993.

[105] N.J. Cutland. Computability. Cambridge Univ. Press, 1980.

DRAFT

Bibliography 335Bibliography 335Bibliography 335

[106] G. D’Agostino and A. Visser. Finality regained: a coalgebraic study of Scott-sets
and multisets. Arch. Math. Log., 41:267–298, 2002.

[107] D. van Dalen, C. Doets, and H. de Swart. Sets: Naive, Axiomatic and Applied.
Number 106 in Pure & applied Math. Pergamum Press, 1978.

[108] V. Danos, J. Desharnais, F. Laviolette, and P. Panangaden. Bisimulation and cocon-
gruence for probabilistic systems. Inf. & Comp., 204:503–523, 2006.

[109] P. D’Argenio, H. Hermanns, and J.-P. Katoen. On generative parallel composition.
In C. Baier, M. Huth, M. Kwiatkowska, and M. Ryan, editors, Workshop on Prob-
abilistic Methods in Verification (ProbMIV), number 22 in Elect. Notes in Theor.
Comp. Sci. Elsevier, Amsterdam, 1998.

[110] B. Davey and H. Priestley. Introduction to Lattices and Order. Math. Textbooks.
Cambridge Univ. Press, 1990.

[111] L. Dennis and A. Bundy. A comparison of two proof critics: Power vs. robustness.
In V.A. Carreño, C.A. Muñoz, and S. Tahar, editors, Theorem Proving in Higher
Order Logics, number 2410 in Lect. Notes Comp. Sci., pages 182–197. Springer,
Berlin, 2002.

[112] E. D’Hondt and P. Panangaden. Quantum weakest preconditions. Math. Struct. in
Comp. Sci., 16(3):429–451, 2006.

[113] E. Dijkstra and C. Scholten. Predicate Calculus and Program Semantics. Springer,
Berlin, 1990.

[114] H. Dobbertin. Refinement monoids, Vaught monoids, and Boolean algebras. Math.
Annalen, 265(4):473–487, 1983.

[115] E.-E. Doberkat. Stochastic Coalgebraic Logic. Springer, 2010.

[116] M. Droste and P. Gastin. Weighted automata and weighted logics. In L. Caires,
G. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, International Col-
loquium on Automata, Languages and Programming, number 3580 in Lect. Notes
Comp. Sci., pages 513–525. Springer, Berlin, 2005.

[117] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I: Equations and
Initial Semantics. Number 6 in EATCS Monographs. Springer, Berlin, 1985.

[118] S. Eilenberg. Automata, Languages and Machines. Academic Press, 1974. 2 vol-
umes.

[119] E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 995–1072. Elsevier/MIT Press,
1990.

[120] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning About Knowledge.
MIT Press, Cambridge, MA, 1995.

[121] J. Fiadeiro, N. Harman, M. Roggenbach, and J. Rutten, editors. Coalgebra and
Algebra in Computer Science (CALCO’05), number 3629 in Lect. Notes Comp. Sci.
Springer, Berlin, 2005.

[122] K. Fine. In so many possible worlds. Notre Dame Journ. Formal Log., 13:516–520,
1972.

[123] M. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. Cambridge
Univ. Press, 1996.

DRAFT

336 Bibliography336 Bibliography336 Bibliography

[124] M. Fiore. A coinduction principle for recursive data types based on bisimulation.
Inf. & Comp., 127(2):186–198, 1996.

[125] M. Fiore, N. Gambino, M. Hyland, and G. Winskel. The cartesian closed bicate-
gory of generalised species of structures. Journ. London Math. Soc., 77(2):203–220,
2008.

[126] M. Fiore and C.-K. Hur. Equational systems and free constructions (extended ab-
stract). In L. Arge, C. Cachin, T. Jurdzinski, and A. Tarlecki, editors, International
Colloquium on Automata, Languages and Programming, number 4596 in LNCS,
pages 607–618. Springer, Berlin, 2007.

[127] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Logic in
Computer Science, pages 193–202. IEEE, Computer Science Press, 1999.

[128] M. Fiore and D. Turi. Semantics of name and value passing. In Logic in Computer
Science, pages 93–104. IEEE, Computer Science Press, 2001.

[129] M. Fokkinga. Datatype laws without signatures. Math. Struct. in Comp. Sci., 6:1–32,
1996.

[130] W. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer Sci-
ence. An EATCS Series. Springer, Berlin, 2000.

[131] M. Forti and F. Honsell. Set theory with free construction principles. Annali Scuola
Normale Superiore, Pisa, X(3):493–522, 1983.

[132] A. Fraenkel, Y. Bar-Hillel, and A. Levy. Foundations of Set Theory. North-Holland,
Amsterdam, 2nd rev. edition, 1973.

[133] P. Freyd. Aspects of topoi. Bull. Austr. Math. Soc., 7:1–76 and 467–480, 1972.

[134] P. Freyd. Recursive types reduced to inductive types. In Logic in Computer Science,
pages 498–507. IEEE, Computer Science Press, 1990.

[135] P. Freyd. Algebraically complete categories. In A. Carboni, M.C. Pedicchio, and
G. Rosolini, editors, Como Conference on Category Theory, number 1488 in Lect.
Notes Math., pages 95–104. Springer, Berlin, 1991.

[136] P. Freyd. Remarks on algebraically compact categories. In M. Fourman, P. John-
stone, and A. Pitts, editors, Applications of Categories in Computer Science, number
177 in LMS, pages 95–106. Cambridge Univ. Press, 1992.

[137] P. Freyd and M. Kelly. Categories of continuous functors. Journ. of Pure & Appl.
Algebra, 2:169–191, 1972.

[138] H. Friedman. Equality between functionals. In Logic Colloquium. Symposium on
Logic held at Boston 1972 - 1973, number 453 in Lect. Notes Math., pages 22–37.
Springer, Berlin, 1975.

[139] M. Gabbay and A. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects of Comp., 13:341–363, 2002.

[140] N. Ghani, P. Johann, and C. Fumex. Generic fibrational induction. Logical Methods
in Comp. Sci., 8(2), 2012.

[141] N. Ghani and J. Power, editors. Coalgebraic Methods in Computer Science (CMCS
2006), volume 164(1) of Elect. Notes in Theor. Comp. Sci., 2006.

DRAFT

Bibliography 337Bibliography 337Bibliography 337

[142] V. Giarrantana, F. Gimona, and U. Montanari. Observability concepts in abstract data
specifications. In A. Mazurkiewicz, editor, Mathematical Foundations of Computer
Science, number 45 in Lect. Notes Comp. Sci., pages 576–587. Springer, Berlin,
1976.

[143] J. Gibbons. Origami programming. In J. Gibbons and O. de Moor, editors, The Fun
of Programming, Cornerstones in Computing, pages 41–60. Palgrave, 2003.

[144] J. Gibbons, G. Hutton, and T. Altenkirch. When is a function a fold or an un-
fold? In A. Corradini, M. Lenisa, and U. Montanari, editors, Coalgebraic Methods
in Computer Science, number 44(1) in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2001.

[145] J.-Y. Girard. Linear logic. Theor. Comp. Sci., 50:1–102, 1987.

[146] J.-Y. Girard. Normal functors, power series and λ-calculus. Ann. Pure & Appl.
Logic, 37:129–177, 1988.

[147] M. Giry. A categorical approach to probability theory. In B. Banaschewski, editor,
Categorical Aspects of Topology and Analysis, number 915 in Lect. Notes Math.,
pages 68–85. Springer, Berlin, 1982.

[148] R. van Glabbeek. The linear time - branching time spectrum II. In E. Best, editor,
CONCUR ’93. 4th International Conference on Concurrency Theory, number 715 in
Lect. Notes Comp. Sci., pages 66–81. Springer, Berlin, 1993.

[149] R. van Glabbeek, S. Smolka, B. Steffen, and C. Tofts. Reactive, generative, and
stratified models of probabilistic processes. In Logic in Computer Science, pages
130–141. IEEE, Computer Science Press, 1990.

[150] J. Goguen. Minimal realization of machines in closed categories. Bull. Amer. Math.
Soc., 78(5):777–783, 1972.

[151] J. Goguen. Realization is universal. Math. Syst. Theor., 6(4):359–374, 1973.

[152] J. Goguen. Discrete-time machines in closed monoidal categories. I. Journ. Comp.
Syst. Sci, 10:1–43, 1975.

[153] J. Goguen, K. Lin, and G. Rosu. Circular coinductive rewriting. In Automated
Software Engineering (ASE’00), pages 123–131. IEEE Press, 2000.

[154] J. Goguen and G. Malcolm. A hidden agenda. Theor. Comp. Sci., 245(1):55–101,
2000.

[155] J. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach to the speci-
fication, correctness and implementation of abstract data types. In R. Yeh, editor,
Current Trends in Programming Methodoloy, pages 80–149. Prentice Hall, 1978.

[156] R. Goldblatt. Topoi. The Categorial Analysis of Logic. North-Holland, Amsterdam,
2nd rev. edition, 1984.

[157] R. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes 7, Stanford, 2nd

rev. edition, 1992.

[158] R. Goldblatt. What is the coalgebraic analogue of Birkhoff’s variety theorem? Theor.
Comp. Sci., 266(1-2):853–886, 2001.

[159] R. Goldblatt. A comonadic account of behavioural covarieties of coalgebras. Math.
Struct. in Comp. Sci., 15(2):243–269, 2005.

DRAFT

338 Bibliography338 Bibliography338 Bibliography

[160] R. Goldblatt. Final coalgebras and the Hennessy-Milner property. Ann. Pure & Appl.
Logic, 183:77–93, 2006.

[161] A. Gordon. Bisimilarity as a theory of functional programming. In S. Brookes,
M. Main, A. Melton, and M. Mislove, editors, Math. Found. of Programming Se-
mantics, number 1 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 1995.

[162] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification
Second Edition. The Java Series. Addison-Wesley, 2000.

[163] S. Gould. What does the dreaded “E” word mean anyway? In I have landed. The
end of a beginning in natural history, pages 241–256. Three Rivers Press, New York,
2002.

[164] J.-F. Groote and F. Vaandrager. Structured operational semantics and bisimulation
as a congruence. Inf. & Comp., 100(2):202–260, 1992.

[165] H.-P. Gumm. Elements of the general theory of coalgebras. Notes of lectures given
at LUATCS’99: Logic, Universal Algebra, Theoretical Computer Science, Johan-
nesburg., 1999.

[166] H.-P. Gumm. Birkhoffs variety theorem for coalgebras. Contributions to General
Algebra, 13:159–173, 2000.

[167] H.-P. Gumm. Universelle coalgebra, 2001. Appendix in [221].

[168] H.-P. Gumm. Copower functors. Theor. Comp. Sci., 410:1129–1142, 2002.

[169] H.-P. Gumm, editor. Coalgebraic Methods in Computer Science (CMCS’03), num-
ber 82(1) in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2003.

[170] H.-P. Gumm, editor. Coalgebraic Methods in Computer Science, volume 327 of
Theor. Comp. Sci., 2004. Special issue on CMCS’03.

[171] H.-P. Gumm, J. Hughes, and T. Schröder. Distributivity of categories of coalgebras.
Theor. Comp. Sci., 308:131–143, 2003.

[172] H.-P. Gumm and T. Schröder. Covarieties and complete covarieties. In B. Jacobs,
L. Moss, H. Reichel, and J. Rutten, editors, Coalgebraic Methods in Computer Sci-
ence, number 11 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 1998.

[173] H.-P. Gumm and T. Schröder. Coalgebraic structure from weak limit preserving
functors. In H. Reichel, editor, Coalgebraic Methods in Computer Science, num-
ber 33 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2000.

[174] H.-P. Gumm and T. Schröder. Monoid-labeled transition systems. In A. Corradini,
M. Lenisa, and U. Montanari, editors, Coalgebraic Methods in Computer Science,
number 44(1) in Elect. Notes in Theor. Comp. Sci., pages 185–204. Elsevier, Ams-
terdam, 2001.

[175] H.-P. Gumm and T. Schröder. Products of coalgebras. Algebra Universalis,
846:163–185, 2001.

[176] H.-P. Gumm and T. Schröder. Coalgebras of bounded type. Math. Struct. in Comp.
Sci., 12(5):565–578, 2002.

[177] C. Gunter. Semantics of Programming Languages. Structures and Techniques. MIT
Press, Cambridge, MA, 1992.

DRAFT

Bibliography 339Bibliography 339Bibliography 339

[178] G. Gupta, A. Bansal, R. Min, L. Simon, and A. Mallya. Coinductive logic program-
ming and its applications. In V. Dahl and I. Niemelä, editors, Logic Programming,
number 4670 in Lect. Notes Comp. Sci., pages 27–44. Springer, Berlin, 2007.

[179] G. Gupta, N. Saeedloei, B. DeVries, R. Min, K. Marple, and F. Kluzniak. Infi-
nite computation, co-induction and computational logic. In A. Corradini, B. Klin,
and C. Cı̈rstea, editors, Conference on Algebra and Coalgebra in Computer Science
(CALCO 2011), number 6859 in Lect. Notes Comp. Sci., pages 40–54. Springer,
Berlin, 2011.

[180] T. Hagino. A categorical programming language. PhD thesis, Univ. Edinburgh,
1987. Techn. Rep. 87/38.

[181] T. Hagino. A typed lambda calculus with categorical type constructors. In D. Pitt,
A Poigné, and D. Rydeheard, editors, Category and Computer Science, number 283
in Lect. Notes Comp. Sci., pages 140–157. Springer, Berlin, 1987.

[182] H. H. Hansen, C. Kupke, and E. Pacuit. Neighbourhood structures: Bisimilarity and
basic model theory. Logical Methods in Comp. Sci., 5(2), 2009.

[183] H. H. Hansen and J. Rutten. Symbolic synthesis of Mealy machines from arithmetic
bitstream functions. Scientific Annals of Computer Science, 20:97–130, 2010.

[184] H.H. Hansen. Coalgebraic Modelling. Applications in Automata Theory and Modal
Logic. PhD thesis, Free Univ. Amsterdam, 2009.

[185] H. Hansson. Time and Probability in Formal Design of Distributed Systems, vol-
ume 1 of Real-Time Safety Critical Systems. Elsevier, 1994.

[186] D Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, Cambridge, MA,
2000.

[187] R. Hasegawa. Categorical data types in parametric polymorphism. Math. Struct. in
Comp. Sci., 4:71–109, 1994.

[188] R. Hasegawa. Two applications of analytic functors. Theor. Comp. Sci., 272(1-
2):113–175, 2002.

[189] I. Hasuo, C. Heunen, B. Jacobs, and A. Sokolova. Coalgebraic components in a
many-sorted microcosm. In A. Kurz and A. Tarlecki, editors, Conference on Algebra
and Coalgebra in Computer Science (CALCO 2009), number 5728 in Lect. Notes
Comp. Sci., pages 64–80. Springer, Berlin, 2009.

[190] I. Hasuo and B. Jacobs. Context-free languages via coalgebraic trace semantics.
In J. Fiadeiro, N. Harman, M. Roggenbach, and J. Rutten, editors, Conference on
Algebra and Coalgebra in Computer Science (CALCO 2005), number 3629 in Lect.
Notes Comp. Sci., pages 213–231. Springer, Berlin, 2005.

[191] I. Hasuo and B. Jacobs. Traces for coalgebraic components. Math. Struct. in Comp.
Sci., 21:267–320, 2011.

[192] I. Hasuo, B. Jacobs, and M. Niqui. Coalgebraic representation theory of fractals. In
P. Selinger, editor, Math. Found. of Programming Semantics, number 265 in Elect.
Notes in Theor. Comp. Sci., pages 351–368. Elsevier, Amsterdam, 2010.

[193] I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace theory via coinduction. Logical
Methods in Comp. Sci., 3(4:11), 2007.

DRAFT

340 Bibliography340 Bibliography340 Bibliography

[194] I. Hasuo, B. Jacobs, and A. Sokolova. The microcosm principle and concurrency in
coalgebra. In R. Amadio, editor, Foundations of Software Science and Computation
Structures, number 4962 in LNCS, pages 246–260. Springer, Berlin, 2008.

[195] S. Hayashi. Adjunction of semifunctors: categorical structures in nonextensional
lambda calculus. Theor. Comp. Sci., 41:95–104, 1985.

[196] A. Heifetz and P. Mongin. Probability logic for type spaces. Games and Economic
Behavior, 35(1-2):31–53, 2001.

[197] A. Heifetz and D. Samet. Topology-free typology of beliefs. Journ. of Economic
Theory, 82(2):324–341, 1998.

[198] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journ. ACM, 32-1:137–161, 1985.

[199] U. Hensel. Definition and Proof Principles for Data and Processes. PhD thesis,
Techn. Univ. Dresden, Germany, 1999.

[200] U. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes in object-
oriented languages: Logical models and tools. In Ch. Hankin, editor, European
Symposium on Programming, number 1381 in Lect. Notes Comp. Sci., pages 105–
121. Springer, Berlin, 1998.

[201] U. Hensel and B. Jacobs. Proof principles for datatypes with iterated recursion. In
E. Moggi and G. Rosolini, editors, Category Theory and Computer Science, number
1290 in Lect. Notes Comp. Sci., pages 220–241. Springer, Berlin, 1997.

[202] U. Hensel and B. Jacobs. Coalgebraic theories of sequences in PVS. Journ. of Logic
and Computation, 9(4):463–500, 1999.

[203] U. Hensel and D. Spooner. A view on implementing processes: Categories of cir-
cuits. In M. Haveraaen, O. Owe, and O.-J. Dahl, editors, Recent Trends in Data Type
Specification, number 1130 in Lect. Notes Comp. Sci., pages 237–254. Springer,
Berlin, 1996.

[204] C. Hermida. Fibrations, Logical Predicates and Indeterminates. PhD thesis, Univ.
Edinburgh, 1993. Techn. rep. LFCS-93-277. Also available as Aarhus Univ. DAIMI
Techn. rep. PB-462.

[205] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational
setting. Inf. & Comp., 145:107–152, 1998.

[206] C. Heunen and B. Jacobs. Arrows, like monads, are monoids. In Math. Found. of
Programming Semantics, number 158 in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2006.

[207] C. Heunen and B. Jacobs. Quantum logic in dagger kernel categories. Order,
27(2):177–212, 2010.

[208] M. Hirsch and S. Smale. Differential Equations, Dynamical Systems, and Linear
Algebra. Academic Press, New York, 1974.

[209] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985. Available
at www.usingcsp.com.

[210] D.R. Hofstadter. Gödel, Escher, Bach: an eternal golden braid. Basic Books, New
York, 1979.

DRAFT

Bibliography 341Bibliography 341Bibliography 341

[211] F. Honsell, M. Miculan, and I. Scagnetto. π-calculus in (co)inductive-type theory.
Theor. Comp. Sci., 253(2):239–285, 2001.

[212] R. Hoofman and I. Moerdijk. A remark on the theory of semi-functors. Math. Struct.
in Comp. Sci., 5(1):1–8, 1995.

[213] R.A. Howard. Dynamic probabilistic systems. John Wiley & Sons, New York, 1971.

[214] G. Hughes and M. Cresswell. A New Introduction to Modal Logic. Routledge,
London and New York, 1996.

[215] J. Hughes. Generalising monads to arrows. Science of Comput. Progr., 37:67–111,
2000.

[216] J. Hughes. Modal operators for coequations. In A. Corradini, M. Lenisa, and
U. Montanari, editors, Coalgebraic Methods in Computer Science, number 44(1)
in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2001.

[217] J. Hughes. A Study of Categories of Algebras and Coalgebras. PhD thesis, Carnegie
Mellon Univ., 2001.

[218] J. Hughes and B. Jacobs. Simulations in coalgebra. Theor. Comp. Sci., 327(1-2):71–
108, 2004.

[219] M. Hyland, G. Plotkin, and J. Power. Combining effects: Sum and tensor. Theor.
Comp. Sci., 357:70–99, 2006.

[220] M. Hyland and J. Power. The category theoretic understanding of universal algebra:
Lawvere theories and monads. In L. Cardelli, M. Fiore, and G. Winskel, editors,
Computation, Meaning, and Logic: Articles dedicated to Gordon Plotkin, number
172 in Elect. Notes in Theor. Comp. Sci., pages 437–458. Elsevier, Amsterdam,
2007.

[221] T. Ihringer. Allgemeine Algebra, volume 10 of Berliner Studienreihe zur Mathe-
matik. Heldermann Verlag, 2003.

[222] B. Jacobs. Mongruences and cofree coalgebras. In V.S. Alagar and M. Nivat, editors,
Algebraic Methodology and Software Technology, number 936 in Lect. Notes Comp.
Sci., pages 245–260. Springer, Berlin, 1995.

[223] B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C.B. Jones,
C. Lengauer, and H.-J. Schek, editors, Object-Orientation with Parallelism and Per-
sistence, pages 83–103. Kluwer Acad. Publ., 1996.

[224] B. Jacobs. Invariants, bisimulations and the correctness of coalgebraic refinements.
In M. Johnson, editor, Algebraic Methodology and Software Technology, number
1349 in Lect. Notes Comp. Sci., pages 276–291. Springer, Berlin, 1997.

[225] B. Jacobs. Categorical Logic and Type Theory. North Holland, Amsterdam, 1999.

[226] B. Jacobs. A formalisation of Java’s exception mechanism. In D. Sands, editor,
Programming Languages and Systems (ESOP), number 2028 in Lect. Notes Comp.
Sci., pages 284–301. Springer, Berlin, 2001.

[227] B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study. RAIRO-
Theor. Inform. and Appl., 35(1):31–59, 2001.

[228] B. Jacobs. Comprehension for coalgebras. In L. Moss, editor, Coalgebraic Methods
in Computer Science, number 65(1) in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2002.

DRAFT

342 Bibliography342 Bibliography342 Bibliography

[229] B. Jacobs. The temporal logic of coalgebras via Galois algebras. Math. Struct. in
Comp. Sci., 12:875–903, 2002.

[230] B. Jacobs. Trace semantics for coalgebras. In J. Adámek and S. Milius, editors,
Coalgebraic Methods in Computer Science, number 106 in Elect. Notes in Theor.
Comp. Sci. Elsevier, Amsterdam, 2004.

[231] B. Jacobs. A bialgebraic review of deterministic automata, regular expressions and
languages. In K. Futatsugi, J.-P. Jouannaud, and J. Meseguer, editors, Algebra,
Meaning and Computation: Essays dedicated to Joseph A. Goguen on the Occa-
sion of His 65th Birthday, number 4060 in Lect. Notes Comp. Sci., pages 375–404.
Springer, Berlin, 2006.

[232] B. Jacobs. Convexity, duality, and effects. In C. Calude and V. Sassone, editors, IFIP
Theoretical Computer Science 2010, number 82(1) in IFIP Adv. in Inf. and Comm.
Techn., pages 1–19. Springer, Boston, 2010.

[233] B. Jacobs. From coalgebraic to monoidal traces. In B. Jacobs, M. Niqui, J. Rutten,
and A. Silva, editors, Coalgebraic Methods in Computer Science, volume 264 of
Elect. Notes in Theor. Comp. Sci., pages 125–140. Elsevier, Amsterdam, 2010.

[234] B. Jacobs. Bases as coalgebras. In A. Corradini, B. Klin, and C. Cı̈rstea, editors,
Conference on Algebra and Coalgebra in Computer Science (CALCO 2011), number
6859 in Lect. Notes Comp. Sci., pages 237–252. Springer, Berlin, 2011.

[235] B. Jacobs. Coalgebraic walks, in quantum and Turing computation. In M. Hofmann,
editor, Foundations of Software Science and Computation Structures, number 6604
in Lect. Notes Comp. Sci., pages 12–26. Springer, Berlin, 2011.

[236] B. Jacobs. Probabilities, distribution monads, and convex categories. Theor. Comp.
Sci., 412(28):3323–3336, 2011.

[237] B. Jacobs, C. Heunen, and I. Hasuo. Categorical semantics for arrows. Journ. Funct.
Progr., 19(3-4):403–438, 2009.

[238] B. Jacobs, J. Kiniry, and M. Warnier. Java program verification challenges. In
F. de Boer, M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Formal Methods
for Components and Objects (FMCO 2002), number 2852 in Lect. Notes Comp.
Sci., pages 202–219. Springer, Berlin, 2003.

[239] B. Jacobs and J. Mandemaker. The expectation monad in quantum foundations. In
B. Jacobs, P. Selinger, and B. Spitters, editors, Quantum Physics and Logic (QPL)
2011, 2012. EPTCS, to appear; see arxiv.org/abs/1112.3805.

[240] B. Jacobs, L. Moss, H. Reichel, and J. Rutten, editors. Coalgebraic Methods in Com-
puter Science (CMCS’98), number 11 in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 1998.

[241] B. Jacobs, L. Moss, H. Reichel, and J. Rutten, editors. Coalgebraic Methods in
Computer Science, volume 260(1/2) of Theor. Comp. Sci., 2001. Special issue on
CMCS’98.

[242] B. Jacobs, M. Niqui, J. Rutten, and A. Silva, editors. Coalgebraic Methods in Com-
puter Science, volume 264(2) of Elect. Notes in Theor. Comp. Sci., 2010. CMCS
2010, Tenth Anniversary Meeting.

[243] B. Jacobs, M. Niqui, J. Rutten, and A. Silva, editors. Coalgebraic Methods in Com-
puter Science, volume 412(38) of Theor. Comp. Sci., 2011. CMCS 2010, Tenth
Anniversary Meeting.

DRAFT

Bibliography 343Bibliography 343Bibliography 343

[244] B. Jacobs and E. Poll. Coalgebras and monads in the semantics of Java. Theor.
Comp. Sci., 291(3):329–349, 2003.

[245] B. Jacobs and E. Poll. Java program verification at Nijmegen: Developments and
perspective. In K. Futatsugi, F. Mizoguchi, and N. Yonezaki, editors, Software Se-
curity – Theories and Systems, number 3233 in Lect. Notes Comp. Sci., pages 134–
153. Springer, Berlin, 2004.

[246] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bul-
letin, 62:222–259, 1997.

[247] B. Jacobs and J. Rutten, editors. Coalgebraic Methods in Computer Science
(CMCS’99), number 19 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam,
1999.

[248] B. Jacobs and J. Rutten, editors. Coalgebraic Methods in Computer Science, volume
280(1/2) of Theor. Comp. Sci., 2002. Special issue on CMCS’99.

[249] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. In D. Sangiorgi
and J. Rutten, editors, Advanced topics in bisimulation and coinduction, number 52
in Tracts in Theor. Comp. Sci., pages 38–99. Cambridge Univ. Press, 2011.

[250] B. Jacobs, A. Sliva, and A. Sokolova. Trace semantics via determinization. In
L. Schröder and D. Patinson, editors, Coalgebraic Methods in Computer Science
(CMCS 2012), number 7399 in Lect. Notes Comp. Sci., pages 109–129. Springer,
Berlin, 2012.

[251] B. Jacobs and A. Sokolova. Exemplaric expressivity of modal logics. Journ. of
Logic and Computation, 20(5):1041–1068, 2010.

[252] B. Jay. A semantics for shape. Science of Comput. Progr., 25:251–283, 1995.

[253] B. Jay. Data categories. In M. Houle and P. Eades, editors, Computing: The
Australasian Theory Symposium Proceedings, number 18 in Australian Comp. Sci.
Comm., pages 21–28, 1996.

[254] B. Jay and J. Cockett. Shapely types and shape polymorphism. In D. Sannella,
editor, Programming Languages and Systems (ESOP), number 788 in Lect. Notes
Comp. Sci., pages 302–316. Springer, Berlin, 1994.

[255] P. Johnstone. Topos Theory. Academic Press, London, 1977.

[256] P. Johnstone. Stone Spaces. Number 3 in Cambridge Studies in Advanced Mathe-
matics. Cambridge Univ. Press, 1982.

[257] P. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Number 44
in Oxford Logic Guides. Oxford University Press, 2002. 2 volumes.

[258] P. Johnstone, J. Power, T. Tsujishita, H. Watanabe, and J. Worell. An axiomatics for
categories of transition systems as coalgebras. In Logic in Computer Science. IEEE,
Computer Science Press, 1998.

[259] P. Johnstone, J. Power, T. Tsujishita, H. Watanabe, and J. Worrell. On the structure
of categories of coalgebras. Theor. Comp. Sci., 260:87–117, 2001.

[260] S. Peyton Jones and P. Wadler. Imperative functional programming. In Principles of
Programming Languages, pages 71–84. ACM Press, 1993.

DRAFT

344 Bibliography344 Bibliography344 Bibliography

[261] A. Joyal. Foncteurs analytiques et espèces de structures. In G. Labelle and P. Leroux,
editors, Combinatoire Enumerative, number 1234 in Lect. Notes Math., pages 126–
159. Springer, Berlin, 1986.

[262] A. Joyal and I. Moerdijk. Algebraic Set Theory. Number 220 in LMS. Cambridge
Univ. Press, 1995.

[263] R. Kalman, P. Falb, and M. Arbib. Topics in Mathematical System Theory. McGraw-
Hill Int. Series in Pure & Appl. Math., 1969.

[264] B. von Karger. Temporal algebra. Math. Struct. in Comp. Sci., 8:277–320, 1998.

[265] S. Kasangian, M. Kelly, and F. Rossi. Cofibrations and the realization of non-
deterministic automata. Cah. de Top. et Géom. Diff., XXIV:23–46, 1983.

[266] P. Katis, N. Sabadini, and R. Walters. Bicategories of processes. Journ. of Pure &
Appl. Algebra, 115(2):141–178, 1997.

[267] Y. Kawahara and M. Mori. A small final coalgebra theorem. Theor. Comp. Sci.,
233(1-2):129–145, 2000.

[268] K. Keimel, A. Rosenbusch, and T. Streicher. Relating direct and predicate trans-
former partial correctness semantics for an imperative probabilistic-nondeterministic
language. Theor. Comp. Sci., 412:2701–2713, 2011.

[269] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer-Verlag, New York,
1976.

[270] S.C. Kleene. Representation of events in nerve nets and finite automata. In C. E.
Shannon and J. McCarthy, editors, Automata Studies, number 34 in Annals of Math-
ematics Studies, pages 3–41. Princeton University Press, 1956.

[271] A. Klein. Relations in categories. Illinois Journal of Math., 14:536–550, 1970.

[272] B. Klin. The least fibred lifting and the expressivity of coalgebraic modal logic.
In J. Fiadeiro, N. Harman, M. Roggenbach, and J. Rutten, editors, Conference on
Algebra and Coalgebra in Computer Science (CALCO 2005), number 3629 in Lect.
Notes Comp. Sci., pages 247–262. Springer, Berlin, 2005.

[273] B. Klin. Coalgebraic modal logic beyond sets. In M. Fiore, editor, Math. Found. of
Programming Semantics, number 173 in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2007.

[274] B. Klin. Bialgebras for structural operational semantics: An introduction. Theor.
Comp. Sci., 412(38):5043–5069, 2011.

[275] A. Kock. Monads on symmetric monoidal closed categories. Arch. Math., XXI:1–
10, 1970.

[276] A. Kock. On double dualization monads. Math. Scand., 27:151–165, 1970.

[277] A. Kock. Bilinearity and cartesian closed monads. Math. Scand., 29:161–174, 1971.

[278] A. Kock. Closed categories generated by commutative monads. Journ. Austr. Math.
Soc., XII:405–424, 1971.

[279] A. Kock. Algebras for the partial map classifier monad. In A. Carboni, M.C. Pedic-
chio, and G. Rosolini, editors, Como Conference on Category Theory, number 1488
in Lect. Notes Math., pages 262–278. Springer, Berlin, 1991.

DRAFT

Bibliography 345Bibliography 345Bibliography 345

[280] A. Kock and G.E. Reyes. Doctrines in categorical logic. In J. Barwise, editor, Hand-
book of Mathematical Logic, pages 283–313. North-Holland, Amsterdam, 1977.

[281] D. Kozen. Semantics of probabilistic programs. Journ. Comp. Syst. Sci, 22(3):328–
350, 1981.

[282] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. & Comp., 110(2):366–390, 1994.

[283] D. Kozen. Coinductive proof principles for stochastic processes. Logical Methods
in Comp. Sci., 3(4):1–14, 2007.

[284] D. Kozen. Optimal coin flipping. Manuscript, 2009.

[285] M. Kracht. Tools and Techniques in Modal Logic. North Holland, Amsterdam, 1999.

[286] S. Krstić, J. Launchbury, and D. Pavlović. Categories of processes enriched in final
coalgebras. In F. Honsell and M. Miculan, editors, Foundations of Software Science
and Computation Structures, number 2030 in Lect. Notes Comp. Sci., pages 303–
317. Springer, Berlin, 2001.

[287] C. Kupke, A. Kurz, and Y. Venema. Completeness of the finitary Moss logic. In
C. Areces and R. Goldblatt, editors, Advances in Modal Logic 2008, volume 7, pages
193–217. King’s College Publications, 2003.

[288] C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras. In H.-P. Gumm, editor,
Coalgebraic Methods in Computer Science, number 82(1) in Elect. Notes in Theor.
Comp. Sci. Elsevier, Amsterdam, 2003.

[289] C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras. Theor. Comp. Sci., 327(1-
2):109–134, 2004.

[290] C. Kupke and D. Pattinson. Coalgebraic semantics of modal logics: An overview.
Theor. Comp. Sci., 412(38):5070–5094, 2011.

[291] C. Kupke and Y. Venema. Coalgebraic automata theory: basic results. Logical
Methods in Comp. Sci., 4:1–43, 2008.

[292] A. Kurz. Coalgebras and modal logic. Notes of lectures given at ESSLLI’01,
Helsinki., 1999.

[293] A. Kurz. A covariety theorem for modal logic. In M. Zakharyaschev, K. Segerberg,
M. de Rijke, and H. Wansang, editors, Advances in Modal Logic, Volume 2, pages
367–380, Stanford, 2001. CSLI Publications.

[294] A. Kurz. Specifying coalgebras with modal logic. Theor. Comp. Sci., 260(1-2):119–
138, 2001.

[295] A. Kurz and R. Leal. Modalities in the Stone age: A comparison of coalgebraic
logics. Theor. Comp. Sci., 430:88–116, 2012.

[296] A. Kurz and J. Rosický. Operations and equations for coalgebras. Math. Struct. in
Comp. Sci., 15(1):149–166, 2005.

[297] A. Kurz and A. Tarlecki, editors. Coalgebra and Algebra in Computer Science
(CALCO’09), number 5728 in Lect. Notes Comp. Sci. Springer, Berlin, 2009.

[298] J. Lambek. A fixed point theorem for complete categories. Math. Zeitschr., 103:151–
161, 1968.

DRAFT

346 Bibliography346 Bibliography346 Bibliography

[299] L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Com-
munications of the ACM, 17(8):453–455, 1974.

[300] L. Lamport. The temporal logic of actions. ACM Trans. on Progr. Lang. and Systems,
16(3):872–923, 1994.

[301] K. Larsen and A. Skou. Bisimulation through probabilistic testing. Inf. & Comp.,
94:1–28, 1991.

[302] F. Lawvere. Functorial Semantics of Algebraic Theories and Some Algebraic Prob-
lems in the context of Functorial Semantics of Algebraic Theories. PhD thesis,
Columbia Univ., 1963. Reprinted in Theory and Applications of Categories, 5:1–
121, 2004.

[303] F. Lawvere and S. Schanuel. Conceptual mathematics: a first introduction to cate-
gories. Cambridge Univ. Press, 1997.

[304] T. Leinster. A general theory of self-similarity. Advances in Math., 226(4):2935–
3017, 2011.

[305] M. Lenisa, J. Power, and H. Watanabe. Distributivity for endofunctors, pointed and
co-pointed endofunctors, monads and comonads. In H. Reichel, editor, Coalgebraic
Methods in Computer Science, number 33 in Elect. Notes in Theor. Comp. Sci. El-
sevier, Amsterdam, 2000.

[306] M. Lenisa, J. Power, and H. Watanabe. Category theory for operational semantics.
Theor. Comp. Sci., 327 (1-2):135–154, 2004.

[307] P. Levy. Monads and adjunctions for global exceptions. In Math. Found. of Program-
ming Semantics, number 158 in Elect. Notes in Theor. Comp. Sci., pages 261–287.
Elsevier, Amsterdam, 2006.

[308] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters. In
Principles of Programming Languages, pages 333–343. ACM Press, 1995.

[309] S. Lindley, Ph. Wadler, and J. Yallop. The arrow calculus. Journ. Funct. Progr.,
20(1):51–69, 2010.

[310] D. Lucanu, E.I. Goriac, G. Caltais, and G. Rosu. CIRC: A behavioral verification
tool based on circular coinduction. In A. Kurz and A. Tarlecki, editors, Conference
on Algebra and Coalgebra in Computer Science (CALCO 2009), number 5728 in
Lect. Notes Comp. Sci., pages 433–442. Springer, Berlin, 2009.

[311] G. Malcolm. Behavioural equivalence, bisimulation and minimal realisation. In
M. Haveraaen, O. Owe, and O.J. Dahl, editors, Recent Trends in Data Type Speci-
fication, number 1130 in Lect. Notes Comp. Sci., pages 359–378. Springer, Berlin,
1996.

[312] E. Manes. Algebraic Theories. Springer, Berlin, 1974.

[313] E. Manes. Predicate Transformer Semantics. Number 33 in Tracts in Theor. Comp.
Sci. Cambridge Univ. Press, 1992.

[314] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, Berlin, 1992.

[315] S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 1971.

[316] S. Mac Lane. Mathematics: Form and Function. Springer, Berlin, 1986.

DRAFT

Bibliography 347Bibliography 347Bibliography 347

[317] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. A First Introduction
to Topos Theory. Springer, New York, 1992.

[318] K. McMillan. Symbolic Model Checking. Kluwer Acad. Publ., 1993.

[319] A. Melton, D. Schmidt, and G. Strecker. Galois connections and computer science
applications. In D. Pitt, S. Abramsky, A. Poigné, and D. Rydeheard, editors, Cate-
gory Theory and Computer Programming, number 240 in Lect. Notes Comp. Sci.,
pages 299–312. Springer, Berlin, 1985.

[320] M. Miculan. A categorical model of the fusion calculus. In Math. Found. of Pro-
gramming Semantics, number 218 in Elect. Notes in Theor. Comp. Sci., pages 275–
293. Elsevier, Amsterdam, 2008.

[321] T. Miedaner. The soul of the Mark III beast. In D.R. Hofstadter and D.C. Dennet,
editors, The Mind’s I, pages 109–113. Penguin, 1981.

[322] R. Milner. An algebraic definition of simulation between programs. In Sec. Int. Joint
Conf. on Artificial Intelligence, pages 481–489. British Comp. Soc. Press, London,
1971.

[323] R. Milner. A Calculus of Communicating Systems. Lect. Notes Comp. Sci. Springer,
Berlin, 1989.

[324] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[325] J. Mitchell. Foundations of Programming Languages. MIT Press, Cambridge, MA,
1996.

[326] E. Moggi. Notions of computation and monads. Inf. & Comp., 93(1):55–92, 1991.

[327] R. Montague. Universal grammar. Theoria, 36:373–398, 1970.

[328] L. Moss. Coalgebraic logic. Ann. Pure & Appl. Logic, 96(1-3):277–317, 1999.
Erratum in Ann. Pure & Appl. Logic, 99(1-3):241–259, 1999.

[329] L. Moss. Parametric corecursion. Theor. Comp. Sci., 260(1-2):139–163, 2001.

[330] L. Moss, editor. Coalgebraic Methods in Computer Science (CMCS’00), number
65(1) in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2002.

[331] L. Moss and I. Viglizzo. Harsanyi type spaces and final coalgebras constructed
from satisfied theories. In J. Adámek and S. Milius, editors, Coalgebraic Methods
in Computer Science, number 106 in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2004.

[332] T. Mossakowski, U. Montanari, and M. Haveraaen, editors. Coalgebra and Alge-
bra in Computer Science (CALCO’07), number 4624 in Lect. Notes Comp. Sci.
Springer, Berlin, 2007.

[333] T. Mossakowski, L. Schröder, M. Roggenbach, and H. Reichel. Algebraic-co-
algebraic specification in CoCASL. Journ. of Logic and Algebraic Programming, to
appear.

[334] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cam-
bridge Univ. Press, 2000.

[335] M. Niqui. Formalising Exact Arithmetic: Representations, Algorithms and Proofs.
PhD thesis, Radboud Univ. Nijmegen, 2004.

DRAFT

348 Bibliography348 Bibliography348 Bibliography

[336] P. Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam, 1989.

[337] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: Combining specifi-
cation, proof checking, and model checking. In R. Alur and T. Henzinger, editors,
Computer Aided Verification, number 1102 in Lect. Notes Comp. Sci., pages 411–
414. Springer, Berlin, 1996.

[338] E. Palmgren and I. Moerdijk. Wellfounded trees in categories. Ann. Pure & Appl.
Logic, 104(1/3):189–218, 2000.

[339] P. Panangaden. Labelled Markov Processes. Imperial College Press, 2009.

[340] A. Pardo. Combining datatypes and effects. In V. Vene and T. Uustalu, editors,
Advanced Functional Programming, number 3622 in Lect. Notes Comp. Sci., pages
171–209. Springer, Berlin, 2004.

[341] D. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor,
Proceedings 5th GI Conference on Theoretical Computer Science, number 104 in
Lect. Notes Comp. Sci., pages 15–32. Springer, Berlin, 1981.

[342] R. Paterson. A new notation for arrows. In International Conference on Functional
Programming (ICFP), volume 36(10), pages 229–240. ACM SIGPLAN Notices,
2001.

[343] D. Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability
of local consequence. Theor. Comp. Sci., 309(1-3):177–193, 2003.

[344] D. Pattinson. An introduction to the theory of coalgebras. Course notes at the North
American Summer School in Logic, Language and Information (NASSLLI), 2003.

[345] D. Pavlović and M. Escardó. Calculus in coinductive form. In Logic in Computer
Science, pages 408–417. IEEE, Computer Science Press, 1998.

[346] D. Pavlović, M. Mislove, and J. Worrell. Testing semantics: Connecting processes
and process logics. In M. Johnson and V. Vene, editors, Algebraic Methods and Soft-
ware Technology, number 4019 in Lect. Notes Comp. Sci., pages 308–322. Springer,
Berlin, 2006.

[347] D. Pavlović and V. Pratt. The continuum as a final coalgebra. Theor. Comp. Sci.,
280 (1-2):105–122, 2002.

[348] B. Pierce. Basic Category Theory for Computer Scientists. MIT Press, Cambridge,
MA, 1991.

[349] A. Pitts. A co-induction principle for recursively defined domains. Theor. Comp.
Sci., 124(2):195–219, 1994.

[350] R. Plasmeijer and M. van Eekelen. Functional Programming and Parallel Graph
Rewriting. Addison-Wesley, 1993.

[351] G. Plotkin. Lambda definability in the full type hierarchy. In J. Hindley and J. Seldin,
editors, To H.B Curry: Essays on Combinatory Logic, Lambda Calculus and For-
malism, pages 363–373. Academic Press, New York and London, 1980.

[352] G. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19,
Aarhus Univ., reprinted as [353], 1981.

[353] G. Plotkin. A structural approach to operational semantics. Journ. of Logic and
Algebraic Programming, 60-61:17–139, 2004.

DRAFT

Bibliography 349Bibliography 349Bibliography 349

[354] G. Plotkin and M. Abadi. A logic for parametric polymorphism. In M. Bezem and
J.-F. Groote, editors, Typed Lambda Calculi and Applications, number 664 in Lect.
Notes Comp. Sci., pages 361–375. Springer, Berlin, 1993.

[355] G. Plotkin and J. Power. Notions of computation determine monads. In M. Nielsen
and U. Engberg, editors, Foundations of Software Science and Computation Struc-
tures, number 2303 in Lect. Notes Comp. Sci., pages 342–356. Springer, Berlin,
2002.

[356] A. Pnueli. The temporal logic of programs. In Found. Comp. Sci., pages 46–57.
IEEE, 1977.

[357] A. Pnueli. The temporal semantics of concurrent programs. Theor. Comp. Sci.,
31:45–60, 1981.

[358] A. Pnueli. Probabilistic verification. Inf. & Comp., 103:1–29, 1993.

[359] E. Poll and J. Zwanenburg. From algebras and coalgebras to dialgebras. In A. Cor-
radini, M. Lenisa, and U. Montanari, editors, Coalgebraic Methods in Computer
Science, number 44(1) in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam,
2001.

[360] J. Power. Enriched lawvere theories. Theory and Applications of Categories, 6:83–
93, 2000.

[361] J. Power and E. Robinson. Premonoidal categories and notions of computation.
Math. Struct. in Comp. Sci., 7(5):453–468, 1997.

[362] J. Power and D. Turi. A coalgebraic foundation for linear time semantics. In M. Hof-
mann D. Pavlović and G. Rosolini, editors, Category Theory and Computer Science
1999, number 29 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 1999.

[363] S. Pulmannová and S. Gudder. Representation theorem for convex effect algebras.
Commentationes Mathematicae Universitatis Carolinae, 39(4):645–659, 1998.

[364] H. Reichel. Behavioural equivalence — a unifying concept for initial and final spec-
ifications. In Third Hugarian Computer Science Conference. Akademiai Kiado, Bu-
dapest, 1981.

[365] H. Reichel. Initial Computability, Algebraic Specifications, and Partial Algebras.
Number 2 in Monographs in Comp. Sci. Oxford Univ. Press, 1987.

[366] H. Reichel. An approach to object semantics based on terminal co-algebras. Math.
Struct. in Comp. Sci., 5:129–152, 1995.

[367] H. Reichel, editor. Coalgebraic Methods in Computer Science (CMCS’00), num-
ber 33 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2000.

[368] K. Rosenthal. Quantales and their applications. Number 234 in Pitman Research
Notes in Math. Longman Scientific & Technical, 1990.

[369] M. Rößiger. Languages for coalgebras on datafunctors. In B. Jacobs and J. Rutten,
editors, Coalgebraic Methods in Computer Science, number 19 in Elect. Notes in
Theor. Comp. Sci. Elsevier, Amsterdam, 1999.

[370] M. Rößiger. Coalgebras and modal logic. In H. Reichel, editor, Coalgebraic Meth-
ods in Computer Science, number 33 in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2000.

DRAFT

350 Bibliography350 Bibliography350 Bibliography

[371] M. Rößiger. From modal logic to terminal coalgebras. Theor. Comp. Sci., 260(1-
2):209–228, 2001.

[372] G. Roşu. Equational axiomatizability for coalgebra. Theor. Comp. Sci., 260:229–
247, 2001.

[373] J. Rothe, H. Tews, and B. Jacobs. The coalgebraic class specification language
CCSL. Journ. of Universal Comp. Sci., 7(2), 2001.

[374] J. Rutten. Processes as terms: non-well-founded models for bisimulation. Math.
Struct. in Comp. Sci., 2(3):257–275, 1992.

[375] J. Rutten. Automata and coinduction (an exercise in coalgebra). In D. Sangiorgi
and R. de Simone, editors, Concur’98: Concurrency Theory, number 1466 in Lect.
Notes Comp. Sci., pages 194–218. Springer, Berlin, 1998.

[376] J. Rutten. Relators and metric bisimulations. In B. Jacobs, L. Moss, H. Reichel, and
J. Rutten, editors, Coalgebraic Methods in Computer Science, number 11 in Elect.
Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 1998.

[377] J. Rutten. Automata, power series, and coinduction: Taking input derivatives se-
riously (extended abstract). In J. Wiedermann, P. van Emde Boas, and M. Nielsen,
editors, International Colloquium on Automata, Languages and Programming, num-
ber 1644 in Lect. Notes Comp. Sci., pages 645–654. Springer, Berlin, 1999.

[378] J. Rutten. Universal coalgebra: a theory of systems. Theor. Comp. Sci., 249:3–80,
2000.

[379] J. Rutten. Behavioural differential equations: a coinductive calculus of streams,
automata, and power series. Theor. Comp. Sci., 308:1–53, 2003.

[380] J. Rutten. A coinductive calculus of streams. Math. Struct. in Comp. Sci., 15(1):93–
147, 2005.

[381] J. Rutten and D. Turi. Initial algebra and final coalgebra semantics for concurrency.
In J. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, A Decade of Con-
currency, number 803 in Lect. Notes Comp. Sci., pages 530–582. Springer, Berlin,
1994.

[382] A. Salomaa. Computation and Automata, volume 25 of Encyclopedia of Mathemat-
ics. Cambridge Univ. Press, 1985.

[383] D. Schamschurko. Modelling process calculi with PVS. In B. Jacobs, L. Moss,
H. Reichel, and J. Rutten, editors, Coalgebraic Methods in Computer Science, num-
ber 11 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 1998.

[384] O. Schoett. Behavioural correctness of data representations. Science of Comput.
Progr., 14:43–57, 1990.

[385] L. Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. In
V. Sassone, editor, Foundations of Software Science and Computation Structures,
number 3441 in Lect. Notes Comp. Sci., pages 440–454. Springer, Berlin, 2005.

[386] L. Schröder and D. Patinson, editors. Coalgebraic Methods in Computer Science
(CMCS 2012), number 7399 in Lect. Notes Comp. Sci. Springer, Berlin, 2012.

[387] M.P. Schützenberger. On the definition of a family of automata. Inf. & Control,
4(2-3):245–270, 1961.

DRAFT

Bibliography 351Bibliography 351Bibliography 351

[388] D. Schwencke. Coequational logic for finitary functors. In J. Adámek and C. Kupke,
editors, Coalgebraic Methods in Computer Science, number 203(5) in Elect. Notes
in Theor. Comp. Sci., pages 243–262. Elsevier, Amsterdam, 2008.

[389] D. Scott. Advice on modal logic. In K. Lambert, editor, Philosophical Problems in
Logic: Some Recent Developments, pages 143–173. Reidel, Dordrecht, 1970.

[390] R. Seely. Linear logic, ∗-autonomous categories and cofree coalgebras. In J. Gray
and A. Scedrov, editors, Categories in Computer Science and Logic, number 92 in
AMS Contemp. Math., pages 371–382, Providence, 1989.

[391] R. Segala. Modeling and verification of randomized distributed real-time systems.
PhD thesis, Massachusetts Inst. of Techn., 1995.

[392] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In
B. Jonsson and J. Parrow, editors, Concur’94: Concurrency Theory, number 836 in
Lect. Notes Comp. Sci., pages 481–496. Springer, Berlin, 1994.

[393] A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Generalizing the powerset con-
struction, coalgebraically. In K. Lodaya and M. Mahajan, editors, Foundations of
Software Technology and Theoretical Computer Science, volume 8 of Leibniz Int.
Proc. in Informatics, pages 272–283. Schloss Dagstuhl, 2010.

[394] A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Quantative Kleene coalgebras.
Inf. & Comp., 209(5):822–849, 2011.

[395] A. Silva, M. Bonsangue, and J. Rutten. Non-deterministic Kleene coalgebras. Log-
ical Methods in Comp. Sci., 6(3):1–39, 2010.

[396] L. Simon, A. Mallya, A. Bansal, and G. Gupta. Coinductive logic programming. In
S. Etalle and M. Truszczynski, editors, Logic Programming, number 4079 in Lect.
Notes Comp. Sci., pages 330–345. Springer, Berlin, 2006.

[397] M. Smyth. Topology. In S. Abramsky, Dov M. Gabbai, and T. Maibaum, editors,
Handbook of Logic in Computer Science, volume 1, pages 641–761. Oxford Univ.
Press, 1992.

[398] M. Smyth and G. Plotkin. The category theoretic solution of recursive domain equa-
tions. SIAM Journ. Comput., 11:761–783, 1982.

[399] A. Sokolova. Probabilistic systems coalgebraically: A survey. Theor. Comp. Sci.,
412(38):5095–5110, 2011.

[400] S. Staton. Relating coalgebraic notions of bisimulation. In A. Kurz and A. Tarlecki,
editors, Conference on Algebra and Coalgebra in Computer Science (CALCO 2009),
number 5728 in Lect. Notes Comp. Sci., pages 191–205. Springer, Berlin, 2009.

[401] S. Staton. Relating coalgebraic notions of bisimulation. Logical Methods in Comp.
Sci., 7(1:13):1–21, 2011.

[402] C. Stirling. Modal and Temporal Properties of Processes. Springer, 2001.

[403] M. Stone. Postulates for the barycentric calculus. Ann. Math., 29:25–30, 1949.

[404] T. Swirszcz. Monadic functors and convexity. Bull. de l’Acad. Polonaise des Sci-
ences. Sér. des sciences math., astr. et phys., 22:39–42, 1974.

[405] W. Tait. Intensional interpretation of functionals of finite type I. Journ. Symb. Logic,
32:198–212, 1967.

DRAFT

352 Bibliography352 Bibliography352 Bibliography

[406] P. Taylor. Practical Foundations of Mathematics. Number 59 in Cambridge Studies
in Advanced Mathematics. Cambridge Univ. Press, 1999.

[407] H. Tews. Coalgebras for binary methods: Properties of bisimulations and invariants.
Inf. Théor. et Appl., 35(1):83–111, 2001.

[408] H. Tews. Coalgebraic Methods for Object-Oriented Specification. PhD thesis,
Techn. Univ. Dresden, Germany, 2002.

[409] A. Thijs. Simulation and Fixpoint Semantics. PhD thesis, Univ. Groningen, 1996.

[410] V. Trnková. Some properties of set functors. Comment. Math. Univ. Carolinae,
10:323–352, 1969.

[411] V. Trnková. Relational automata in a category and their languages. In Fundamentals
of Computation Theory, number 256 in Lect. Notes Comp. Sci., pages 340–355.
Springer, Berlin, 1977.

[412] D. Turi. Functorial operational semantics and its denotational dual. PhD thesis,
Free Univ. Amsterdam, 1996.

[413] D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Logic in
Computer Science, pages 280–291. IEEE, Computer Science Press, 1997.

[414] D. Turi and J. Rutten. On the foundations of final semantics: non-standard sets,
metric spaces and partial orders. Math. Struct. in Comp. Sci., 8(5):481–540, 1998.

[415] T. Uustalu and V. Vene. Signals and comonads. Journ. of Universal Comp. Sci.,
11(7):1310–1326, 2005.

[416] T. Uustalu, V. Vene, and A. Pardo. Recursion schemes from comonads. Nordic
Journ. Comput., 8(3):366–390, 2001.

[417] M. Vardi. Automatic verification of probabilistic concurrent finite state programs.
In Found. of Computer Science, pages 327–338. IEEE, 1985.

[418] Y. Venema. Automata and fixed point logic: a coalgebraic perspective. Inf. & Comp.,
204:637–678, 2006.

[419] I. Viglizzo. Final sequencs and final coalgebras for measurable spaces. In J. Fiadeiro,
N. Harman, M. Roggenbach, and J. Rutten, editors, Conference on Algebra and
Coalgebra in Computer Science (CALCO 2005), number 3629 in Lect. Notes Comp.
Sci., pages 395–407. Springer, Berlin, 2005.

[420] E. de Vink and J. Rutten. Bisimulation for probabilistic transition systems: a coal-
gebraic approach. Theor. Comp. Sci., 221:271–293, 1999.

[421] Ph. Wadler. Monads and composable continuations. Lisp and Symbolic Computa-
tion, 7(1):39–56, 1993.

[422] R. Walters. Categories and Computer Science. Carslaw Publications, Sydney, 1991.
Also available as: Cambridge Computer Science Text 28, 1992.

[423] M. Wand. Final algebra semantics and data type extension. Journ. Comp. Syst. Sci,
19:27–44, 1979.

[424] W. Wechler. Universal Algebra for Computer Scientists. Number 25 in EATCS
Monographs. Springer, Berlin, 1992.

DRAFT

Bibliography 353Bibliography 353Bibliography 353

[425] J. Winter, M. Bonsangue, and J. Rutten. Context-free languages, coalgebraically. In
A. Corradini, B. Klin, and C. Cı̈rstea, editors, Conference on Algebra and Coalgebra
in Computer Science (CALCO 2011), number 6859 in Lect. Notes Comp. Sci., pages
359–376. Springer, Berlin, 2011.

[426] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, volume B, pages 673–788. Elsevier/MIT Press, 1990.

[427] H. Wolff. Monads and monoids on symmetric monoidal closed categories. Archiv
der Mathematik, XXIV:113–120, 1973.

[428] U. Wolter. CSP, partial automata, and coalgebras. Theor. Comp. Sci., 280 (1-2):3–
34, 2002.

[429] J. Worrell. Toposes of coalgebras and hidden algebras. In B. Jacobs, L. Moss, H. Re-
ichel, and J. Rutten, editors, Coalgebraic Methods in Computer Science, number 11
in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 1998.

[430] J. Worrell. Terminal sequences for accessible endofunctors. In B. Jacobs and J. Rut-
ten, editors, Coalgebraic Methods in Computer Science, number 19 in Elect. Notes
in Theor. Comp. Sci. Elsevier, Amsterdam, 1999.

[431] J. Worrell. On the final sequence of a finitary set functor. Theor. Comp. Sci., 338(1-
3):184–199, 2005.

[432] G. Wraith. A note on categorical datatypes. In D. Pitt, A. Poigné, and D. Rydeheard,
editors, Category Theory and Computer Science, number 389 in Lect. Notes Comp.
Sci., pages 118–127. Springer, Berlin, 1989.

[433] B. Trancón y Widemann and M. Hauhs. Distributive-law semantics for cellular
automata and agent-based models. In A. Corradini, B. Klin, and C. Cı̈rstea, editors,
Conference on Algebra and Coalgebra in Computer Science (CALCO 2011), number
6859 in Lect. Notes Comp. Sci., pages 344–358. Springer, Berlin, 2011.

DRAFT

354 Subject Index354 Subject Index354 Subject Index

DRAFT
Subject Index

abrupt termination, 3
abstract epi, 136
abstract mono, 136
abstraction morphism, 32
AC, 33
accessible functor, 167
ACP, 110
action

monoid —, 43, 218
Aczel-Mendler bisimulation, 97, 125, 127,

157
additive monad, 35, 192, 221
adjunction, 68

behaviour-realisation —, 72, 73
map of —s, 76

admissible subset (of a dcpo), 136
affine functor, 55, 171
Agda, 62
algebra, 56

— of a monad, 216
bi- —, 65
free —, 71, 287
hidden —, 65
initial —, 56
Kleene —, 227
process —, 111
quotient —, 102
Zermelo Fraenkel —, 64

algebraic
— category, 218
— specification, 295

analytic function, 52
analytical functor, 178
arity, 37

— functor, 38
multi-sorted —, 38
single-sorted —, 38

arrow, 18, 182
attribute, 16
automaton, 8

deterministic —, 41, 264
non-deterministic —, 43
weighted —, 121

axiom

— for a comonad, 310
— for a functor, 310
— of choice, 33, 89, 90, 102
— system for a comonad, 311
— system for a monad, 297

Böhm tree, 268
Backus Naur Form, 45
bag, 117
Baire space, 22
Beck-Chevalley condition, 148
behaviour, 8

— -realisation adjunction, 72, 73
— function

— for deterministic automata, 42
— for sequences, 6

behavioural
— equivalence, 98, 157, 283
— validity, vi

bialgebra, 65, 88
— of processes, 113
map of —, 114

biartesian closed category, 32
BiCCC, 32
binary

— method, 65–67
— tree, 39, 55, 60, 256

biproduct, 29, 34, 143, 286
bisimilarity, 88
bisimulation, 85

— as coalgebra, 91
— equivalence, 86
— for transition systems, 86
Aczel-Mendler —, 97, 125, 127, 157
logical —, 156
probabilistic —, 160

black box, 2
Boolean algebra, 185, 282

complete —, 32

Cantor
— space, 22, 53
—’s diagonalisation, 51

carrier
— of a coalgebra, 22

355

DRAFT

356 Subject Index356 Subject Index356 Subject Index

— of an algebra, 56
cartesian

— closed category, 32
— natural transformation, 179

weak —, 179
CASL, 326
category

algebraic —, 218
dagger —, 32
distributive —, 35
indexed —, 138, 281
Kleisli —

— of a comonad, 195
— of a monad, 192
finitary —, 288

monadic —, 218
slice —, 23, 77

causal stream function, 54
CCC, 32
CCS, 110
CCSL, 326
CFG, 45
characteristic function, 33, 41
CIRC, 101, 104
circular rewriting, 104
class, v

— in object-oriented programming,
vii, 16

— in set theory, 47
— invariant, 17

co-continuous functor, 165
coalgebra, 22

— as comonoid, 2
— of a comonad, 217
— of a functor, 22
— structure, 22
cofree —, 69, 260, 308

greatest invariant as —, 266
observable —, 104
quotient —, 99, 164
recursive —, 214
simple —, 104, 108
sub- —, 243

coalgebraic
— class specification language, 326
— modal logic, 277
— specification, 319

model of —, 319
codomain, 19

— of a relation, 245, 254
coequaliser, 35
coequation, 271
cofree

— coalgebra, 69, 260, 308

greatest invariant as —, 266
— construction, 69
comonad on a functor, 192, 222, 308

coinduction, 5, 8
EM- —, 240
— definition principle, 8, 50
— proof principle, 8, 50

colimit, 128
— of ω-chain, 165

colour, 308
common algebraic specification language,

326
commutative monad, 200
comonad, 189

cofree — on a functor, 192, 222, 308
map of —s, 190
subset —, 314

comparison functor, 193, 229
complement, 32
complete

— Boolean algebra, 32
— lattice, 17, 219

composition
— of functors, 21
— of relations, 19

compositional semantics, 57, 114
comprehension, 96, 138, 143, 246, 264
computation tree logic, 276
comultiplication of a comonad, 189
cone, 165
congruence, 85

— as algebra, 91
— equivalence, 86, 102
— for algebras

— of a monad, 258
— rules, 295
logical —, 157

constant
— exponent functor, 37
— functor, 21

constructor, v
— of an algebra, 56

container, 47, 179
context-free grammar, 45, 207
contraction, 289
contravariance of exponents, 31
contravariant powerset, 33
convex

— set, 219
— sum, 120

copower, 29, 214
coproduct, 28

n-fold —, 29
— in a category of coalgebras, 29

DRAFT

Subject Index 357Subject Index 357Subject Index 357

set-indexed —, 29
coprojection morphism, 28
Coq, 66
corecursion, 8, 50

EM- —, 242
coreduce, 49
cospan, 98, 157
cotuple morphism, 28
counit

— of a comonad, 189
— of an adjunction, 71

covariant powerset, 33
cover modality, 284
CSP, 110
CTL, 276
Currying, 31, 62

data type, v
dcpo, 19

— enriched category, 208
denotational semantics, 114
dependent

— polynomial functor, 47, 179
— type theory, 47

derivable equation, 295
derivative, 105

— of a function, 52
— of a language, 52

destructor, v
deterministic

— automaton, 41, 264
minimal —, 79
observable —, 78
reachable —, 79

diagonal
— -fill-in, 99
— relation, 20
— -fill-in, 136

diagram chasing, 20
direct image, 33, 90
directed complete partial order, 19, 164
discrete

— preorder, 69
— topology, 77

disjoint
— coproduct, 28

distribution
— functor, 55, 120
— monad, 184
Dirac —, 124, 184
sub —, 120, 184
uniform —, 124

distributive
— category, 35

— law, 195, 223
domain, 19

— of a relation, 245, 254

earlier operator, 273
effective equivalence relation, 102, 262
EM-law, 223
embedding, 208
endo

— function, 3
— functor, 21
— map, 20
— morphism, 20
— relation, 20, 146

EPF, 37
epi, 78

abstract —, 136
epimorphism, 33, 78

— in a category of coalgebras, 99
equaliser, 35

— for coalgebras, 260
equality

— relation, 20
external —, 140
internal —, 140

equation, 294
equivalence

— of automata, 105
— of categories, 72, 79
effective — relation, 102, 262

evaluation morphism, 32
event system, iii
exception

— in Java, 3
— monad, 203

expectation monad, 185
exponent

— in a category, 32
— polynomial functor, 37

expressivity, 283
external equality, 140

factorisation, 99
— system, 99, 136
logical — system, 136

falsity
— predicate, 32
— relation, 32

field, 16, 319
filter, 185, 286
final

— coalgebra
— for deterministic automata, 51

DRAFT

358 Subject Index358 Subject Index358 Subject Index

— for image-finite non-deterministic
automata, 53

— of sequences, 6
weakly —, 169

— object, 27
— state, 41, 52

finitary
— functor, 167
Kleisli category, 288

finite
— Kripke polynomial functor, 37
— coproducts, 29
— powerset, 33
— products, 27

finitely branching transition system, 109
fixed point

greatest —, 18, 54
least —, 18

fold, 57
free

— Zermelo Fraenkel algebra, 64
— algebra, 71, 80, 287
— construction, 69
— iterative monad, 241
— monad on a functor, 188, 222
— monoid, 23, 48, 69
— variable, 81

— for Böhm tree, 269
Frobenius condition, 140
full abstractness, 104
full and faithful functor, 77
fully abstract interpretation, 59
functor, 1, 21

ω-accessible —, 167
accessible —, 167
affine —, 55, 171
analytical —, 178
arity —, 38
co-continuous —, 165
comparison —, 193, 229
composition of —s, 21
constant —, 21
distribution —, 55, 120
endo —, 21
finitary —, 167
forgetful —, 21
full and faithful —, 77
identity —, 21
locally continuous —, 216
locally monotone —, 210
multiset —, 118
shapely —, 179
strong —, 200

functorial, 21

— semantics, 289
fuzzy predicate, 227

Galois connection, 68, 95
— between backward and forward

temporal operators, 274
— between direct and inverse im-

age, 35
— between inverse image and prod-

uct, 35
— for predicate lifting, 247

game, 47
generic, 85

— temporal operators, 15
Giry monad, 121, 133
grammar

context-free —, 45, 207
graph, 92, 94, 205

— relation, 21
grep, 105
group, 19

Abelian —, 219

Haskell, 182
Hausdorff space, 142
head, 5

— normal form, 268
henceforth, 258, 263

— for sequences, 14
Hennessy-Milner property, 283
hidden

— algebra, 65
— sort, 65

Hofstadter’s Mu-puzzle, 267
homomorphism

— of algebras, 56
— of coalgebras, 22

ideal in a poset, 220
identity

— functor, 21
— relation, 20

image
— -finite non-deterministic automa-

ton, 53
— as invariant, 255
direct —, 33, 90
inverse —, 33, 90

indexed category, 138, 281
indiscrete

— preorder, 69
— topology, 77

induction
— definition principle, 59

DRAFT

Subject Index 359Subject Index 359Subject Index 359

— proof principle, 59, 87
binary —, 87, 103, 256

— rule of temporal logic, 274
— with parameters, 77

infinite
— binary tree, 40
— sequence, 5, 39, 52

initial
— algebra, 56

— of natural numbers, 59
— object, 28

strict —, 29
injection, 33
injective function, 33
interface, 1
interior operator, 17, 259
internal equality, 140
interpretation map, 57
invariant, 13

— for a coalgebra, 253
— of a comonad, 258

— for an algebra, 254
— for sequences, 14
class —, 17
greatest —, 259

inverse image, 33, 90
isomorphism, 20

Java, 3, 4, 186, 286, 320
join

directed —, 19

kernel, 91, 94
K̀ -law, 195
Kleene

— algebra, 227
— star, 105

Kleisli
— category

— of a comonad, 195
— of a monad, 192

— extension, 194
KPF, 37
Kripke

— polynomial functor, 37
finite —, 37

— structure, 44

labelled transition system, 44, 87
lambda

— calculus, 268
— notation, 1

language, 52, 105
— accepted, 52, 105

— monad, 227
regular —, 105

lasttime operator, 273
lattice

complete —, 17
join semi- —, 220
meet semi- —, 138

Lawvere theory, 288, 289
lax relation lifting, 89
lift monad, 183
lifting

— of adjunctions, 75
lax relation —, 89
predicate —, 244
relation —, 84

limit, 128
— of an ω-chain, 165

linear
— dynamical system, vi, 43, 48

minimal —, 79
observable —, 79
reachable —, 79

— logic, 190
— map, between complete lattices,

220
list, 5

— functor, 37
— monad, 184
lazy —, 5

liveness property, 17
locally

— continuous functor, 216
— monotone functor, 210

logical
— bisimulation, 156
— congruence, 157
— factorisation system, 136
— relation, 85

lowering
predicate —, 247

LTS, 44

machine
Mealy —, 54

maintainable, 276
map, 18

— of adjunctions, 76
— of comonads, 190
— of monads, 188
endo —, 20
mediating —, 125

Markov chain, 121, 184
maybe monad, 183
Mealy machine, 54

DRAFT

360 Subject Index360 Subject Index360 Subject Index

mediating map, 125
method, 16, 319

binary —, 65–67
metric space, 19
minimal

— deterministic automaton, 79
— linear dynamical system, 79
— representation, 49

modal
— logic, 265

coalgebraic —, 277
— signature functor, 277

model
— checking, 44
— of a coalgebraic specification, 319

module over a semiring, 219
monad, 182

— transformer, 186, 203
commutative —, 200
distribution —, 184
exception —, 203
expectation —, 185
free — on a functor, 188, 222
free iterative —, 241
I/O —, 186
language —, 227
lift —, 183
list —, 184
map of —s, 188
maybe —, 183
powerset —, 183
quotient —, 303
state —, 184
strong —, 200
ultrafilter —, 185

monadic category, 218
mono, 78

abstract —, 136
monoid, 19, 87

— action, 22, 43, 218
— of processes, 111
— of sequences, 13
— of statements, 4
commutative —, 219
free —, 23
positive —, 131
refinement —, 131
zerosumfree —, 123

monomorphism, 33, 78
— in a category of coalgebras, 99
split —, 55

monotone function, 18, 21
morphism

— in a category, 18

endo —, 20
Mu-puzzle, 267
multi-sorted

— algebra, 57
— arity, 38

multigraph, 121
multiplication of a monad, 182
multiset, 117

— functor, 118
mutual recursion, 66

natural transformation, 71
cartesian —, 179
weak cartesian —, 179

negation, 32
neighbourhood functor, 47, 135, 185, 280
Nerode realisation, 79
nexttime, 266

— for sequences, 14
strong —, 17
weak —, 17

strong —, 267
non-deterministic automaton, 43
non-expansive function, 19
non-termination, 3
non-well-founded set, vi, 46
null process, 111

object
— -orientation, vii
— in a category, 18
— in object-oriented programming,

17
object-orientation, 16
observable

— coalgebra, 104
— deterministic automaton, 78
— linear dynamical system, 79

observation
— function

— in a deterministic automaton,
41

— in a non-deterministic automa-
ton, 43

observer, 319
ω-accessible functor, 167
operation of an algebra, 56
operational

— model of the λ-calculus, 268, 270
— semantics

structural —, 87, 114
operational semantics, 114
operator

temporal —, 13

DRAFT

Subject Index 361Subject Index 361Subject Index 361

order
— on a functor, 88
flat —, 89
prefix —, 89

orthogonal maps, 148

parametricity, 170
parsing, 45
Petri net, iii
π-calculus, 65
polymorphic

— type theory, 170
polynomial, 120

Laurent —, 124
multivariate —, 120
univariate —, 120

polynomial functor
dependent —, 47, 179
exponent —, 37
Kripke —, 37

finite —, 37
simple —, 36

polytypic, 85
— temporal operators, 15

positive monoid, 131
power, 27
powerset

— functor, 33
— monad, 183
contravariant —, 33
covariant —, 33
finite —, 33

predicate, 32
— in a category, 137
— lifting, 244
— lowering, 247
category of —s, 246
falsity —, 32
fuzzy —, 227
truth —, 32

prefix, 5
action —, 111

preorder, 19, 69
discrete —, 69
indiscrete —, 69

presheaf, 65, 290
probabilistic

— bisimulation, 160
process, 2, 11, 109

— algebra, 111
— as element of a final coalgebra,

110
— category, 75
— terms, 114

product
n-fold —, 27
— category, 20
— for coalgebras, 260
— in a category, 26

— of algebras, 66
set-indexed —, 27

projection
— morphism, 26

pullback, 92, 94, 125
– lemma, 134
— in Sets, 126
countable —, 171
weak —, 126

countable —, 171

quantale, 227
quotient, 103

— coalgebra, 99, 164
— monad, 303

reachable
— deterministic automaton, 79
— linear dynamical system, 79

real number, 22
realisation

— functor, 73
behaviour —, 73
Nerode —, 79

recolouring, 318
recursion, 8, 59, 64

mutual —, 66
recursive coalgebra, 214
reduce, 57
refinement

— monoid, 131
— type, 62

regular
— expression, 108
— language, 105

relation, 32
— classifier, 33
— in a category, 137
— lifting, 84
category of —s, 91
category of sets and —s, 19
endo —, 20, 146
equality —, 20
falsity —, 32
graph —, 21
inhabitation —, 33
lax — lifting, 89
logical —, 85
pullback —, 92

DRAFT

362 Subject Index362 Subject Index362 Subject Index

reverse —, 32
stochastic —, 193
truth —, 32

relator, 90, 153
retract, 96
reverse relation, 32
rig, 186
Rolling lemma, 66
rule, 9

double —, 26

safety property, 17, 243
section, 34
Segala system, 122

simple —, 122, 226
semantics

compositional —, 57, 114
functorial —, 289

sequence
finite —, 5
infinite —, 5, 39, 52

shapely functor, 179
shift, 48
side-effect, 2
signature, 57
similarity, 89
simple

— coalgebra, 104, 108
— polynomial functor, 36

simulation, 89, 96
since operator, 274, 276
single-sorted

— algebra, 57
— arity, 38
— signature, 57

single-typed, 57
slice category, 23, 77
SOS, 87
soundness, 305
space

Hausdorff —, 142
state —, 1
Stone —, 22
topological —, 19
vector —, 48, 143, 219

span, 98, 157, 215
specification

algebraic —, 295
coalgebraic —, 319

SPF, 36
split

— epi, 151
— mono, 55

splitting, 34

state
— monad, 184
— space, 1, 22
— transformer, 2
successor —, 1

stochastic relation, 193
Stone space, 22
stream, 5, 52

— comonad, 190, 220
— of real numbers, 52
causal — function, 54

strength, 77, 199
double —, 200, 221
swapped —, 199

strict
— function, 193
— initial object, 29

strong
— functor, 200
— monad, 200

structural operational semantics, v, 87
subalgebra, 256
subcoalgebra, 243, 253, 255

greatest —, 264
subdistribution, 120, 184
subobject, 135

— classifier, 262
subset, 32

— comonad, 314
— type, 264

subsort, 66
substitution, 289

as Kleisli composition, 289
sum, 27

— of processes, 111
support, 118
surjection, 33
surjective function, 33
symmetric monoidal structure, 35, 74

tail, 5
Taylor series, 53
temporal

— logic of actions, 326
— operator, 13

term, 287
terminal object, 27
termination

abrupt —, 3
non- —, 3

theorem, 295
— prover, 66

theory, 295
Lawvere —, 288, 289

DRAFT

Subject Index 363Subject Index 363Subject Index 363

TLA, 326
topological space, 19, 56
topology

discrete —, 77
indiscrete —, 77

topos, 33, 142, 262
trace

— equivalence, 216
monoidal —, 214

transition
— function, 1

— in a deterministic automaton,
40, 41

— in a non-deterministic automa-
ton, 43

iterated —, 42
— structure, 1, 22
— system

— bisimulation, 86
finitely branching —, 109
labelled —, 44, 87
probabilistic —, 121
unlabelled —, 44, 249, 271, 273

multiple-step —, 42
transpose, 68
tree

Böhm —, 268
binary —, 39, 55, 60, 256

triangular identities, 77
truth

— predicate, 32
— relation, 32

tuple morphism, 26
Turing machine, iii, 45
type, 1

— theory
dependent —, 47
polymorphic —, 170

refinement —, 62

ultrafilter, 185
— monad, 185

unfold, 49
uniform distribution, 124
unit

— of a monad, 182
— of an adjunction, 71

unlabelled
— transition system, 44, 249, 271,

273
until operator, 267, 276
UTS, 44

valuation, 44

vector space, 48, 143, 219
Vietoris functor, 22

weak
— cartesian natural transformation,

179
— pullback, 126

weakening, 289
weakest precondition, 202
weakly final coalgebra, 169
Whisky problem, 275
word, 5

zero
— map, 210
— object, 34, 202, 209

zerosumfree monoid, 123
zig-zag morphism, 45

DRAFT

364 Definition and Symbol Index364 Definition and Symbol Index364 Definition and Symbol Index

DRAFT
Definition and Symbol Index

AN, infinite sequences of elements of A,
5

A§, space of polynomials on a vector space
A, 48

A∞, both finite and infinite sequences of
elements of A, 5

A?, finite sequences of elements of A, 5,
23

L(A), set P(A?) of languages over A,
105

R(A), set of regular languages over A,
105

DA, category of deterministic automata,
72

DB, category of deterministic behaviours,
73

Dcpo, category of directed complete par-
tial orders, 19, 220

Grp, category of groups, 19
Hilb, category of Hilbert spaces, 143
JSL, the category of join semilattices,

220
MSL, the category of meet semilattices,

138
MSL, the category of meet semilattices,

227, 281
Mon, category of monoids, 19
PreOrd, category of preorders, 19
Pred, category of predicates, 246
Rel, category of binary relations, 91
Sets, category of sets and functions, 19
SetsRel, category of sets and relations,

19
Sp, category of topological spaces, 19
Vect, category of vector spaces, 48

Alg(F), category of F -algebras, 56
Alg(F,A), category of algebras of a func-

torF that satisfy axiomsA, 297
CoAlg(F), category ofF -coalgebras, 22
CoAlg(F,A), category of coalgebras of

a functor F that satisfy axioms
A, 310

EM(S), category of coalgebras for the
comonad S, 217

EM(S,A), category of Eilenberg-Moore
coalgebras of a comonad S that
satisfy axioms A, 310

EM(T), category of algebras for the monad
T , 216

EM(T,A), category of Eilenberg-Moore
algebras of a monad T that sat-
isfy axioms A, 297

K̀ (S), Kleisli category of comonad S,
195

K̀ (T), Kleisli category of monad T , 192
K̀ N(T), finitary Kleisli category of a monad

T on Sets, with n ∈ N as ob-
jects, 288

Mnd(C), category of monads on C, 188
Model(T), category of functorial mod-

els of a monad T , 288
Model(T,A), category of functorial mod-

els of a monad T that satisfy
axioms A, 297

C/I , slice category over I , 23
C× D, product category of C and D, 20
Cop, opposite category of C, 20
Pred(C), category of predicates from M

in C, 137
Rel(C), category of relations in C, 137

F a G, F is left adjoint of G, 68
F ∗, free monad on a functor F , 188
F∞, cofree comonad on a functor F , 192
F#, functor associated with arity #, 38
T/A, quotient monad obtained from T

via axioms A, 303
D, discrete probability distribution func-

tor, 120
EM(G), lifting of a functorG to an Eilenberg-

Moore category, 223
K̀ (F), lifting of a functor F to a Kleisli

category, 195, 223
MM , multiset functor, counting in monoid

M , 118
α : H ⇒ K, α is a natural transforma-

tion from H to K, 71

365

DRAFT

366 Definition and Symbol Index366 Definition and Symbol Index366 Definition and Symbol Index

Q, quotient functor, 300
Pred(F), predicate lifting

— for a polynomial functor, 244
— wrt. a factorisation system, 249

Pred←−−(F), left adjoint to predicate lifting,
247

Rel(F), relation lifting
— for a polynomial functor, 84
— wrt. a factorisation system, 149

D≤1, discrete sub-probability distribution
functor, 120

{S | A}, subset comonad obtained from
S via axioms A, 314

θ, universal map F ⇒ F ∗ from an end-
ofunctor F to the free monad
F ∗ on F , 188

{−}, comprehension functor, 138

Th(Ax), set of equations derivable from
Ax, 295

�←−, before operator, 274
♦←−, earlier operator, 273
♦, eventually operator

— on sequences, 14
�, henceforth operator, 258

— on sequences, 14
for a factorisation system, 263

©←−, lasttime operator, 273
¬U , negation (or complement) of U , 32
©, nexttime operator, 266

— on sequences, 14
S, since operator, 274
Ax ` t1 = t2, t1 = t2 is derivable from

Ax., 295
U , until operator, 267

— on sequences, 18

!, unique map
— from an initial object, 28
— to a final object, 27

X ′ � X , epimorphism, 78
X ′ � X , monomorphism, 78
Λ(f), abstraction morphism, 32
behc, behaviour function for coalgebra c,

6, 49
∼=, isomorphism, 20
[f, g], cotuple of morphisms f and g, 28
dst, double strength for a commutative

monad, 200
ev, evaluation morphism, 32
idX , identity morphism on an object X

in a category, 19
intb, interpretation map for coalgebra b,

57

κ1, first coprojection morphism, 28
κ2, second coprojection morphism, 28
π1, first projection morphism, 26
π2, second projection morphism, 26
st, strength natural transformation, 77, 199
〈f, g〉, tuple of morphisms f and g, 26
c ; d, composition of coalgebras: c fol-

lowed by d, 183
f [U], direct image, 33
f ; g, composition of Kleisli maps: f fol-

lowed by g, 192
f$, Kleisli extension of f , 194
g ◦ f , composition g after f in a cate-

gory, 19

BT, Böhm tree function, 268
FV, free variables in a Böhm tree, 270
hnf, head normal form function, 268
comp, on sequences, 13
evens, on sequences, 9
merge, on sequences, 11
nextdec, 7
next, final coalgebra for sequences, 5
odds, on sequences, 10
tail, on sequences, 11

La, a-derivative of language L, 52
[−]R, quotient map, 99
[[−]]ρ interpretation in an algebra, for val-

uation ρ, 287
δ∗, iteration of transition function δ, 42
µ, least fixed point operator, 267
ν, greatest fixed point operator, 267
0, null process, 111
supp, support, 118
b · z, prefix of action b to process z, 111
c/R, coalgebra on quotient byR, 99, 164
cP , subcoalgebra on greatest invariant in

subset P , 259
t[~s/~v], term twith terms ~s substituted for

variables ~v, 289
z + w, sum of two processes, 111

∨
, join, 17∧
, meet, 17
⊥, bottom element, 34
>, top element, 34

(· 6= x), predicate of elements unequal to
x, 270

(· = x), predicate of elements equal to x,
270

R†, reverse relation, 32
S ◦ R, relation composition, 19

DRAFT

Definition and Symbol Index 367Definition and Symbol Index 367Definition and Symbol Index 367

U(x), predicate U holds for x, 32
Graph(f), the graph of a function f , 21
c
↔

d, bisimilarity w.r.t. coalgebras c and
d, 88

↔, bisimilarity, 88∐
f (U), direct image, 33

Eq(X), equality relation on a set X , 20∏
f (U), product predicate, 35

(x ↓ b) a−→ (x′ ↓ b′), a-transition with ob-
servations b, b′, 41, 44

x9 , state x halts, 8
x ↓ b, b can be observed about x, 41, 44
a ∈ x, a occurs in the behaviour sequence

of x, 15
x

a9 , there is no a-step from x, 44
x

σ−→∗ y, multiple σ-steps from x to y,
42

x
a−→ x′, a-step from x to x′, 8, 41, 44

L4, initial algebra (of parsed words) for
the functor (−+ L)?, 207

B, final coalgebra of Böhm trees, 268
BinTree(A), initial algebra of binary trees,

60

Xn, n-fold product (power), 27
n ·X , n-fold coproduct (copower) of X ,

29
0, empty set, 29
0, initial object, 28
1, final object, 27
1, singleton set, 27
2, two-element set {0, 1}, 52
X + Y , coproduct of objects X,Y , 28
X × Y , product of objects X,Y , 26
Y X , exponent of objects X,Y , 32
Pfin(X), set of finite subsets/predicates

on X , 33
Ker(f), kernel of function f , 91
P(X), set of subsets / predicates on X ,

32∏
i∈I Xi, set-indexed product, 27

Eq(f, g), pullback of f , g, 92, 126

