Chapter 0

Prospectus

This introductory chapter is divided into two parts. It first discusses some
generalities concerning logic, type theory and category theory, and describes
some themes that will be developed in this book. It then continues with a
description of the (standard) logic and type theory of ordinary sets, from the
perspective of fibred category theory—typical of this book. This description
focuses on the fundamental adjunctions that govern the various logical and
type theoretic operations.

0.1 Logic, type theory, and fibred category theory

A logic is always a logic over a type theory. This statement sums up our ap-
proach to logic and type theory, and forms an appropriate starting point. It
describes a type theory as a “theory of sorts”, providing a domain of reason-
ing for a logic. Roughly, types are used to classify values, so that one can
distinguish between zero as a natural number 0: N and zero as a real number
0: R, and between addition +:N x N — N on natural numbers and addition
+:R x R — R on real numbers. In these examples we use atomic types N
and R and composite types N x N — N and R x R — R obtained with the
type constructors x for Cartesian product, and — for exponent (or function
space). The relation ¢’ as in 0: N, is the inhabitation relation of type theory.
It expresses that 0 is of type N, i.e. that 0 inhabits N. It is like membership €
in set theory, except that € is untyped, since everything is a set. But a string
is something which does not inhabit the type of natural numbers. Hence we

1

2 Chapter 0: Prospectus

shall have to deal with rules regulating inhabitation, like

q n:N
an _
0:N succ(n): N
The first rule is unconditional: it has no premises and simply expresses that
the term 0 inhabits the type N. The second rule tells that if we know that n
inhabits N, then we may conclude that succ(n) also inhabits N, where succ(—)
may be read as successor operation. In this way one can generate terms, like
succ(succ(0)): N inhabiting the type N.

In predicate logic one reasons about such terms in a type theory, like in

Vz:N. Jy: N.y > succ(z).
This gives an example of a proposition. The fact that this expression is a
proposition may also be seen as an inhabitation statement, so we can write
(Vz:N.Jy: N.y > succ(z)) : Prop
using a type Prop of propositions. In this particular proposition there are

no free variables, but in predicate logic an arbitrary proposition ¢: Prop may
contain free variables. These variables range over types, like in:

z > 5: Prop, where z: N or x > 5: Prop, where 2: R.

We usually write these free variables in a “context”, which is a sequence of
variable declarations. In the examples the sequence is a singleton, so we write

z:N F x> 5: Prop and z:R F 2 > 5: Prop.

The turnstile symbol F separates the context from the conclusion: we read the
sequent z: N F z > 5: Prop as: in the context where the variable z is of type N,
the expression x > 5 is a proposition. Well-typedness is of importance, since
if x is a string, then the expression x > 5 does not make sense (unless one has
a different operation > on strings, and one reads ‘5’ as a string).

This explains what we mean with: a logic is always a logic over a type
theory. Underlying a logic there is always a calculus of typed terms that one
reasons about. But one may ask: what about single-sorted logic (i.e. single-
typed, or untyped, logic) in which variables are thought of as ranging over
a single domain, so that types do not really play a réle? Then one still has
a type theory, albeit a very primitive one with only one type (namely the
type of the domain), and no type constructors. In such situations one often
omits the (sole) type, since it has no réle. But formally, it is there. And what
about propositional logic? It is included as a border case: it can be seen as
a degenerate predicate logic in which all predicates are closed (i.e. do not
contain term variables), so one can see propositional logic as a logic over the
empty type theory.

Section 0.1: Logic, type theory, and fibred category theory 3

We distinguish three basic kinds of type theory:

e simple type theory (STT);
e dependent type theory (DTT);
e polymorphic type theory (PTT).

In simple type theory there are types built up from atomic types (like N,
R above) using type constructors like exponent —, Cartesian product X or
coproduct (disjoint union) +. Term variables x: o are used to build up terms,
using atomic terms and introduction and elimination operations associated
with the type constructors (like tuples and projections for products x). Types
in simple type theory may be seen as sets, and (closed) terms inhabiting
types as elements of these sets. In dependent type theory, one allows a term
variable z: o to occur in another type 7(x): Type. This increases the expressive
power, for example because one can use in DTT the type Matrix(n,m) of
n X m matrices (say over some fixed field), for n: N and m:N terms of type
N. If one thinks of types as sets, this type dependency is like having for each
element i € I of a set I, another set X (i). One usually writes X; = X (7) and
sees (X;)ier as an I-indexed family of sets. Thus, in dependent type theory
one allows type-indexed-types, in analogy with set-indexed-sets. Finally, in
polymorphic type theory, one may use additional type variables a to build up
types. So type variables a may occur inside a type o(«), like in the type list(a)
of lists of type a. This means that one has types, indexed by (or parametrised
by) the universe Type of all types. In a set theoretic picture this involves a set
X4 = X(A) for each set A. One gets indexed collections (X 4) acsets Of sets
X4.

These three type theories are thus distinguished by different forms of in-
dexing of types: no indexing in simple type theory, indexing by term variables
z:0 in dependent type theory, and indexing by type variables a: Type in poly-
morphic type theory. One can also combine dependent and polymorphic type
theory, into more complicated type theories, for example, into what we call
polymorphic dependent type theory (PDTT) or full higher order dependent
type theory (FhoDTT).

What we have sketched in the beginning of this section is predicate logic over
simple type theory. We shall call this simple predicate logic (SPL). An obvious
extension is to consider predicate logic over dependent type theory, so that
one can reason about terms in a dependent type theory. Another extension is
logic over polymorphic type theory. This leads to dependent predicate logic
(DPL) and to polymorphic predicate logic (PPL). If one sees a typed calculus
as a (rudimentary) programming language, then these logics may be used as
program logics to reason about programs written in simple, dependent, or
polymorphic type theory. This describes logic as a “module” that one can

4 Chapter 0: Prospectus

plug onto a type theory.

This book focuses on such structural aspects of logic and type theory. The
language and techniques of category theory will be essential. For example, we
talked about a logic over a type theory. Categorically this will correspond to
one (“total”) category, capturing the logic, being fibred over another (“base”)
category, capturing the type theory. Indeed, we shall make special use of
tools from fibred category theory. This is a special part of category theory,
stemming from the work of Grothendieck in algebraic geometry, in which
(continuous) indexing of categories is studied. As we already mentioned, the
various forms of type theoretic indexing distinguish varieties of type theory.
And also, putting a logic on top of some type theory (in order to reason about
it) will be described by putting a fibration on top of the categorical structure
corresponding to the type theory. In this way we can put together complicated
structures in a modular way.

Fibred category theory is ordinary category theory with respect to a base
category. Also, one can say, it is ordinary category theory over a base cate-
gory. Such a base category is like a universe. For example, several concepts in
category theory are defined in terms of sets. One says that a category C has
arbitrary products if for each set I and each I-indexed collection (X;);cr of
objects X; € C there is a product object [[;.; X; € C together with projec-
tion morphisms m;: ([[,c; Xi) — X, which are suitably universal. In category
theory one is not very happy with this privileged position of sets and so the
question arises: is there a way to make sense of such products with respect to
an object I of a ‘universe’ or ‘base category’ B, more general than the cate-
gory Sets of sets and functions? This kind of generality is needed to interpret
logical products Vz: 0. ¢ or type theoretic products IIz: 6. 7 when the domain
of quantification ¢ is not interpreted as a set (but as some ordered set, or
algebra, for example).

Another example is local smallness. A category C is locally small if for each
pair of objects X,Y € C the morphisms X — Y in C form a set (as opposed
to a proper class). That is, if one has homsets C(X,Y’) € Sets as objects in
the category of sets. Again the question arises whether there is a way of saying
that C is locally small with respect to an arbitrary universe or base category
B and not just with respect to Sets.

Fibred category theory provides answers to such questions. It tells what it
means for a category E to be ‘fibred over’ a base category B. In that case we

write g, where the arrow E — B is a functor which has a certain property
that makes it into a fibration. And in such a situation one can answer the
above questions: one can define quantification with respect to objects I € B
and say when one has appropriate hom-objects Hom(X,Y) € B for X,Y € E.

Section 0.1: Logic, type theory, and fibred category theory 5

The ways of doing this will be explained in this book. And for a category
Fam(C

C there is always a ‘family fibration’ é(s) of set-indexed families in C.

The fibred notions of quantification and local smallness, specialised to this

family fibration, are the ordinary notions described above. Thus, in the family

fibration we have our standard universe (or base category) of sets.

There are many categorical notions arising naturally in logic and type the-
ory (see the list below). And many arguments in category theory can be
formulated conveniently using logic and type theory as “internal” language
(sometimes called the “Mitchell-Bénabou” language, in the context of topos
theory). These fields however, have different origins: category theory arose in
the work of Eilenberg and Mac Lane in the 1940s within mathematics, and
was in the beginning chiefly used in algebra and topology. Later it found ap-
plications in almost all areas of mathematics (and computer science as well,
more recently). Type theory is also from this century, but came up earlier
in foundational work by Russell in logic (to avoid paradoxes). Recently, type
theory has become important in various (notably functional) programming
languages, and in computer mathematics: many type theories have been used
during the last two decades as a basis for so-called proof-assistants. These are
special computer programs which assist in the verification of mathematical
statements, expressed in the language of some (typed) logic. The use of types
in these areas imposes certain restrictions on what can be expressed, but fa-
cilitates the detection of various errors. We think it is in a sense remarkable
that two such fundamental fields (of category theory and of type theory)—
with their apparent differences and different origins—are so closely related.
This close relationship may be beneficial in the use and further development
of both these fields.

We shall be especially interested in categorical phenomena arising within
logic and type theory. Among these we mention the following.

(i) Every context of variable declarations (in type theory) or of premises
(in logic) is an index. It is an index for a ‘fibre’ category which captures the
logic or type theory that takes place within that context—with the declared
variables, or under the assumptions. The importance of this categorical réle
of contexts is our motivation for paying more than usual attention to contexts
in our formulations of type theory and logic.

(ii) Appropriately typed sequences of terms give rise to morphisms be-
tween contexts. This is the canonical way to produce a category from types
and terms. These context morphisms induce substitution functors between
fibre categories. The structural operations of weakening (adding a dummy as-
sumption) and contraction (replacing two assumptions of the same kind by a
single one) appear as special cases of these substitution functors: weakening

6 Chapter 0: Prospectus

is substitution along a projection 7, and contraction is substitution along a
diagonal d. These 7 and § may be Cartesian projections and diagonals in sim-
ple and polymorphic type theories, or ‘dependent’ projections and diagonals
in dependent type theory.

(iii) The basic operations of logic and type theory can be described as
adjoints in category theory. Such operations standardly come with an intro-
duction and an elimination operation, which are each other’s inverses (via
the so-called (3)- and (n)-conversions). Adjoint correspondences capture such
situations. This may be familiar for the (simple) type theoretic constructors
1, x, 0, + and — (and for their propositional counterparts T, A, L, V and
D), since these are the operations of bicartesian closed categories (which can
be described via standard adjunctions). But also existential Jz:0. (=) and
universal Viz: ¢. (—) quantification in predicate logic over a type o, dependent
sum Yz:0. (—) and product Iz: 0. (—) in dependent type theory over a type
o, and polymorphic sum Y.a: Type. (—) and product ITa: Type. (—) in polymor-
phic type theory over the universe Type of types, are characterised as left and
right adjoints, namely to the weakening functor which adds an extra dummy
assumption z:o, or a: Type. Moreover, equality =, on a type o is charac-
terised as left adjoint to the contraction functor which replaces two variables
x,y: o by a single one (by substituting z for y). By ‘being characterised’ we
mean that the standard logical and type-theoretical rules for these operations
are (equivalent to) the rules that come out by describing these operations as
appropriate adjoints.

The most important adjunctions are:

existential 3, sum ¥ - weakening

weakening - universal V, product IT
equality - contraction
truth -4 comprehension (or ‘subsets types’)
(but also: equality - comprehension, via a different functor)
quotients - equality.

The first four of these adjoints were recognised by Lawvere (and the last two
are identified in this book). Lawvere first described the quantifiers 3,V as left
and right adjoints to arbitrary substitution functors. The above picture with
separate adjoints to weakening and to contraction functors is a refinement,
since, as we mentioned in (ii), weakening and contraction functors are special
cases of substitution functors. (These operations of weakening and contraction
can be suitably organised as a certain comonad; we shall define quantification
and equality abstractly with respect to such comonads.)

Section 0.1: Logic, type theory, and fibred category theory 7

(iv) As we mentioned above, the characteristic aspect of dependent type
theory is that types may depend on types, in the sense that term variables
inhabiting types may occur in other types. And the characteristic aspect of
polymorphic type theory is that type variables may occur in types. Later we
shall express this as: types may depend on kinds. These dependencies amount
to certain forms of indexing. They are described categorically by fibred (or
indexed) categories. Thus, if one knows the dependencies in a type theory, then
one knows its underlying categorical structure. The additional type theoretic
structure may be described via certain adjunctions, as in the previous point.

(v) Models of logics and type theories are (structure preserving) functors.
From a specific system in logic or type theory one can syntactically build a
so-called ‘classifying’ (fibred) category, using a term model—or generalised
Lindenbaum-Tarski—construction. A model of this system is then a (fibred)
functor with this classifying (fibred) category as domain, preserving appropri-
ate structure. We shall make systematic use of this functorial semantics. It
was introduced by Lawvere for single-typed simple type theories. And it ex-
tends to other logics and type theories, and thus gives a systematic description
of models of (often complicated) logics and type theories.

(vi) If 0 = o(«) is a type (in polymorphic type theory) in which a free type
variable a occurs, then, under reasonable assumptions about type formation,
the operation 7 — o[r/a] of substituting a type 7 for «, is functorial. This
functoriality is instrumental in describing the rules of (co-)inductively defined
data types in terms of (co-)algebras of this functor. And the reasoning princi-
ples (or logic) associated with such data types can also be captured in terms
of (co-)algebras (but for a different functor, obtained by lifting the original
functor to the logical world of predicates and relations).

(vii) A logical framework is a type theory 7 which is expressive enough so
that one can formulate other systems S of logic or of type theory inside 7.
Categorically one may then describe (the term model of) S as an internal
category in (the term model of) 7. We briefly discuss dependent type theory
as a logical framework in Section 10.2, but we refer to [87] for this connection
with internal categories.

This is not a book properly on logic or on type theory. Many logical and
type theoretical calculi are described and some illustrations of their use are
given, but there is nothing about specific proof-theoretic properties like cut-
elimination, Church-Rosser or strong normalisation. Therefore, see [14]. The
emphasis here lies on categorical semantics. This is understood as follows.
Category theory provides means to say what a model of, say predicate logic,
should look like. It gives a specification, or a hollow structure, which captures

8 Chapter 0: Prospectus

the essentials. A proper model is something else, namely an instance of such a
structure. We shall describe both these hollow structures, and some instances
of these. (But we do not investigate the local structure or theories of the
example models, like for example in [197] or in [13, Chapter 19].)

So what, then, is the advantage of knowing what the categorical structures
are, corresponding to certain logics and type theories? Firstly, it enables us to
easily and quickly recognise that certain mathematical structures are models
of some logical or type theoretical calculus, without having to write out an
interpretation in detail. The latter can be given for the ‘hollow categorical
structure’, and need not be repeated for the particular instances. One only has
to check that the particular structure is an instance of the general categorical
structure. For example, knowing that a particular category (of domains, say)
is Cartesian closed yields the information that we can interpret simple type
theory. Secondly, once this is realised, we can turn things around, and start
using our calculus (suitably incorporating the constants in a signature) to
reason directly and conveniently about a (concrete or abstract categorical)
model. This is the logician’s view of the mathematician’s use of language:
when reasoning about a particular mathematical structure (say a group G),
one formally adds the elements a € G as constants a to the language, and
one uses the resulting “internal” language to reason directly about G. The
same approach applies to more complex mathematical structures, like a fibred
category of domains: one then needs a suitable type theoretic language to
reason about such a complex (indexed) structure. The third advantage is
that a clear (categorical) semantics provides a certain syntactic hygiene, and
deepens the understanding of the various logical and type theoretical systems.
For example, the principle that a (possibly new) operation in logic or type
theory should correspond to an adjoint gives certain canonical introduction,
elimination and conversion rules for the constructor. Fourthly, models can
be used to obtain new results about one’s logical or type theoretical system.
Consistency, conservativity and independence results are often obtained in
this manner. Finally, and maybe most importantly, models provide meaning to
one’s logical or type theoretical language, resulting in a better understanding
of the syntax.

There are so many systems of logic and type theory because there are certain
“production rules” which generate new systems from given ones.

(i) There are three basic type theories: simple type theory (STT), depen-
dent type theory (DTT) and polymorphic type theory (PTT).

(ii) Given a certain type theory, one can construct a logic over this type
theory with predicates ¢(%): Prop containing free variables & inhabiting types.
This allows us to reason about (terms in) the given type theory.

Section 0.1: Logic, type theory, and fibred category theory 9

(iii) Given a logic (over some type theory), one can construct a new type
theory (extending the given one) by a propositions-as-types upgrade: one con-
siders the propositions ¢ in the logic as types in the new type theory, and
derivations in the logic as terms in the new type theory.

This modularity is reflected categorically in the following three points.

(i) There are three basic categorical structures: for STT (Cartesian closed
categories), for DTT (what we call closed comprehension categories) and for
PTT (certain fibred Cartesian closed categories).

(ii) Putting a logic on a type theory corresponds to putting a preorder
fibration on top of the structure describing the type theory. For logic one
uses preorder structures, since in logic one is interested in provability and not
in explicit proofs (or proof-terms, as in type theory), which are described as
non-trivial morphisms.

(iii) Under a propositions-as-types upgrade one replaces a preorder fibra-
tion by an ordinary fibration (with proper fibre categories), thus making room
for proof-terms as proper morphisms.

(Both second points are not as unproblematic as they may seem, because one
may have complicated type theories, say with two syntactic universes of types
and of kinds, in which there are many ways of putting a logic on top of such
a type theory: one may wish to reason about types, or about kinds, or about
both in the same logic. Categorically, there are similarly different ways in
which a preorder fibration can be imposed.)

By the very nature of its contents, this book is rather descriptive. It contains
few theorems with deep mathematical content. The influence of computer
science may be felt here, in which much emphasis is put on the description of
various languages and formalisms.

Also, it is important to stress that this is not a book properly on fibred
category theory. And it is not intended as such. It does contain the basic
concepts and results from fibred category theory, but only as far as they are
directly useful in logic or type theory (and not in topology, for example).
Some of these basic results have not been published previously, but have been
folklore for some time already. They have been discovered and rediscovered by
various people, and the precise flow of ideas is hard to track in detail. What
we present in this book is not a detailed historical account, and we therefore
apologise in advance for any misrepresentation of history.

We sketch what we see as the main lines. In the development of fibred
category and categorical logic one can distinguish an initial French period
starting in the 1960s with Grothendieck’s definition of a fibration (i.e. a fibred
category), published in [107]. It was introduced in order to study descent. The

10 Chapter 0: Prospectus

ensuing theory was further developed by Grothendieck and (among others)
Giraud [100] and Bénabou. The latter’s work is more logical and foundational
in spirit than Grothendieck’s (involving for example suitable fibred notions
of local smallness and definability), and is thus closest to the current work.
Many of the basic notions and results stem from this period.

In the late 1960s Lawvere first applied indexed categories in the study of
logic. Especially, he described quantification and equality in terms of adjoints
to substitution functors, and showed that also comprehension involves an
adjunction. This may be seen as the start of categorical logic (explicitly, in his
influential “Perugia Lecture Notes” and also in [192, 193]). At about the same
time, the notion of elementary topos was formulated, by Lawvere and Tierney.
This resulted in renewed attention for indexed (and internal) categories, to
study phenomena over (and inside) toposes. See for example [173, 169] and
the references there.

Then, in the 1980s there is the start of a type theoretic boom, in which
indexed and fibred categories are used in the semantics of polymorphic and
dependent type theories, see the basic papers [306, 307, 148] and the series
of PhD theses [45, 330, 75, 185, 318, 252, 260, 7, 154, 89, 217, 86, 60, 289,
125, 4, 198, 133]. This book collects much material from this third phase.
Explicitly, the connection between simple type theory and Cartesian closed
categories was first established by Lawvere and Lambek. Later, dependent
type theory was related to locally Cartesian closed categories by Seely, and to
the more general “display map categories” by Taylor. The relation between
polymorphic type theory and certain fibred (or indexed, or internal) Cartesian
closed categories is due to Seely, Lamarche and Moggi. Finally, more compli-
cated systems combining polymorphic and dependent systems (like the calcu-
lus of constructions) were described categorically by Hyland, Pitts, Streicher,
Ehrhard, Curien, Pavlovi¢, Jacobs and Dybjer. This led to the (surprising)
discovery of complete internal categories by Moggi and Hyland (and to the
subsequent development of ‘synthetic’ domain theory in abstract universes).

Interestingly, fibred categories are becoming more and more important in
various other areas of (theoretical) computer science, precisely because the as-
pects of indexing and substitution (also called renaming, or relabelling) are so
fundamental. Among these areas we mention (without pretension to be in any
sense complete): database theory [295, 151, 9], rewriting [12], automata the-
ory [175, 10], abstract environments [279], data flow networks [310], constraint
programming [219], concurrency theory [345, 131], program analysis [230, 25],
abstract domain theory [146] and specification [152, 327, 48, 159].

Many topics in the field of categorical logic and type theory are not discussed
in this book. Sometimes because the available material is too recent (and un-
settled), sometimes because the topic deviates too much from the main line,

Section 0.2: The logic and type theory of sets 11

but mostly simply because of lack of space. Among these topics we mention
(with a few references): inductively and co-inductively defined types in depen-
dent type theory [70, 71], categorical combinators [63, 290, 116], categorical
normalisation proofs [147, 238, 5], fixed points [16], rewriting and 2-categorical
structure [308, 278], modal logic [93], u-calculi [313], synthetic domain the-
ory [144, 331, 264], a fibred Giraud theorem [229], a fibred adjoint functor
theorem [47, 246], descent theory [168] (especially with its links to Beth de-
finability [208]), fibrations in bi-categories [315, 317], 2-fibrations [127], and
the theory of stacks [100].

The choice has been made to present details of interpretation functions for
simple type theory in full detail in Chapter 2, together with the equivalent
functorial interpretation. In later chapters interpretations will occur mostly in
the more convenient functorial form. For detailed information about interpre-
tation functions in polymorphic and (higher order) dependent type theories we
refer to [319, 61]. As we proceed we will be increasingly blurring the distinction
between certain type theories and certain fibred categories, thus decreasing
the need for explicit interpretations

0.2 The logic and type theory of sets

We shall now try to make the fibred perspective more concrete by describing
the (familiar) logic and type theory of ordinary sets in fibred form. Therefore
we shall use the fibrations of predicates over sets and of families of sets over
sets, without assuming knowledge of what precisely constitutes a fibration. In
a well-known situation we thus describe some of the structures that will be
investigated in more abstract form in the course of this book. We shall write
Sets for the category of (small) sets and ordinary functions between them.

Predicates on sets can be organised in a category, that will be called Pred,
as follows.

objects pairs (I, X) where X C I is a subset of a set I; in this
situation we consider X as a predicate on a type I, and
write X (i) for ¢ € X to emphasise that an element 7 € T
may be understood as a free variable in X. When [is clear
from the context, we sometimes write X for the object
(XCI).

morphisms (I, X) — (J,Y) are functions u: I — J between the under-
lying sets satisfying

X (¢) implies Y (u(4)), for each i € I.

Diagrammatically, this condition on such a function

12 Chapter 0: Prospectus

u: I — J amounts to the existence of a necessarily unique
(dashed) map

X----- -Y
R
[———J

indicating that u restricts appropriately.
There is an obvious forgetful functor Pred — Sets sending a predicate to
its underlying set (or type): (I, X) — I. This functor is a “fibration”. And
although it plays a crucial role in this situation, we do not give it a name, but

simply write it vertically as 1;3:: to emphasise that it describes predicates as
living over sets.

For a specific set I, the “fibre” category Pred; is defined as the subcategory
of Pred of predicates (X C I) on I and of morphisms that are mapped to
the identity function on I. This category Pred; may be identified with the
poset category (P(I),C) of subsets of I, ordered by inclusion. For a function
w:I — J there is “substitution” functor u*: P(J) — P(I) in the reverse
direction, by

(Y CJ)— ({i|ut) €Y} CI).
Clearly we have Y C Y’ = u*(Y) C w*(Y'), so that u* is indeed a functor.
Two special cases of substitution are weakening and contraction. Weakening
is substitution along a Cartesian projection #:I x J — I. It consists of a
functor

P(I) =~ P(IxJ) sending X~ {(i,j)|i€ X and j € J}

by adding a dummy variable j € J to a predicate X. Contraction is substitu-
tion along a Cartesian diagonal 6: I — I x I. It is a functor

*

P(I xI) . P(I) givenby Y= {iel|(ii)eY}.

It replaces two variables of type I by a single variable.

Each fibre category P(I) is a Boolean algebra, with the usual set theoretic
operations of intersection N, top element (I C I), union U, bottom element
(0 C I), and complement I'\(—). These operations correspond to the propo-
sitional connectives A, T,V, L, = in (Boolean) logic. They are preserved by
substitution functors u* between fibre categories.

The categorical description of the quantifiers 3,V is less standard (than
the propositional structure of subsets). These quantifiers are given by oper-
ations between the fibres—and not inside the fibres, like the propositional

Section 0.2: The logic and type theory of sets 13

connectives—since they bind free variables in predicates (and thus change the
underlying types). They turn out to be adjoints to weakening, as expressed
by the fundamental formula:

I4x* V.
In more detail, we define for a predicate Y C I x J,
AY) = {iel|FelJ(i,j)eY}
YY) = {iel|V¥jeJ(i,j) eV}
These assignments ¥ +— 3(Y) and ¥ — VY(Y) are functorial P(I x J) =
P(I). And they are left and right adjoints to the above weakening functor

7*: P(I) = P(I x J) because there are the following basic adjoint correspon-
dences.
Y Cr*(X) overIxJ ™ (X)CY overIxJ

and
AY)C X overl X CV(Y) overl

(Where the double line means: if and only if.)

For a set (or type) I, equality ¢« = ¢’ for elements 4,¢' € I forms a predicate
on I x I. Such equality can also be captured categorically, namely as left
adjoint to the contraction functor 6*: P(I x I) — P(I). One defines for a
predicate X C I the predicate Eq(X) on I x I by

Eq(X) = {(i,i') € IxI|i=1i and i€ X}.
Then there are adjoint correspondences
Eq(X)CY overIxI

X Co(Y) overl

Notice that the predicate Eq(X) is equality on I for the special case where X
is the top element I. See also Exercise 0.2.2 below for a description of a right
adjoint to contraction, in terms of inequality.

The operations of predicate logic can thus be identified as certain structure

in this fibration I;z: ,namely as structure in and between its fibres. Moreover,
it is a property of the fibration that this logical structure exists, since it can
be characterised in a universal way—via adjoints—and is thus given uniquely
up-to-isomorphism. The same holds for the other logical and type theoretical
operations that we identify below.

Comprehension is the assignment of a set to a predicate, or, as we shall
say more generally later on, of a type to a predicate. This assignment takes
a predicate to the set of elements for which the predicate holds. It also has
a universal property. Therefore we first need the “truth” functor 1: Sets —

14 Chapter 0: Prospectus

Pred, which assigns to a set I the truth predicate 1(I) = (I C I) on I; it is
the terminal object in the fibre over I. Comprehension (or subset types, as
we shall also say) is then given by a functor {—}: Pred — Sets, namely

{(Yent={jeJ|Y(§}=Y

Hence {—}:Pred — Sets is simply (Y C J) — Y. It is right adjoint to
the truth functor 1: Sets — Pred since there is a bijective correspondence
between functions 4 and v in a situation:

1(I) —~~ (Y C J) in Pred

I — {(Y CJ)} in Sets

In essence this correspondence tells us that Y (5) holds if and only if j € {(Y C
)}

Quotient sets can also be described using the fibration of predicates over
sets. We first form the category Rel of (binary) relations on sets by pullback:

Rel Pred
|- |
Sets ————— Sets
I—IxI

Via this pullback we restrict ourselves to predicates with underlying sets of
the form I x I. Explicitly, the category Rel has

objects pairs (I, R) where R C I x I is a (binary) relation on
I € Sets.

morphisms (I, R) — (J,5) are functions u: I — J between the under-
lying sets with the property

R(i,i") implies S(u(i),u(i")), for alli,i’ € 1.

The functor Rel — Sets in the diagram is then (I, R) — I. It will turn out to
be a fibration by construction. The abovementioned equality predicate yields
an equality functor Eq: Sets — Rel, namely

J = Eq(J) ={0:5) |5 € J}.

Quotients in set theory can then be described in terms of a left adjoint Q to
this equality functor Eq: a relation R C I x I is mapped to the quotient set
I/R, where R C I x I is the least equivalence relation containing R. Indeed

Section 0.2: The logic and type theory of sets 15

there is an adjoint correspondence between functions v and u in:

Q(I,R)=I/R—>J in Sets

R— Eq(J) in Rel

This correspondence can be reformulated as: for each functon u: I — J with
u(i) = u(i') for all 4,4’ € I for which R(i,4') holds, there is a unique function
v:I/R --+ J in a commuting triangle

quotient _
I I/R
map I
| v
u \
J

Finally we mention that predicates over sets give us higher order logic.
There is a distinguished set 2 = {0,1} of propositions, with special predicate
({1} C 2) for truth: for every predicate (X C I) on a set I, there is a unique
function char(X C I):I — 2 with

(X C I) = char(X C I)*({1} C 2).

This existence of “characteristic morphisms” is what makes the category of
sets a topos. It allows us to quantify via this set 2 over propositions.

This completes our first glance at the fibred structure of the logic of sets. In
the remainder of this section we sketch some of the type theoretic structure of
sets, again in terms of a fibration, namely in terms of the “family” fibration
Fam(Sets

Sf;Lts) of set-indexed-sets. It captures the dependent type theory (with
type-indexed-types) of sets.

The category Fam(Sets) of families of sets has

objects pairs (I, X) consisting of an index set I and a family X =
(X3)ier of I-indexed sets X;.
morphisms (I, X) — (J,Y) are pairs (u, f) consisting of functions

u fi
I ——J and f = (XvZ _— Y”(i))iel
There is a projection functor Fam(Sets) — Sets sending an indexed family
to its underlying set index set: (I, X) — I. It will turn out to be a fibration.
Essentially this will mean that there are (appropriate) substitution or rein-
dexing functors: for a function u: I — J between index sets, we can map a

16 Chapter 0: Prospectus

family Y = (Y});es over J to a family over I via:
(Yj)jeqs — (Yugi))ier-

We shall write u* for this operation. It extends to a functor between “fibre”
categories: for an arbitrary set K, let Fam(Sets) g be the “fibre” subcategory
of Fam(Sets) of those families (K, X) with K as index set, and with mor-
phisms (idg, f) with the identity on K as underlying function. Then u: I — J
yields a substitution functor v*: Fam(Sets); — Fam(Sets);.

Notice that there is an inclusion functor Pred < Fam(Sets) of predicates
into families, since every predicate (X C I) yields an I-indexed family (X;);cr
with

X = {x} ifieX
710 otherwise.

It is not hard to see that this yields a full and faithful functor Pred —
Fam(Sets), which commutes with substitution. It is a ‘morphism of fibra-
tions’.

Our aim is to describe the dependent coproduct [] and product [] of fami-
lies of sets as adjoints to weakening functors, in analogy with the situation for
existential 3 and universal V quantification in the logic of sets. But in this sit-
uation of families of sets we have weakening functors 7* induced not by Carte-
sian projections m: I x J — I, but by “dependent” projections m: {I | X} — I,
with domain {I | X} given by the disjoint union:

{IX}={(@,x)|i€land z € X;}

which generalises the Cartesian product. The weakening functor 7* associated
with this dependent projection 7:{I | X} — I sends a family ¥ = (Y;)ier
over I to a family 7*(Y) over {I | X} by vacuously adding an extra index z,
as in:

7 (Y) = (Ya) ier,eexi)-

(As we shall see later, the projection 7: {I | X} — I arises in a canonical way,
since the assignment (I, X) — {I | X} yields a functor Fam(Sets) — Sets,
which is right adjoint to the terminal object functor 1: Sets — Fam(Sets),
sending a set J to the J-indexed collection ({x});c, of singletons. The counit
of this adjunction has the projection 7 as underlying map. Thus, the operation
(I,X)— {I| X} is like comprehension for predicates, as described above.)
The claim is that the dependent coproduct [| and product [] for set-indexed
sets are left and right adjoints to the weakening functor 7*. Therefore we have

Section 0.2: The logic and type theory of sets 17

to define coproduct][] and product] as functors

I
Fam(Sets) ;| X}/<—? Fam(Sets);
—_— 7
I1
{I|X} p I

acting on an {I | X }-indexed family Z = (Z; ;))icr,zcx; and producing an
I-indexed family. These functors are given by

[H(Z2); = {(z,2) |z € X; and z € Z(; ;,)}
[1(Z)i = {e: Xi = U,ex, Ziie) | V2 € Xi-0(2) € Z(30)}-
We then get the fundamental relation
A= 471

since there are bijective adjoint correspondences between families of functions
f and g in:

7Ly over (1] X3 (V) e 7 over (1] X}
and
[1(2) o Y over] Y 5 [1(Z) overI

Also in this situation, there are adjoints to contraction functors §* (induced
by dependent diagonals), given by equality and inequality. But we do not
further pursue this matter, and conclude our introduction at this point. What
we have sketched is that families of sets behave like dependent types, and that
subsets behave like predicates, yielding a logic over (dependent) type theory.
We have shown that the basic operations of this logic and of this type theory
can be described by adjunctions, in a fibred setting. In the course of this book
we shall (among many other things) be more precise about what it means
to have such a logic over a type theory and we shall axiomatise all of the
structure found above, and identify it in many other situations.

Finally, the next few exercises may help the reader to become more familiar
with the structure described above.

18 Chapter 0: Prospectus
Exercises
0.2.1. Define a left adjoint F': Fam(Sets) — Pred to the inclusion functor
F
Pred (—> Fam(Sets)
Sets
such that: (1) F makes the triangle commute (so it does not change the
index set), and (2) F commutes with substitution.
0.2.2. Define for a subset X C I the relation nEq(X) C I x I by
nEq(X) = {(i,7') | i # i ori € X}
and show that the assignment X +— nEq(X) is right adjoint to contraction
§*: P(I x I) — P(I). Notice that nEq(X) at the bottom element X =) is
inequality on I.
0.2.3. Show that the equality functor Eq: Sets — Rel also has a right adjoint.
0.2.4. Check that the operation (I, X) — {I | X} yields a functor Fam(Sets) —

Sets, and show that it is right adjoint to the terminal object functor Sets —
Fam(Sets), mapping a set J to the family of singletons ({*});es. Describe
the unit and counit of the adjunction explicitly.

