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In this paper we present a new large class of polynomial maps F s X q H : An

n Ž .ª A Definition 1.1 on every commutative ring A for which the Jacobian
Conjecture is true. In particular H does not need to be homogeneous. We also

Ž .show that for all H in this class satisfying H 0 s 0 the nth iterate H( ??? ( H s 0.
Q 1997 Academic Press

INTRODUCTION

w xIn 1 it was shown that it suffices to prove the Jacobian Conjecture for
cubic homogeneous polynomial maps, i.e., maps of the form

F s X q H : C n ª C n ,

Ž .where H s H , . . . , H and each H is either zero or a homogeneous1 n i
Ž .polynomial map of degree 3. In this case the Jacobian condition det JF g

U ŽC is equivalent to JH is nilpotent. JF and JH are the Jacobian matrices
.of F and H. So understanding nilpotent Jacobian matrices is crucial in

w xthe study of the Jacobian Conjecture. In 14 Wright showed that if n s 3
w xall JH where H is cubic homogeneous are linearly triangularizable. In 10

the second author gave a complete description of all cubic homogeneous
Jacobian matrices in case n s 4. They are no longer linearly triangulariz-
able. However, it turns out that the rows of the Jacobian matrices are

Žlinearly dependent over C or equivalently that H H , H , and H1 2 3 4
. w xlinearly dependent over C . Already in 4 Druzkowski and Rusek conjec-˙

tured that if H s l 2, . . . , H s l 2, where each l is a linear form, then the1 1 n n i
nilpotence of JH implies the linear dependence of H , . . . , H . The same1 n

w xquestion of linear dependence of H , . . . , H was raised by Olech in 131 n
w xand Meisters in 12 , in case H , . . . , H are cubic homogeneous.1 n
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Then it was observed by the authors that the following more general
dependence problem would imply the Jacobian Conjecture: does JH

Ž . Ž .nilpotent not necessarily homogeneous and H 0 s 0 imply that
Ž w xH , . . . , H are linearly dependent over C? Recently in 3 this depen-1 n

dence problem appeared as a conjecture, the Nilpotent Conjecture, where
it was shown that an affirmative answer would imply the Jacobian Conjec-

.ture. Our aim was to investigate what consequences could be deduced
assuming that the dependence question had an affirmative answer.

The result is that for every commutative ring A we defined a large class,
nw xdenoted HH A , of polynomial maps H g A X , . . . , X such that theŽ .n 1 n

Jacobian matrix JH is nilpotent. It is shown that for all H g HH A theŽ .n
Ž .map F [ X q H is invertible with det JF s 1 and that the inverse is of

nthe form X q G with G g HH A . Furthermore we show that H sŽ .n
Ž .H( ??? ( H s 0 for all H g HH A , with H 0 s 0, a phenomenon firstŽ .n

w xobserved by Meisters in 11 .
Then in Section 4 we consider the question if every H with JH nilpotent

Ž .belongs to HH A which, if true, would imply the Jacobian Conjecture .Ž .n
We show that the answer is yes if n s 2 and A is a Q-algebra which is a

Ž w x.U.F.D. this result was already obtained by the second author in 10 , and
that the answer is no for all n G 3 and every domain A, which is a
Q-algebra. This last result is based on recent counterexamples to the

w xdependence problem for all n G 3 obtained by the first author in 7 .
w xFinally in Section 5 we show that all counterexamples found in 5, 8, 2

Ž . Ž .belong to HH C which is a subclass of HH C .Ž .n n
w xIn a subsequent paper 9 we undertake a detailed study of the class

Ž . Ž .HH A and show that all F of the form X q H with H g HH A are stablyn n
tame. This implies that all cubic homogeneous maps in dimension 4,

w xobtained in 10 , are stably tame.

Ž .1. THE CLASS HH An

Throughout this section A denotes an arbitrary commutative ring and
w x w xlet us denote by A X [ A X , . . . , X the polynomial ring in n variables1 n
Ž . w xnover A. Let F s F , . . . , F g A X . Such an F is called in¨ertible over1 n

w x w xA or F , . . . , F is called a coordinate system of A X if A F , . . . , F s1 n 1 n
w x w xA X , . . . , X . In other words, if there exist G , . . . , G g A X such that1 n 1 n

Ž .X s G F , . . . , F for all i. It is an immediate consequence of the formali i 1 n
Ž .inverse function theorem that G s G , . . . , G is uniquely determined1 n

and satisfies F (G s X.
Now we come to the main definition of this paper. First we put

nw xNN A [ H g A X : JH is nilpotent .Ž . � 4n
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For each n g N, n G 1 and each commutative ring A we are going to
Ž . w xndefine a set HH A ; A X which will turn out to be a subset of the setn

Ž . Ž .NN A . cf. Theorem 2.3.n

Ž .DEFINITION 1.1. Put HH A s A, for each commutative ring A and1
w xn Ž .inductively for n G 2 and H g A X we define that H g HH A if andn

n ˜Ž . Ž w x.only if there exist T g M A , c g A , and H g HH A X such thatn ny1 n

H̃H s Adj T q c, 1Ž . Ž .ž /0 <T X

Ž . <where Adj T denotes the adjoint matrix of T and TX the ‘‘evaluation at
the vector TX.’’

H 21Ž . w x Ž .EXAMPLE 1.2. Let H s g A X , X . Then H g HH A if andH 1 2 22

t t1 2Ž . Ž . Ž . Ž w x.only if there exist T s g M A , c , c g A, and f X g HH A Xa a 2 1 2 2 1 21 2

w xs A X such that2

H a yt cf XŽ .1 2 2 12s q .t X qt X1 1 2 2 cž / ž /ž / ž /H ya t 202 1 1 a X qa X1 1 2 2

In other words: if and only if H and H are of the form1 2

H s a f a X q a X q cŽ .1 2 1 1 2 2 1

H s ya f a X q a X q cŽ .2 1 1 1 2 2 2

w xfor some a , a , c , c g A and f g A X .1 2 1 2 2

w xRemark 1.3. It was shown in 10, Theorem 3.1 that if A is a Q-algebra
Ž . Ž .and a unique factorization domain then HH A s NN A . We will give a2 2

Ž .short proof in Section 4 Theorem 4.3 . However, if A is a domain which is
Ž . Ž . Žnot a unique factorization domain it can happen that HH A m NN A see2 2

.Sect. 3 below .

Ž .2. PROPERTIES OF HH An

Ž . nLEMMA 2.1. Let H g HH A , r g A, c g A . Thenn

Ž . Ž .i rH q c g HH A .n

Ž . Ž . Ž . Ž .ii If S g M A then Adj S H g HH A .n < S X n

Ž . Ž . Ž .iii If w : A ª S is a ring homomorphism then w H g HH S wheren
Ž .w H is obtained by applying w to the coefficients of H.
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Ž . Ž .Proof. i and iii follow readily by induction on n. It therefore remains
Ž . Ž . Ž .to prove ii . So let S g M A and H g HH A . Then according ton n

Definition 1.1 we get

H̃Adj S H s Adj S Adj T q cŽ . Ž . Ž .< S X ž /ž /0 < <T X S X

H̃s Adj S Adj T q cŽ . Ž . ž /ž /0 < <T X S X

H̃s Adj TS q cŽ . ž /0 <Ž .T ( S X

and this is of the desired form.

w xCOROLLARY 2.2. Let A Y be the polynomial ring in one ¨ariable o¨er A.
Ž . Ž w x. Ž . Ž .Let a g A. If H s H , . . . , H g HH A Y , then H Y s a g HH A .1 n n n

Ž .Proof. Apply Lemma 2.1 iii to the substitution homomorphism w :
w xA Y ª A sending Y to a.

˜ ˜Ž . w x w xTo simplify notations we abbreviate 1 by H s H T , c or by H s H T
in case c s 0. As before we denote the Jacobian matrix with respect to

w xnX , . . . , X of an element H g A X by JH or if confusion is possible by1 n
J H. One then easily verifies thatn

˜J H )Ž .ny1 <T X˜w xJ H T , c s Adj T T . 2Ž . Ž .n ž /0 0

Ž . Ž .THEOREM 2.3. For all rings A and n g N, n G 1 we ha¨e HH A ; NN A .n n

Proof. Induction on n. The case n s 1 is obvious. So let n G 2 and let
˜ n ˜w x Ž . Ž w x.H s H T , c for some T g M A , c g A , and H g HH A X . By then ny1 n

˜induction hypothesis we have that J H is nilpotent. Hence so isny1
˜ ˜Ž . Ž . w xJ H . From remark 2 it then follows that J H T , c s J H isny1 <T X n n

nilpotent.

Ž .THEOREM 2.4. Let H g HH A Put F [ X q H. Thenn

Ž . Ž .i det JF s 1 and
Ž . y1 Ž .ii F is in¨ertible o¨er A. Furthermore F s X q G with G g HH A .n

Before we can prove this theorem we need some preliminaries. There-
fore consider the polynomial ring

A T [ A T ; 1 F i , j F ni j i j
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2 Ž . Ž .in n indeterminates over A. Put T s T , d [ det T , and consider theu i j u
w xw y1 x w xring S [ A T d . We claim that A T ; S. This follows immediatelyi j i j

from

w xLEMMA 2.5. d is not a zero-dï isor in A T .i j

Proof. We use induction on n; the case n s 1 is obvious, so let n G 2.
Ž . w xWrite d [ det T . Put A# [ A T , T ; 1 F i F n y 1 andny1 i j 1F i, jF ny1 ni in

w x w Ž . Ž .xB [ A# T ; 1 F i, j F n y 1 . So B s A T ; i, j / n, n . If we nowi j i j
develop d with respect to the nth column we get

d s d T q bny1 nn

for some b g B. In particular b does not contain any T . Now suppose dnn
w x w xis a zero-divisor in A T . Then there exists an element 0 / g g A Ti j i j

with dg s 0. Now develop g after powers of T , i.e.,nn

g s g T m q ??? qgm nn 0

with m G 0, g / 0, and g g B for all i. Looking at the coefficient ofm i
T mq 1 in the equation dg s 0 we get d g s 0. But if we apply thenn ny1 m
induction hypothesis to the ring A# we get that d is no zero-divisor inny1

w xA# T ; 1 F i, j F n y 1 . Consequently g s 0, a contradiction. Hence di j m
w xis no zero-divisor in A T .i j

Proof of Theorem 2.4. By induction on n. Again the case n s 1 is clear.
˜ nw x Ž . Ž .So let n G 2 and let H s H T , c for some T s t g M A , c g A ,i j n

˜ Ž w x.and H g HH A X . Since the transformation T : X ¬ x q c is bijec-ny1 n c
˜w xtive with inverse T , we get that T ( H s H T and hence we mayyc yc

assume that c s 0 without loss of generality.

Ž . w xw y1 x w xi Let S s A T d as above and put S [ A T . By Lemmai j 0 i j
˜2.5 we have that S is a subring of S. By Lemma 2.1 we can view H as an0

Ž w x. Ž w x.element of HH S X ; HH S X . Now define the universal H [ny1 0 n ny1 n u
˜w xH T and F [ X q H . Note thatu u u

˜y1 dHH s T .u u ž /0 <T Xu

So we get

det J F s det J X q HŽ . Ž .Ž .n u n u

˜y1 dHs det T J X q Tu n už /ž /ž /0 <T Xu

X ˜s det J X q dH ,Ž .Ž . <ny1 T Xu
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X t ˜Ž . Ž w x.where X s X , . . . , X . However, since dH g HH S X , the last1 ny1 ny1 n
Ž .determinant equals 1 by the induction hypothesis. So also det JF s 1.u

Ž .Finally making the substitutions T ª t we obtain det JF s 1.i j i j

˜ ˜Ž . Ž w x. Ž w x.ii Since H g HH S X and d g S we get dH g HH S X .ny1 0 n 0 ny1 0 n
X ˜So by the induction hypothesis we get that X q dH is invertible over

X ˜ ˜ Xw x Ž w x. ŽS X with inverse X q G, where G g HH S X . The equation X0 n ny1 0 n

˜ X ˜ X X ˜ ˜ X ˜ X ˜. Ž . Ž .qdH ( X q G s X implies that X q G q dH X q G s X so G s
˜ X ˜Ž .ydH X q G . Now observe that

˜y1 dHF s T X qu u ž /ž /0 <T Xu

and that its inverse over S is given by

1 ˜˜ Gy1 GT X q s X q Adj T .Ž . du už /ž /0 <T X � 0u 0 <T Xu

˜ ˜ X ˜ ny1Ž . Ž . w xSince 1rd G s yH X q G belongs to S X , it follows that F is0 n u
Ž .in fact invertible over S . As in i we conclude the proof by making the0

substitutions T ª t for all i, j.i j i j

The next result shows a remarkable nilpotence property of the elements
Ž .of HH A . For special examples this property was discovered by Meisters inn

w x11 .

Ž . n nTHEOREM 2.6. Let H g HH A . Then H s H( ??? ( H g A for alln
Ž . nn G 1. In particular if H 0 s 0, then H s 0.

Before we can give the proof of this theorem we first present a lemma.

Ž . w xnLEMMA 2.7. Let H s H , . . . , H g A X and assume H s c g A.1 n n n
Ž .Now write for each 1 F i F n y 1 H s H X s c . Puti0 i n n

ny1w xH [ H , . . . , H g A X , . . . , X .Ž .0 10 Žny1.0 1 ny1

Then for all p G 2

H py1 H , . . . , HŽ .p 0 1 ny1H s .ž /cn

Proof. We use induction on p. First observe that for all 1 F i F n y 1

H H , . . . , H s H H , . . . , H 3Ž . Ž . Ž .i 1 n i0 1 ny1
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which proves the case p s 2. Now let p G 3. Then by the induction
hypothesis

H py1 H , . . . , HŽ .p py1 0 1 ny1H s H ( H s ( H .ž /cn

Ž .So by 3 we get

H py1 H H , . . . , H , . . . , H H , . . . , HŽ . Ž .Ž .0 10 1 n Žny1.0 1 npH s ž /cn

pH H , . . . , HŽ .0 1 ny1s .cž /n

˜ nw x Ž .Proof of Theorem 2.6. Let H s H T , c for some c g A , T s t gi j
˜Ž . Ž w x.M A , and H g HH A X . As in the proof of Theorem 2.4 considern ny1 n

w xn n nthe ring S and H g S X . It suffices to prove that H g S , for thenu u
n n w xw xn w xnH g S l A T X s A T , so making the substitutions T ¬ t givesu i j i j i j i j

H n g An as desired. Now observe that

˜ ˜y1 y1 y1dH H̃H s T q T T c s T ,Ž .u u u u u ž /ž / a0 << T XT X uu

˜̃ ˜˜H dH ˜Ž . Ž . Ž w x.where s q T c. Observe that a g S and H g HH S X . Weu ny1 na 0

deduce that
n

˜n y1 H̃H s T .u u ž /a <T Xu

˜ n nH̃Ž .So it suffices to show that g S . Therefore we may assume that
a

H H1 1
. .n. .˜w x w xH s g A X with H s g HH A XŽ .ny1 n. .� 0 � 0H Hn ny1

and H g A. Write c instead of H . So we need to show that H n g An.n n n
Ž . UWe use induction on n. First write H s H q X y c H as in Lemmai i0 n n i

Ž .2.7 above and put H s H , . . . , H . Then Lemma 2.7 gives0 10 Žny1.0

H ny1 H , . . . , HŽ .n 0 1 ny1H s . 4Ž .ž /cn

Ž .Furthermore by Corollary 2.2 we have H g HH A . so if n s 2 then0 ny1
H 2 g A2. Finally if n G 3 then the induction hypothesis, applied to H ,0

ny1 ny1 n n Ž .gives that H g A , whence H g A by 4 .0
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Ž . Ž .3. A DOMAIN A WITH HH A m NN A2 2

w x Ž 2 .Throughout this section A denotes the domain Z X, Y, Z r X q YZ .

THEOREM 3.1. Let H s c X q c X , H s d X q d X in1 1 1 2 2 2 1 1 2 2
w xA X , X where c s X, c s Y, d s Z, and d s yX. Then1 2 1 2 1 2

Ž . Ž . Ž .i H s H , H g NN A .1 2 2

Ž . Ž .ii H f HH A .2

Ž . Ž .iii YH g HH A .2

2X YŽ . Ž . Ž Ž . Ž .Proof. i JH s . Since Tr JH s 0 and det JH s y X q YZZ yX

Ž .s 0 we deduce that H g NN A .2

Ž . Ž .ii Suppose H g HH A . Then by Example 1.2 there exist a , a g A2 1 2
w x Ž .and f g A T with f 0 s 0 such that

H s a f a X q a XŽ .1 2 1 1 2 2

H s ya f a X q a X .Ž .2 1 1 1 2 2

Ž . Ž . Ž .Now since both deg H s deg H s 1 we deduce that f T s bT for1 2
2� 4some b g A_ 0 . Consequently X s ba a and Y s ba . Let A , A , B g1 2 2 1 2

w xZ X, Y, Z such that a s A , a s A , and b s B. Then multiplying X by1 1 2 2
2Ž .a and Y by a we obtain a X s a Y, i.e., A X y A Y s c X q YZ for2 1 2 1 2 1

w x Ž . Ž .some c g Z X, Y, Z . Consequently X A y cX s Y A q cZ . So A2 1 2
w xy cX s dY for some d g Z X, Y, Z and hence A q cZ s dX. Summa-1

rizing

A s dX y cZ and A s cX q dY1 2

w xwith c, d g Z X, Y, Z . Consequently the equation X s ba a , i.e., X y1 2
Ž 2 . Ž .2BA A g X q YZ , implies X g X, Y, Z , a contradiction. So H f1 2

Ž .HH A .2

2 2YXX q Y X1 2Ž . Ž .iii YH s . Since YZ s yX , we see that we can takeYZX y YXX1 2

Ž .a s X, a s Y, and f T s T to get the desired form of Example 1.2.1 2

4. THE CLASS HH AŽ .n

In the previous section we saw that there exists a commutative domain
w x2 Ž . Ž .A such that H g A X , H f HH A but rH g HH A , for some 0 / r g A.2 2

This leads us to the following definition, where we take the closure of
Ž .HH A with respect to this property.n
Throughout this section: A is a commutative domain.
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DEFINITION 4.1. First define HH A s A. Now let n G 2 and H gŽ .1
nw x Ž .A X . Then H g HH A if and only if there exist 0 / r g A, T g M A ,Ž .n n
n ˜ w xc g A , and H g HH A X such thatŽ .ny1 n

H̃rH s Adj T q c.Ž . ž /0 <T X

As in Section 2 we have the following result.

Ž . Ž .THEOREM 4.2. i HH A ; NN A , for all n G 1.Ž .n n

Ž . Ž .ii Let H g HH A and put F [ X q H. Then det JF s 1 and F isŽ .n
y1in¨ertible with in¨erse F equal to X q G where G g HH A .Ž .n

n nŽ .iii Let H g HH A . Then H g A , for all n G 1.Ž .n

Ž .Proof. Sketch The proofs of these theorems are obtained from the
Ž .proofs of Theorems 2.3, 2.4, and 2.6 given in Section 2 by replacing HH An

by HH A and using localizations.Ž .n

Ž .Finally we consider the question whether HH A s NN A ?Ž .n n
w xAs already observed earlier, it was proved in 10 that in case A is a

Ž . Ž . Ž . w xU.F.D., then HH A s NN A , hence HH A s NN A . Since the paper 10Ž .2 2 2 2
is not readily available we give a short proof of this result.

w x Ž . Ž .THEOREM 4.3 10 . Let A be a U.F.D. Then HH A s NN A .2 2

Ž .Proof. i First assume that A s k is a field. Then the result is
w xproved in 1 .

Ž . Ž . Ž .ii Now let A be a U.F.D. and let H s H , H g NN A . Then1 2 2
Ž . Ž .H g NN K where K is the quotient field of A. So by i there exist2

Ž . w x Ž .g T g K T with g 0 s 0 and n , n , d , d g K such that1 2 1 2

H s n g n X q n X q dŽ .1 2 1 1 2 2 1

H s yn g n X q n X q dŽ .2 1 1 1 2 2 2

Ž .see example 1.2 . So clearing denominators we get: there exist a g A,
Ž . w x Ž .a / 0, f T g A T with f 0 s 0 and m , m , c , c g A such that1 2 1 2

aH s m g m X q m X q cŽ .1 2 1 1 2 2 1

aH s ym g m X q m X q c . 5Ž . Ž .2 1 1 1 2 2 2

Ž .Substituting X s X s 0 in 5 we obtain that c s ac and c s ac for˜ ˜1 2 1 1 2 2
some c , c g A. So replacing H by H y c we may assume that c s c˜ ˜ ˜1 2 i i i 1 2
s 0.
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Ž . Ž .iii Now we show that we may assume that gcd m , m s 1: there-1 2
Ž . Ž .fore let m s m d, m s m d where d s gcd m , m . So gcd m , m s 1˜ ˜ ˜ ˜1 1 2 2 1 2 1 2

˜Ž . Ž Ž .. Ž .and m f m X q m X s m df d m X q m X . Hence if we put f T˜ ˜ ˜i 1 1 2 2 i 1 1 2 2
Ž .s df dT we get

˜m f m X q m X s f m X q m X .Ž . ˜ ˜Ž .i 1 1 2 2 1 1 2 2

Ž . Ž .iv Consequently we may assume that gcd m , m s 1. Write f s1 2
N i Ž .Ý f T , with f g A. From 5 we see that we may assume thatis1 i i
Ž .gcd a, f , . . . , f s 1.1 N

Ž .Claim. a is a unit in A and hence we are done .

Ž .Suppose that p is a prime factor of a. Then 5 implies that p divides
Ž . Ž Ž . .f m X q m X since gcd m , m s 1 . So in particular p divides both1 1 2 2 1 2
Ž . Ž . i if m X and f m X , so p divides f m and f m for all i G 1 and hence1 1 2 2 i 1 i 2

Ž .p divides f for all i G 1 which contradicts gcd a, f , . . . , f s 1. So a is ai 1 N
unit.

In the remainder of this section we will show that such a result is no
longer true if n G 3. More precisely we have:

Ž .THEOREM 4.4. Let A be any Q-algebra. Then HH A m NN A , for allŽ .n n
n G 3.

To prove this result we need the following lemma.

Ž .LEMMA 4.5. Let A be a domain, n G 1, and H g HH A with H 0 s 0.Ž .n
Then there exist l , . . . , l g A, not all zero, such that l H q ??? ql H s1 n 1 1 n n
0.

Proof. If H s 0 we are done, so let H / 0. Then there exist 0 / r g A,
n ˜Ž . w xT g M A , c g A and H g HH A X such thatŽ .n ny1 n

H̃rH s Adj T q c.Ž . ž /0 <T X

So, multiplying by T we get

H̃rTH s det T q Tc. 6Ž . Ž .ž /0 <T X

Ž . Ž . Ž . Ž .i If det T s 0 it follows from 6 that rTH s Tc. Since H 0 s 0
Žand A is a domain we deduce that TH s 0. Since T / 0 otherwise

.H s 0 there exists a non-zero row, say the ith, whence t H q ??? qt Hi1 1 in n
s 0, as desired.
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Ž . Ž .ii If det T / 0, then equating the nth components of the vectors
Ž . Ž . Ž . Ž . Ž .in 6 we get r TH s Tc . Since H 0 s 0, we get Tc s 0, son n n

Ž .TH s 0, i.e., t H q ??? qt H s 0. Obviously t / 0 for some jn n1 1 nn n n j
Ž Ž . .otherwise det T s 0 .

w xNow let n G 3 and let A be a Q-algebra. It was shown in 7 that the
Ž . w xn Ž .following H s H , . . . , H g A X belongs to NN A : let1 n n

a X [ X ny1Ž .1 1

H [ X y a XŽ .1 2 1

iy1Ž . iy1Ž iy1.H [ X q a X y a X for 2 F i F n y 1Ž .Ž .i iq1 2 1i y 1 !Ž .
ny1Ž . ny1Žny1.H [ a X y a X .Ž .Ž .n 2 1n y 1 !Ž .

Proof of Theorem 4.4. Let n G 3 and let H be as defined above. Then,
Ž .as observed, H g NN A . However, if H g HH A , then by Lemma 4.5Ž .n n

there exist l , . . . , l g A, but not all zero, such that l H q ??? ql H1 n 1 1 n n
Žs 0. It follows readily that l s ??? s l s 0 look at the monomials2 n

.X , X , . . . , X , respectively . So l H q l H s 0, which easily implies3 4 n 1 1 n n
Ž .that also l s l s 0 n G 3! , contradiction. So H f HH A .Ž .1 n n

In particular this proof shows that the dependence problem, or the
w x Ž w x .Nilpotent Conjecture from 3 , is false. See 7 for more details.

5. FINAL REMARKS

wTo conclude this paper we explain the counterexamples found in 5, 8,
x Ž .2 . They all belong to HH C . To see this consider Example 1.2. First taken

w x Ž .A s C X , X , a s X , a s X , c s c s 0, and f T s T. Then3 4 1 3 2 4 1 2

H , H s X X X q X X , yX X X q X XŽ . Ž . Ž .Ž .1 2 4 3 1 4 2 3 3 1 4 2

Ž w xw x. Ž . Ž w x.belongs to HH C X X . Consequently H , H , 0 belongs to HH C X2 4 3 1 2 3 4
Ž 3. Ž w x. Žand hence H , H , X belongs to HH C X . This implies that H , H ,1 2 4 3 4 1 2

3 . Ž . Ž 3 .X , 0 belongs to HH C and hence that H [ H , H , X , 0, . . . , 0 belongs4 4 1 2 4
Ž .to HH C for all n G 4. Then X q H is exactly the counterexample ton

w xMeisters’ Linearization Conjecture given in 5 .
Ž . 2Similarly, taking f T s T we find the counterexamples to the Deng]

Meisters]Zampieri Conjecture and the Discrete Markus]Yamabe prob-
w xlem given in 8 .
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Finally the counterexamples to the Markus]Yamabe Conjecture and the
w x w xDiscrete Markus]Yamabe problem in 2 : take A s C X , a s 1, a s3 1 2

Ž . 2X , c s c s 0, and f T s T in Example 1.2. Then3 1 2

2 2H , H s X X q X X , y X q X XŽ . Ž . Ž .Ž .1 2 3 1 3 2 1 3 2

Ž w x. Ž . Ž .belongs to HH C X ; hence H , H , 0 belongs to HH C and conse-2 3 1 2 3
Ž . Ž .quently the n-dimensional map H , H , 0, . . . , 0 belongs to HH C for all1 2 n

1n G 3. Then yX q H resp. X q H are exactly the counterexamples to2

the Markus]Yamabe Conjecture resp. the Discrete Markus]Yamabe
w xproblem given in 2 .
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