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ABSTRACT 

Let H:k” -+ k” be a polynomial map, It is shown that the Jacobian matrix JH is 
strongly nilpotent if and only if JH is linearly triangularizable if and only if the 
polynomial map F = X + H is linearly triangularizable. Furthermore it is shown that 
for such maps F, sF is linearizable for almost all s E k (except a finite number of 
roots of unity). 

1NTRODUCTION 

In [l] Bass, Connell, and Wright and in [7] Yagzhev showed that it suffices 
to prove the Jacobian conjecture for polynomial maps F : C” -+ @” of the 
form F = X + H, where H = (H,, . . . , H,) is a cubic homogeneous polyno- 
mial map, i.e., each Hi is either zero or homogeneous of degree three. Since 
det(JF> E C ’ is equivalent to JH nilpotent (cf. [l, Lemma 4.111, it follows 
that the Jacobian conjecture is equivalent to the following: if F = X + H 
with JH nilpotent, then F is invertible. Hence it is clear that understanding 
nilpotent Jacobian matrices is crucial for the study of the Jacobian conjecture. 

In [6], in an attempt to understand quadratic homogeneous polynomial 
maps, Meisters and Olech introduced the strongly nilpotent Jacobian matri- 
ces: a Jacobian matrix JH is strongly nilpotent if JH(x,) **- JH(xn> = 0 for 
all vectors x1,..., x, E C”. They showed in [6] that for quadratic homoge- 
neous polynomial maps JH is strongly nilpotent if and only if JH is nilpotent, 
if n < 4. However, for n >, 5 there are counterexamples (cf. [4] and [6J). 
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On the other hand the obvious question whether the Jacobian conjecture 
is true for arbitrary polynomial maps F = X + H with ]I3 is strongly 
nilpotent has remained open. 

In this paper we give an affirmative answer to this question. In fact we 
obtain a much stronger result: in Theorem 1.6 we show that the Jacobian 
matrix JH is strongly nilpotent if and only if JH is linearly triangularizable if 
and only if the polynomial map F = X + H is linearly triangularizable. 
Furthermore we show that for such maps F the map SF is linearizable for 
almost all s E C (except a finite number of roots of unity). So for such F the 
linearization conjecture of Meisters is true (it turned out to be false in 
general, as was shown in [S]). 

1. DEFINITIONS AND FORMULATION OF THE FIRST 
MAIN RESULT 

Throughout this paper k is a field with chark = 0 and k[ X] := 
k[X 1”“, X,,] denotes the polynomial ring in n variables over k. Let H = 
(H l,...,H,):k” +k” beapolynomialmap,i.e., Hi ~k[X]foralli.ByJH 
or JH( X) we denote its Jacobian matrix. So JH(X) E M,(k[ XI). 

Now let Y(r, = (Yen,. . . , Y&, . . . , Y(,,, = (YC,jl,. . . , YC,,,> be n sets of n 
new variables. So for each i, ]H(Y(,,) belongs to the ring of n X n matrices 
with entries in the n2 variable polynomial ring k[Ycijj; 1 < i, j < n]. 

DEFINITION 1.1. The Jacobian matrix JH is called strongly nilpotent if 
and only if the matrix JH(Y& *-- JH(Yc,J is the zero matrix. 

EXAMPLE 1.2. If JH is upper triangular with zeros on the main diagonal; 
then one readily verifies that JH is strongly nilpotent. In fact the main result 
of this paper (Theorem 1.6 below) asserts that a matrix ]H is strongly 
nilpotent if and only if it is upper triangular with zeros on the main diagonal 
after a suitable linear change of coordinates. 

REMARK 1.3. One easily verifies that if k is an infinite field, then 
Definition 1.1 is equivalent to JH(x,) *a- JH(xn> = 0 for all xi,. . . , xn E k”. 
So for k = R and H homogeneous of degree two we obtain the strong 
nilpotence properly introduced by Meisters and Olech in [6]. See also [4]. 

To formulate the first main result of this paper we need more definition. 
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DEFINITION 1.4. 
(i) Let F = X + H be a polynomial map. We say that F is in (upper) 

triangular-form if Hi E k[Xi+l,..., X,] for all 1 < i < n - 1 and H, E k. 
(ii> We say that F is linearly triangularizable if there exists T E GL,(k) 

such that T-‘FT is in upper triangular form. 

One easily verifies the following lemma: 

LEMMA 1.5. Let F = X + H be a polynomial map. Then F is in upper 
triangular form if and only if JH is upper triangular with Zeros on the main 
diagonal. 

Now we are ready to formulate the first main result of this paper: 

THEOREM 1.6. Let H = (H,, . . . , H,) : k n --f k n be a polynomial map. 
Then there is equivalence between the following statements: 

(i) JH is strongly nilpotent. 
(ii) There exists T E GL,,(k) such that J(T-‘HT) is upper triangular 

with zeros on the main diagonal. 
(iii) F := X + H is linearly triangularizable. 

From this theorem it immediately follows that: 

COROLLARY 1.7. lf F = X + H with JH strongly nilpotent, then F is 
invertible. 

2. THE PROOF OF THEOREM 1.6 

The proof of Theorem 1.6 is based on the following two results. 

LEMMA 2.1. Let _W = C,,, < d A, X”, where d = maxi deg Hi - 1 and 
A, E M,(k) for all (Y. Then JH is strongly nilpotent if and only if 
A . . . 

71) A a(,) = 0 for all m&indices aCij with \c+J < d. 
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Proof. By Definition 1.1 we obtain 

The result then follows by looking at the coefficients of Y$ **a Y,$). ??

PROPOSITION 2.2. Let V be a finite dimensional k-vector-space, and 
1 k-linear maps from V to V. Let r E N, r > 1. lf Z,, 0 m-0 0 iiF = 0 

>ii Lichp r-tuple lil, . . . , liT with 1 < i,, . . . , i, < p, then there exists a basis 

(v> of V such that Mat(l,, (v>> = Di, where Di is an upper triangular matrix 
with zeros on the main diagonal. 

Proof. Let d :=t dim V. We use induction on d. First let d = 1. Then 
the hypothesis implies that l,r = 0 for each i. So li = 0 for each i, and we are 
done. So let d > 1, and assume that the assertion is proved for all d - 1 
dimensional vector spaces. Now we (also) use induction on r. If r = 1 then 
each Zi = 0. So let r > 2. Then for each (r - l)-tuple Zi,, . . . , Zir with 
1 d i,,..., i,.<p wehave 

(2.1) 

If zip .a* Zi7 = 0 for each such (r - l)-tuple, we are done by the induction 
hypothesis on r. So we may assume that for some (r - l)-tuple Ziz, . . , , Zir 

the map Ziz *~*li,+O.Sothereexistsv#O,v~Vwithu,:=Zip~~~li~v#0. 

From (2.1) we deduce that E,v, = 0 for all i. Then consider_q :=_V/kv,. 
Since Z,vi = 0 for all i, we get induced k-linear maps Zi : V -+ V. Since 
dim v = d - 1, the induction hypothesis implies that there exist va, . , . , v, 
in V such that (I?,,..., U,.> is a k-basis of Vc and Mat(i,, CC,, , , . , U,.)) is in 
upper triangular form. Then (v) = (vi, va, . . . , or) is as desired. ??

COROLLARY 2.3. Let A,, . . . , A, E M,(k). Let r E N, r > 1. Zf 

Ail a-* Air = 0 for each r-tuple Ai,, . . . , AiP with 1 < i,, . . . , i, c p, then 
there exists T E GL .(k) such that T- ‘A,T = Di, where each Di is an upper 
triangular matrix with zeros on the main diagonal. 
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Now we are able to present the proof of Theorem 1.6. 

Proof. (ii) + (iii) follows from Lemma 1.5. So let’s prove (iii) -+ (i). If 
F = X + H is linearly triangularizable, then by Lemma 1.5 J(T-‘UT) is an 
upper triangular matrix with zeros on the main diagonal. As remarked in 
Example 1.2, this implies that J(T-‘UT) is strongly nilpotent. Finally ob- 
serve that J(T-‘UT) = T-‘JH(TX)T. So the strong nilpotency of J(T-‘UT) 
implies that JH(TY(,,) *** JH(TY(,,,> = 0, which implies in turn that ]H is 
strongly nilpotent. 

Finally we prove (i) -+ (ii). So let /H be strongly nilpotent. Now if we 
write JH = C,,,, d A, X”, then by Lemma 2.1 A,(,, ..- A,(,,, = 0 for all 
n-tuples with 1 acij ) < d. So by Corollary 2.3 there exists T E GL,(k) such 
that T-‘A,T = D, for all (Y with ((~1 < d, where D, is an upper triangular 
matrix with zeros on the main diagonal. Consequently so is T-‘]H(X)T 
(.= CT-lA,TX”), and hence so is J(T-‘UT) = T-‘JH(TX)T, which is 
obtained by replacing X by TX in T- ‘]H( X)T. ??

:3. STRONGLY NILPOTENT JACOBIAN MATRICES AND 
MEISTERS LINEARIZATION CONJECTURE 

In [2] Deng, Meisters, and Zampieri studied dilations of polynomial maps 
with det(]F) E @‘. They were able to prove that for large enough s E @ the 
map SF is locally linearizable to sJF(O)X by means of an analytic map cp,, the 
so-called Schrader map, whose inverse is an entire function and satisfies 
some nice properties. 

Their original aim was to show that cp, is entire analytic, which would 
imply that SF and hence F is injective, which in turn would imply the 
Jacobian conjecture. Although they were not able to prove the entireness of 
‘p,, calculations of many examples of polynomial maps of the form X + H 
with H cubic homogeneous showed that in all these cases the SchrGder map 
was even much better than expected, namely, it was a polynomial automor- 
phism (cf. [5]). This led M els ers ’ t to the following conjecture: 

CONJECTURE 3.1 (Linearization conjecture, Meisters [5]). Let F = X + 
H be a cubic homogeneous polynomial map with JH nilpotent. Then for 
almost all s E @ (except a finite number of roots of unity) there exists a 
polynomial automorphism pS such that c~,‘sFq = sX. 
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Recently in [3] it was shown by the first author that the conjecture is false 
if n > 5 and true if n < 4. 

In this section we show that Meisters linearization conjecture is true for 
all n > 1 if we replace ‘JH is nilpotent” by “JH is strongly nilpotent”. In fact 
we don’t even need the assumption that this H is cubic homogeneous. More 
precisely we have: 

THEOREM 3.2. Let k be afield, k(s) the field of rationalfirnctions in one 
variable, and F : k” + k” a polynomial map of the form F = X + H with 
F(0) = 0 and JH strongly nilpotent. Then there exists a polynomial automor- 
phism 4~~ E Aut k(sJk( s)[ X I>, linearly trtangularizable over k, such that 

(p,%Fq8 = sJF(0) X. 

Furthermore; the zeros of the denominators of the coefficients of the X- 
monomials appearing in q, are roots of unity. 

Before we can prove this result we need one definition and some lemmas. 

DEFINITION 3.3. We say that X:1 *-- Xhn > Xy; **- X$ if and only if 
Cj”= 1 ij > Cy= 1 ii or if Cj”= 1 ij = Cj’=l ii and there exists some 1 E 

11,2, -. . , n} such that ij = ii for all j < 1 and i, > ii. 

Furthermore we say that the rank of the monomial M := Xjl .+a X$ is 
the index of this monomial in the ascending ordered list of all monomials M’ 
in Xi,..., X, with deg M’ < deg M (total degree). 

EXAMPLE 3.4. The rank of X,X,X, is 15, since the ascending ordered 
list of all monomials in Xi, X,, and X, of total degree at most three is 

x,z, x,x,, x;, XIX,, x,x,, x,z, 
xi, x,x;, x:x3, x2, x,x;, x,x,x,> x,x;> xl-,> xl% XP. 

LEMMA 3.5. For each 2 Q j 6 n - 1 let ljCXj+ 1, . . . , X,) be a linear 
form in Xj+ 1,. . . , X, and let p E k. Then the leading monomial with respect 
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to the order of Definition 3.3 in the expansion of 
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(3.1) 

is 

psi2+ ... +Lx;2 . . . x,;“. 

Proof. It is obvious that the monomial psi%+ +inXj2 ... X,) appears 
in the expansion of (3.1). Now we have to show that this is really the leading 
monomial. Note that all monomials in the expansion have the same (total) 
degree: i, + 1.. +i,. For each j = 2,. . . , n we get a contribution of [sX, + 
slj(xj+l>...3 X,)]‘l that is of the form 

c ( ~)x;[lj(xj+~,..., XJy. 
k=O 

and since lj is a linear term that does not contain Xj it is obvious that we get 
the highest order monomial if we take k = ij. So if we start with j = 2, we 
see that the highest X, power is i,. And if we apply this result to j = 3, we 
see that the leading power product must begin with XizXi3. If we do this for 
all j, it is obvious that the leading monomial is /_Ls~~+ +inXiz *.. Xjn. ??

LEMMA 3.6. Let F be a polynomial map of the form 

F= 

X, + a( X,, . . . , X,) + 11(X2,. . . , X,) 

x, + I,(X,>..., X”) 

X,-l + LdKJ 
xn 

where a( X,, . . . , X,) is a polynomial with leading monomial (with respect to 
the order of Definition 3.3) AXi2 *.- Xin and i, + *-* +i, 2 2. Furthermore 
Zi(Xi,,,..., X,) are some linear forms. Then there exists a polynomial map p 



128 ARNO VAN DEN ESSEN AND ENGELBERT HUBBERS 

on triangular form such that 

cp-‘sFq = s 

x, +qx, ,...) X”) +1,(x, ,..., X,) 

x, +&(x3>..., X”) 

K-1 + I,-1(X”) 
X” 

(3.2) 

where the leading monomial of a’(X,, . . . , X,), say ix42 *** X>, is of strictly 
lower order than the leading monomial of a( X,, . . . , X, ), i.e., 

Xp . . . x$ < x;z . . . Xi”. 

Proof. Let 

I 

for some p E k. It is obvious that 40 is of triangular form. Proving that the 
equation (3.2) is valid is equivalent with showingthat 

sFq = Q s 

X,-l + &-1(X”) 
xn 

(3.3) 

is valid. We do this by looking at the n components. For i > 2 it is easy to 
see that the i th component of the left hand side of (3.3) equals that of the 
right hand side of (3.3). Hence our only concern is the first component. Put 
6(X,,..., X,) := a( X,, . . . , X,) - hX$ 0.. Xhn. On the left hand side we 
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have 

s@lr =: sX, + apX;” . . . X;?a + shX;2 . . . Xi” 

+ sci( x,, . . . , X”) + d,( x,, . . . , X”), 

and on the right hand side: 

x,+qx, ,...) X,) +1,(x, ,...) X,) 

x, + ux,,..., X,) 

X,-l + Ll(Xn) 
x,, 

\ 

I 

=sx, +sqx, ,..., X,) +sZ,(X, a..., X,,) 

+ /J. fi [SXj + SZj(xj+]>*"> xn)]“’ 
j=2 

(3.5) 

By subtracting Equation (3.5) from Equation (3.4) under the assumption that 
Equation (3.3) holds, we get 

S(p++)X;P *** x;n +&(x2,..., X”) 

= Pjn2[sxj + szj(xj+l,..., x,i)]“: (3.6) 

where 2 = a^ - a’. Now we have to derive a relation for I_L to achieve that 
Equation (3.3) indeed holds. We can do this by restricting Equation (3.6) to 
the coefficients of X$ *a* X,). With Lemma 3.5 we see that the restriction of 
the right hand side of (3.6) to X:2 *se X,n gives ~.s~p+ ” iin, so we get 

sp + sh = st2+ ... +Lp, 

and from this equation we can compute CL: 

A 
I-L= si2+ ..'+i,-l _ 1 
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Note that we have assumed that i, + *.a +i, > 2, so six+ ..‘tin-l - 1 # 0; 
hence p is well defined. ??

Now we are able to give the proof of Theorem 3.2. 

Proof. By Theorem 1.6 we may assume that F = (F,, . . . , F,) is of 
triangular form. We use induction on n. If n = 1, F degenerates to the 
identical map X, and the theorem follows immediately. 

If n = 2. we can write 

F= Xl +4x21 +4(x2) 
i X‘2 1. 

where a = Cy! i a, Xi and 1, = ax,, the linear part. In particular we have 
that the leading monomial of a is u,XF. So with Lemma 3.6 we know that 
there exists a map qm of triangular form such that 

(p,- ‘sFc,q,, = 
sx, + q X,) + sZ,( X,) 

SX, 

where deg(Z) < m. By applying the same lemma m times (if necessary we 
can use 4 as the identity) we find a sequence pi,. . . , p,,, such that 

-1 
cpl . . . CP,-‘~F~~ . . . 

so (Qs := (pm 0 . . . 

6 := (F,,..., 
0 vi is as desired. Now consider F = 

F,> and X := (X,, . . . , X,). Then by the 
we know that there exists an invertible polynomial map 

So with x = (Xi, @J and with the notation 

(F,, F% ,..., F-1. Put 
induction hypothesis 
& such that- 

F=(X,+u(X2 ,..., X,,)+l,(X, ,..., X,,),@) 
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we get 
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x-‘SFX = s 

x, + qx, ,..., X,) $-1,(X, ,..., X,) 

x, + I,(&,..., X,) 

X n-l + z”-l(X”) 
Xtl 

Now we only have to 
the leading monomial 
exists a cp, such that 

make the first component linear. Let r be the rank of 
in Z(X,,..., X,). With Lemma 3.6 we know that there 

I x, + G,( x,, . ..) X,) + Z,( x,, . ..) X,) 

x, + I,(&,..., X,) 

\ 

$x- hFx(p, = s 

I T-1 + L(XJ 
X,X I 

where the rank of the leading monomial of 2,(X,, . . . , X,) is less than r. So 
after r applications of Lemma 3.6 we have obtained a sequence cp,, . . . , p, 
such that 

which proves the theorem. 
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