
Formal Techniques in a Remote Voting System

Joseph R. Kiniry, Alan E. Morkan and
Dermot Cochran

School of Computer Science & Informatics
University College Dublin
Belfield, Dublin 4, Ireland

Martijn Oostdijk and Engelbert Hubbers
Institute of Information & Computing Sciences

Radboud University Nijmegen
Postbus 9010, 6500GL Nijmegen, The

Netherlands

ABSTRACT
Kiezen op Afstand1 (KOA) is a Free Software, remote voting
system developed for the Dutch government in 2003/2004.
In addition to being Open Source, key components have been,
or are currently being formally specified and verified. These
include a tally system and a modeling of the Irish electoral
system. In this paper, we describe the formal techniques
incorporated during the development of components of the
KOA system. It also includes continuing work including the
development of a platform for trustworthy voting from a mo-
bile phone.

1. INTRODUCTION
KOA was used in the European Parliamentary election of
June 2004. It was limited to expatriates and was subse-
quently released under the GNU General Public Licence.

A tally system for KOA was independently developed which
was formally specified and verified. Since the release of the
system under the GPL, the main KOA system has been re-
completed2 and specified using JML [1]. A component for
use in Irish elections has also been formally specified. These
verification efforts and the continuing work on the KOA sys-
tem will be described in the subsequent sections.

2. TALLY SYSTEM VERIFICATION
The Dutch government decided that a separate vote count-
ing subsystem should be implemented in isolation by a third
party. This tally application would allow the vote counting to
be independently verified. This was built and formally veri-
fied using JML and the ESC/Java2 [4] tool. The application
1“Kiezen op Afstand” is literally translated from Dutch as “Remote
Voting.”
2Roughly 10% of the original code was proprietary and owned by
LogicaCMG, the company who developed the main KOA system
on behalf of the Dutch government. Therefore, it was necessary to
reverse engineer the missing functionality.

consists of some 30 classes grouped into three categories:
data structures, user interface, and tasks.

The data structure classes are easily described using JML.
Typical concepts from the domain of voting, such as candi-
date, district and municipality can be modeled with detailed
JML specifications. An example invariant in Candidate.java
is:

/*@ invariant my_gender == MALE
@ || my_gender == FEMALE
@ || my_gender == UNKNOWN; */

The different tasks associated with counting votes were im-
plemented by individual classes. After successful comple-
tion of a task, the application state is changed. A task can
only be started if the application is in an appropriate state.
The life-cycle model of the application that therefore emerges
is maintained in the main class of the application inside a
simple integral field. This life-cycle model can be speci-
fied in JML using invariants and constraints. For instance,
such an invariant could read: ‘after the application reaches
the “keys imported state”, the private key field is no longer
null’. This is stated in MenuPanel.java as follows:

/*@ invariant
@ (state >= PRIVATE_KEY_IMPORTED_STATE
@ ==> privateKey != null); */

Finally, a graphical user interface is usually not very amenable
to formal specification. Nonetheless, some light-weight spec-
ifications were written.

When the KOA vote counting system was being designed,
precedence was given to verifying the core units. These
were designed by contract and as a result have good spec-
ification coverage. The remaining parts, however, were only
lightly annotated with JML notation. Table 1 summarizes
the size (in number of classes and methods), complexity
(non-comment size of source (NCSS)), and specification cov-
erage of the three subsystems, as measured with the JavaNCSS
tool.

Due to the time constraints, verification was only attempted
with the core modules. Verification coverage of the core sub-

ACM SIGSOFT Software Engineering Notes Page 1 November 2006 Volume 31 Number 6

File I/O Graphical I/O Core
Classes 8 13 6
Methods 154 200 83
NCSS 837 1599 395
Specs 446 172 529
Specs:NCSS 1:2 1:10 5:4

Table 1: KOA initial release system summary

system was good, but not 100%. Approximately 10% of the
core methods were unverified due to issues with ESC/Java2’s
Simplify theorem prover (i.e., either the prover did not ter-
minate or terminated abnormally). Another 31% of the core
methods had postconditions that could not be verified, typi-
cally due to completeness issues in ESC/Java2, and 12% of
the methods failed to verify due to invariant issues. The re-
maining 47% of the core verified completely. Since 100%
verification coverage was not possible in the timeframe of
the original project, to ensure the KOA application was of
the highest quality level possible, a large number unit tests
were generated3 for all core classes with the jmlunit [2] tool.
A total of nearly 8,000 unit tests were generated, focusing
on key values of the various datatypes (i.e., Candidate, Dis-
trict, etc.) and their dependent base types. These tests cover
100% of the core code and are 100% successful.

3. SPECIFICATION OF PR-STV
Naturally, there are relatively considerable variations in elec-
toral systems between countries. This is the case between
the Netherlands and Ireland. The Dutch Voting system is list
based while Ireland uses Proportional Representation with a
Single Transferable Vote (PR-STV).

Votáil is the Irish word for voting. The Votáil specification
is a JML specification for the Irish vote counting system [3].
This formal specification is derived from the complete func-
tional specification for the election count algorithm.

Thirty nine formal assertions were identified in the Com-
mentary on Count Rules published by the Irish Department
of Environment and Local Government. Each assertion ex-
pressed in JML was identified by a Javadoc comment. In ad-
dition, a state machine was specified so as to link all of the
assertions together. Java classes were specified for the vote
counting algorithm, to represent the ballot papers and candi-
dates. This was then typechecked and checked for soundness
using ESC/Java2.

4. MOBILE VOTING SPECIFICATION
The EU MOBIUS Project4 focuses on several topics includ-
ing the specification and verification of security properties at
several levels.

As part of this work, the security properties, including a
functional specification, for a MIDP-based remote voting
3The tool generates unit tests that deal with interesting values. In-
teresting values are generally boundary values for a given data type.
For example, -1, 0, 1, n and n+1 for an array of integers.
4The MOBIUS Project - http://mobius.inria.fr/

application are in the process of being defined. An exam-
ple of such a security property is: “The application must not
have access to personal information (e.g., phonebook) on the
mobile phone”.

Additionally, a MIDP-based remote voting applet has been
developed at UCD. This application has been reviewed and
will be refactored, including the security and functional re-
quirements expressed in JML, for incorporation into KOA.

5. CONCLUSION
We have presented a brief description of the formal tech-
niques incorporated in the development of important com-
ponents of the KOA remote voting system. While integrat-
ing the Votáil subsystem into the KOA system, and prior to
the new full FLOSS foundation release of KOA, a number of
new pieces of English documentation and functional specifi-
cation must be written. Given that remote voting is a key
case study in verified computing, we hope that the avail-
ability of such documentation and specification will provide
additional motivation for researchers and developers to se-
riously consider using the KOA system as a foundation for
Verified Verifiable Voting (VVV).

6. ACKNOWLEDGEMENTS
This work is being supported by the European Project Mo-
bius within the frame of IST 6th Framework, national grants
from the Science Foundation Ireland and Enterprise Ireland
and by the Irish Research Council for Science, Engineering
and Technology. This paper reflects only the authors’ views
and the Community is not liable for any use that may be
made of the information contained therein.

7. REFERENCES
[1] Lilian Burdy, Yoonsik Cheon, David Cok, Michael

Ernst, Joe Kiniry, Gary T. Leavens, K. Rustan M.
Leino, and Erik Poll. An Overview of JML Tools and
Applications. International Journal on Software Tools
for Technology Transfer, Feb 2005.

[2] Yoonsik Cheon and Gary T. Leavens. A Simple and
Practical Approach to Unit Testing: The JML and JUnit
Way. In Boris Magnusson, editor, Proceedings of the
16th European Conference on Object-Oriented
Programming (ECOOP 2002), volume 2374 of LNCS,
pages 231–255. pub-sv, Jun 2002.

[3] Dermot Cochran. Secure Internet Voting in Ireland
using the Open Source Kiezen op Afstand (KOA)
Remote Voting System. Master’s thesis, University
College Dublin, March 2006.

[4] Joseph R. Kiniry and David R. Cok. ESC/Java2:
Uniting ESC/Java and JML: Progress and issues in
building and using ESC/Java2 and a report on a case
study involving the use of ESC/Java2 to verify portions
of an Internet voting tally system. In Construction and
Analysis of Safe, Secure and Interoperable Smart
Devices: International Workshop, CASSIS 2004,
volume 3362 of lncs. pub-sv, Jan 2005.

ACM SIGSOFT Software Engineering Notes Page 2 November 2006 Volume 31 Number 6

http://mobius.inria.fr/

