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In this paper we present a new large class of polynomial maps F = X + H: A"
— A" (Definition 1.1) on every commutative ring A for which the Jacobian
Conjecture is true. In particular H does not need to be homogeneous. We also
show that for all H in this class satisfying H(0) = 0 the nth iterate Ho -+ o H = 0.
© 1997 Academic Press

INTRODUCTION

In [1] it was shown that it suffices to prove the Jacobian Conjecture for
cubic homogeneous polynomial maps, i.e., maps of the form

F=X+H:C"—C",

where H = (H,,..., H,) and each H, is either zero or a homogeneous
polynomial map of degree 3. In this case the Jacobian condition det(JF)
C* is equivalent to JH is nilpotent. (JF and JH are the Jacobian matrices
of F and H.) So understanding nilpotent Jacobian matrices is crucial in
the study of the Jacobian Conjecture. In [14] Wright showed that if n = 3
all JH where H is cubic homogeneous are linearly triangularizable. In [10]
the second author gave a complete description of all cubic homogeneous
Jacobian matrices in case n = 4. They are no longer linearly triangulariz-
able. However, it turns out that the rows of the Jacobian matrices are
linearly dependent over C (or equivalently that H, H,, H,, and H,
linearly dependent over C). Already in [4] Druzkowski and Rusek conjec-
tured that if H, =12,..., H, = I?, where each [, is a linear form, then the
nilpotence of JH implies the linear dependence of H,,..., H,. The same
question of linear dependence of H,,..., H, was raised by Olech in [13]
and Meisters in [12], in case H,,..., H, are cubic homogeneous.
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Then it was observed by the authors that the following more general
dependence problem would imply the Jacobian Conjecture: does JH
nilpotent (not necessarily homogeneous) and H(0) = 0 imply that
H,,..., H, are linearly dependent over C? (Recently in [3] this depen-
dence problem appeared as a conjecture, the Nilpotent Conjecture, where
it was shown that an affirmative answer would imply the Jacobian Conjec-
ture.) Our aim was to investigate what consequences could be deduced
assuming that the dependence question had an affirmative answer.

The result is that for every commutative ring 4 we defined a large class,
denoted /Z,( A), of polynomial maps H € A[X,,..., X,]" such that the
Jacobian matrix JH is nilpotent. It is shown that for all H €.Z,( A) the
map F == X + H is invertible with det(JF) = 1 and that the inverse is of
the form X + G with G €%7,( A). Furthermore we show that H" =
Ho--oH=0 for all He.%Z/(A), with H(Q) = 0, a phenomenon first
observed by Meisters in [11].

Then in Section 4 we consider the question if every H with JH nilpotent
belongs to .Z,( A) (which, if true, would imply the Jacobian Conjecture).
We show that the answer is yes if n = 2 and A is a Q-algebra which is a
U.F.D. (this result was already obtained by the second author in [10]), and
that the answer is no for all » > 3 and every domain A, which is a
(D-algebra. This last result is based on recent counterexamples to the
dependence problem for all n > 3 obtained by the first author in [7].

Finally in Section 5 we show that all counterexamples found in [5, 8, 2]
belong to .Z,(C) (which is a subclass of Z,(C)).

In a subsequent paper [9] we undertake a detailed study of the class
#(A) and show that all F of the form X + H with H €.#,(A) are stably
tame. This implies that all cubic homogeneous maps in dimension 4,
obtained in [10], are stably tame.

1. THE CLASS #Z(A)

Throughout this section A4 denotes an arbitrary commutative ring and
let us denote by A[ X] = A[ X, ..., X, ] the polynomial ring in n variables
over A. Let F = (F,,...,F,) € A[X]". Such an F is called invertible over
Aor F,,...,F, is called a coordinate system of A[X]if A[F,,...,F,]=
Al X, ..., X,]. In other words, if there exist G,,...,G, € A[ X] such that
X, = G(F,,..., F,) for all i. It is an immediate consequence of the formal
inverse function theorem that G = (G,,...,G,) is uniquely determined
and satisfies F oG = X.

Now we come to the main definition of this paper. First we put

#,(A) = {H € A[X]": JH is nilpotent}.
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For each n € N, n > 1 and each commutative ring A4 we are going to
define a set Z(A) c A[X]" which will turn out to be a subset of the set
H,(A). (cf. Theorem 2.3.)

DeriniTioN 1.1, Put Z(A) = A, for each commutative ring A4 and
inductively for n > 2 and H EA[X]" we define that H €.7,(A) if and
only if there exist T € M,(A), c € A", and H €.%_,(A[X,] such that

H=Adj(T)(€i ‘TXJFC' (1)

where Adj(T) denotes the adjoint matrix of 7T and |TX the “evaluation at
the vector 7X.”

ExampLE 1.2. Let H = (j}) € A[X,, X,F’. Then H €.7(A) if and
only if there exist T = (} 2) € My(A), ¢;, ¢, € A, and f(X,) € Z(A[X,])
= A[ X,] such that

1
Ccy )"

AR G

In other words: if and only if H, and H, are of the form

uX +1,X, +
a1 X,+a,X,

Hy=a,f(a; X, +a,X,) +¢;
H, = —a,f(a;X; +a,X;) + ¢,

for some ay, a,, ¢;, c, €A and fe A[X,]

Remark 1.3. 1t was shown in [10, Theorem 3.1] that if A is a Q-algebra
and a unique factorization domain then #(A) =.#,(A4). We will give a
short proof in Section 4 (Theorem 4.3). However, if A is a domain which is
not a unique factorization domain it can happen that #,(A4) ¢.7,(A) (see
Sect. 3 below).

2. PROPERTIES OF #(A)
LEmMmA 2.1. Let H e#Z(A), r€ A, c € A". Then
() rH + c e#(A).
(i) 1f S € M,(A) then Adi(S)H 5, € Z,(A).

(iii) If ¢: A — S is aring homomorphism then ¢(H) €.Z/(S) where
¢(H) is obtained by applying ¢ to the coefficients of H.
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Proof. (i) and (iii) follow readily by induction on n. It therefore remains

to prove (ii). So let S € M, (A) and H €.%(A). Then according to
Definition 1.1 we get

+c
ITX

B

+c

AdI(S) Hyx = AdI(S) (Adj(T)(

O:l

[SX

+c
ISX

Omz

- Adj(S)Adj(T)((

-],

and this is of the desired form. |

COROLLARY 2.2. Let A[Y] be the polynomial ring in one variable over A.
Letac A. IfH=(H,,...,H) €Z(AY), then HYY = a) € Z(A).

Proof. Apply Lemma 2.1(iii) to the substitution homomorphism ¢:
A[Y] - A sending Y to a. |

To simplify notations we abbreviate (1) by H = H[T, c] or by H = H[T]
in case ¢ = 0. As before we denote the Jacobian matrix with respect to
Xy, ..., X, of an element H € A[X]" by JH or if confusion is possible by
J,H. One then easily verifies that

J,H[T, c] = Adj(T) (V- 1:')|rx *

N (2)

THEOREM 2.3.  Forallrings Aandn € N, n > 1 we have Z,(A) CH,(A).

Proof.  Induction on n. The case n = 1 is obvious. So let n > 2 and let
H = H[T, c] for some T € M,(A), c € A", and H €.7,_,(A[ X, ). By the
induction hypothesis we have that J,_ 1H is nilpotent. Hence so is
(J,_ 1H)|TX From remark (2) it then follows that J,H[T,c]=J H is
nilpotent. i

THEOREM 2.4. Let H € #(A) Put F == X + H. Then

(i) det(JF) =1 and
(ii)  F is invertible over A. Furthermore F~* = X + G with G € Z(A).
Before we can prove this theorem we need some preliminaries. There-
fore consider the polynomial ring

A[T;| =A[T;; 1 <i,j <n]

) ij
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in n? indeterminates over A. Put T, = (T})), d = det(T,,), and consider the
ring § = A[T;lld” 1. We claim that A[T ] € §. This follows immediately
from

LEMMA 2.5. d is not a zero-divisor in A[T,-j].

Proof. We use induction on n; the case n = 1 is obvious, so let n > 2.
Write d,,_; = det(T;)); _; j.,_1. Put A, = A[T,,T,;1 <i<n—1]and
B=A,[T; 1<i,j<n—1]. So B = A[ i @) # (n,n)). If we now
develop d with respect to the nth column we get

d=d, T, +b

for some b € B. In particular b does not contain any 7,,,,. Now suppose d
is a zero-divisor in A[T;;]. Then there exists an element 0+ g€ AT;]
with dg = 0. Now develop g after powers of T,

8 =ngnnr1z + +g0

with m >0, g, # 0, and g, € B for all i. Looking at the coefficient of
T"*! in the equation dg =0 we get d,_,g, = 0. But if we apply the
induction hypothesis to the ring A, we get that d,_, is no zero-divisor in
AT;; 1 <i,j <n — 1]. Consequently g, = 0, a contradiction. Hence d
is no zero-divisor in A[Tu]. |

Proof of Theorem 2.4. By induction on n. Again the case n = 1 s clear.
So let n>2 and let H = HIT, c] for some T = (; D EM(A), c €A,
and H €.7_,(A[X,). Since the transformation 7, : "X > x +c s bijec-
tive with inverse 7_., we get that 7_,o H = H[T] and hence we may
assume that ¢ = 0 without loss of generallty

(i) Let §=A[T;lld"] as above and put S, := A[T;;]. By Lemma
2.5 we have that S is a subring of S. By Lemma 2. 1 we can view H as an
element of 7, _,(S[X,]) .7 (S[X,]. Now define the universal H,
H[T,Jand F, = X + H Note that

So we get

det(J,F,) = det(J,(X + H,))

o (4, )

= det(J, (X' +dH)); x.

= det( J
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where X' = (X,,..., X,_,)". However, since dH €7 _,(S[X,), the last
determinant equals 1 by the induction hypothesis. So also det(JF,) = 1.
Finally making the substitutions 7;; — ¢;; we obtain det(JF) = 1.

(i) Since H €.7,_(S,[X,) and d € S, we get dH €.7,_(S,[ X, ).
So by the induction hypothesis we get that X’ + dH is invertible over
So[ X, ] with inverse X’ + G, where G €.%Z,_,(S,[ X, D). The equation (X’
+dlz)o(X’ t@) — X’ impliesthat X' + G + dH(X' + G) = X' s0 G =
—dH(X' + G). Now observe that

F,=T;M X+ dH))
0 J)mx
and that its inverse over S is given by
~ 1
Tul(X+ (G)) - x +Ad(T)| 7€
0/)ir,x
0 Jirx

Since (1/d)G = —H(X' + G) belongs to S,[ X, ], it follows that F, is
in fact invertible over S,. As in (i) we conclude the proof by making the
substitutions 7;; — ¢;; for all i,j. 1

The next result shows a remarkable nilpotence property of the elements
of Z(A). For special examples this property was discovered by Meisters in
[11].

THEOREM 2.6. Let He#(A). Then H' =Ho - o He A" for all
n > 1. In particular if HQQ) = 0, then H" = 0.

Before we can give the proof of this theorem we first present a lemma.

LEMMA 2.7. Let H= (H,,...,H) € A[X]" and assume H, = c, € A.
Now write foreach 1 <i <n —1 H,y = H(X, = ¢,). Put

n—1
Hy:= (Hy,....,H, 1p) €A[X;,.... X, ,]" "
Then for all p > 2

_ H{ Y(H,,....,H,_,)
v .

H?P

Proof. We use induction on p. First observe that forall 1 <i<n —1

Hi(Hll""Hn) =Hi0(Hll"'!Hn 1) (3)
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which proves the case p = 2. Now let p > 3. Then by the induction
hypothesis

HP =HP loH = (Hgl(Hl""’H”l) ) o H.

Cy

So by (3) we get

Cy

HP = (Hg_l(Hlo(le--an)’ E "[—I(n—l)O(Hl""’Hn)))

H{(H,, ...
C

’ anl) ) ) I
Proof of Theorem 2.6. Let H = HIT, c] for some ¢ € A", T = (1;,) €
M, (A), and H €7Z,_,(A[X,]D. As in the proof of Theorem 2.4 consider
the ring S and H, € S[X]". It suffices to prove that H} € S”, for then
H} € 8" N AT, X]" = A[T;]", so making the substitutions T;; — ¢,; gives
H" € A" as desired. Now observe that

HM=T,,1(”’H) +Tu1(Tuc)=Tul(ﬁ) ,
0 )ir,x alir,x

where (7) = (47) + T,c. Observe that a € S and I:Ize;?;,,l(S[Xn]). We
deduce that

H' = T;l(ﬁ) .
a )ir,x

So it suffices to show that (15)" e §". Therefore we may assume that

H, H,
H=| 1 |ea[x]" withA=| ! |ez_,(4[X,])
H anl

n

and H, € A. Write ¢, instead of H,. So we need to show that H" € A",
We use induction on n. First write H, = H,, + (X, — ¢,)H; as in Lemma
2.7 above and put H, = (Hy, ..., H,_1y). Then Lemma 2.7 gives
n—1

H" = HO (Hlé""anl) . (4)
Furthermore by Corollary 2.2 we have H, €.%,_,(A). so if n = 2 then
H? € A% Finally if n > 3 then the induction hypothesis, applied to H,,
gives that Hy "' € A" "', whence H" € A" by (4). 1
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3. A DOMAIN 4 WITH 7%(A) c/5(A)

Throughout this section A denotes the domain Z[X,Y, Z]/(X? + YZ).
THEOREM 3.1. Let H; = ¢, X, + ¢,X,, H, = d| X, + d, X, in

AlX,, X, where c, =X, c,=Y,d, =Z, and d, = —X. Then

() H=(H,H,) €t(A).
(i) Hez(A).
(i) YH €.7,(A).

Proof. (i) JH = (£ ¥,). Since Tr(JH = 0 and det(JH) = —(X? + YZ)
= 0 we deduce that H €.#,(A).

(i) Suppose H € #,( A). Then by Example 1.2 there exist a,,a, € A
and f € A[T] with f(0) = 0 such that

Hy=a,f(a; X, + a,X,)
H, = —a,f(a; X, + a,X,).

Now since both deg(H,) = deg(H,) = 1 we deduce that f(T) = bT for
some b € A\{0}. Consequently X = ba,a, and Y bas. Let A, A,, B €
Z[X,Y, Z]such that a, = A4, ap = AZ, and b = B. Then multiplying X by
a, and Y by a, we obtain a,X = a,Y, ie., A,X — AY = c«(X? + YZ) for
some ¢ € Z[X,Y, Z]. Consequently X(A2 —cX) = Y(A +cZ). So A,
— ¢X =dY for some d € Z[X,Y,Z] and hence A4, + ¢Z = dX. Summa-
rizing
A, =dX —cZ and A, =cX +dY

with ¢,d € Z[X,Y, Z]. Consequently the equation X = ba,a,, i.e., X —
BA, A, € (X% +YZ), implies X € (X,Y, Z)?, a contradiction. So H ¢
Z(A).

(i) YH = (5 + 7). Since YZ = —X?, we see that we can take

a, =X, a,=Y,and f(T) = T to get the desired form of Example 1.2. |

4. THE CLASS Z,(A)

In the previous section we saw that there exists a commutative domain
A such that H € A[X?, H &.#,(A) but rH €.%,(A), for some 0 # r € A.
This leads us to the following definition, where we take the closure of
#(A) with respect to this property.

Throughout this section: A4 is a commutative domain.
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DerFiNniTION 4.1, First define Z(A)=A. Now let n >2 and H €
A[X]". Then H € #Z,(A) if and only if there exist 0 # r € A, T € M,(A),
ceA" and H ez, _,(A[X,]) such that

rH = Adj(T)(fg e
TX

As in Section 2 we have the following result.
THeorRem 4.2. (i) Z,(A)cH,(A), foralln > 1.

(i) LeeHe#Z(A)andput F = X + H. Then det(JF) = 1 and F is
invertible with inverse F~* equal to X + G where G € Z,( A).

(iii) LetH€Z/(A). Then H" € A", forall n > 1.

Proof. (Sketch) The proofs of these theorems are obtained from the
proofs of Theorems 2.3, 2.4, and 2.6 given in Section 2 by replacing .Z,(A)
by Z,(A) and using localizations. |

Finally we consider the question whether .Z,( A) =.#,( A)?

As already observed earlier, it was proved in [10] that in case A is a
U.F.D., then /Z(A) =#,(A), hence Z( A) =,(A). Since the paper [10]
is not readily available we give a short proof of this result.

THEOREM 4.3 [10]. Let A be a U.F.D. Then Z,(A) =4,(A).

Proof. (i) First assume that 4 =k is a field. Then the result is
proved in [1].

(i) Now let 4 be a U.F.D. and let H = (H,, H,) €#,(A). Then
H e,(K) where K is the quotient field of 4. So by (i) there exist
g(T) € K[T] with g(0) = 0 and v,, v,,d,,d, € K such that

Hy =v,g(viX; + v, X,) +d,
H, = —vig(viX; + 1,X,) +d,

(see example 1.2). So clearing denominators we get: there exist a € A4,
a# 0, f(T) € A[T] with f(0) = 0 and w4, pu,, ¢y, ¢, € A such that

aH; = pg(m Xy + 1o X;) + ¢4

aH, = —pig(m Xy + pp X)) + ¢ (5
Substituting X; = X, = 0 in (5) we obtain that ¢, = ac, and c, = ac, for

some ¢,, ¢, € A. So replacing H; by H;, — ¢; we may assume that ¢, = c,
=0.
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(iii) Now we show that we may assume that gcd( u,, n,) = 1: there-
fore let w, = m,d, u, = H,d where d = gcd( p,, u,). So ged( iy, ) = 1
and w, fQu, X, + p, X,) = &, df(d(m, X, + 1, X,)). Hence if we put f(T)
= df(dT) we get

i f (g Xy + py Xs) =f( X, + ﬁzXz)-

(iv) Consequently we may assume that gcd( w,, p,) = 1. Write f =
YN fT', with f, € A. From (5) we see that we may assume that
ged(a, fr..., fiy) = 1.

Claim. a is a unit in A (and hence we are done).

Suppose that p is a prime factor of a. Then (5) implies that p divides
fCu X; + py X,) (since ged( g, p,) = 1). So in particular p divides both
f(u, X)) and f(u, X,), so p divides f; u; and f; i), for all i > 1 and hence
p divides f; for all i > 1 which contradicts gcd(a, f;,...,fy) = 1. So a is a
unit. 1

In the remainder of this section we will show that such a result is no
longer true if n > 3. More precisely we have:

THEOREM 4.4, Let A be any Q-algebra. Then %#,( A) g#,(A), for all
n>3.

To prove this result we need the following lemma.

LEMMA 4.5. Let A be a domain, n > 1, and H € %,( A) with H(0) = 0.
Then there exist Ay, ..., A, € A, not all zero, such that \\H, + -+ +\, H, =
0.

Proof. 1f H = 0 we are done, so let H # 0. Then there exist 0 # r € 4,
TeM/(A), ceA"and H €%, _,(A[X,]) such that

rH=Adj(T)(H +c.
0 /irx
So, multiplying by T we get
_ H
rTH = det(T)( ) + Tc. (6)
0/irx

(i) If det(T) = 0 it follows from (6) that *TH = Tc. Since H(0) = 0
and A is a domain we deduce that TH = 0. Since T # 0 (otherwise
H = 0) there exists a non-zero row, say the ith, whence ¢,,H; + -+ +¢,,H,
= 0, as desired.
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(i) If det(T') + 0, then equating the nth components of the vectors
in (6) we get r(TH), = (Tc),. Since H(0) =0, we get (Tc), =0, so
(TH), =0, ie, t,H, + - +t,,H, =0. Obviously ¢,; # 0 for some j
(otherwise det(T) = 0). |

Now let n > 3 and let 4 be a @-algebra. It was shown in [7] that the
following H = (H,,..., H,) € A[X]" belongs to .7,(A): let

a(X;) =X{!
Hy =X, — a(X)
(- .
H, ::Xi+l+Wa (X, — a(Xy)) for2<i<n-1
1 — :
(_l)n _ n—1
Hy= ooy (e~ a(X)™

Proof of Theorem 4.4. Let n > 3 and let H be as defined above. Then,
as observed, H €.#,(A). However, if H €.%7,(A), then by Lemma 4.5
there exist A,,..., A, € 4, but not all zero, such that A\ H, + -+ + A, H,
= 0. It follows readily that A, = --- = A, = 0 (look at the monomials
X, Xy, ..., X, respectively). So A H, + A, H, = 0, which easily implies
that also A, = A, = 0 (n > 3!), contradiction. So H €.7Z,(A). 1

In particular this proof shows that the dependence problem, or the
Nilpotent Conjecture from [3], is false. (See [7] for more details.)

5. FINAL REMARKS

To conclude this paper we explain the counterexamples found in [5, 8,
2]. They all belong to Z(C). To see this consider Example 1.2. First take
A=ClX; X,],a, =X;3,a,=X,,¢c,=c,=0,and f(T) = T. Then

(Hy, Hy) = (X4(X3X1 + X, X5), —X3( X5 X, +X4X2))

belongs to Z(C[ X, [ X;]). Consequently (H,, H,,0) belongs to Z,(C[ X,])
and hence (H,, H,, X}}) belongs to #(C[ X,]. This implies that (H,, H,,
X2,0) belongs to #(C) and hence that H := (H,, H,, X2,0,...,0) belongs
to #Z(C) for all n > 4. Then X + H is exactly the counterexample to
Meisters’ Linearization Conjecture given in [5].

Similarly, taking f(T) = T2 we find the counterexamples to the Deng—
Meisters—Zampieri Conjecture and the Discrete Markus—Yamabe prob-
lem given in [8].
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Finally the counterexamples to the Markus—Yamabe Conjecture and the
iscrete Markus—Yamabe problem in [2]: take A = C[X3], a; = 1, a, =

X;, ¢, =c,=0,and f(T) = T? in Example 1.2. Then

(Hy, H,) = (Xa(Xl +X3X2)21 - (X, +X3X2)2)

belongs to .%(C[X,]; hence (H,, H,,0) belongs to #(C) and conse-
quently the r-dimensional map (H,, H,,0,...,0) belongs to .Z(C) for all

n

> 3. Then —X + H resp. :X + H are exactly the counterexamples to

the Markus—Yamabe Conjecture resp. the Discrete Markus—Yamabe
problem given in [2].

10.

11.
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