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Abstract

This thesis presents some interesting results concerning the research on the Jacobian
Conjecture.

In a short historical summary of the research on this topic in chapter 1 we show that
the general Jacobian Conjecture can be reduced to the case where F' = X — H is a
so-called cubic homogeneous map. Wright has solved this case for n = 3; we present
his result in theorem 1.20.

In chapter 2 we generalize Wright’s result to the case n = 4. Here the most important
result is given in theorem 2.7, where we give a complete classification of all cubic
homogeneous polynomial maps in four indeterminates, which have non-zero constant
determinants of their Jacobian matrices. Furthermore with this classification we prove
that all these cubic homogeneous polynomial maps are invertible in corollary 2.9.

In chapter 3 we present a general theorem (theorem 3.1) concerning the form of cubic
homogeneous maps in two indeterminates and coefficients in a uniform factorization
domain. Tt is proved that all such polynomial maps can be written in a very simple
way. As an illustration of this theorem we write the explicit maps of theorem 2.7 in
the form of theorem 3.1.

In chapter 4 we return to the four dimensional cubic homogeneous maps. Here we con-
sider a subclass of the general class of chapter 2: we examine the so-called Druzkowski
forms. The result of this research is presented in theorem 4.2 where we give a complete
classification of these maps. With this classification of these particular maps we prove a
conjecture of Meisters (see conjecture 4.5 and theorem 4.6) concerning representatives
for the 4 x 4 power similarity relation. We prove that the six representatives Meisters
described are a complete set of representatives for the power similarity relation. We
also prove a very general theorem (theorem 4.7) concerning the validity of the Jacobian
Conjecture for Druzkowski forms in dimension n with the n x n coefficient matrix A
and with rank(A) = r, depending on the validity of the Jacobian Conjecture for cubic
homogeneous maps in dimension 7. So this theorem gives a criterion to determine
whether a Druzkowski map in a higher dimension is invertible or not. In particular
we prove in theorem 4.8 that the Jacobian Conjecture is true if the rank » < 4. Con-
sequently we prove in theorem 4.9 that a polynomial map on Druzkowski form which
satisfies the Jacobian hypothesis is invertible if n < 7.

Chapter 5 deals with some related problems. For instance we give an answer to the
question whether cubic homogeneous maps which satisfy the Jacobian hypothesis are
exponents of some locally nilpotent derivations (theorem 5.2 and theorem 5.7). Al-
though there was one map that could not be written as exp(D), we found that all maps
could be written as exp(D1) o exp(Dz). See theorem 5.8. Furthermore we give exam-
ples of homogeneous Jacobian matrices in four variables that are not strongly nilpotent
(theorem 5.11) and we show how we can extend these examples to higher dimensions
(example 5.15). We also prove that all homogeneous parts of the cubic homogeneous
maps in dimension four vanish after a finite time of iterations (theorem 5.13).

il




Chapter 6 describes the results we found in dimension five. We studied the linear cubic
homogeneous case: remarkably enough all maps we found in this class can be seen as
maps in two dimensions (examples 6.2, 6.3, 6.4, 6.5 and 6.6). And with theorem 3.1
we know exactly how we can describe these maps. Finally we present some topics for
future research in this area in section 6.3.
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Chapter 1

History

1.1 Introduction

The original aim of this thesis was to find a counterexample for the Jacobian Conjecture.
This may seem a little bit opportunistic since the conjecture is open since 1939. But
because we used a very systematic way of searching there were only three things that
could happen:

1. We could find a counterexample as desired.
2. We could find that the system of equations could not be solved completely.

3. We couldn’t find a counterexample but we could find a complete solution of the
systems of equations, i.e. we could find a complete classification of all possible
polynomial maps.

Only the second possibility is a bad result. In order to avoid this problem we had to
restrict ourselves. The main problem in dimension four -or in any higher dimension-
is the number of indeterminates, since this number is a measure for the number of
monomials in F' and thus for the number of variables in the system of equations. Since
it is known from [Yagzhev 80] and [Bass et al. 82] that the validity of the Jacobian
Conjecture rests on the so-called cubic homogeneous maps we first restricted ourselves
to these maps. The second restriction was to examine dimension four. This was
a natural choice since in [Wright 93] the situation in dimension three is completely
described for cubic homogeneous maps. So if we wanted to find anything interesting
we had to examine dimension four. However in that particular article Wright writes:

‘Here it becomes useful to assume F' is cubic homogeneous, since this limits
the number of its monomials. The dimension four case may still be out
of range even with this reduction, however; the number of monomials of
degree three in four variables is 20, so the number of monomials for a cubic
homogeneous map in dimension four is 20 x 4 = 80.’

Though this was not very encouraging we decided to give it a try anyway. Mainly
because we could reduce the 80 variables to 64 by using some transformation matrix.
With the current possibilities to solve a set of equations in a systematic, interactive
way, we hoped that it would work out. And, fortunately, it did!




But before we present how we did succeed in avoiding the second -bad- possibility, we
start with some history of the Jacobian Conjecture.

1.2 The Jacobian Conjecture

Throughout this chapter we shall mainly consider polynomial maps
.=

where F = (F,...,F,) and each F; € C[z1,...,z,]. Throughout this paper we shall
use the abbreviation X = (z1, 22, ..., 2,). Most of the time n = 4. And it will be clear
from the context if it is not.

Some of the main aims of the study of invertible polynomial maps concerns the following
questions:

Question 1.1 How can we determine whether a polynomial map F : C* — C* is
invertible or not?

and of course

Question 1.2 Knowing that a certain polynomial map F is invertible, how can we
determine its inverse?

If we denote -as usual- the Jacobian matrix of map F' by JF, i.e.

JF = <iFl>
O; ij=1

we can deduce the first theorem that deals with these questions:

Theorem 1.3 Let F : C* — C" be an invertible polynomial map. Then det(JF) €
C*.
Proof: Let G be the inverse of F'. Then we have of course that
G(F(X)) = X.
By differentiation of this equation with the chain rule we get
(JG)F (X)) JF(X)=1I,

so det((JG)(F(X)).JF(X)) = det((JG)(F(X)).det(JF (X)) = det(l,) = 1 and it
follows immediately from the degrees that det(JF) € C. a

This result immediately leads to the following conjecture:

Conjecture 1.4 (The Jacobian Conjecture) Let F' : C* — C* be a polynomial
map. Now if det(JF) € C* then F is an invertible polynomial map.
Though this conjecture was already posed in [Keller 39], it is still open for n > 2.

Actually his formulation of the conjecture was in terms of Z instead of C. Naturally
this observation gives rise to the next question.




Question 1.5 Can C be replaced by any arbitrary field, or even by a ring like 7 ?

For instance let us take the field F, for some prime p. Then we have a field with
characteristic p > 1. Furthermore let n = 1. Take F(z1) = 1 + . Then JF = I
and det(JF) = 1€ ]F?. However for every GG € F,[z;1] with deg(G) > 1 we have that
deg(G(z1 + z%)) = pdeg(G) > 1. So certainly there is no such G with G(F(z1)) = 1,
thus F' is not an invertible map. So the Jacobian Conjecture is not true in this case.
So in particular we see that we cannot choose any arbitrary field instead of C.

In particular we see that the characteristic has to be zero. So if we assure this by
taking R as a subring of some Q-algebra and if Fy,..., F,, € R[X] we can formulate
a generalized Jacobian Conjecture. Before we do this, we present a useful invertibility
criterion.

Lemma 1.6 Let I be a polynomial map C* — C*. Then we have F is invertible if
and only if C[F] = C[X].

Proof: Assume that F is invertible with inverse G = (G4, ..., Gy). Then for each ¢ we
have z; = G;(Fy, ..., F,) and thus z; € C[F] where C[F] = C[F},..., F,]. Naturally
we also have that for each ¢ F; € C[X], so the assumption that F is invertible implies
that C[F] = C[X], which proves one side of the lemma. Now if we assume that
C[F] = C[X] then for each i we have z; € C[F]. But this implies that for each ¢ there
exists some G; € C[X] with z; = G;(F1,..., F,). If we combine these G;’s we get
that there exists some G = (G1,...,G,) : C* - C* with G(F(X)) = X. From, for
instance, [Adjamagbo et al. 88, Theorem 1.11] it now follows that also F(G(X)) = X.
But then we have that G is the inverse of F' and thus F' is invertible which completes
the proof of the lemma. a

Conjecture 1.7 (Generalized Jacobian Conjecture (JC,(R))) Let R be a sub-
ring of a Q-algebra. Let F : R® — R" be a polynomial map. If det(JF) € R[X]* then
R[F] = R[X].

We see that both Keller’s problem and the usual conjecture are instances of this gener-
alized Jacobian Conjecture with respectively R = Z and R = C. But a more interesting
observation deals with the following question:

Question 1.8 Is the generalized Jacobian Conjecture really more general than the
usual Jacobian Conjecture?

The answer to this question is no. It is proved in [Essen 91] that, at the cost of enlarging
the number of indeterminates, JC), (R) is true for all n if and only if JCy, (C) is true for
all n. From this it follows that it suffices to examine the usual Jacobian Conjecture.
This is especially practical since one can use methods of complex analysis if one regards

JC,(C).

Over the years some other equivalent conjectures have been stated. For instance by
Magnus in 1955. In [Magnus 55] he considers so-called volume preserving transforma-
tions of complex planes given by analytic functions.

Theorem 1.9 Let f,g € Clz1,zs] with deg(f) = n and deg(g) = m. Consider the
map:
(z1,22) = (f(z1,22), 9(x1,22)) with det(J(f,g)) = 1.

Then if m orn is a prime then (f,g) is invertible.




Proof: See [Magnus 55]. a

This result has been improved several times. In [Nakai et al. 77] to
Theorem 1.10 Assume det(J(f, g)) = 1. Then the map (f,g) is invertible if

® n or m is prime or
e n orm equals 4 or

e m>n, m=2p for some odd prime p.
And in [Appelgate et al. 85] and [Nagata 88] to

Theorem 1.11 Ifn or m has at most two prime factors then the map (f, g) is invert-
ble.

Another formulation of the conjecture is the so-called ‘Rolle’ formulation (see for in-
stance [Essen 91]):

Conjecture 1.12 If F(a) = F(b) witha # b in C*, then there erists ¢ € C" such that
F'(¢&) =0.

The equivalence between this formulation and the usual formulation follows from the
following lemma:

Lemma 1.13 Let ' : C* — C* be a polynomial. If F' is injective, then I is invertible.

Proof: See [Rosenlicht et al. 62]. ]

This lemma forms also the base for an important theorem in [Wang 80]:
Theorem 1.14 Let det(JF) € C* and deg(F;) < 2 for all i. Then F' is invertible.

Proof: From lemma 1.13 it follows that we only have to prove the injectivity of F.
So suppose we have some a # b € C* with F(a) = F(b). If we define G(X) :=
F(X + a) — F(a), then we have that deg(G) < 2 and G(0) = 0. If we take c = b —«a
then we have that ¢ # 0 and furthermore G/(¢) = 0. From this it follows that we can
take b = 0. From the equation

(JG)(X) = (JF)(X +a)
it follows immediately that also det(JG) € C*. Since deg(G) < 2 we can write
G =G+ G

where G ;) is G’s homogeneous component of degree 7. From this it follows that for all

teC
G(tC) = G(l)(tc) + G(g)(tc)
= tG(l)(c) + ‘tZG(z)(C)
By differentiation we get that for all t € C

d
ZGte) = (JO)(te) # 0.

But if we substitute t = 3 we get G(c) # 0 which is a contradiction to the previous
derived G(¢) = 0. So we have proved that F is indeed injective and thus invertible. O

G(l)(c) + 2tG(2)(C) =

It may seem that this theorem is just a very special case of the general case. However
this is not really true. Independently Bass, Connell and Wright on one side and Yagzhev
on the other side proved the following theorem.




Theorem 1.15 If the Jacobian Conjecture holds for alln > 2 and all polynomial maps
F with deg(F;) < 3 for all i, then the Jacobian Conjecture holds.
Proof: See [Bass et al. 82] or [Yagzhev 80]. a

From this theorem it immediately follows that the special case of theorem 1.14 is nearly
the general case.

Also in [Bass et al. 82] the result of theorem 1.15 has been improved.
Theorem 1.16 If the Jacobian Conjecture holds for alln > 2 and all polynomial maps

F of the form F = X — H where H is homogeneous of degree three, then the Jacobian
Conjecture holds.

However even this theorem could be improved as was shown in [Druzkowski 83]:

Theorem 1.17 [f the Jacobian Conjecture holds for alln > 2 and all polynomial maps
F of the form

3 3
n n

F = r1 — E Cj1T; gy Ly — E CinZj

Jj=1 Jj=1
where ¢;; € C then the Jacobian Conjecture holds.

More recently Druzkowski combined some of his own results from [Druzkowski 83] and
[Druzkowski 85] and proved the theorem:

Theorem 1.18 Let F be a polynomial map of the form in theorem 1.17. Let A be the
matriz of the coefficients of F', i.e. A = (cij). Then the Jacobian Conjecture is true if
rank(A) < 2 or corank(A) < 2.

Proof: See [Druzkowski 93]. a
An immediate consequence of this theorem is:

Corollary 1.19 Let F be a polynomial map of the form in theorem 1.17. Then the
Jacobian Conjecture holds for this F' if n <5.

Proof: Let A = (¢;;). If rank(A) < 2 then the corollary is true by theorem 1.18. If
rank(A) > 2 then corank(A) < 2 and the corollary is again true by theorem 1.18. O
However this result has been improved, based on the following theorem by Wright.

Theorem 1.20 Suppose F' = (F1, Fa, F3) is cubic homogeneous and satisfies the Ja-
cobian hypothesis. Then F' is linearly triangularizable, i.e., there exists a linear (ho-

mogeneous) automorphism A of K* such that AFA™" is triangular. In particular, F
1s an automorphism.

Proof: See [Wright 93]. a

If we now look ahead and use theorem 4.7 we can improve corollary 1.19 to:

Corollary 1.21 Let F be a polynomial map of the form in theorem 1.17. Then the
Jacobian Conjecture holds for this F' if n <6.




Proof: Let A = (¢;;). If rank(A) < 3 then the corollary is true by theorem 1.20
and theorem 4.7. If rank(A4) > 3 then corank(A) < 2 and the corollary is true by
theorem 1.18. d

Probably this is the best result so far, thus -as we have stated before- the Jacobian
Conjecture in general is still open.

1.3 Invertibility criteria

As we have seen in the previous section, one of the main interests concerns invertibility
criteria. Since Keller formulated his conjecture in 1939 a lot of research has taken place
on this subject. In lemma 1.6 and lemma 1.13 we have already given some criteria.
Since for our research we needed a good invertibility criterion we shall present some
more in this section.

Already in 1974 Gurjar and Abhyankar found the so-called Abhyankar’s inversion for-
mula.

Theorem 1.22 Let K be a field with characteristic zero. Let ' : K" — K" be a
polynomial map with F; = x; + H; where all terms in H; have a degree greater than
one. If F' is invertible then the inverse G = (G1,...,Gy) is given by

1
Gi= Y, ———0 .. o5 (a;HY - HE").
Pn!

1
prypaz0 P12 P

The problem with this theorem lies in the fact that you don’t know how far you have
to go with the summation in order to find (G;. Fortunately Gabber proved a theorem
that provided an upperbound for the degree of G depending on the degree of F'. If we
define deg(F') = maxdeg(F;) we get:

Theorem 1.23 If K is a field and F' : K™ — K" is an invertible polynomial map with
inverse G, then deg(G) < (deg(F)"~1).

Proof: See for instance [Rusek 89]. O

However even with this upperbound for the degrees, still Abhyankar’s inversion formula
is not very practical. It took until 1986 before there was some progress at this point.
With the use of Grobner bases for ideals in polynomial rings, Van den Essen gave some
nice answers to questions 1.1 and 1.2.

Here we can even use an arbitrary field K; characteristic zero is no longer needed.
Now let F' : K” — K" be a polynomial map and Fi,..., F, € K[X]. Introduce

n new variables y1,...,y, and regard the ideal I generated by the elements y; —
Fi(X),...,yn — Fn(X). Then I is an ideal in K[X,Y] = K[z1,...,@n, Y1, -, Yn]-
Now choose some admissible < such that any power product in y,...,y, is smaller
than any power product in x1,...,x,. Now we have:

Theorem 1.24 Let G be the reduced Grobner basis of I. Then F s invertible if and
only if G ={x1 — G1(Y),...,zn — Gn(Y)} for some G; € K[Y]. Furthermore, if F is
invertible then the inverse is given by G = (G1,...,Gy).

Proof: See [Essen 90]. ]




Though this algorithm is a great improvement from Abhyankar’s inversion formula, it
is still very slow due to the computation of the Grobner bases, which can be -even for
small examples- very slow.

In order to decrease the computation time one needed bigger steps in the reduction
process. By looking at the Grobner basis G one sees that [ contains an element of the
form z; — G1(Y). In case of two indeterminates 1 and z3, this means that there has
to be an element in I from which z5 is eliminated. The main tool in elimination theory
is the resultant.

Definition 1.25 Let A be a commutative ring without zero divisors, K its quotient
field and A[T] the polynomial ring in the indeterminate T' with coefficients in A. Fur-
thermore let

= fuT"+ FiT" N4+ fo
9 = g™+ g g

with f,, and g, # 0. Then the resultant of f and g is defined by

1. ifn,m>1:
fn .fO
. m
.fn .fO
R ,9) =
T(fg) Im --- 9o
n
Im --- Go

2. ifm=0: Rp(f,g) =g}
3. ifn=0: Re(f,9) = [T

With this resultant in 1988 Adjamagbo and Van den Essen proved that:

Theorem 1.26 Let K be an arbitrary field and F = (Fy, F2) : K2 — K? a polynomial
map. Then there is equivalence between:

1. F is invertible
2. There exists A\, Ay € K* and G1,G+s € K[y1, y»] such that

Re,(Fi—y1, Fa—y2) = Mz —Gh)
Rwl(fﬂl_ylan—yz) = )\z(l'z—Gz)

Furthermore, if F is invertible then G = (G1,G3) is the inverse of .

Proof: See [Adjamagbo et al. 88]. a

If we substitute 21 = 0 respectively z9 = 0 in the resultants of theorem 1.26 we
see easily that G is completely determined by the four so-called face polynomials
F1(0,29), F1(21,0), F2(0,22) and Fs(z1,0). But from this it follows that F' is com-
pletely determined by its face polynomials, if F' is invertible. A result also obtained by
McKay and Wang in [McKay et al. 86]. The idea is: if F' is invertible with inverse G,
then G is completely determined by the face polynomials of F. But F' is completely
determined by the face polynomials of G, which were determined by the face polyno-
mials of . In 1988 McKay and Wang gave a generalization of this result for higher
dimensions.




Theorem 1.27 Let ¢ = (F,..., Fy,) define a K-automorphism of K[X]. Then ¢ is
completely determined by its face polynomials Fy(z1, ..., x;_1,0,2;41,...,2p).

Proof: See [McKay et al. 88]. a

The only problem here is that for a period of three years it was not known how to
reconstruct an invertible polynomial map F : K — K” if n > 3. However this
problem was solved in 1991 by Kwiecinski and Van den Essen. The algorithm uses
Grobner bases and theorem 1.24. Furthermore it uses the next lemma.

Lemma 1.28 Let F : K™ — K" be an invertible polynomial map with inverse G =
(G1,...,Gy). Define for each j € {1,...,n} the ideal

Ii=(n—Fi(x; =0),...,yn — Fp(z; =0)).
Then for each j we have I; C K[z1,...,%4,...,2n,Y1,...,Yn]. Furthermore we have

LNK[y, . ya] = (Gy).

Proof: From theorem 1.24 it follows that
IJ = (:cl - C';l(Yv)7 cey i1 — Gj_l(Y), —GJ(Y),.TEJ+1 - Gj+1(Y), ey Ly — Gn(Y))
So it is obvious that (G;) C I; N K[Y]. Conversely let g(Y) € I;. Then
9(Y) =Y ap(X,Y)(@p = Gp(Y)) +b(X, Y)Gj(Y)
p#j
with ap,b € K[z1,...,Z5,...,2n,¥1,...,Yn]. But if g(Y) € K[Y] we must have that
for each p
ap(X,Y)(zp — Gp(Y)) € K[Y],
so a, = 0 for all p, since {z; — G;(Y)}} is a reduced Grébner basis. But then g(Y) =
b(X,Y)G;(Y). And thus I; N K[Y] C (G;), which completes the proof. a

Now we can reconstruct the invertible map F' from its face polynomials
{Fi(z; = 0)}3;

in a few steps.

1. Choose some order < with all power products with y1, ..., y, smaller than all
power products with z1,..., z,.

2. Compute with respect to this order the reduced Grobner basis B; of the ideal I;
for all j, where I; is defined as in lemma 1.28.

. Then B; N K[Y] is the reduced Grobner basis of I; N K[Y] = (Gy).
. So B N K[Y] = {G,} for some G; € K[Y] and G; = \;G; for some \; € K*.

. Since G;j(F(ej)) =1 (e; is the j** unit vector) we have G (F(e;)) = Aj.

[ I

. From this we can derive:

G
Gj==——21—.
G;(F(e;))
7. Let G = (Gi1,...,Gpn). Then we can compute F' -the inverse of G- by theo-
rem 1.24.

Some of the invertibility criteria described in this section are already implemented at
the University of Nijmegen in the so-called Jacobian package for Maple. So we were
able to verify very easily whether a polynomial map which we had found was invertible
or not.




1.4 Linear triangularization in dimension three

The idea for our systematic search in dimension four was handed to us by means of the
paper! “The Jacobian Conjecture: Linear Triangularization For Cubics in Dimension
Three’ by David Wright. In this paper a proof is given for the Jacobian Conjecture
in case of polynomial endomorphisms; which are cubic homogeneous, of three space.
Before we can introduce the main result of Wright’s paper, we have to give a few
definitions first:

Definition 1.29 An n-dimensional polynomial map F is called cubic homogeneous if
it has the form
Fi=x; — H;

where H; is homogeneous of degree three or H; = 0, fori=1,...,n.

And more generally:

Definition 1.30 An n-dimensional polynomial map F is called d-homogeneous if it
has the form

Fi=2— H;
where H; is homogeneous of degree d or H; = 0, fori=1,...,n. We can write
H,' = Z aia)(a
|o|=d
fori=1,...,n, where a is the ordered n-tuple (a,...,an) and |a| = a1 + -+ a,.

Furthermore:

Fo e
XY=z oxpm.

Definition 1.31 A polynomial map F' is said to satisfy the Jacobian hypothesis if the
Jacobian determinant is a non-zero constant.

Definition 1.32 A polynomial map F is called triangular if it has the form (4, ..., Fy,)
with F; — Njz; € K[zy,...,2i—1] and \; € K*, fori=1,...,n.

The main theorem in [Wright 93] is now:

Theorem 1.33 Suppose I' = (F1, Fa, F3) is cubic homogeneous and satisfies the Ja-
cobian hypothesis. Then F is linearly triangularizable, i.e., there exists a linear (ho-
mogeneous) automorphism A of K3 such that AFA™! is triangular. In particular, F
1s an automorphism.

Proof: This is the same theorem as theorem 1.20. For the proof see [Wright 93]. O

The main method Wright used, was to assume that the most general cubic homoge-
neous map in dimension three satisfied the Jacobian hypothesis. This implied that
the Jacobian matrix JH was nilpotent and from that observation he computed some
system of equations on the coefficients of the general map.

The important step in this method is how to construct the system of equations from
the property that JH is nilpotent. Before we can give this construction we take a look
at the following lemma, concerning general n X n nilpotent matrices.

ISee [Wright 93].




Lemma 1.34 The following two statements are equivalent:

1. The matriz U = (u;;) is an n X n nilpotent matriz.

2. Forr=1,...,n we have P.(U) = 0, where
um-l - um»r

IS <irSn g 50 L i,

r

Proof: See [Wright 87]. a

From this lemma it follows that F' satisfies the Jacobian hypothesis is equivalent to
P,(JH) = 0 for all » with 1 < » < n. Since H is homogeneous of degree d, we have
that JH is homogeneous of degree d — 1. From this observation it follows that the
polynomial P,(JH) is a homogeneous polynomial of degree r(d — 1). If we use the
notation from definition 1.30 to denote a homogeneous polynomial map, we can write

P(JH) = > wlx’
I8l=r(d-1)

In order to calculate the concrete coefficients w? Wright proves the following propo-
sition, which is in fact even more general than we need, since H doesn’t need to be
homogeneous.

Proposition 1.35 Let H = (H1,..., Hy,) be a polynomial map K™ — K™, with H; =
SoafX®. Then P,(JH) = Zf X8 where

j )]
wi=(-17 Y > @) [taz™)]
1<t1< <t .<n {a(‘)]...,a(’)}
a(1)+m+a(r):ﬁ+stl+M+€tr

where &, = (0,...,0,1,0,...,0) with the ‘1’ on the t** position, a¥) is an n-tuple of
non-negative integers (agj), .. .,ag)) and i,j index the rows and the columns (respec-
tively) of the matrices that appear behind the summation sign.

Proof: See [Wright 93]. a

In fact all possible 8-s together form a representation system for all monomials that
can appear in the cubic homogeneous part, e.g. 3 = (2,0,1) stands for the monomial
22201,

In his paper Wright proved theorem 1.33 by hand. In dimension four it is to complex
to do the calculations by hand. So we wrote some Maple procedures which computed
the system of equations. In order to verify the credibility of our procedures we also
checked the dimension three case.

1.4.1 The algorithm

The basic algorithm? is very simple. First we compute the most general F = X — H
that is cubic homogeneous and we put the coefficients of the monomials that appear
in H in a matrix M. The order of the monomials is important. The order used here

2See appendix A for the actual implementation.




is the pure lexicographically as defined in [Geddes et al. 92], in descending way so the
first column of M stands for 3 and the last column stands for z2. Using this matrix,
we begin with computing all wP-s, following the scheme of proposition 1.35, and add
them all to a system of equations. When we have drawn up the complete system, we
start with solving it. Finally we substitute the solutions -if any- in the original matrix
M | to see whether the solutions represent triangularizable maps.

The interesting part is the solving of the system. You have to do it in a clever way;
it won’t work if you use the standard Maple procedure solve on the complete system.
The first step was suggested by Wright: use an invertible linear map A such that
A~TH A is of a nice form. Here ‘a nice form’ means as much zeroes as possible in the
matrix J(A~1H A)(e1). The second step was implementing the way one normally solves
systems of equations: start with the easy equations and substitute their solutions in the
remaining part of the system. Repeat this as long as possible. Here ‘easy equations’ are
equations that have only one solution, which is very short, i.e. one doesn’t substitute a
complex term in a single variable since this would increase the complexity of the system
very fast. A consequence of solving only very easy equations at a time is that one can
be sure that one doesn’t miss a solution, which could happen if Maple tried to solve
the complete system at once.

With this strategy we checked the validity of theorem 1.33.

At first it turned out that some of the computations in the original paper -done by
hand- were wrong. For instance on [Wright 93, page 5] it is stated that

w;(:,4’2’0) = —ei1fa+eafi — 2e1fs + 2e3fi — 2hy.

But according to our calculations, this should have been:

3 2 0[]0 0 hy 3 2 0[10 0 ¢4
wi? = (=1)? [0 1 2[|5 0 ho|+[0 0 3||3 0 go|+
0 0 1{|0 1 kg 0 1 0|0 0 g3
31 11|10 dv e 2 2 1110 0 dy
0 2 1 % dy es|+ (1 0 2[|10 0 do
0 0 1|0 d3 €3 0 1 0]|1 0 d3
= (—1)3 (hl + 0 + 261d3 - 2d163 +0)

= 2d163 — 2€1d3 — hl

And at this point of his calculations, Wright doesn’t know anything about d; or e3. So
instead of claiming hy = 0, he should have claimed h; = 2d;e3. Fortunately, with some
other equations it turned out that both d; and e3 are equal to 0, so also h; = 0. So this
small error could be fixed. However, although the derivation may have been changed
a bit by this mistake, the final result of our computations was exactly the same as the
result claimed in [Wright 93]. So in particular we concluded that indeed theorem 1.33
was valid.

In fact the dimension three case was so easy that we could automate the process
completely. If we put the coefficients of the most general cubic homogeneous polynomial
map in a matrix M we get

a by e dyoer fi ;1 b1 01 1
M=1lay by co dy ex fo g2 ha 2 jo
as bz c3 ds es fs gs hs i3 J3

and if we substitute the matrix

0 0 a by o
0 0] for the matrix |as by co

10 as bz c3

ow- O




so that we get

0 0 di e1 fi g1 b1 @1 J1
0 0 d2 ex fo g2 ha i2 j2
1 0 ds es fs g3 hs i3 J3

M =

we can use the single command simplifyM(M, 3) to compute the one and only solution
in the case where JH?. X # 0. The case where JH?2. X = ( can be handled with the
same procedure call, but now with

0 01 di e fi ;1 hi &1 5
M= % 0 0 dy ex fo g2 ha ia Jo
0 0 0 d3 es fz3 g3 hs i3 js

This leads to a contradiction, as was shown also in [Wright 93].

1.5 Linear triangularization in dimension four

In [Wright 93] a counterexample of theorem 1.33 in dimension four is given:

T
T2
(1 — z129)z3 — TiT4
lzs+ (1 + z170)T4

F =

If we write this polynomial map in the form

1
T2
r3 — X1z — l‘%.l‘4
z4 + zizs + 1207y

we see that F' is of the desired cubic homogeneous form. The Jacobian matrix of H is
given by the matrix:

0 0 0 0

0 0 0 0

JH = ToT3 r1T3 4+ 2T0my T1To z2
—2x123 — a4 — 124 —x:f —r129

It is obvious that JH is of rank two. Furthermore we have:

0 0 0 0 0 0 0 O

2 0 0 0 0 2+ _ |0 0 0 O
JH™ = —riwiry —2dry  riroxs+ mixizy 0 0 and JH".X = 0 0 0 0
wizors + Tivirs —23r3—xieams 0 0 0 0 0 0

Of course since JH is nilpotent of rank two, JH® = 0 also. Furthermore it is easy
to verify that the determinant of the Jacobian matrix of F' is equal to (1 — z122)(1 +
T172) + v2z2 = 1, so this polynomial map F satisfies the Jacobian hypothesis. In
[Wright 93] it is shown that this map is not triangularizable. In fact in chapter 2 we
shall present a whole class containing this particular example of non-triangularizable

maps.

However if we use our procedure simplifyM on this map we find that all w? are equal
to 0. This leads to the conclusion that in the four dimensional case, the demand that
all w? are equal to 0 is not strong enough to force triangularizability.




But although this polynomial map may not be triangularizable, it is invertible.

inverse is given by:

Ty

]

z3 + rirs + T32120
L4 — X4T1T2 — l’%.’l)g

F 1=

So this example is not a counterexample of the Jacobian Conjecture.

Its







Chapter 2

Classification in dimension
four

2.1 Introduction

The aim of this chapter is to describe the general forms of four dimensional polynomial
maps that satisfy the Jacobian hypothesis. As we have seen in chapter 1 it suffices to
describe the so-called cubic homogeneous polynomial maps.

Definition 2.1 The most general cubic homogeneous polynomial map in dimension

four (F : K* — K*) is given by:

T Hy

_ _ _ | T2 _ Hy
F=X-H= 5 Hs
Ia H4

Where for each v with 1 < w <4 H, is of the form

3 2 2 2
Hu - (lu.’El-|—bu.’L‘liL‘2+Cu.’El.I?3+duI1I4+€u£L‘1I2CL‘3+fu.’E1CL‘2£L‘4 + gur1T3T4 +
2 . - 2 3 2 2 2
hyzizs + tyz12324 + Juzr2y + kyry + L2323 + my 524 + nyzaz3 +

2 3 2 2 3
OuL2T3T4 + PulaTy + quisy + Tul3Ta + SuT32 + Ly Ty,

and K is an arbitrary field of characteristic zero.

We use the pure lexicographically order of the monomials as described in for instance
[Geddes et al. 92]. This order of the monomialsis important. We use it explicitly when
we translate the map F' to the matrix of the coefficients of F'. We need this matrix to
compute the system of equations that must hold if /' satisfies the Jacobian hypothesis,
as is described in [Wright 93].

Furthermore we have that ‘F satisfies the Jacobian hypothesis’ is equivalent to ‘the
Jacobian matrix J H of the homogeneous part H of F' is nilpotent’. This holds because
of the (cubic) homogeneity of F'.

So the matrix JH plays a crucial role in this chapter. Since F' is a four dimensional
polynomial map, JH is a 4 x 4 matrix. And assuming that F satisfies the Jacobian
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hypothesis, we know that this JH is nilpotent. So it is of rank zero, one, two or three.
Of course rank zero means that

JHX =0
for all X. So with Euler’s formula we have that
3H=0

which means that H = 0 and F is the identity. And therefore rank zero is not inter-
esting. Also rank one is not interesting (anymore) to examine. From [Bass et al. 82,
Theorem 6.2(c)] it is known that F is triangularizable in any dimension and therefore
in particular F' is invertible.

So the only two interesting cases are JH has rank two and JH has rank three.

2.2 JH has rank two

Since JH is a nilpotent matrix of rank two, we must have that
JH? = 0.

Furthermore from the following proposition it follows that JH® = 0 implies that JH
is of rank zero, one or two, and in particular not of rank three.

Proposition 2.2 A nilpotent 4 x 4 matriz N with N> = 0 is not of rank three.

Proof: A nilpotent 4 x 4 matrix N can be of rank zero, one, two or three. With an
invertible linear transformation A we can reduce this N to the Jordan form. Since
there is only one 4 x 4 Jordan form of rank three, say

<~

Il
coc oo
coc o~
co—o
o~ oo

then we must have that A='NA = J, if N is of rank three. But this gives the following
contradiction:

0=(A"'NAP® = J? £0.
So N has rank zero, one or two. a

By using definition 2.1 we computed the matrices JH, JH? and JH3. By collecting
the coefficients of the monomials in the sixteen entries of JH® we got a system of
equations, since all coefficients of the monomials had to be equal to zero.

Furthermore we divided this case into two subcases: JH?. X =0 and JH2 X # 0.

2.21 JH*.X =0

In this case we added the equations we obtained by computing JH2.X and collecting
the coefficients of the monomials in the four resulting polynomials to the system of
equations we obtained from JH3 = (.




Before we started to solve this system, we chose some matrices to reduce the complexity
of the system. This was done in such a way that we didn’t loose any generality.

To find these matrices we can do the following. First we choose a vector z € K* with
JH(z).x # 0. Since H # 0 such an z exists. Now define y = JH(z).2. We can extend
these two independent vectors to a basis of K* by choosing some z and w. Define
e; = (0,...,0,1,0,...,0) as the standard basis. Now using a linear invertible map A
with A.e; = 2, A.es =y, A.es = z and A.eq = w and replacing H by A~1H A we got
the following equations:

JH(el).el = é9
JH(e1).ea = JH(el)z.elzo

Furthermore we have
3[11 bl C1 dl
_ 3a2 bg Co d2
JH(el) o 3(13 b3 C3 d3
3&1 b4 C4 d4

1

and solving these equations gives us: ay = 3

to zero.

and ay,as, aq, b1, by, b3 and by are all equal

If we look at the Jordan form of JH we see that there are two possibilities for this
matrix:

o oo

l\/vl = and NQ =

(=il
oo = O
o O OO
o O oo
o O O
[e>RN e en B en]
o = OO

0

In both situations we see that there is a two dimensional kernel. So we can assume all
¢; or all d; equal to zero. Substituting this in JH (e1) we get the matrix:

0 0 1 O
1 0 Co 0
0 0 ez O
0 0 ¢cs O

From the trace of this matrix and the notion that it is nilpotent it follows that ¢z = 0.
Furthermore by replacing z by z — cax, we get the matrix:

0 0 ¢ O
10 0 0
00 0 0
0 0 ¢y O

If we rename the current basis into (fi1, fa, f3, fa) we see that we can transform this to
(f1, fas i‘fg, fa), assuming ¢4 # 0. This gives the matrix:

C

co o
cooco
N =
cooo

And if we assume that ¢4 = 0 we can transform to the basis (fi1, fo, éfg,fll). Since
the matrix must be of rank two, it is clear that ¢; # 0 in this case. This results in the
following matrix:

SO = O
o O O O
SO O =
o O OO




These two matrices imply the following two substitution matrices

]
[ah

and

O owl= O
o O OO
_o O

OO OO
o owi= o
o O O O
OO O =
o O OO

to substitute in the matrix
ay bl C1 dl
as bg Co dg

az bz ez ds
aq b4 Cq d4

After we made these substitutions in our system of equations we were able to find all
solutions of the system. The substitutions of the first matrix resulted in two solutions.
The distinction between these two was the choice of ¢; = 0 or ¢; # 0. The solutions
were respectively:

T
1.3 2 3
1 Ty — 377 — haz1z3 — @273
. s
2 2 3
Ty — x7T3 — haz125 — quzy

2 1 2 2 2. 2 3
T1 — C1T{T3 + FTATIT3 — CT1T3T4 + IcIT2T3 — C1¢aTs

2 2
— T4C1T5L4 + 2ci’m3mg

1 3 16q4c2—7'2 2 1
g — E.’L'l + 3C11‘11’2.’L‘3 - W"Ele - §T4I‘1I3l‘4
1
2 2 3 2 2 T 3
9 +cizizy + 274T223 — 3(211321331‘4— %1‘3

4qaci—r] 2 1 2_ 233
+ —i9e, TT3Ta + 3TaC1T3TL — 5C1Ty

T3
2 T 2 2 3
T4 — T1T3 + L T1TE — CLT123T4 + 9010203 — 4Ty

Y
— r4x§z4 + QCII‘3ZZ

The second substitution matrix lead to a contradiction so it didn’t give any new solu-
tions.

If we look at the first solution, we note that this map trivially satisfies JH2. X = 0
since we already have JH? = (. For the second solution this doesn’t hold. That
this situation occurs is not a big surprise. If we look at the Jordan forms of 4 x 4
nilpotent matrices of rank two, we have seen already (on page 17) that there are two
non-equivalent matrices Ny and Ny. The difference between these two matrices is that
N2 = 0 whereas NZ # 0.

Example 2.3 As we have mentioned already in section 1.5, the example from [Wright 93],
where

T1

T2

L3 — 1Lz — .’L‘%I4

T4+ ries + T12024

is a special case of this class. If we use

1 2 1
T1 — 3Ta 3%1+ 373
3 _ —3Z4
A= 9 then A~ = 3
1+ 5T4 T

—3132 —r1 + 3




and A~'F A is a special case of

2 1 2 2 2 2 3
ry —cirirs + 3T4T1T3 — C1T1T3T4 + 901x2x3 — 14423

r4C1 a:?,,a:4 + 20:131'31'3

16q4cf—rf 1

1.3 2
Ty — 3T] + 3c1T1T2T3 — 1Ty — STaTIT3T4

48¢?
2 2,3 2 _ 9.2, _ raqs ,3
+ejrixy + ratary JeiTazsrs 190,03
4qaci—ri 2 1 2 233
T~ 1o, T3T4 + 5TaC1T3Ty — 501T;

T3

2 r 2 2 3
Ty —riT3+ ?41$1$3 — Cc1T123%4 + Y123 — 4Ty

. .
— rar3Ty + 2c 2322

Just substitute:

If we take another look at the second solution, we see that H; equals ¢c; Hy. So we can
reduce this map even further by looking at (Fy — ¢1 F4, Fa, Fs, Fiy). This gives the map

L1 — C1T4
2 %x:f +3e121 2025 — %xﬂfg - %7”43:1:133:1:4
+ C%mlfl'zz} + %7‘4.’!)21}% — 36%1‘2,’[;31;4 _ 24221:? -ng
2 2
+ %%mgmzl + %7‘401131'2 — %c‘;’;pz
T3
24 — 2123+ o125 — Q21T3Ta + 9C122T5 — qaty

— raxizy + 2 ean?
By making the transformation of coordinates by substituting x1 by 1 + ¢124 and
collecting the coefficients of the monomials we get the following polynomial map:

Al

1.3 2 16qsci—r3 2 1
Ty — 5T] — C1TI{T4 + 3C1T1T2T3 — lexs — 3T4T1T3T4

3 2 raqa. 3 _ T3 2
+ 3TaT2T3 — 15, T3~ Tg., T3T4

T3

3, .2

2 r 2 2 3
T4 — TiT3 + ﬁmle — 3c1z123Ta + Ye1TaTy — qaT3 — FTAT3T4

We should have found this polynomial map already if we had used the substitution
matrix

0 0 0 O 0 0 ¢ O
Lo o0 . L 000
3 3

00 0 0 instead of 0 0 0 0
0 0 1 0O 0 0 1 O

to begin with.

2.2.2 JH*X#0

In this case we had no other equations we could add to the system coming from JH?3 =
0. So we only had to choose a good matrix to start with.

To find this matrix we first choose a vector = € K* with JH(z)2.z # 0. Since we
assumed JH?.X # 0, such an = must clearly exist. Now define y = JH(z).z and
z = JH(z)%.z. We extend these three independent vectors with the vector w. Again




there exists a linear invertible map A that maps e, es,es and e4 to z,y,z and w
respectively. Replacement of H by A~1H A leads to the following equations:

JH(el).el = €32
JH(el).e2 = JH(61)2.61 = €3
JH(e1).es5 = JH(er) ea=JH(e1)?e1 =0

Solving these equations result in a matrix:

0 0 0 dy
1 0 0 d
0 1 0 ds
0 0 0 dy

Again since the trace of this matrix must be equal to zero, d4s = 0. If we rename the
basis to (f1, f2, f3, fa) and apply this matrix several times on the fourth basis vector
fa we get:

JH(er).fa = difi +daf2+dsfs
JH(e1)”.fa = difs+dafs
JH(e ) fo = difs.

But since JH? = 0 we must have d; = 0. Furthermore if we transform to the basis
(f1, f2, f3, fa — da2fi — d3f3) we get the matrix:

OO = O
S = OO
oo OO
o O O O

This matrix leads to the substitution matrix

0 0 0 0 a; by e dy
% 0 0 0 for as bg Co dg
0 1 0 0 as b3 Cc3 d3
0 0 0 0 as by ca dy

After we made this substitution in our system of equations we were able to solve the
remaining system. We found four solutions. We had to make some assumptions to find
these solutions.

1. After assuming that es # 0 we found the solution:
T1
1,3
Ty — 5.’[}1
T3 — xlxy — esr122 — kaxs
Ty — esx125 — kyx

2. With the assumption e; = 0 and i3 # 0 we found:

T
1 . . 3

Ty — §m? + 13191y — ]gzlzi =+ 53:1:*2:13?1 =+ Z%.’E;«;l‘z — tg.’lig

2
2 2s . . 2 s 2

T3 — IiTy — i—:mlmzw4 — 13L1L3T4 — J3T1Ty — 1.—33321'4

3
— 33;1031:?1 — t3$2
T4

3. And with e4 = 0,i3 = 0 and k4 # 0:
T1
1.3
o — §x1
T3 — rlx9 — e3r122 — kaxs
Ty — k4$g




4. And finally with e4 = 0,43 = 0 and k4 = 0:
T
1.3 . 2 3
Ty — 3x7 — Jar1xy — Loy
2 2 - 2 k 3 2
T3 — LT3 — €3L1T9 — §3T1T2T4 — J3T1T4 — R3Tg — M3TT4
2 3
— p3Taxy — l3xy
T4

Note that in the first and the third solution the assumptions are not really important.
They were important to find these solutions, since we needed them to divide through ey
respectively k4. But the final solutions found are still solutions if we substitute e, = 0
and k4 = 0 in respectively the first and the third solution. The first substitution yields
exactly the third solution. And the second substitution yields a special case of the
fourth solution. And since we note further that the results of these substitutions are
still members of the class with rank(JH) = 2 and JH?.X # 0 we can reduce these four
solutions by omitting the third one to three general solutions where the only restriction
is that iz # 0. All other appearing variables are completely free.

2.3 JH has rank three

In this case we have that JH is a nilpotent matrix of rank three. This implies that
JH* = 0. So at first we tried to compute the system of equations that follows from this
observation like we did in the rank two case. However on our computer it wasn’t possible
to compute JH?* completely in one run and collect the coefficients of the monomials
afterwards. We were only able to compute the entries of one row of JH?* at a time
and extract the equations coming from this row before we could compute the entries of
the other rows. Afterwards we were able to union all equations, but we couldn’t solve
the remaining system of equations. It was so large that the system operator killed the
job since it required about 160 megabytes and therefore it made work for other users
impossible on our 128 megabytes computer. So we had to take a different approach.

Instead of computing J H* we used the method described in [Wright 93]. In this paper
a method is given that can be used to construct a system of equations that must hold
if the given polynomial map satisfies the Jacobian hypothesis. After we computed this
system of equations we made a similar division in subcases as in the rank two case:
JH3 X =0and JH?. X £ 0.

2.3.1 JH).X =0

In this case we added the extra equations coming from JH?.X = 0 to the original
system we computed with Wright’s method. Before we started to solve the system we
substituted as initial values the matrix

0 0 0 1 ai b1 (] dl
3 00 0 ay by e dy
0 1 0 0 as b3 C3 d3
0 0 0 0 aa b4 C4 d4

We can easily see that this matrix can be used without any loss of generality: let
z € K* be a vector such that JH(z).x # 0 and rank(JH(z)) = 3. So Ker(JH(z)3)
has dimension three. Also Im(JH (z)) has dimension three. And since Im(JH (z)) C
Ker(J H(z)3) we even have equality between those spaces. Naturally z € Ker(J H (z)3),
so also ¢ € Im(JH (z)). This means that there exists some w € K* with £ = JH (z).w.
If we define y = JH(z)?.w and z = JH(z)3.w we get four independent vectors z,y, z




and w. There exists a linear invertible map A which maps €1, €5, e3 and e4 to , y, z and
w respectively. By replacing H by A~'H A we get the following system of equations

JH(er).ea = e

JH(ei).en = JH(61)2 €4 = €9
JH(ei).ea = JH(61)3 €4 = €3
JH(e1).es = JH(e1)*ea=0

and solving these equations gives the substitution given above.

After making this substitution in the system it reduced to a system that had no solu-
tions. In fact this was not very surprising to us. In the similar case in three dimensions,
JH3 =0 and JH2 X = 0, there were no solutions either. Though we cannot prove it
yet, we think that there is something like:

Conjecture 2.4 Let F : K” — K" be a cubic homogeneous polynomial map that
satisfies the Jacobian hypothesis. Then the case withrank(JH) = n—1 and JH"~1.X =
0 for all X € K™ cannot occur.

It holds at least for n < 4.

2.3.2 JH*X#0

In this case we had no extra equations. The only thing that could help us to solve the
system was the choice of the initial values. We substituted the matrix

S oOwR O
S = OO
-0 O O
o O O O

We found this substitution matrix in the following way. We can choose a vector z € K*
such that JH (z)3.2 # 0. Definey = JH(z).z, 2 = JH(z)?.z and w = JH (z)3.z. Since
these four vectors are independent, there exists a linear invertible map A with A.e; = 2,
Ay =1y, Aes =z and A.eq = w. By substituting 4 by A~'H A we get the following
equations:

JH(e1).e1 = ez

JH(e1).ea = JH(61)2.61 —e3
JH(ey).es = JH(61)3 e1 = ey
JH(e1)ea = JH(er)e1 =0.

Solving these equations leads to the substitution we mentioned above. This substitution
lead to two solutions, depending on the choice of g4 = 0 or g4 # 0. These were the
solutions we found respectively:

Z1
1.3
o — le
1. T3 — x%xz — egmlmg — kga:g

2 2 2 3 2
Ty — XT3 — €4x185 — far12223 — hawi2y — kaxs — lax5es

2 3
— N4T2%3 — (4T3




T

1.3
ro — gl‘l
2 2 . } 2 2,.2
9 T3 — T{Ty — e3T1T5 + gari1xTox3 — kaxy + mursrs 4+ girir,
: 2 2 2m 3
T4 — LT3 — €4T1T5 — g44 L1X2X3 — Jal1X2T4 — k4332

2
m

— g—;’z%zg, — m4:c§:::4
4

If we look at the first of these solutions we see that this polynomial map is triangular.
Again, this is quite similar to what happened in dimension three. More precisely, if
we omit Fy and restrict ourselves to the indeterminates z1,z9 and z3, we get indeed
exactly the same polynomial map as in dimension three.

2.4 The classification theorem

In the previous sections we described the cases where rank(JH) = 2 or rank(JH) = 3.
Before we shall combine these cases, we first give the already known results in case
rank(JH) = 1.

Theorem 2.5 Let F'= X — H : K" — K" be a polynomial map with rank(JH) = 1.
Then there exists T' € GL,(K) with

,jv—lfvj' = X — L(-Tl, .- -aIT)

where r < n and Li(z1,...,2,) =0 for all i <.

Proof: See [Bass et al. 82]. a

If we use this in our situation we get:

Corollary 2.6 Let F = X — H : K* — K* be a cubic homogeneous polynomial map
with rank(JH) = 1. Then there exists I' € GL4(K) with

TlFT =\ %3
3 2 2 2
Ty — agry — byxirs — cqriz3 — eqrixy — faTiTars

— h4x1x§ — k4.13;’ — l4.’[3§.’l}3 — n4m2x§ — quzg

Proof: We have to consider three cases: »r=1,r =2 and r = 3.

e 7 =1. With theorem 2.5 we know that there exists A € GL4(K) with

T
_ — Ly(z1)
A1 A = £ 2(T1
1‘3—L3(I1)

g4 — L4(CE1)

where L;(z1) is cubic homogeneous. So in fact for all i we have L;(z1) = \;z3.
But now we know that there exists B € GL4(K) with

T
B 'A"'FAB=| **

T3
T4 — )\4.’13:%

and taking 7' = AB completes the proof of this case.




e 7 = 2. In this case we know that there exists A € GL4(K) with

T
£
r3 — L3($1,$2)
Tg — L4(x1,x2)

AT'FA =

where Lg(z1,z2) and L4(z1, z2) are cubic homogeneous. But since rank(JH) =1
we have det(J(Ls, L4)) = 0. And from this it follows that there exists some
polynomial map of degree d, say h(z,y) with h(Ls, Ls) = 0. But since both
Ls and L4 are homogeneous, we have that hq(Ls, L4) = 0 where hy(z,y) is the
homogeneous part of degree d of h. But we know how we can factor homogeneous
maps of a certain degree in general. So here we can factor hq(z,y) into

hs(z,y) = Mz + p1y)Aez + pay) - - - (Aaz + pay).
And from h4(Ls, Ls) = 0 we get that for at least one 7
(MiLs + piLls) = 0.
So also in this case there exists a B € GL4(K) with
z1
T2

T3
T4 — L4(="31, 2132)

B 'A"'FAB =

and taking 7' = AB completes the proof of the second case.

r = 3. From theorem 2.5 it follows immediately that there exists 7' € GL4(K)
with

T'FT=| 23
3 2 2 2
Ty — as®] — baxize — cais — €415 — faxioms

2 3 2 2 3
— hyzizsy — ka5 — lyzi23 — nazors — qary

And this completes the proof of the corollary. a

Now we have enough information to present the theorem that gives a complete clas-
sification of all cubic homogeneous maps in dimension four that satisfy the Jacobian
hypothesis.

Theorem 2.7 Let F = X — H be a cubic homogeneous polynomial map in dimension

four,

such that det(JF) = 1. Then there erists some T € GL4(K) with T=L1FT is of

one of the following forms:

e

I
T3
T3

2
T4 — a433113 — b4.’l§%a§2 — cariTy — 64331113% — faximomws

2 5.3 2 2 3
— hyziz3 — kazy — lyzse3 — nyzoxs — quzy
T1
Ty — %x? — hlexg — qz:cg
T3

2 2 3
4 — 2iT3 — hyzi25 — quz3




T

1.3 2 16q4ci—r3 2 1
Ty — 3T] —c1xjre + 3c1r1romy — W;ﬂlm:& — 5T4T1T3T4
3. 3 2 r4qs 3 3 .2
+ 3ral2®3 — 75,773 — g, TaT4
T3
2 r 2 2 3_3 2
T4 — x]23 + ﬁxlm;s —3dci1z1T3x4 + 9c1 2225 — qay — $T4T3T4
L1
1.3
4 o — 5.’!}1 ,
T3 — 22re — e3r122 — kaxl
2 k 3
T4 — €4T1T5 — K49
L1
1,3, » . 2 2, 52 2 3
Ty — z&] +3T1T2T4 — JaZ12y + S3L2y + 13;63.%42 —laxy
2 253 . . 2 83 2
5. r3 — T2 — El‘l$g$4 — 232123T4 — J3%1T4 — EQ’L‘Z{E‘L
— 83:133::3‘21 — tg,:ni
T4
Ty
1.3 . 2 3
r2 56;1 R 2_ farq 2 3 2
6. L3 — 1Tz — €3L1T9 — g3T1L2L4 — J3L1Ly — ksl‘g — M3T5T4
2 3
— p3xaxy — t3Ty
T4
L1
1.3
ro — 51'1
7. T3 — x%xz — 83£1£B§ — kgx‘;’
2 2 h 2 k 3 l 2
T4 — LT3 — €4T1Ly — f41‘11‘2$3 — N4T1T3 — R4Ly — 14T 5T3
2 3
— N4TyT3 — 4T3
L1
o — %.’L‘?
T3 — 2229 — e3x x2—|— r1rors — k x3+m 22 =+ 2020
8 3 1q2 3122g24123 3Ty 423g424
- Z m
Ty — LT3 — €4T1Ty — g44 L1T2L3 — Jal1X2Tyq — k4£L‘2
2
my 2 2
g—;x2x3 — M4T5T4
4
Proof: See the results in the previous sections and corollary 2.6. a

As a direct consequence of this theorem we have:

Corollary 2.8 Let F = X—H be a cubic homogeneous polynomial map from K* — K*
such that det(JF) =1 then (H1, H», Hs, Hs) are linear dependent over K.

Proof: We have seen that for such an F' there always exists an invertible 7' € G L4(K)
such that

T 0
H!
T PT = | T2 - | 2
3 H3
T4 HZL
so in particular (Hq, Hy, Hs, H4) are linear dependent over K. a

Furthermore we have:

Corollary 2.9 Let F = X—H be a cubic homogeneous polynomial map from K* — K*
such that det(JF) =1 then F is invertible.




Proof: It was already known that such an F' is invertible if the rank of JH equals
zero or one. Using an implementation of theorem 1.24 one can easily check that all
forms described in theorem 2.7 are invertible too. So now we know that each cubic
homogeneous polynomial map F : K* — K* with det(JF) = 1 is invertible. a




Chapter 3

Structurization in dimension
two

3.1 Introduction

This chapter will give a description of a general form in two dimensions. If we take
a look at the forms presented in theorem 2.7 we can see that all forms are essentially
polynomial maps from A2 to A%, where A is a polynomial ring in two variables. For
this reason we studied some properties of this kind of maps.

3.2 The Structure theorem

Not only could we transform each representative from theorem 2.7 to a two dimensional
map, but we also found that they all could be written in a particular form. This was
no coincidence since we were able to prove the following theorem:

Theorem 3.1 Let A be a unique factorization domain and Hi, Hy € Az, xs] such
that J(H1, H2)? = 0. Then there exist f(T) € A[T] with f(0) = 0 and pi1, p2,c1,¢2 € A

with
Hy — —paf(prer + poza) + 1
Hy pif(pizs + paza)+co )

Before we give the proof of this theorem we first present two lemma’s.

Lemma 3.2 [f A = K is a field then theorem 3.1 is true.

Proof: See [Bass et al. 82]. O

Lemma 3.3 Let A be a unique factorization domain and K its quotient field. Let
9(7) € K[TT1\ {0}. Furthermore let pu1, 2 € K such that

911 + poms) € Alz1, o).
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Then there exist §(T') € A[T] and ji1, g2 € A such that

gz + paz2) = §(f1z1 + fizzs).

Proof: Choose a,d € A (d # 0) with ged(a, d) = 1 and iy, fis € A with ged (i1, fi2) = 1
(and in particular ged(d, 121 + fazs) = 1) such that

a(fizy + fiaza)
—g

H1T1 + plas =

This can be done since A is a unique factorization domain implies that also A[z1, z4]
is a unique factorization domain. Now write

J
9(7) = Z a; 1"
1=0
with a; € K and some j € N. Given the assumptions it follows that for every homoge-
neous component it holds that:

ai(p1z1 + paxa)’ € Alzy, 2]

If we write a; = % with p; € A and ¢; € A\ {0} and ged(p;, ¢;) = 1 we see that

pi i (121 7 o))

% 4 € A[.”L‘l,.’l?;g].

Now since ged(a,d) = 1 and ged(d, jijz1 + fiaxs) = 1 we have that d*|p; so p; = pid’
with p; € A. This results in the observation that

. p . - - .
a;(p1zy + poa)’ = jal (e + fiaza)’.
1

Now from ged(pi, ;) = 1 it follows that ¢;|a’, so a® = a;q; with a; € A. So now we
have

a;(prz + ,Uzﬂ?z)i = pia; (flizy + fiazs)

and we can define ]
J
a1y = pioiT
i=0
which completes the proof of the lemma. a

Now we can continue with the proof of theorem 3.1.

Proof: Let K be the quotient field of A. Then we have Hy, Hy € KJ[z1,22] and
according to lemma 3.2 there exist f(7') € K[T] with f(0) = 0 and p1, p2,¢1,¢0 € K

with
Hq _ —pa f(prz1 + paws) + 1
Hy Hlf(HléEl +u2$2)+62 '

Since Hy, Hy € Alz1, 29] we have that H1(0,0) € A and H5(0,0) € A. Using f(0) =0

we see that
PERS Hy(0,0) \ _ (=p2f(pa0+p20) +er) _ (e .
H5(0,0) H1f(p10 + p20) + 2 c2
So in particular we have ¢1,¢c2 € A. Combining this with the given fact that Hy, Hy €

Alzq,29] we see that also paf(p121 + pozs) € Alzr,zo] and pif(pizr + pazs) €
Alz1, £2]. Multiplying by respectively zo and #; and adding the results gives us:

(121 + poxa) f(p121 + powa) € Alzy, 22).




If we write "
F(T) =) b
i=1
with b; € K and m € N we can define

g(T) = TH(T) =Y b1+ € K[T).
i=1
Since we have already seen that there exist some pq, s € K such that
g(piz1 + pore) = (piz1 + paza) f(pazr + pars) € Alz, 2]
we can now use lemma 3.3 and conclude that there exist
§(T) =Y BT € AlT]
i=1

and i1, fis € A such that

g(pizy + paze) = glfinzs + fizxs).
Now define f(T) = S_7, ;7" and we have §(T) = Tf(T). So now we have

(frmy + foms) f(famy + fias) = G(f1z1 + fiazo)
g(pizr + paz)
(121 + poza) f(p1e1 + pozs).

From this it follows that
iz f(fe +fiazs) + i o f (f 1+ fiaxa) = iz f(pn e+ poxs) + pota f (121 + o).
Note now that all monomials appearing in f(p121 + paz2) and in f(;ilazl + flams) are
{:ci.rj i+ j=k k= 1,...,m},
But if we list the monomials appearing in pj 21 f(p121 + pozs) we find the set
M, = {.1‘%"'11‘]2 it j=k k= 1,...,m}

and for pozsf(p1z1 + poxs) we find

My = {xﬁx];l i+ j=k k= 1,dots,m}.
The same holds for the expressions with f, /1 and giz. Note that

Dy =M \My={zi*" vi=1,...,m} and Do = My \ My = {zt! :i=1,...,m}.

Now if we take a look at the coefficients of a monomial .z"ifl € D1, we see that these
coefficients are completely determined by b; and ;. Since :L"l'"l € Dy we have that

b (e + poxs)t = firzbi (e + fiazs)’
But since this holds for every i € {1,..., m} we can take the sum and find
piz1 f(pizr + pozs) = /fﬂlf(/fﬂl + fiama).
In an analogous way we can see that
pozaf(p1z1 + paws) = flaza f(fi1z1 + fizxs).
And from this we can easily deduce that
i f(fiey + fiawe) = pf(pizy + pazo)
o f (e + fiazs) =  paf(pizs + o).

So finally we have proven the existence of the desired f(7") € A[T] and the pu1, ps, 1
and ¢y € A. O




3.3 Concrete transformations

The next example will show in detail that one of the eight representatives we found
in the previous chapter for theorem 2.7 can be written in the way as described in
theorem 3.1. For instance let us take the fifth representative.

Example 3.4 Let F' be the polynomial map
T
T — %z? + i3 1oy — o 1] + S3Tax] + i3T3TT — toxh
r3 — m%mg — %331332.’[}4 — 132123L4 — j3x1xi — %xzmi
— 83.’[}3.’!}2 — tgl‘i
T4
Since Hy and Hy4 equal zero we can see this four dimensional map as a two dimensional

in the unknowns: x4 and x3. By substituting xo = 0 and 3 = 0 we find the constant
part of the homogeneous part of this map, i.e. the part that is not dependent of xs or

xg. This gives
c1y %m‘;’ + jz(L‘l.’L‘i + tz:cg
Co - j3131 IZ -+ f';xz ’

The remaining part of H is:

— 131 T9%s — S3T2TT — 132377

(96%962 + 2;—339619621?4 + i3z1T3T4 + %wzwi + 839335'3‘21)
When we factor this we get the following polynomial maps:

—x4 (s3T224 + i323T4 + i3T1T2)
and .
ij—% (83$2$4 + i323T4 + isfmxz) .

If we move the factor iz in the first map to the outside of the parentheses and do in the
second map just the opposite with % and reorder the terms a bit we get:

. 1321 + 534 .
—13T4 e Ty + 13243
3

respectively

1321 + S3T4 [ 1321 + S3T4
i3 13
We see that with p1 = i”‘;"%, po = izzq and f(T) = T we have written the
homogeneous part in the desired way.

] =+ 23’1‘4’1‘3> .

The following three tables give the values of ¢1, ¢a, 11, 2 and f(T') of all eight repre-
sentatives of theorem 2.7.!

c1 € K
0
lm? + hgxlmg + qug

3 2
1.3 16qaci—r3 o | raq
30T Tager Tty o

x%xg + %x‘;’ + eg:mxg + %63(13‘11132 + %e;«;xz + kgazg’ + kgﬂ:%:ﬂ? + %k;gfbgfr? + %k3$%
103 + jowy 2 + tyad
373 + jomrw} + toxd
wlrg + %a}? + ezrixl + %egm‘i'mg + %esxz + k3xd + ksxied + %kgl‘zl‘? + %ky,z'(l’
iy + %T? +eszizs + %63.1:‘11.1:2 + %63.’[?’{ + kzz3 + karled + %kg;.’lfz.’lf? + %kgl’?

O U W N

oo

ISince the maps with numbers four,seven and eight do not have two H;-s equal to zero, we start in
these cases by changing coordinates by substituting o = 5 + %.7"’]3




Czef\"

1 a4wi’ + b4.’[7%.’[72 + 64.131.11% + k4x§’
2 .’L‘%CL‘g + h4:L‘1.’E§ + (I4£Eg
ot Begty, AT G
4 | egrizy + 3e4T7Ty + gear| + kams + kaziry + ghazar] + 5okary
5 jgél'lél"zl + t3(L‘2
6 j3."l,‘1.1}£21 + f;-;T?r
7| eazi2i + ge4$‘11332 + 164.’.13’{ + kaxd + kyxled + lk4m2$? + 21—7134:)351’
8 | eary7l + 5641“1}1‘2 + §64IZ + kaxd + kyzlzd + §k4x2zf + 21—7/:41'51)
p €K pz2 € K F(T) € K[T]
1 0 1 (6418% + f4:1?1x2 + l4x§)T
+ (hazy + naza)T?
+qaT3
2 0 0 T
3 —361.’1)3 C1T1 + %7’41}3 —iT
4 0 0 T
5 T + ?—21‘4 i3.’lf4 T
6 1 0 (23 + gsz1z4 + p3z)T
+ (esz1 + m3az4)T2
+ kT3
7 1 0 ((L‘%+f4331$2+ %f4$%+$%l4
=+ %1416216:;’ =+ %Z4CIZ?)T
+ (haz1 + nazy + %N4I?)T2
. +q4T3
8 m4x1+371;;4$:+3941‘1 9374(312 —|—:L‘"I’) T







Chapter 4

Druzkowski forms

4.1 Introduction

In this chapter we consider a special case of the cubic homogeneous polynomials in
dimension four.

Definition 4.1 A polynomial map F' : K™ — K" is on Druzkowski form if it has the
form:

Ty H,

9 Hz
F= I

Ty H,

where each
3
H; = (c1i@1 + oo+ -+ + Cniy)

and c;; € K fori,je{l1,...,n}.

Naturally if F' is on Druzkowski form it is also cubic homogeneous.

So of course the question arises: why look at a special case when you have already
a complete description of the more general case. Well, the reason we examined the
Druzkowski forms in dimension four was that we wanted to compare our results with
the results of Meisters’ power similarity research and check his conjecture and we
wanted to look at Druzkowski forms in general.

4.2 A classification of four dimensional Druzkowski
forms

We started our examination with the general Druzkowski form:

z1 — (@121 + bizs + 123 + diz4)?

F= zy — (az®y + bas + coxs + d2$4)3

= 3
23 — (a3t + bawe + cazs + dszy)

T4 — (asz1 + baxo + cazs + dazs)?
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In order to compute the equations described in [Wright 93] we needed the expanded
form of F' to determine the coefficient of each monomial. With these coefficients all put
together in a 4x20 matrix, we computed the mentioned equations. Since there were only
sixteen variables; we tried to solve this Druzkowski system without any preconditioning.
However this didn’t work out. The system was to complicated to solve. So we used the
result of corollary 2.8. This corollary indicated that we could take one H; equal to zero
without loss of generality. For reasons which will become clear in section 4.3 we choose
Hy4 equal to zero, i.e. we substitute as = b4y = ¢4 = d4 = 0 in our original system. After
this simplification we were able to solve the system completely. In order to reduce the
number of solutions we used arguments of symmetry already at the moment of the
computation of the solutions. Basically we used three assumptions:

1. ¢ =0 and ¢; = 0. (This immediately implied ¢z = 0 also.)
2. ¢ =0 and c2 #0.
3. C1 ;ﬁ 0.

We first computed all solutions under the first assumption. This gave us three solutions.
Secondly we computed the solutions under the second assumption, but because of the
symmetry aspect, as soon as we found two of all a;, b; or d; equal to zero, we left
out this solution since it was basically one of the four solutions found before. This
second assumption gave us two new solutions. Finally we computed the solutions
under the third assumption, but because of the symmetry we only needed solutions
which had none of the a;,b;,¢; or d; (i € {1,2,3}) equal to zero. This resulted in
exactly one solution. This made up a total of six solutions. With these solutions we
could formulate a classification theorem for the Druzkowski forms.

Theorem 4.2 Let I' : K* — k* be a cubic homogeneous map on Druzkowski form.
Then there exists a linear invertible T with T~ FT is one of the following siz forms:

ry — (d1334)3
1 Ty — (asz1 + doxs)®
- 3
T3 — (03331 + bzxo + d3="34)
T4
z1 — (b1zo + d1$4)3
p) Ty — (dz-’f4)3
’ z3 — (agry + bgry + d3l‘4)3
T4
4
1 — (@121 — Z—%-’EQ + a;? z4)3
3
3 29 — (aszy — %xz + d2x4)3
r3— (a3m1 + b3ra + d3zrs)?
T4
) — (171-’6234- d?,:l r4)?
/ Ty — (—ngam + 2wy + dazy)3
z3 — (bsza + d3z4)?
T4
21 — (d124)3 .
5 g — (a2:2$1 - z—gfﬂz + coxs + dz? r4)?
. 4
T3 — (03331 — %-’tz + ¢33 + d3-’£‘4)3

T4




bicd4eqel d :
2y — (P2 + bz 4wz + L2ay)?

1 c2
ca(biciteic b
6 Ty — (7( 1ot 3)1151 + é?fl‘z + cax3 + d2$4)3
. 1

ca(bici+eicy bic cad 3

T3 — (7( 6211 S)II + S e ez + i;m)

T4

Proof: See the description above or section A.4. a

If we take the coefficients of these six solutions and put them in matrices A we see that
the resulting matrices are of rank one, two or three. The first two have rank(A) = 3.
Solution numbers three, four and five have rank(A4) = 2. And solution number six has
rank(A4) = 1. This distinction between ranks is used in the next section.

4.3 Power similarity and a proof of a conjecture of
Meisters

As stated before, the reason we examined these Druzkowski forms was to be able to
compare these results with Meisters’ result on power similarity. See [Meisters 93].

Until now we have always regarded maps F : K* — K* where K was an arbitrary field
with characteristic. However in this section we shall restrict ourselves to K = C, since
the power similarity property is defined in terms of C, but any algebraically closed field
would work.

Definition 4.3 Let F = X — (AX)? and G = X — (BX)3 be two polynomial maps
on Druzkowski forms. Then the matrices A, B € Mat,(C) are called power similar
(A ~, B) if there exists an invertible polynomial map T with T~'FT = G.

The idea behind power similarity is that one wants to use linear invertible maps 7'
for transformations of coordinates of maps F' on Druzkowski form. In general there is
no need that the result 7-!F7T is again on Druzkowski form. So if T-'FT is indeed
on Druzkowski form this is pretty special and this property deserves a special name:
power similarity, introduced by Meisters in [Meisters 93].

Definition 4.3 is in terms of maps. It is also possible to look at power similarity on the

level of matrices.

Proposition 4.4 Let F = X — (AX)® and G = X — (BX)? be two polynomial maps
on Druzkowski forms. Then the matrices A and B are power similar if and only if

there exists T € GLn(C) with (ATX)? = T(BX)3.

Proof: Let FF = X — (AX)?® and G = X — (BX)? be two polynomial maps on
Druzkowski forms. Then the following statements are equivalent:

e A and B are power similar.

There exists an invertible map T with T~ FT = G.
o There exists an invertible map 7" with 7=}(T'X — (AT'X)3) = X — (BX)3.

o There exists an invertible map 7' with X — T71(ATX)3 = X — (BX)3.




o There exists an invertible map 7' with 7= (AT X)?® = (BX)3.
o There exists an invertible matrix 7" with T-1(ATX)? = (BX)3.

o There exists an invertible matrix 7" with (A7X)? = T(BX)3.

This proves the proposition. a

For n = 4 Meisters found six representatives and conjectured:

Conjecture 4.5 The following siz matrices form a complete system of representatives

of Mat4(C)/ ~p:

01 00
0 0 00
J12_0000
0 0 00
0100 0 1.0 0 0 1.0 0
00 00 00 1 0] 0 0 1 1
J22_0001’J23_0000’N23_0001
00 00 00 00 00 00
01 00 0110
00 10 0010
— T4 —
J34_0001’A34_0001
00 0 0 0 0 0 0

Before we are going to prove this conjecture we shall explain the notation used here.
The J comes from Jordan since all J matrices are on Jordan normal form. The N ma-
trices represent the other nilpotent representatives of this power similarity equivalence
relation. Furthermore the first number stands for the rank of the matrix. The second
number gives the ‘nilpotency index’, i.e. the smallest power such that the represen-
tative raised to that power equals the zero matrix. E.g. J23 is a matrix on Jordan
normal form of rank two with J23% #£ (0 and J233 = 0.

From these representatives we see also why we chose Hy = 0 in the former section.
Since all these representatives have a last row consisting of only zeroes, it is sometimes
easy to see that a particular representative is power similar to one of our solutions,
since it is simply a special case of it.

In order to check whether our solutions were equivalent to the given representatives of
conjecture 4.5 we made a procedure powsim that computed the system of equations we
got by taking a general matrix 7' with det(7) # 0 and computing the matrix products
from proposition 4.4 and comparing all coefficients. By looking at the rank we saw that
there were at most three possibilities for each solution. By looking at the nilpotency
index we could even restrict ourselves to two cases for each matrix. The resulting
systems were easy to solve. So after we had found that our general solutions were all
power similar to one of the six matrices of conjecture 4.5, we changed the procedure in
such a way that it automatically solved the computed systems and -more important-
that it gave the number of solutions to each system. Normally it is not very safe to
solve a system of equations just by using the standard Maple procedure solve, since
you can never be sure that it finds all solutions. However in this case it didn’t matter
if Maple found all solutions, as long as it found a solution. Only if Maple couldn’t find
a solution, we would have to look at these cases very secure to convince ourselves that
there really were no solutions. Since that would mean that Meisters’ six representatives




were not complete. However Maple was able to find an invertible matrix 7" for each
of our solutions that proved the power similarity of that particular solution to one of
the six matrices of conjecture 4.5. But looking at these matrices T' we saw that there
were sometimes restrictions on the coefficients of our solutions. These restrictions had
to prevent that divisions by zero occurred. This observation lead to the notion that
we had to examine different cases inferred by these restrictions, e.g. if a solution for 7'
meant a division by a;, we also would have to find a solution for the system of equations
we got by substituting a3 = 0 to begin with. But before we give the results of this
examination we first note the following.

If we look at the maps of theorem 4.2 we see that all maps can be regarded as a
special case of the second map, i.e. for all maps F' there exists an invertible 7" with
T-1FT = G, where I is any of the maps from theorem 4.2 and G is the map

Ty — (51482 + d1334)3

o — (d2x4)3

z3 — (a3z1 + baTs + d3zs)?
T4

the second map in theorem 4.2. From definition 4.3 it follows immediately that these
transformations carry through the power similarity properties.

The following table presents the actual mappings 7" for all maps from theorem 4.2 and
the substitutions one has to make in the second map to get the special case.

T bl dl d2 as b3 d3
T2
xr
1 ! ag dg d1 b3 as d3
T3
T4
T
T2
2 b1 dl dz as b3 d3
T3
T4
1
az)\3
2y + (52)°™ at | ad baal
1 2L 2182 3C2
3 3 Gg as 0 (13+ a;l.; b3 d3
T4
T3
1 bid
4 b e | dy |0 b 0 | bida
3 -2 '2 1
za + (32) 23 bs
T4
T
xrs3 d
5 0 [ di [0 ey | dac2
v+ (2)°rs z g
T4
c1\3
1+ (Cz) T3
x3 byicd cacd
6 0 0 0 - - =2 Ca d2
ro + (2—2)3.’63 c? c?
T4

In the matrix 7' it can happen that a certain variable has to be unequal to zero, in
order to divide through it. For instance in the fourth row we divide through 4;. So
we have to consider a case where b = 0. In terms of the variables of the second
map this means that we have to examine two cases: az # 0,b3 = 0,d2 = 0 and
a3:0,b3: O,dgzo,d3:0.




The following table gives the results of our research. A zero in a column means that we
substituted a zero for the corresponding coefficient. A one means that we assumed that
variable not equal to zero. Furthermore # da‘:Q
to that expression and -of course- if the # doesn’t show up in front of an expression
the variable is equal to the given expression. If nothing appears in a column then that
variable is completely free in case of the particular choices for the other variables in
the same row.

means that this variable is not equal

If we now look at this table we see that the first case mentioned above is described in
rows fourteen, fifteen and eighteen. Apparently the actual choice of b3 is not important.
The second case is described in rows three, four,six and ten.

Also the cases inferred by the other rows in the previous table are all described in this

next table.
as b1 d2 b3 dl d,3
tfofo]o 1 1 J22
21000 1 0 J12
310010 0 1 J12
410101/ 0 0 0 1] J12
500001 1 J23
61001 0 J12
70 |1]0 1 # 4 J22
80 |1]0 1 4l J22
9(01]1]0 0 1] J22
00|10 0 J12
mjo 1)1 1 # dh N23
1210111 1 b J23
13011 0 J23
40100 1 J23
5100 J12
16101 |#-28 J23
1Im|1|o]1 —“;gf J22
181 ]1]0 J23
190111 1 N34
200111 J34

From this table we obtain the important theorem:

Theorem 4.6 Conjecture 4.5 is true.

Proof: From the table above we learn that on one side all Meisters’ representatives
appear and on the other side no other matrices appear. So the set of six matrices
presented in conjecture 4.5 is complete with respect to the relation ~j. a

4.4 General Druzkowski forms

We have the following interesting theorem concerning Druzkowski forms.




Theorem 4.7 Let r € N. If the Jacobian Conjecture holds for every polynomial map
F : K" — K" where F has the special form:

1 H1($1,...,x7«)

Ty HZ(Zly---y"Er)
F = -

Ly Hr(xh'":xr)

with H; = 0 or deg(H;) = 3 (H; homogeneous for alli € {1,...,r}) then for alln > r
and all A € Mat,, (K) the Jacobian Conjecture holds for all Druzkowski forms

G=X—(AX)?
with the rank of A equals v and X = (z1,...,zp).
Proof: Let A € Mat, (K) with rank(A) = 7. Then there exists some 7' € GL,(K)

such that AT is on column Echelonform. So the first » columns of AT are linearly
independent and the other columns are zero. Then

51(:61,...,:UT)
bo(z,. .., 2r)
ATX = .
Ly(z1,. .., ;)
where £; (21, ..., z,) is some linear expression in 1, s, . . ., £,. Now define G=T"1GT.
Then
B(zy,...,2,) 1 —hi(21,...,2,)
~ EB(£11"'7£7’) I’z_hz(l'la---)l'r)
G=X-T'ATXP =x-11| " -
Zg(-z'l:---yzr) Tn _hn(mly---rzr)

with h; is a homogeneous polynomial of degree 3 over K. Note now that G is invertible
if and only if G is invertible and JG is invertible if and only if JG is invertible. Finally,
make a transformation of coordinates:

/
LTry1 = Tr41 — hr+1($1a ey mr)
!
Tryo = Try2 — hpja(z1, ..o 20)
/
z, = 2n — hn(21,...,2,)
On the new coordinates z1,...,2,,%,,,..., %, we get the following map:
1 —hl(l‘h.. .,137-)
G = zr — he(21,...,2,)
- /
Ir+1
:E/

n

The invertibility of G follows from the observation that G is a trivial extension (in
particular it doesn’t change invertibility properties) of some F' : K™ — K" with the
special form as described in the precondition of the theorem. And the assumption told
us that such an F' was invertible. a

If we restrict ourselves to the case where n = 4 we can deduce the following theorem:




Theorem 4.8 The Jacobian Conjecture holds for all Druzkowski forms
G=X—(4X)?

where X = (z1,...,2,) and rank(4) < 4.

Proof: From corollary 2.9 it follows that the Jacobian Conjecture holds for all poly-
nomial maps F : K* — K* of the special form

Hy(zq, 29, 23, T4)

F= 2 H2(I1,$27I3JI4)
T3 H3(£L‘1,.’L’27m3,$4)

Hy( )

4\T1, T2, T3, T4

L1

T4
Combining this with theorem 4.7 completes the proof. a

As was written in chapter 1 so far this theorem was only true if the rank or corank of
A was smaller than three. If we combine these theorems we get the following result:

Theorem 4.9 Let F' : K — K" be a polynomial map on Druzkowsk: form that
satisfies the Jacobian hypothesis. Then if n < 7 the map F is invertible.

Proof: Let A be the matrix of the coefficients of F. Then if rank(A) < 4 we use
theorem 4.8 and we know that F is invertible. If rank(A) > 4 we have that corank(A4) <
3 and we can use theorem 1.18 to prove the invertibility of F. a




Chapter 5

Applications

5.1 Introduction

In this chapter we will use our classifications to test some conjectures or to describe
some corollaries.

5.2 Exponents

One of the things we would like to know is the answer to the question whether the eight
maps from theorem 2.7 can be written as the exponent of a locally nilpotent derivation.

In order to find this answer we start with the assumption that a map F' can be written
as

F =exp(D)

where D is some locally nilpotent derivation. Actually this notation is not com-
pletely correct. This has to do with the different types of the two terms. The
type of the lefthandside is F' : K* — K* whereas the type of the righthandside is
exp(D) : K[z1, z9, x3, v4] = K21, T2, 3, T4]. So we should have written!

F* = exp(D)
where F* is defined as

F* : I{[I17$2,I37$4] - R’[I11$27I3;I4]
g = g(F17F27F37F4)~

But since we have F*(z;) = F; for ¢ = 1,...,4, the intention of what we mean if we
write /' = exp(D) is completely clear. So in the rest of this paper we shall sometimes
abuse this notation.

1See also [Essen 92b].
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In order to find this D we have to compute the logarithm of exp(D), i.e. the logarithm
of F*. We do this in the following (purely formal) way:

D = log(exp(D))
= log(F)
= log(I + (F* = 1))
_ (F*—I)—(F 2—1)“+(F ;f) _(F ;I) .

If we write Ag = F* — I we get

N DT
D=y A
i=1

Lemma 5.1 Let D be a locally nilpotent derivation. Then there erists p € N such that
AR (z;) =0 fori=1,...,4.

Proof: We have

Ag = F*—1T
= exp(D) -1
Dz D3
+ 2 + 3! +

and since D is locally nilpotent we know that for each i there exists a p; with DPi(z;) =
0. So if we define p = maxp; then D?(X) = 0. From this it follows that Ay (X) is a
finite sum of powers of D applied on X. After p compositions of Ag(X) we see that
the smallest power in the summation is DP, so AL (X) = 0. a

From lemma 5.1 we know that A% (X) must be equal to zero for some p € N. So the
next thing we do is determine whether this Ag(X) vanishes after a finite number of
iterations. We used a procedure deltahnumber to find the smallest number p with
AL (X) = 0.

The first seven forms gave positive results, i.e. our procedure terminated because it
had found such a p.

> for i from 1 to 7

> d

> 0print(i,delta.hnumber(G[i:I ,20));

> od;
1, 3
2, 3
3, 3
4, 6
5, 4
6, 6




The second argument gives a maximum bound to force termination of the procedure.

The eighth map gave a negative result:

> deltahnumber(G[8],100);
Error, (in deltahnumber) Not vanished after 100 iteratiomns

So it is most unlikely that this A% will vanish after any finite number of iterations. So
this F' is most probably not of the form exp(D). We shall get back to this point later
on.

Now that we have seen that D is a finite sum of powers of Ay we can compute D itself.
We used the procedure computeD for this purpose.

But since we used only a formal construction of this D, assuming that it existed, we
have to check that indeed the equation

F = exp(D)
holds.

In order to compute exp(D) we use the powerseries

exp(D) = Z ll)—'z

1=0

If D is indeed locally nilpotent then this sum is only a finite sum. If it is not, this sum
does not necessarily exist. However we used our procedure computeexpD to compute
exp(D) with the hope that it would terminate. And indeed it did terminate in all
seven cases. After this we had to compare the results of this procedure with the
original maps. In fact we made one procedure testexp that computes, given a list of
polynomial maps, respectively the derivation D, the map exp(D) and tests whether
the original map equals exp(D). The first seven forms of theorem 2.7 all terminated
and returned the boolean ‘true’.

So to answer the question at the beginning of this section:

Theorem 5.2 The first seven forms of theorem 2.7 can be written as exp(D) where D
1s some locally nilpotent derivation.

Proof: It is easy to check that the following seven derivations are locally nilpotent and
have one of the first seven maps from theorem 2.7 as their exponent. O

The notation we will use here is as follows. Each derivation is given by a list of four
polynomials. For instance the result of computeD(G[2]) gives the list:

3 2 3 2 2 3
[0, - 1/3 x1 - h2 x1 x3 - g2 x3 , 0, — x1 x3 - h4 x1 x3 - g4 x3 ]

This stands for the derivation:

3] 0 3]
0— + (—%x? - hlemg - qzxg)— +0— + (—.’L‘%(L‘g - h4x1mg — q4:cg)

0-’1»‘1 a-"lfz 6.’133

0
6.’!34 '




> computeD(G[1]);

o, o, o,
3 2 2 2 2 3
- a4 x1 - b4 x1 x2 - c4 x1 x3 - e4 x1 x2 - f4 x1 x2 x3 - h4 x1 x3 - k4 x2
2 2 3
- 14 x2 x3 - n4 x2 x3 - g4 x3
]
> computeD(G[2]);
3 2 3 2 2 3
[0, - 1/3 x1 - h2 x1 x3 - g2 x3 , 0, - x1 x3 - h4 x1 x3 - g4 x3 ]
> computeD(G[3]);
2
3 2 2 x1 x3 r4
[0, - 1/3 x1 - x4 c1 x1 + 3 c1 x1 x2 x3 - 1/3 x1 x3 g4 + 1/48 ———————-—
2
cl
3 2 2
2 r4 g4 x3 x4 r4 x3
- 1/2 r4 x1 x3 x4 + 3/4 14 x2 x3 - 1/12 ———==———- - 1/16 ——=—=—————o s
cl cl
0,
2
2 r4 x1 x3 2 3 2
- x1 x3 + 1/4 ————————- -3 clxlx3x4+9clx2x3 -qg4x3 -3/4r4x3 x4
cl
]
> computeD(G[4]);
3
[0, - 1/3 x1 ,
2 2 3 5 4 7
- x1 x2 - e3 x1 x2 -k3x2 -1/6x1 - 1/3 e3 x1 x2 - 1/54 e3 x1
2 3 6
- 1/2 k3 x2 x1 - 1/18 k3 x2 x1 ,
2 3 4 7 2 3
- e4 x1 x2 - k4 x2 - 1/3 e4 x1 x2 - 1/54 e4 x1 - 1/2 k4 x2 x1
6
- 1/18 k4 x2 x1 ]
> computeD(G[5]);
3 2 2 2 2 3
[0, - 1/3 x1 + i3 x1 x2 x4 - j2 x1 x4 + 83 x2 x4 + i3 x3 x4 - t2 x4
4 2 3 5 2 5
+ 1/6 i3 x1 x4 + 1/6 83 x4 x1 + 1/2 s3 x4 t2 + 1/2 i3 x4 t3
2 3 4 4
+ 1/2 i3 x1 x4 j2 + 1/2 i3 x1 x4 t2 + 1/2 s3 x4 j2 x1
2 4
+1/2 i3° x4 j3 x1,
2 2
2 s3 x1 x2 x4 2 s3 x2 x4 2
-x1 x2 -2 = - i3 x1 x3 x4 - j3 x1 x4 - —————-———- - s3 x3 x4
i3 2
i3
2 2 3
3 s3 x4 x1 5 2 3 5
- t3 x4 - 1/6 ——————————- -1/6 x1 - 1/2 x1 t2 x4 - 1/2 s3 x4 t3
2
i3
4 2 3 4
3 2 s3 x1 x4 s3 x1 x4 j2 s3 x1 x4 t2

- 1/2 X1 §2 X4 = 1/3 mmmmmmmmm o mmmmmmmmmm o




4
2 3 4 s3 x4 j2 xi1
-1/2 i3 x1 x4 3j3 - 1/2 i3 x1 x4 t3 - 1/2 ———=———-—————

2 5
s3 x4 t2 4
-1/2 ————————— - 1/2 s3 x4 j3 x1,
2
i3
0]
> computeD(G[6]);
3 3
[0, - 1/3 x1 - j2 x1 x4 - t2 x4 ,

2 2 3 2 2 2 2
-m3 x2 x4 -1/2k3 x2 x1 - p3 x2 x4 - j3 x1 x4 - e3 x1 x2 j2 x4

2 4 6 2 2 4
- e3x1 x2 -1/2p3 x4 j2 x1 - 1/18 k3 x2 x1 - 1/2 k3 x2 j2 x1 x4

2 3 2 3 3
- 3/2k3 x2 t2 x4 - x1 x2-k3x2 - t3 x4 - g3 x1 x2 x4

4 5 7 2 3 3 2
- 1/3 e3 x1 x2 - 1/6 x1 - 1/54 e3 x1 - 1/2 x1 t2 x4 - 1/2 x1 j2 x4

6 7 2 2 3 5
- 1/54 m3 x4 x1 - 1/6 m3 x4 t2 - 1/6 p3 x4 x1 - 1/2 p3 x4 t2

3 5 2 4 3
- e3 x1 x2 t2 x4 - 1/9 e3 x1 j2 x4 - 1/9 e3 x1 t2 x4

3 2 4 2 5 2 6
- 1/6 e3 x1 j2 x4 - 1/3 e3 x1 j2 x4 t2 - 1/6 e3 x1 t2 x4
4 2 3 4
- 1/6 g3 x1 x4 - 1/2 g3 x1 x4 j2 - 1/2 g3 x1 x4 t2

4 2 2 6 2 2
- 1/3 k3 x2 x1 j2 x4 - 1/2 k3 x2 t2 x4 - 3/2 k3 x2 j2 x1 x4

3 3 5 3
- 1/3 k3 x2 x1 t2 x4 - k3 x2 j2 x1 x4 t2 - 1/3 m3 x4 x2 x1
3 4 3 4 4 3
-m3 x4 x2 j2 x1 - m3 x4 x2 t2 - 1/9m3 x4 x1 j2 - 1/9 m3 x4 x1 t2

5 2 2 6
- 1/6 m3 x4 j2 x1 - 1/3 m3 x4 j2 x1 t2,

0]
> computeD(G[7]);
3
o, - 1/3 x1 ,
2 2 3 5 4 7
- x1 x2 - e3 x1 x2 -k3x2 -1/6 x1 - 1/3 e3 x1 x2 - 1/54 e3 x1
2 3 6
- 1/2 k3 x2 x1 - 1/18 k3 x2 x1 ,

2 2 23 2 2 6
- 14 x2 x3 - n4 x2 x3 + 1/168399 g4 x1 k3 - h4 x1 x3 - 1/6 f4 x1 x2

15 4 3 2 2 3
2/8505 h4 x1 k3 - 1/6 f4 x1 x3 - 1/2 f4 x1 x2 - 1/2 x1 k3 x2

+

3 2 15 2 2 5
- 1/2 x1 e3 x2 + 1/5670 n4 x1 e3 - 1/6 n4 e3 x1 x2

6 5 4 5
- 1/3 n4 e3 x1 x2 k3 - 1/3 n4 x1 x3 x2 - 5/18 n4 x1 e3 x2 k3
2 5 4 2 3 3
- 1/3 n4 x1 x2 k3 -5/9n4 x1 x3 e3 x2 - 7/9 n4 x1 x3 k3 x2
6 3 5 4 5 2 4
-1/6 n4d x1 x2 e3 - 2/9n4 x1 x2 k3 - 1/9 nd x1 e3 x2

3 2 6 2 2 3 4
- 1/6 n4 x1 k3 x2 - n4 x3 x1 x2 - n4 x3 e3 x1 x2 - n4 x3 k3 x2




4 3 2 7 3 2 7 2
1/6 n4 x1 x2 - 1/6 n4 k3 x2 - 1/6 n4 x1 x3 - 1/18 n4 x1 x2

3 4 2 3 4 4 3
1/3 n4 x1 x2 e3 - e4 x1 x2 - 1/3 14 x2 x1 e3 - 4/9 14 x2 x1 k3
6 8 3 2 5
1/54 14 x1 x3 - 1/54 14 x1 x2 - 1/2 14 x2 x1 - 1/2 14 x2 k3

2 5 4 3
2/9 14 x2 x1 - 1/2 14 x2 e3 x1 - 1/3 14 x2 x1 x3
7 2 6 3 2 6
1/18 14 x1 e3 x2 - 1/9 14 x1 k3 x2 - 1/6 h4 x1 k3 x2
2 2 3 4 3
h4 x1 x3 e3 x2 - h4 x1 x3 k3 x2 - 1/3 h4 x1 x2 e3

3 4 3 2 4 2 5
1/3 h4 x1 x2 k3 - 1/6 h4 x1 e3 x2 - 1/3 h4 x1 e3 x2 k3

5 2 4 3 4
5/18 f4 x1 e3 x2 - 7/18 f4 x1 k3 x2 - 1/2 f4 x1 k3 x2
3 2 3 4 15
h4 x1 x3 x2 - 1/2 f4 x1 e3 x2 - 1/2 x1 x2 + 1/2835 g4 x1
2 2 2 2 2 3
3/2 g4 x3 e3 x1 x2 - 3/2 g4 x3 x1 x2 - 3/2 g4 x3 k3 x2

2 4 2 2 4 5
q4 x3 x1 x2 k3 - 1/2 g4 x3 e3 x1 x2 - g4 x3 e3 x1 x2 k3

3 3 2 6 4 2
g4 x3 x1 x2 e3 - 1/2 g4 x3 k3 x2 - 1/2 g4 x3 x1 x2
2 5 6 3 8 3 2 9
7/60 q4 k3 e3 x1 x2 + 1/20 q4 k3 x2 x1 - 1/270 g4 k3 x3 x1
10 3 31 13 2 2 2 3
1/18 g4 k3 x1  x2 + --—— g4 k3 x1 x2 - g4 k3 x3 x2 x1
3780
2 4 6 2 3 9 2 6
2/15 g4 k3 x3 x2 x1 + 1/270 g4 k3 x3 x2 x1 - 1/6 g4 k3 x3 x2 x1

2 5 3 8 2 11
1/2 94 k3 x3 x2 x1 - 1/10 g4 k3 x3 x1 x2 + 1/270 g4 k3 x3 x1  x2

2 4 7 2 7 6 11 2 11 4
2/15 g4 k3 e3 x1 x2 + 7/45 g4 k3 e3 x1 x2 + --- g4 k3 x1 x2
378

2 8 5 23 2 11 4 3 7 6
7/60 g4 k3 e3 x1 x2 + --- g4 k3 e3 x1 x2 + 1/15 g4 k3 x2 x1
756

13 3 6 9 10 2
-—-— g4 k3 x2 x1 + 1/270 g4 k3 x3 e3 x1 x2
540

7 3 13 2 10 5 2 8 5
8/45 g4 k3 x3 e3 x1 x2 + -—- g4 k3 e3 x1 x2 + 7/60 g4 k3 x1 x2
270

4 4 7 6 2
5/6 g4 k3 x3 e3 x1 x2 - 1/6 g4 x1 x3 x2 - 1/2 g4 x1 x3 e3 x2

8 3 7 4 7 2 4
1/15 g4 x1 x2 e3 + 1/12 g4 x1 x2 k3 + 1/12 g4 x1 e3 x2

5 3 5 2 6 5 2
2/3 94 x1 x3 k3 x2 + 7/60 g4 x1 k3 x2 - 1/3 g4 x1 x3

9 2 18 6 5
1/60 g4 x1 x2 - 1/1701 g4 x1 e3 k3 x2 + 1/5 g4 x1 e3 k3 x2

9 4 32 12 3 15 2
1/6 g4 x1 e3 k3 x2 + --- g4 x1 e3 k3 x2 - 1/630 g4 x1 3 k3 x2
945
2 14 3 8 2 3 11 2 2
1/756 g4 e3 x1 k3 x2 - 1/90 n4 x1 e3 x2 + 1/270 n4 x1 e3 x2
14 2 3 9 4 17 3 12 3

1/2430 n4 x1 e3 x2 + 1/36 g4 e3 x1 x2 + --—— g4 e3 x1 x2
2835




3 15 2 2 8 2 2 14
1/11340 g4 e3 x1 x2 - 1/18 g4 e3 x1 x3 x2 + 1/5670 g4 e3 x1 x3

2 5 3 2 16 3 6 5
1/3 q4 e3 x1 x3 x2 - 1/11340 g4 e3 x1 x2 + 1/30 g4 e3 x1 x2

2 3 3 14 16
x1 x3 - g4 x3 - k4 x2 + 2/2835 g4 x1 k3 x3 - 1/2835 g4 x1 k3 x2
14 2 3 17 2
5/2268 g4 x1 k3 x2 - f4 x1 x2 x3 - 1/102060 n4 x1 e3
9 2 12 6 2
1/135 n4 x1 e3 x2 + 1/270 n4 x1 e3 x2 - 1/6 n4 x1 k3 x3 x2
9 12 8 3
1/162 n4 x1 k3 x3 x2 + 1/2430 n4 x1 k3 x3 - 1/54 n4 x1 k3 x2

11 2 14 11 7 4
7/810 n4 x1 k3 x2 + 1/1215 n4 x1 k3 x2 - ——— n4 x1 k3 e3 x2
270

11 10 3 13 2
--- n4 x1 k3 e3 x2 + 1/405 n4 x1 k3 e3 x2
810
3 2 21 191 3 27 6
1/17010 q4 k3 x2 x1 - ————————- q4 k3 x1 - 2/9 x1 e3 x2
591080490
13 2 2 13 2 4
1/810 h4 x1 k3 x2 - 1/324 g4 e3 x1 k3 x2
22 16 2 3 2 17 2
--—- g4 e3 x1 k3 x2 - 8/8505 q4 e3 x1 k3 x2
8505
16 19 6
1/7290 n4 e3 x1 k3 x2 - 1/76545 n4 e3 x1 k3 - 2/9 h4 x1 x3
8 19 2 2 6 5
1/18 h4 x1 x2 - 1/25515 q4 x1 e3 - 1/30 n4 k3 x1 x2
17 2 4 9 2 3 12 2 2 15
--———n4 k3 x2 x1 + 7/2430 n4 k3 x2 x1 - 1/4860 n4 k3 x2 x1
1620
2 18 2 21 17
1/21870 n4 k3 x2 x1 + 1/918540 n4 k3 x1 - 1/25515 n4 x1 k3
8 7 10
1/54 n4 x1 x3 - 2/27 n4 e3 x1 x3 x2 - 1/810 n4 e3 x1  x3
13 5 2 8
1/405 g4 e3 x1 k3 x3 x2 - 1/3 x1 k3 x2 - 1/18 x1 k3 x2
11 17 2 2 20 2
1/270 h4 x1 - 1/945 g4 x1 k3 x2 + 1/102060 g4 x1 k3 x2

2 10 3 17 2 13 2 2 18
1/18 q4 e3 x1 x2 + --—- g4 e3 x1 x2 - 1/51030 g4 k3 x3 x1
1890

3 5 12 11 3 4 15 3 3 18
1/540 q4 k3 x2 x1 - ---- q4 k3 x2 x1 + 1/102060 q4 k3 x2 x1
5670

2 2 12 7 14 11
1/270 g4 k3 x3 x2 x1 - 1/9 x1 + 1/270 q4 x1 e3 x2 - 1/810 x1 k3

9 9 5 2 19

1/108 £4 x1 - 1/54 x1 e3 - 1/6 h4 x1 x2 - 1/17010 q4 x1 k3

8 4 2 3 6
1/27 f4 x1 e3 x2 - 1/3 e4 x1 x2 - 1/2 k4 x2 x1 - 1/18 k4 x2 x1

6 3 7 2 11
2/9 h4 x1 k3 x2 - 1/6 hd x1 e3 x2 - 1/1620 f4 x1 e3

19 2 2 22 2

1/102060 g4 e3 x1 k3 x2 + 1/25515 g4 e3 x1 k3 x2

10 12 13
1/90 g4 x1  x3 + 1/180 g4 x1 x2 + 1/4860 14 x1 &3

15 11 2 7 2
1/102060 14 x1 k3 + 1/30 g4 e3 x1 x2 - 1/18 g4 3 x1 x3




7 9 13 11
- 1/54 e4 x1 - 1/18 g4 e3 x1 x3 x2 + 1/1620 n4 x1 + 1/1620 14 x1

19 2 9 2 12
- 1/153090 h4 x1 k3 - 1/324 14 x1 k3 x2 + 1/972 14 x1 k3 x2

3 18 4 2 15 2
- 2/25515 g4 3 x1 x2 - 2/3 g4 e3 x1 x3 x2 + 1/17010 h4 x1 &3

13 6 2 3 9 2 2

+ 1/4860 f4 x1 k3 - 1/9 h4 x1 e3 x2 - 1/54 h4 x1 e3 x2
10 4 2 5 7 2 4

- 1/54 h4 x1 e3 x2 - 1/6 h4 x1 k3 x2 - 2/45 h4 x1 k3 x2

10 2 3 7 9 2
+ 1/810 h4 x1 k3 x2 - 1/9 h4 x1 k3 x3 x2 - 1/30 h4 x1 k3 x2

12 5 4 8 3
+ 1/810 h4 x1 k3 x2 - 5/18 h4 x1 k3 e3 x2 - 8/135 h4 x1 k3 e3 x2

11 2 4 2 10
+ 1/810 h4 x1 k3 e3 x2 - 2/3 h4 x1 k3 x3 x2 - 1/405 h4 x1 k3 x3

23 2 23 7 2 10
+ ——————— q4 e3 x1 k3 - 1/12 £f4 x1 k3 x2 - 1/324 f4 x1 k3 x2

5 8 14
- 4/9 h4 x1 e3 x2 x3 - 1/27 h4 x1 e3 x3 + 1/1215 h4 x1 e3 k3 x2
]

We promised that we would come back to the last form of the classification theorem.
We are going to prove that for almost all values of the coefficients this F' cannot be
written as the exponent of some locally nilpotent derivation D. So we can restrict
ourselves to C in stead of K. Furthermore we recall a theorem by Baire:

Theorem 5.3 Let f1, fo,... be a sequence of non-zero polynomials in Clzy, ... z,].
Then

C ¢ U Vi)
m=1
where V(f) denotes the set of zeroes of fp,.

We also present the following lemma.

Lemma 5.4 Let F be the map

T1

1.3
ro — 5.’[31

2 2 L .3 2 2,2
T3 — x{Ts — e3T1x5 + ga®1T2x3 — k3ry + maxsT3 + giTiT,

2 2 2m 3
Ty — LT3 — €421TH — g44 L1T2X3 — J4aZ1T2T4 — k4$2

_ mi 2 _ 2
_gz Tol3 M4 oly
4

Then for n > 0 the term
1
()" straos —n (5)" 28,0, g2
appears in the third row of A”H+1(X).

Proof: We give a sketch of the proof with induction to n. If n = 0 we have that

n+1/y _ 2 2 3 2 2,2
AH ()i) 3= —T X3 —€371T5 + Jar12223 — kgl‘z + M4Tox3 + JaToT4.

3= Ap(X)

It is easy to see that this satisfies the claim of the lemma in case n = (. Now let the
induction hypothesis be that the lemma is true for certain n. So we have that

()" atrades = n ()" 2300, ) g3




appears in the third row of A7F(X). If we now compute? A%T?(X)|s, we see that
there are three steps that contribute to the desired term:
. (%)n e x3eagyT? with the substitutions:

— All z,-s are substituted by z;.

— One x4 is substituted by x.

— One z5 is substituted by —%x?

— The x4 is substituted by —gaziz224.
This gives the term:

1

(3)" ai" ey (—327) (—gazrzams) g4 7

which can be reordered to

(%) (n+1) m;}(n+1)x§x4g‘(1n+1)+z.

. (%)n x4 2324977 with the substitutions:

— All 2;1-s are substituted by z;.
— All zy-s are substituted by —%x";’

— The x4 is substituted by —gsz1z224.
This gives the term:
2
(%)n lem (_%gﬁ?) (—94x1x2$4)92+2
and this can be reordered to

+1)41  4(n+1)43 1)42
_(%)(" ) eV g TDF2,

o —n (1)t

3 332334g2+2 with the substitutions:

— All z1-s are substituted by z;.
— The x4 is substituted by —%x?

— The x4 is substituted by —gsz12224.
This gives the term:
—n (3)" 21" (= 52d) (—gazre22a) g7
and this can be reordered to

_n (%)(n+1)+1 lel(n+1)+3x2x4g‘(1n+l)+2.

If we add these three parts we get:
<(%)(n+1) x?(""'l)a:gm —(+1) (%)(n+1)+1 m;}(n+1)+3$2x4> g£n+1)+2~

Together with the step for n = 0 this proves the lemma. O

Arguing in a similar way one can prove that the term
(1)n 4an 2 (1)n+1 4n+3 n+2
5) T TyTa—n (3 27" axa) gy

does not cancel with any other monomial. As a consequence we obtain:

2A7;1+2 (X)|s stands for the third row of the vector AnH+2 (X).




Corollary 5.5 For all p € N we have that:

0 # AI}{(X)|3 € (C[337647 k3, ka4, ga, m4][921][$17 L2,T3, »’134]~
This leads to the following theorem:

Theorem 5.6 Let ' be the map

T

1.3
o — gﬂl

2 5 2, = P s~ .2 ~2 .2
r3 — LiTo — €3L1T5 + J4a212223 — k3x2 + Max5x3 + 12524

2m ~ 3
544 Z1T2X3 — 412204 — k4$2

Ty — l’%l’g — 54331:1:% —
~ 2
" -
— g,—z":v%xg, — m4:c§:c4
4

Then there is no locally nilpotent derivation D such that F= exp(D).

Proof: From Baire’s theorem (theorem 5.3) it follows that there exists a point
(63, &4, k3, ka, §a, mia) € C°

with ja # 0 and such that A% (X)|5 (where H is H evaluated at this particular point)
is a non-zero polynomial in C[z,zs, z3,z4] for all p € N. Lemma 5.1 now completes
the proof. a

But we do have some positive news concerning this particular map.

Theorem 5.7 Let F be the map

T

1,3
o — E"/El

2 2 3 2 2.2
r3 — XiTo — €3L1T5 + §421 2223 — kgxz + maxix3 + 912524

2m 3
g: T1ToT3 — g4T1LaTy — kaxh

2 2
Ty — LT3 — €4T1Ty —
2
m
— g—;mg:ﬂ3 — m4m§m4
4

Then
F = exp(D1) o exp(Ds)

where D1 and Dy are the locally nilpotent derivations

0
Ul = —11‘3—
3 101‘2
132 1 23 2 1 2 4
Dy = (3942325 + % (gaes + ma) 2725 — 2izs + 5 (Mmaes + gaks + gies) z125
2 1.2 5 3 2 2.2 9
— e3T125 + gar122xs + 3 (g5ka + maks) 25 — kszd + maxies + giaie.) Pae
rs3
2
1.4 1 m 3.2 mae m 1 1 2.3
+ (—5.1:1‘1:2 + (—563 - g—:) rizsy + (_f - ﬁ — gks — §g4e4) riTy
— 2 _maks _ 1 _mies _ 1. 4_ 2 _ 2my
zriT3 + ( 94 74y 93 294k4 T1lg — €4L1T5 gs L1T273
1 miks\ 5 3_ m3 2 2 4
— gaT1Z2%a + 5 (Maka — — 5 | ©5 — kaxy — 32505 — MaxiTa) —
93 94 8334
Proof: It is easy to verify this by computation. a

Note that D1 and Dy do not commute. If they would have, also this I’ could have been
written as an exponent of a local nilpotent derivation D, namely D = Dy + Ds.

Furthermore we can note that the results of this section have the following consequence:




Theorem 5.8 Let F be a cubic homogeneous map that satisfies the Jacobian hypoth-
esis. Then

F = exp(D1) o---oexp(Dy)

for some n < 2.

Proof: Combining the results from theorem 5.2 and theorem 5.7 we see that this
theorem holds with n = 1 or n = 2. O

This theorem suggests that the following weaker form of the tame generators conjecture
is true (see for instance [Joseph 76], [Essen 92a] and [Essen 92b]):

Conjecture 5.9 FEvery element of AutcC[X] is a finite product of linear automor-
phisms and automorphisms of the form exp(D), where D is locally nilpotent on C[X].

5.3 Strong nilpotency

If we look at the quadratic homogeneous polynomial maps, F' = X — @, we know that
nilpotency implies strong nilpotency for these maps in dimensions two, three and four.
See [Meisters 91, Lemma 1,page 6]. For cubic homogeneous polynomial maps we don’t
know an analogon of this theorem. But now that we have a complete description of all
cubic homogeneous polynomial maps which satisfy the Jacobian hypothesis, i.e. have
nilpotent JH, we can easily check this property.

In dimension three we only have one representative, described in [Wright 93]. It is
triangular, hence strong nilpotent.

Theorem 5.10 For all cubic homogeneous polynomial maps ' = X — H : K3 - K3
we have that JH is nilpotent implies JH is strong nilpotent.

Proof: By [Wright 93] we know that for each cubic homogeneous polynomial map
F = X — H there exists T' € GL3(K) with

0
T-'HT = 1o}
ziry + dszi3 + szl

And this last map is on triangular form, so the theorem follows. a

In dimension four we had eight representatives and most of them were a little bit too
complex to check by hand without making computation errors. So we did this class by
computer. The result of this examination is presented in the following theorem.

Theorem 5.11 There exist cubic homogeneous polynomial maps F = X — H : K* —
K* with JH is nilpotent but with JH is not strong nilpotent.

Proof: Though it suffices to give only one example that is not strong nilpotent we shall
give here the complete output of the computercheck.® Since it is very obvious that the
first representative of theorem 2.7 is on triangular form, and thus has a strong nilpotent
Jacobian matrix J H, we shall not regard this representative, but only examine the other
seven.

3This output is the result of the procedure strongnilclass4 which is based on the procedure
strongnilpotent.




From solution two, four and seven in the (beautiful) Maple output given below it is
clear that the nilpotency of JH does not imply the strong nilpotency of JH. a

#itdddddddd JH has rank two and JH™2.X=0 #ititiiddids
solution 1

Strong nilpotency of

L 0 0 0 01]
L ]
L 2 2 2 ]
L x1 + h2 x3 0 2 h2 x1 x3 + 3 g2 x3 0]
L ]
L 0 0 0 0]
L ]
L 2 2 ]
[ x3 (2 x1 +h4 x3) 0 x1 + h4 x1 x3 + g4 x3 + x3 (x1 h4 + 2 g4 x3) 0 ]

true

solution 2

Strong nilpotency of

[0, 0, 0, 0]
2
%2 %1 (8 c1 x1 + 12 c1 x4 - x3 r4)
[1/12 --—- + 1/48 —---—- - - , — 3/4 41 x3,
cl 2
cl
2
rd %2 %1 (- x1rd4 - 36cl x2+ 3rdcl x4+ 8clqgdx3)
1/48 ---—- + /A8 e ,
2 2
cl cl
2
%1 (12 x1 ¢1 + 3 x3 r4 cl)
1/48 --- - ]
2
cl
[0, 0, 0, 0]
2
x3 (8 cl x1 + 12 c1 x4 - x3 r4) 2
[1/4 --- — — =, -9 cl x3,
cl
2
%2 x3 (- x1r4 -36cl x2+3rdcl x4+ 8clqgdx3)
1/4 —=== + 1/ == == mm e -,
cl cl

2
x3 (12 x1 c1 + 3 x3 r4 cl)

1/4 ——- -
cl

%1 4 c1 x1 +x3r4

2 2 2
%2 =4 c1 x1 + 12 cl1 x1 x4 - x3 x1 r4d - 36 x3cl x2+ 3 x3r1r4cl x4

2
+ 4 cl g4 x3

false




ftitititititddddt JH has rank two and JH™2.X<>Q #titdititdtitdtitdts
solution 3

Strong nilpotency of

L 0 0 0 0]
L ]
L 2 ]
L x1 0 0 01
L ]
L 2 2 ]
E x2 (e3 x2 + 2 x1) k3 x2 + e3 x1 x2 + x1 + x2 (2 k3 x2+e3 x1) 0 O %
L 2 2 ]
L ed x2 2 x2 (k4 x2 + e4 x1) + k4 x2 0 01
true
solution 4
Strong nilpotency of
[0, 0, 0, 0]
2 2 2 2 2
[x1 - i3 x2 x4 + j2 x4 , - i3 x1 x4 - s3 x4 , - x4 i3,

2 2
- 13 x1 x2 + 2 j2 x1 x4 - 2 s3 x2 x4 - 2 i3 x3 x4 + 3 t2 x4 ]

2 3 2 2
2 x1 x2 i3 + 2 s3 x2 x4 i3 + i3 x3 x4 + j3 x4 i3

2 2 3
x1 i3 + 2 s3 x1 x4 i3 + s3 x4 i3 x1 x4 + s3 x4 i3
—————————— , —m——=————————————————— (2 s3 x1 x2 i3

2 2
i3 i3
3 2 2 2 2 2
+ i3 x1 x3 + 2 j3 x1 x4 i3 + 2 s3 x2 x4 + 2 s3 x3 x4 i3 + 3 t3 x4 i3
/2
) /i3]
/
[0, 0, 0, 0]
false

solution 5
Strong nilpotency of
[0, 0, 0, 0]

2 2 2
[x1 + 3j2x4, 0,0, 2 3j2x1 x4+ 3 t2 x4 ]

2 2
[2 x2 x1 + e3 x2 + g3 x2 x4 + j3 x4 ,
2 2 2
x1 + 2 e3 x1 x2 + g3 x1 x4+ 3 k3 x2 + 2 m3 x2 x4+ p3 x4, 0,
2 2
g3 x1 x2 + 2 j3 x1 x4 +m3 x2 + 2 p3 x2 x4 + 3 t3 x4 ]
[o, 0, 0, 0]

true




##d###R#E JH has rank three and JH™3.X<>0 ########i#
solution 6
Strong nilpotency of
[0, 0, 0, 0]

2
[x1 , 0, 0, 0]
2 2
[x2 (e3 x2 + 2 x1), k3 x2 + e3 x1 x2 + x1 + x2 (2 k3 x2 + e3 x1), 0, 0]

2 2
[2 x3 x1 + e4 x2 + f4 x2 x3 + h4 x3 ,

2 2
2 e4 x1 x2 + f4 x1 x3 + 3 k4 x2 + 2 14 x2 x3 + n4 x3 ,

2 2 2
x1 + f4 x1 x2 + 2 h4 x1 x3 + 14 x2 + 2 n4 x2 x3 + 3 g4 x3 , 0]

true

solution 7
Strong nilpotency of
[0, 0, 0, 0]

2
[x1 , 0, 0, 0]
2 2
[x2 (2 x1 + e3 x2 - g4 x3), x1 + e3 x1 x2 - g4 x1 x3 + k3 x2 - x2 m4 x3

2 2
- x2 g4 x4 + x2 (e3 x1 + 2 k3 x2 - m4 x3 - g4 x4), x2 (- g4 x1 - x2 n4)

2 2
, - x2 g4

2 2 2 3

2 g4 x1 x3 +e4x2 g4 + 2md x2 x3 g4+ gl x2 x4 2

[-———-- - , (2 e4 x1 x2 g4
2

g4

3 2 2 2 2
+2m4 x1 x3 g4+g4 x1 x4+3k4x2 g4 +2m4 x2x3+ 2mnd x2 x4 g4)

2 2 2 2 3 2 2
/ 2 g4 x1 +2mdx1x2gd4+md x2 g4 x1x2+mdx2 g4
/ g4, ——=mm-m- oo , mmmmmms -]
/ 2 2
g4 g4

false

The reason why we included all results and not only one solution that was not strong
nilpotent, is that we now can see that in fact in all three classes with solutions* there
are both examples of strong nilpotent maps and of not-strong nilpotent maps.

1The three classes meant here are the three cases with solutions of the four cases we regarded
separately in chapter 2. They are separated in the output given above by ‘####H#HH#HHAF-s.




5.4 Iteration of H

In [Meisters 91] the following question is raised by Meisters:

Question 5.12 Let F = X — H : K3 — K3 be a cubic homogeneous map, with
nilpotent JH but not strongly nilpotent. Let m denote the nilpotency index of JH. Do
we have that H™~2 =07

With H™ we mean m times the composition of H:

H”"=HoHo---0oH.
—————

m

We first checked the situation in dimension four. We wrote a procedure iterationtest
that gives a list with three entries as result: the first entry tells us whether the analogon
of the question 5.12 is true, the second gives the nilpotency index and the third gives
the iteration index, i.e. the number of iterations of H you need to get the constant map
[0,...,0]. Of course, the first entry is very redundant from the last two: just subtract
the third from the second entry and compare it with two.

This was the result: (G holds all eight representatives of theorem 2.7)

> for i from 1 to 8 do iterationtest(G[i]) od;

[false, 2, 2]

[false, 2, 2]
[false, 3, 2]
[false, 3, 3]
[false, 3, 2]
[false, 3, 3]
[false, 4, 4]
[false, 4, 3]

From this result we see immediately that question 5.12 has certainly not a positive
answer in dimension four. But we do have the following result:

Theorem 5.13 Let F = X — H : K* — K* be a cubic homogeneous map that satisfies
the Jacobian hypothesis. Let m denote its nilpotency index. Then we have that either
H™ 1 =0 or H™ = 0.

If we now look back at the results we found in section 5.3 we see that the three cubic
homogeneous maps F that have an H such that H™~! is identically zero, are exactly
the three maps where JH is not strong nilpotent. So if we restrict ourselves to the not
strongly nilpotent maps, we actually do get a very similar result as question 5.12:

Theorem 5.14 Let ' = X — H : K* = K% be a cubic homogeneous map, with
nilpotent JH but not strongly nilpotent. Let m denote the nilpotency index of JH.
Then H™™! = (.

Proof: There are only three maps that satisfy the conditions of this theorem. It is
easy to verify that they also satisfy the claim of this theorem. a




Though the existence of theorem 5.13 may seem to justify that the answer to ques-
tion 5.12 is positive it actually does the opposite. It provides us with examples of
polynomial maps F : K* — K* with a Jacobian matrix JH that is not strongly nilpo-
tent. And with these examples we can build new maps G : K3 — K3 which satisfy the
conditions of question 5.12 but do not satisfy the claim of it.

Example 5.15 Let F' be the map

1

1.3
o — gl’l

2 2 3 2 2.2
T3 — TiTy — e3L1T5 + §4T1X22L3 — k3£L‘2 + maxse3 + girsr,

2 2 2m A }
T4 — T1T3 — €421 — 944 1T 2X3 — JaX1X2L4 — k4$2

2
m 2 2
— —g; THT3 — MyT5T4
4

then we have that det(JF) = 1 and JH is nilpotent but not strongly nilpotent. The
nilpotency index of JH is four. Furthermore H o H o H =[0,0,0,0], so the iteration
index is three. In a trivial way we can extend this map F to G : K® — K3 by adding
a fifth component to F, namely s — Hs, with Hs equal to zero. If we denote the
homogeneous part of G by H we get that JH is still nilpotent and still not strongly
nilpotent. Furthermore we have that the nilpotency inder of JH s still four and its
iteration index still three.

This observation leads to the following theorem:
Theorem 5.16 The answer to question §.12 is: no.

Proof: Follows immediately from example 5.15. a

5.5 Differential equations

If we look at the system of differential equations given by

yi(t) = Pi(y(t), .,y (1))

(where P; € Rlzy,...,zy]) or abbreviated given by
y=P(y(t))

and with initial values y(0) = « for some z € R” and P;(0) = 0 for all ¢ € {1,...,n},
then we see immediately that the constant function y(¢) = 0 is a solution of this system.
But now the question arises whether this constant solution is globally asymptotic stable
or not.

In some cases we know the answer to this question:

Theorem 5.17 Let F = X — H : R® — R” be a polynomial automorphism and let
P(yt)) = —(JF) Y (y(t))F(y(t)). Then the constant solution y(t) = 0 is a globally
asymptotic stable solution of y = P(y(t)).




Proof: See [Meisters et al. 92, page 4]. a

From this theorem it follows that our maps from theorem 2.7 also represent a class of
systems of differential equations with globally asymptotic stable solutions.







Chapter 6

Dimension five

6.1 Introduction

Naturally, the good results we obtained in dimension four encouraged us to examine
dimension five also. However in dimension four the most general cubic homogeneous
map had 20 x4 = 80 variables. But in dimension five we have 35 x5 = 175 variables. So
there is an enormous increment of complexity of the corresponding system of equations.
Even if we used -like we did in dimension four- a matrix with some initial values we
obtained by a linear invertible map, we still had 150 variables left. So this didn’t
give us much hope or expectation for this case being solved. But it turned out to be
even worse. Indeed we were not able to solve this system, but not since it was simply
too large to solve. It was even too large to draw up! At least it was for the method
described in [Wright 93]. After a week of computation we still hadn’t found all w/-s.
We had problems concerning both the memory size and the processor time. This was
probably caused by the enormous number of different 3-s on one side and the number
of determinants of 4 x 4 and 5 x 5 matrices we had to compute on the other side.

So we made a further restriction. Instead of cubic homogeneous maps we examined
linear cubic homogeneous maps.

Definition 6.1 An n-dimensional polynomial map F is called linear cubic homoge-
neous if it has the form

F; =x; — H;

where H; is homogeneous of degree three and linear in each x;, fori,j=1,... n.

Since this is clearly a subclass of the cubic homogeneous class, we could use the same
method to compute all w?-s. But in this case we had only 10 x 5 = 50 variables. And
since there were lots of zero columns in the matrices of which the determinants had to
be computed, these computations were simpler both in storage and in time aspects. In
particular, we were able to draw up this system. Unfortunately, we couldn’t solve this
system completely. But we did find several solutions and we shall describe them in the
next section.
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6.2 Linear cubic homogeneous maps

The most general linear cubic homogeneous map is given by
F=X-H
where foru =1,...,5

H, = ayrizo03+byr122%4+ cux 1225 + dy12324 + €, 12375 +

fur1as + guarsrs + hyLolsls + iy zozaxs + juTarats.

With this general map we computed the corresponding system of equations. We tried
to solve it in the usual way, i.e. look for easy equations with our procedures es solve
them and substitute their (mostly unique) solutions in the original system. However
we were not able to find a complete solution of this system. At least not within an
acceptable period of time. After a search of approximately two weeks, we had found
several solutions, but there was no accurate estimation of how much more we had to
solve. It seemed as if we had only solved a minor part of the system at the moment we
stopped our examination. But in the solutions we did find we could see some general
patterns, though.

In fact we found 222 solutions. If we look at these solutions we see that they all have
one, two or three H;-s equal to zero.

If we look at the maps with three zeroes, we see that we have maps of the form described
in chapter 3: a map of dimension two. So we can use theorem 3.1 to describe these
maps.

Example 6.2 Let F' be the map

bk bij1
T — e TTers — biziTars — T 1T3T4 — (1727374
— h12223L5 — 1129245 — J12324T5
T
I3
Ty
b2k, b3 bl
Ty + Tz L1223+ T X122Tg + 5 T1T3T4 — J5L2T3T
1 1
bih b1j
+ Frorsms + bixowars + ;fl Z3T4T5

and regard this as a polynomial map (Hy, Ha) € K[z1, 25]x K[z1,25]. With the notation
of theorem 3.1 we can write this two dimensional map as

( Hy ) _ (—ﬂzf(#lxl + paxs) +01).

Hoy 1 f(pazy + pozs) + co
where
H1 = by
He = le
C1 = g1T2T3%4
Cz2 = (5T2T3T4
f(T) — _h1$2$3+$2f24i1+j1$31'4 T

1

This was one arbitrary example of the 32 solutions with three H;-s equal to zero.




If we now take a look at the solutions with two homogeneous parts equal to zero, we
see that this is the major part of the 222 solutions, namely 141. Although they do have
three parts not equal to zero, when we computed the rank of the corresponding JH it
turned out that this rank was always equal to two. So there had to be some C' with
CooC~! = I where F’ has only two real homogeneous parts, and hence we were
back in the two dimension case.

Example 6.3 Let F' be the map

L1
Ty — AyT1T2T3 — daT1T324
T3
T4 — A4T1X2X3 — d4CIZ1(E3(L‘4 — €42123%5
2daasaztastdaasds azds+dsastadi+d]
Ty + e ey 1 T3T

+ (as + da)z12325
then rank(J H) = 2. Furthermore if we let C' be the map

T
()
I3
T4

d 2
o5 + 2a4+a2$ + (l2+d4£

daes ey

4

we get

T

Ty — AaT1ToT3 — daZ12324
T3

CoFo(C ' =

2
a
Tyt F2T1T223 + A2T1T3T4 — €4T1T3Ts

which has only two non-zero homogeneous components.

Note that in example 6.3 the map C'o FoC~1! is again a linear cubic homogeneous map.
Unfortunately this does not hold in general as we can learn from the next example:

Example 6.4 Let F' be the map

T1
£
x3 + byriTors — byrixomy
b2
Tyt piT1T2T3 — byTiTamy
T3 — asT1T2T3 — b5 1Ta%y — d5T123T4 — g5T2T3T4

and let C' be the map

T
T2
ba
Z b4$4
T4
Ts5

Then we have

T
T2
I3

CoFoC ' = A

b
T4+ 5 T1T2T3
T5 — A5T1T2%3 + (——“gfa - 55)331-’82-’84 — dsz123%4

dsb 2 gsba 2
fazl;tll — Y5TaX3Tq — T ETaLY




and we see that this map is not linear cubic homogeneous.

Now if we take a look at the third class of maps we found -the ones with only one
homogeneous part equal to zero- we see that in this set of 49 maps there are 48 maps
with rank(JH) = 2 and one with rank(JH) = 1. In particular we see that there is no
map with rank(JH) > 3. Let us first take a look at the one example of rank one.

Example 6.5 Let F' be the map

e hge hlea
21 — G 212304 + M2 212375 — 1722374 + o7 T2T3Ts5
2
e e h
ey + e 230y — eax 2325 + Gl ywsry — Mlraw30s
4
T3
e3q ei0
T4+ ST TITIT4 — €4T1X3T5 + - TaT3Ty — hyrozszs
5 3 4 2 2
€491 g1, €491 €491
T5 + 5512324 — T1X3%5 + 5 5T2X3L4 — ToX3ls
eghi Sghi eghg eqhy

and let C' be the map
L1
€4
Ty + 5T
T3
T4+

4
g1€

z5 + S5
274

2
€4
ezhy 1

then we get

eah?
23t TaT3Ts
4

T1— g1%2T3T5 +

T2

-1 _
CoFo(C™ = T3
Tq
T3

Since this was an example of rank one it is natural that each C; = x; 4 ¢;z; for all ¢
and some j. But in the examples with rank two we also found something like that. In
general each

Ci =z + cijx; + cipy,

but in our examples we found that either ¢;; = 0 or ¢;; = 0 for each 1.
If we now take a look at one of the examples with rank(JH) = 2 we can illustrate what
we mean by this.

Example 6.6 Let I' be the map

1

Ty — b}? 1oLz — ba1Toxy — €22123%5 — fox1Tas

_ baes

fa

bael

T4+ 2 T1T223 +
2

b
r5 +

r3 r1roxs — b3.’l?1.’l,'2.’l,'4

baea
fa

L1L2L4

2 2
eq b

;2 r1Ta23 + f—lemm + bj.?:vl:vgxs + bozqixaTs
2

and let C' be the map




then we get

T
T3
-1 T3
CoFo(C™ " = bae? 2
T4+ 36213113‘71‘3— bae?x1x3x5
1T 2 b2t
ble
T5 + S22
2

If we compare the C from this example with the C' from example 6.3 we can see what
we meant by the remark made above concerning the special form of the transformation
map C' in this class where there was only one zero homogeneous part. This special
form of C' where for each ¢

Ci =i + ¢ijTj + CigTy

either ¢;; = 0 or ¢j, = 0 is a consequence of the fact that the four non-zero homo-
geneous parts always appear in two pairs, where the two components of a pair can
be transformed to each other by multiplication with a constant. In particular it does
not happen that one of the H;-s is a linear sum of two other H;-s with two non-zero
constants.

All other maps in this class followed the same special structure of C.

6.3 Future work

There is still a lot of research left to be done in this area. Since we didn’t solve the
linear cubic homogeneous system in dimension five completely, this is the first aspect
that comes into mind. As we explained before the reason that we didn’t solve this
system completely was not because it is inherent too difficult, but more because of the
practical reason that we didn’t have enough time to solve it. So we think that with
enough time and patience it can be solved completely. However we do think that this
class will not give any really new maps, such as a map with three independent H;-s.

The next step is more interesting. This is the case where we omit the linearity demand
and examine the complete class of cubic homogeneous maps in dimension five. But
as we have seen in the introduction of this section it is even difficult to draw up this
system, since it takes a very long time to compute all determinants. So it might be
very interesting for this dimension -and higher dimensions of course- to look for an
alternative way to compute this system. It should be a way without all those expensive
determinants of 5 x 5 matrices.

Now if one has been able to compute this complete system there are several ways to
continue. The first is to try to solve the system completely, but since we have seen
it was difficult -in time- to solve the linear system, this is probably too opportunistic,
even though we can substitute a 5 X 5 matrix with initial values in this case.

A second continuation with probably more success, is the approach we took in chapter 4.
There we solved the Druzkowski system and with this solution we were able to find for
instance a complete set of representatives for the power similarity relation. But if we
take a look at [Meisters 91] we see that this is probably a large set and thus probably
a lot of work.

A third approach is probably the most interesting. In this case we don’t intend to find
a complete classification. We are only interested in just one counterexample to the
Jacobian Conjecture. It may seem a bit strange that after we found the affirmative
results in dimension four, we still think the Jacobian Conjecture in general is not true.




But we can explain this. If we look at the research in dimension three, it was all very
simple since there weren’t many cases. If we look at the research in dimension four, we
see that we have to distinguish several cases. This is basically the consequence of the
fact that in dimension three; there is only one interesting Jordan normal form:

01 0
0 01
0 0 0

whereas there are three forms with rank at least two in dimension four:

01 0 0 01 00 01 0
00 10 000 0 q100 10
000 0| too o 1] loo o1
000 0 000 0 000 0

Of course in dimension five we have even more of these forms. But if we are looking
for a counterexample we don’t have to examine all of these cases. From the results
we found it is obvious that if the rank of JH is too small or too large there is not
much chance that this will give a counterexample. The reason everything went well
according to the Jacobian Conjecture in dimension three and four is that there is not
enough room for strange things. If rank(JH) = 2 it is so low that everything is fixed
and if rank(JH) = 3 it is so high that again everything is fixed. Now in dimension
five we think that if rank(JH) = 2 or rank(JH) = 4 everything is in order with the
Jacobian Conjecture, but if rank(JH) = 3 there might just be enough freedom for
something strange to happen. In fact we even have an interesting matrix with initial
values in mind for this case. But unfortunately we have not been able so far to compute
the complete system of so-called wf—s. So we have not been able to test this interesting
matrix.




Appendix A

Procedures

A.1 Introduction

This appendix shows the code of the Maple procedures we used and it also describes
the way we used them. We used Maple V Release 2.

A.2 The concrete implementation

The following procedures are all in a file called part5. This must be read in the
beginning of a Maple session.

Some initializations:

X:=[x1,x2,x3,x4];

alfabet:=[’a7’7b7,7C’,7d7’7e7,’f’,7g7,7h7,7i”
)j”’k”’l”)m”’n”7o!’)p”’q”)r7’
7S7’7t)’)u),7v7’7W),7XJ,7y),)Z)]:

readlib(write):

The ‘linalg’ package defines a new ‘trace’ so we have to make a copy of the original one.
The if-construction is necessarily since otherwise if we read this file more than once,
we would still loose the original trace-procedure and get two copies of the trace from
the ‘linalg’ package.

if op(rtrace)=rtrace
then

rtrace:=op(trace);
fi;

with(linalg):
read(jacobi):

65




A.2.1 Procedures for manipulation of partitions
The procedure partitions:

Input: Two integers number and n.

Output: A list with all partitions of number over n places.

partitions := proc(number,n)
local i,j,k,parts,tail;
ifn=1

then

RETURN ([ [number]])
elif number = 0
then
RETURN ([[0$n]1)
fi;
parts := [1;
for i from number by -1 to 0
do
j := number - i;
tail := partitions(j,n-1);
for k from 1 to nops(tail)
do
parts := [op(parts),[i,op(taillk])]]
od
od;
eval (parts) ;
end:

The procedure sumpart:
Input: Two partitions pl and p2.

Output: One partition pl+p2.

sumpart := proc(pl,p2)

local ij;
if nops(pl) <> nops(p2)
then
ERROR(‘Partitions have different lengths‘)
fi;
[’p1[il+p2[il’$’i’=1. .nops(p1)];
end:

The procedure subpart:

Input: Two partitions pl and p2.

Output: One partition pl-p2.

subpart := proc(pl,p2)
local ij;
if nops(pl) <> nops(p2)
then
ERROR(‘Partitions have different lengths‘)
fi;
[’p1[il-p2[i]’$’i’=1..nops(p1)];
end:




Note that although the procedures sumpart and subpart were originally written for
partitions, they can be used to add or subtract all kinds of lists with the same length.

The procedure pospart:

Input: A partition p.

Output: A boolean which is true iff all elements of p are non-negative.

pospart := proc(p)
local i;
for i from 1 to nops(p)
do
if p[il < 0
then
RETURN (false)
fi
od;
true;
end:

The procedure pairs:

Input: A list of partitions parts, a single partition sum and a number n.

Output: A list of lists of n partitions which form the partition sum when added. All
partitions must come from the original list parts.

pairs := proc(parts,sum,n)
local total,poss,rest,diff,tail,i;
ifn=1
then
if member (sum,parts)
then
RETURN ([[sum]])
else
RETURN ([1)
fi
fi;
total := [];
rest := parts;
while rest <> []
do
poss := rest[1];
rest := [op(2..nops(rest),rest)];
diff := subpart(sum,poss);
if pospart(diff)
then
tail := pairs(rest,diff,n-1);
if tail <> []

then
for i from 1 to nops(tail)
do
total := [op(total), [poss,op(taillil)]]
od
fi
fi
od;
eval (total);

end:




A.2.2 Procedures to compute each w?

The procedure firstsummand:

Input: An integer r and a list of integers numbers of the form [1,..,n]

Output: A list of all possible choices of r different integers from the list numbers. The
first summand in the definition of w? runs over this list.

firstsummand := proc(r,numbers)
local n,rest,total,head,tail,i;
n := nops (numbers);
if r =1
then
RETURN ([’ [numbers[i]]1°$’i’=1..n])
elif r = n

then
RETURN ( [numbers])
fi;
rest := numbers;
total := [1;
while rest <> []
do
head := rest[1];
rest := [op(2..n,rest)];
n := nops(rest);
tail := firstsummand(r-1,rest);
for i from 1 to nops(tail)
do
total := [op(total), [head,op(tail[i])]]
od
od;
eval (total) ;
end:

The procedure secondsummand:

Input: An integer r, one of the elements coming from the result of the procedure
firstsummand (ti), a partition beta, a list of partitions parts and a number n
which indicates the length of each partition.

Output: A list of list of r partitions which have as a sum beta plus the index partition
€t,+- - -+&¢,. This is a list over which the second summation runs in the definition

of w?.

secondsummand := proc(r,ti,beta,parts,n)
local eps,j;
eps := [1;
for j from 1 ton
do

if member(j,ti)

then

eps := [op(eps),1]
else




eps := [op(eps),0]

fi
od;
eps := sumpart (eps,beta);
eval (pairs(parts,eps,r));
end:

The procedure smallpart:

Input: The matrix M, an element of the first summand i, an element of the second
summand j, the dimension of the matrices that appear behind the summation
signs in the definition of w? and a list of partitions.

Output: The product of the two determinants in the definition of w?.

smallpart := proc(M,i,j,r,parts)
local A,B,k,1,pos;
option remember;
A := array(1..r,1..r,[[0$r]$r]);
B := array(l..r,1..r,[[0$r]$r]);
for k from 1 to r
do
for 1 from 1 to r
do
Alk,11 := jI110i[k1T1;
if member (j[1],parts, ’pos?)
then
Blk,1] := M[il[k],pos]
else
ERROR( ‘Current partition not valid‘)
fi
od
od;
eval (det (A) *det (B)) ;
end:

The procedure wrbeta:

Input: Integers r and n, a partition beta, a matrix M with the coefficients of the map,
and a list parts of partitions.

Output: The value of w’.

wrbeta := proc(r,n,beta,M,parts)

local fs,sum,i,ss,j;

print (w_r_beta,r,beta);

# this print statement shows at what point the
# process is running at the moment

fs := firstsummand(r,[’i’$’i’=1..n]);
sum := 0;
for i in fs
do
ss := secondsummand(r,i,beta,parts,n);
for j in ss
do
sum := sum + smallpart(M,i,j,r,parts)
od

od;




sum := ((-1)"r)*sum;
eval (sum) ;
end:

A.2.3 The main procedure
The procedure simplifyM:

Input: A matrix M with the coefficients of the original map and the dimension n.

Output: A list containing a matrix and a system of equations. The matrix is the same
as M, unless the dimension is 3. In that case, the one solution, is substituted in

the original M.

simplifyM := proc(M,n)

local partsl,N,i,system,parts2,j,solution;
partsl := partitions(3,n);

N := evalm(M);

system := {};

solution := {};
for i from 1 ton
do
parts2 := partitions(2%i,n);
for j in parts2
do
system := {op(system) ,wrbeta(i,n,j,N,parts1)}
od;
od;
if n=3
then
solution := solvesystem(system);
N:= subs(solution,evalm(N));
fi;
[evalm(N) ,system];
end:

A.2.4 Procedures used to solve system of equations
The procedure easysystemi:

Input: A system of equations.

Output: A set of equations of the form single variables times some constant or powers
of variables times some constant.

easysysteml := proc(sys)
local n,easy,i,stype;
n := nops(sys);

easy := {};

for i from 1 ton

do




stype := whattype(sys[il);
if member (stype,{‘string‘})
then
easy := {op(easy),sys[il}
elif (member(stype,{‘*‘})) and
(nops (sys[i])=2) and
(member (vhattype (op(1,sys[il)) ,{‘integer‘, ‘fraction‘}) or
member (whattype (op(2,sys[i])) ,{‘integer‘, ‘fraction‘}))
then
easy := {op(easy),sys[il}
elif member (stype,{‘"‘}) and nops(indets(sys[i]))=1

then
easy := {op(easy),sys[il}
fi
od;
eval (factor (easy));
end:

The procedure easysystem2:

Input: A system of equations.

Output: A set of equations where the equations must have at least one linear term
and at most 10 terms. Furthermore all equations with at most 2 terms are picked.

easysystem2 := proc(sys)
local n,easy,i,stype,j;
n := nops(sys);
easy := {};
for i from 1 to n
do
stype := whattype(sys[il);
if member (stype,{‘*‘, ‘string‘})
then
easy := {op(easy),sys[il}
elif
member (stype,{‘+‘})
then
if nops(sys[i]) < 3
then
easy := {op(easy),sys[il}
elif nops(sys[i]) < 10

then
for j from 1 to nops(sys[i])
do
if member (whattype(op(j,sys[il)),{‘string‘})
then
easy := {op(easy),sys[il};
break
elif
member (whattype (op(j,sys[il)),{‘*‘})
then

if (nops(op(j,sys[il))=2) and
((member (whattype (op(1,op(j,sys[il))) ,{‘integer‘}) and
member (whattype (op(2,0p(j,sys[il))),{‘string‘})) or
(member (whattype (op(2,0p(j,sys[il))) ,{‘integer‘})) and
member (whattype (op(2,0p(j,sys[il))),{‘string‘}))
then
easy := {op(easy),sys[il};
break




fi
od;
print (nops (easy)) ;
eval (factor(easy));
end:

The procedure easysystem3:

Input: A system of equations sys, two sets of indeterminates ind and new.

Output: All equations that have at more indeterminates than the ones from ind, and
that have no other indeterminates than ind union new. In practice ind is normally
the empty set.

easysystem3 := proc(sys,ind,new)
local i;

easy:={};

for i from 1 to nops(sys)

do

if ((nops(indets(sys[i]) minus ind) > 0) and
(nops (indets (sys[i]) minus (ind union new)) = 0))
then
easy:={op(easy) ,sys[il};
fi;
od;
print (nops (easy)) ;
eval (factor(easy));
end:

The procedure easysystem4:

Input: A substitution a and a set of equations b.

Output: The set of equations you get after substitution of a in b and simplifying -in
case of fractions- and finally expanding in order to achieve that the procedures
esl,es2 and es3 work properly.

es4:=proc(a,b)
local c;
c:=expand (simplify(subs(a,b)));
print (nops (c) ,nops (indets(c))) ;
<3

end:

The procedure easysystem5. This is basically the same as easysystem3, but we do not
factor here. Sometimes the factorization takes too long.

easysystemb := proc(sys,ind,new)
local i;

easy:={};

for i from 1 to nops(sys)

do

if ((nops(indets(sys[il) minus ind) > 0) and




(nops (indets (sys[i]) minus (ind union new)) = 0))
then
easy:={op(easy),sys[il};
fi;
od;
eval (easy);
end:

The procedure solvesystem:

Input: A system of equations sys.

Output: A solution for as far as there exists only one solution. This procedure can
not be used very much.

solvesystem := proc(sys)
local system,easyl,easy2,solution,solution2,solution3;
system := sys;
solution3 := {};
easyl := easysystem2(system);
while easyl <> {}
do
easy?2 := easysystenl(system);
while easy2 <> {}
do
system := system minus easy2;
solution := solve(easy2);
solution? := {solution};
if nops(solution2) > 1
then
solution := ‘intersect‘(’solution2[i]’$’i’=1..nops(solution2));
system := system union easy2
elif nops(solution2) = 0
then
ERROR(‘No solution for this system‘)
fi;
solution3 := subs(solution,solution3) union solution;
system := subs(solution,eval (system));
system := system minus {0};
easy2 := easysysteml(system)
od;
easyl := subs(solution3,eval (easyl));
system := system minus easyl;
solution := solve(easyl);
solution2 := {solution};
if nops(solution2) > 1
then
solution := ‘intersect‘(’solution2[i]’$’i’=1..nops(solution?));
elif nops(solution2) = 0
then
ERROR(‘No solution for this system‘)
fi;
solution3 := subs(solution,solution3) union solution;
system := subs(solution,eval (system));
system := system minus {0};
easyl := easysystem2(system)
od;
system := subs(solution3,eval(sys));
solution := solve(system);
solution2 := {solution};




if nops(solution2) > 1

then
solution := ‘intersect‘(’solution2[i]’$’i’=1..nops(solution2));
elif nops(solution2) = 0
then
ERROR( ‘No solution for this system‘)
fi;
solution3 := subs(solution,solution3) union solution;
eval (solution3) ;
end:

Abbreviations: it turned out that easysystem is a difficult word to type, so we intro-
duced some abbreviations with es:

esl := op(easysysteml):
es2 := op(easysystem2):
es3 := op(easysystem3):
esb := op(easysystem5):

The procedure es8:

Input: A system of equations c.

Output: A list of two elements. The first element is a list of indices in the system
of equations with descending number of variables. The second element is this
smallest number of variables.

es6:=proc(c)
local i,min,index;
min:=nops (indets(c));

index:=[]1;
for i from 1 to nops(c)
do

if nops(indets(c[il)) > 0 and
nops (indets(c[i])) <= min
then
min:=nops (indets(c[il));
index:=[op(index),i];
fi;
od;
[index,min] ;
end:

A.2.5 General tools

The procedure maakhomogeen:

Input: A list L of maps X-H.

Output: A list of maps H. It gives the homogeneous part of the maps.




maakhomogeen:=proc (L)

local i,HL,j;

HL:=[];

for i from 1 to nops(L)

do

HL:=[op (HL) ,factor ([’x.j-L[i1[j1’$’j’=1..nops(L[11)1)];

od;

HL:
end:

The procedure maakjacobiaan:

Input: A list L of homogeneous maps H.

Output: A list of jacobianmatrices JH.

maak jacobiaan:=proc(L)

local i,NL;

NL:=[];

for i from 1 to nops(L)

do

NL:=[op(NL), jacobian(L[il,[’x.j’$’j’=1. .nops(L[11)])]:

od;

NL:
end:

The procedure genereeralg:

Input: A natural number n.

Output: The most general polynomial map in dimension n which is cubic homoge-
neous. As a side effect the coefficients of the map are placed in a global matrix
M.

genereeralg:=proc(n)

local i, j,par,mon,X;
X:=[’x.i’$’i’=1..n];

par := partitions(3,n);
M:=array(1..n,1..nops(par));
for i from 1 to n

do
H.i:=0;
od;
for i from 1 to nops(par)
do

mon:=maakmonoon (X,par[i],n);
for j from 1 ton
do
H.j:=H.j + Y.j.1i * mon;
M[j,1i] = Y.j.i;
od;
od;
[’x.i-H.i’$’i’=1..n];
end:

The procedure maakmonoom:

Input: A list of variables var, a partition par and a number n.




Output: The monomial a}* - - - ab~, where var=[ay, ..., a,] and par=[pl,..,pn].

maakmonoom: =proc (var,par,n)
local i,mon;

mon:=1;
for i from 1 to n
do
mon:=mon*var[i] “par[i];
od;
end:

The procedure maakopl:

Input: A list of substitutions list and a single substitution sub.

Output: A list of substitutions derived by substituting each element of list in the
original sub and union this with the element of list, so that we enlarge the sub-
stitution sub by the one from list and also apply the substitution from list to
sub.

maakopl :=proc(list,sub)
local i,list2;
list2:=[1;
for i from 1 to nops(list)
do
list2:=[op(1list?2) ,subs(list[i],sub) union list[i]]
od;
list2:
end:

The procedure bepaalopl:

Input: A list,set or single variable var and a list of substitutions oo.

Output: A list with the indices of the list oo which do not yield zero after substitution
on var.

bepaalopl:=proc(var, 00)
local ij;
lijst:=[]:
for i from 1 to nops(oo)
do
if not (member (0,convert (subs (oo[i],var) ,set)))
then
lijst:={op(lijst),i}:
fi;
od;
lijst
end:

The procedure maakdruz:

Input: A natural number n.

Output: The most general polynomial map F in dimension n on Druzkowski form. As
a side effect the coefficients of this map are placed in the global matrix M.




maakdruz:=proc(n)

local i,F,H,term,H2,par;
par:=partitions(3,n):
M:=array(1..n,1..nops(par));

H:=[];
F:=[1;
for i from 1 to n
do
term:=0;
for j from 1 ton
do
term:=term + cat(alfabet[j],i)*x.j;
od;

H:=[op(H) ,term~3];
F:=[op(F),x.i - H[ill;

od;
H2:=["sort(expand (H[i]),[’x.j’$’j’=1..n])’$’i’=1..n];
for i from 1 to n
do
for j from 1 to nops(par)
do
M[i,jl:= coeffs(op(j,H2[i]),[’x.j’$’j’=1..nl);
od;
od;
F;
end:

The procedure powersim:

Input: A matrix A and its nilpotency index nil.

Output: This procedure computes a system of equations that should hold if A is
power similar to one of the six matrices from Meisters. They are separated by
their rank and nilpotency index. If possible these systems (at most 3) are solved
automatically by Maple. If this gives some problems one should comment out
the appropriate rules. The systems are stored in the global variables sysl1,sys2
and sys3. So one can always try to solve these systems by hand. The automatic
solutions are stored in the global variables opsysl,opsys2 and opsys3.

powersim:= proc(A,nil)
local i,j,r,T,X,powermatrices,ATX3,TBX3,B,C;
T:=array([[pl,q1,r1,s1],[p2,92,r2,s2], [p3,93,r3,s3], [p4,q4,r4,s4]1]1);
X:=[x1,x2,x3,x4];
var:={p1, p2, ql, s1, r1, q2, s2, r2, p4, p3, q3, s3, r3, q4, s4, r4,z};
sysl:={z*det (T)-1};
sys2:={z*det (T)-1};
sys3:={z*det (T)-1};
powermatrices:=[[array([[0,1,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]11)],
[array([[0,1,0,0],[0,0,0,0],[0,0,0,1],[0,0,0,011),
array([[0,1,0,0],[0,0,1,0]1,[0,0,0,0],[0,0,0,011),
array([[0,0,1,0],[0,0,1,1],[0,0,0,11,[0,0,0,011)],
[array([[0,1,0,0],[0,0,1,0],[0,0,0,11,[0,0,0,011),
array([[0,1,1,0],[0,0,1,01,[0,0,0,1],[0,0,0,011)11;
r:=rank (A);
ATX3:=evalm (A% (T*X));
ATX3:=[’ATX3[j]1°3’$’j’=1..4];
for i from 1 to nops(powermatrices[r])
do
B:=powermatrices[r][i];
TBX3:=evalm(B*X) ;




TBX3:=["TBX3[j1°3°$’j’=1..4];
TBX3:=evalm(T*TBX3) ;
C:=[’collect (ATX3[j]1-TBX3[j],[x1,x2,x3,x4],distributed) ’$’j’=1..4];
for j from 1 to 4
do
sys.i:={op(sys.1i),coeffs(C[j], [x1,x2,x3,x4])};
od;
od;
for i from nops(powermatrices[r])+1 to 3
do
sys.i:={1};
od;
if (r=2) and (nil=2)
then
sys2:={1};
sys3:={1};
elif (r=2) and (nil=3)
then
sysl:={1};
fi:
opsysl:=[solve(sysl,var)];
opsys2:=[solve(sys2,var)];
opsys3:=[solve(sys3,var)];
print (r,nops (opsys1) ,nops (opsys2) ,nops (opsys3)) ;
end:

The procedure trans:

Input: Two matrices A and B.

Output: A general matrix T. This matrix T has been used to draw up a system of
equations that should hold if T=! A T = B. This system is stored in the global
variable sys]1.

trans:=proc(A,B)
local i,T,X;
T:=array([[p1,ql,r1,s1],[p2,92,r2,s2], [p3,q3,r3,s3],[p4,q4,r4,s41]);
X:=[x1,x2,x3,x4];
var:={p1, p2, q1, s1, r1, q2, s2, r2, p4, p3, g3, s3, r3, g4, s4, r4,z};
sysi:={zxdet (T)-1};
TA:=evalm(T*A) ;
BT:=evalm(BxT) ;
C:=[’’collect(TA[i,j]1-BT[i,j], [x1,x2,x3,x4] ,distributed) ’$’j’=1..4°$’i’=1..4];
for j from 1 to nops(C)
do
sysl:={op(sys1) ,coeffs(C[j1, [x1,x2,x3,x4]1)};
od;
evalm(T) ;
end:

The procedure maakdruzmat:

Input: A list dru with the solutions of the Druzkowski system as they were found after
the substitution ¢4 = 0,d4 =0, b4 = 0, a4 = 0.

Output: A list of matrices of the coefficients of the Druzkowski forms.




maakdruzmat: =proc(dru)
local i,A,M,een;
A:=array([[al,bl,c1,d1], [a2,b2,c2,d2], [a3,b3,c3,d3],[ad,bd,c4,d4]]):
M:=[]:
een:={c4 =0, d4 = 0, b4 = 0, a4 = 0};
for i from 1 to nops(dru)
do
M:=[op (M) ,subs(een,druli],evalm(4))];
od;
end:

The procedure strongnilpotent:

Input: A map F=X-H.

Output: A boolean that indicates whether JH is strong nilpotent or not.

strongnilpotent := proc(F)

local Alfa,i,Z,n,H,j,N,prod;

Alfa:=[7A7’7B),’c7’7D7’7E7’7F”7G)’7H7,7I7’
)J),)K’,)L”)M)”N”)U),)P’,’Q)”R)’
)S),)T’,)U),)V)”H”)x),)Y’,)Z)]:

n:=nops (F);
Z:=array([[0$n]$n]) ;
H:=maakhomogeen ([F]) ;
N:=op(maakjacobiaan(H)) ;

prod:=subs({’x. j=cat (Alfa[1],j)’$’j’=1..n},evalm(l));
for i from 2 to n
do
prod:=evalm(prod*subs ({’x. j=cat (A1fa[il,j) ’$’j’=1..n},evalm(N)));
od;
print (‘Strong nilpotency of ) ;
print (evalm(l)) ;
print (linalglequall (prod,Z));
end:

The procedure strongnillist:

Input: A list G of maps.

Output: The result of the strong-nilpotency test is written to a file ‘strnil’ for all
elements of G.

strongnillist:=proc(G)
local i;
open(strnil);
for i from 1 to nops(G)
do
print (‘solution ‘.i);
strongnilpotent (G[il);
od;
close(strnil);
end:

The procedure strongnilclass4:

Input: The seven solutions from the classification in a list G.




Output: The result of the nilpotency test is written to the file strnilclass4.

strongnilclass4:=proc(G)
local ij;
open(strnilclass4);
print (‘#####d##ds JH has rank two and JH™2.X=0 #it##stdasis);
for i from 1 to 2
do
print (‘solution ‘.i);
strongnilpotent (G[i]);
od;
print (‘#######4#4 JH has rank two and JH™2.X<>0 #it#it#idtis ‘) ;
for i from 3 to 5
do
print (‘solution ‘.1i);
strongnilpotent (G[i]);
od;
print (‘#######4#t JH has rank three and JH"3.X<>0 #titdtiissas‘);
for i from 6 to 7
do
print (‘solution ‘.i);
strongnilpotent (G[i]);
od;
close(strnilclass4) ;
end:

The procedure nilpotencyindex:

Input: A matrix M with dimension n x n.

Output: The nilpotency index of M. (If M is nilpotent, otherwise an error message.)

nilpotencyindex:=proc(M,n)
local i,Z;
Z:=array ([[0$n]$n]) ;
for i from 1 ton
do
if linalglequall(Z,evalm(M~1i))
then RETURN (i)
fi
od;
ERROR( ‘Matrix not nilpotent‘);
end:

The procedure iterationtest:

Input: A map F=X-H.

Output: A list with a boolean that indicates the validity of some conjecture and with
the nilpotency index of JH and with the iteration number of H.

iterationtest := proc(F)
local i,n,H,N,K,j;
n:=nops (F);

H:=op (maakhomogeen([F])) ;
N:=op(maakjacobiaan([H])) ;
ni:=nilpotencyindex(N,n) ;
it:=iterationnumber (H) ;
[evalb(ni-it=2) ,ni,it]
end:




The procedure iterationnumber:

Input: A homogeneous map H.

Output: The smallest number n (n < max) with H”=0. If such an n doesn’t exist an
error message is returned.

iterationnumber := proc(H)

local i,max,K;

max := 20;

n:=nops (H);

K:=H:

for i from 2 to max

do
K:=compose (K,H,[’x.j’$’j’=1..n]);
if linalglequal] (K, [0$n])
then RETURN (i)
fi;

od;

ERROR(‘Not vanished after ‘.max.‘ iterations‘);

end:

The procedure deltah:
Input: A list gee and a map ef.

Output: The list (ef-1)(gee) where 1 is the identical map.

deltah:=proc(gee,ef)
local cee,i,X;
X:=[’x.i’$’i’=1. .nops(ef)];

cee := compose(gee,ef,X);
[?cee[il-geel[il’ $ (?i’ = 1 .. nops(gee))]
end:

The procedure deltahnumber:

Input: A map F and a number max.

Output: The smallest number n (n<max) with deltah™=0. If this doesn’t exist an
error message is returned

deltahnumber:= proc (F,max)
local i,K;
n:=nops (F);
K:=[’x.i’$’i’=1..n];
for i from 2 to max
do
K:=deltah(X,F);
if linalglequal] (K, [0$n])
then RETURN (i)
fi;
od;
ERROR(‘Not vanished after ‘.max.‘ iterations‘);
end:

The procedure computeD:




Input: A polynomial map F.

Output: A locally nilpotent derivation D with F=exp(D). (If such a derivation exists.)

computeD:=proc (F)

local i,j,D,K,n;

n:=nops (F);

D:=[0%n];

K:=[’x.i’$’i’=1..n];

K:=deltah(K,F);

ji=1;

while not(linalglequall (K, [0$n]))

do
D:=[’D[il+(-1)"(j-1)/j*(K[il)’$’i’=1..n];
K:=deltah(K,F);
ji=j+1;

od;

D;

end:

The procedure computeexpD:
Input: A locally nilpotent derivation D.

Output: The map exp(D).

computeexpD:=proc(D)
local X,i,j,expD,K;

n:=nops(D);

K:=[’x.i’$’i’=1..n];

X:=K;

expD:=K;

ji=1;

while not(linalglequall (K, [0$n]))
do

K:=[’applyder(K[i],D,X)’$’i’=1..n];
expD:=[’expD[i]l+1/j'*(K[i])’$’i’=1..n];
ji=j+1;
od;
expD;
end:

The procedure transform:
Input: A map F.

Output: The map F on the new coordinates where x2=x2+1/3*x13.

transform:=proc (F)
subs (x2=x2+1/3%x1"3,F) ;
end:

The procedure struct:

Input: A map F, two indices a and b.




Output: The homogeneous part of F, taken as a map in K[xa,xb]. In global variables
H,R,D and JD this map is structured according to the structure theorem in
chapter 3.

struct :=proc(F,a,b)
H:=op(maakhomogeen ([F])) ;
R:=subs ({x.a=0,x.b=0},H) ;
D:=[H[al-R[al,H[b]-R[b1];
JD:=jacobian(D, [x.a,x.b]);
D:=factor(D);

end:

The procedure ordern:

Input: A map F, the variables X and the dimension n.

Output: A system of equations that must hold if we assume that F”=I.

ordern:=proc(F,X,n)
local i,FF,HH;
FF:=compose([’x.1’$’i’=1. .nops (F)]1,F,X);
for i from 2 to n
do
FF:=compose (FF,F,X) ;
od;
HH:=[’x.i-FF[i]’$’i’=1..4];
HH:=["collect (HH[i],X,distributed) ’$’i’=1..nops(F)];
ef:={};
for i from 1 to nops(F)
do
ef :={op(ef),coeffs (HH[i],X)}
od;
end:

The procedure ordertest:

Input: A map F, the variables X and a special variable t.

Output: The result of a partial solution of the ordern set of equations if it is sub-
stituted in the special variable t. For instance we wanted to see that for all n
g4=0 was necessary. So we took t=g4, and saw that it was always zero after the
substitution.

ordertest:=proc(F,X,t)
local i,max;
max:=30:
for i from 1 to max
do
ordern(F,X,1i):
solve (esl(ef)):
print (i,subs(",t));
od:
end:

The procedure gelijk:




Input: Two lists of equal length.

Output: A boolean that indicates whether the two lists were equal.

gelijk:=proc(F,G)
linalglequal] (simplify ([’F[i]-G[i]’$’i’=1..nops(F)]1), [0%$nops(F)1);
end:

The procedure testexp:

Input: A list G of polynomial maps.

Output: The result of the comparison between the elements of G and the exp(D)’s as
they were computed for each element of G.

testexp:=proc(G)
local i,D,eD;
for i from 1 to nops(G)
do
D:=computeD(G[i]);
eD:=computeexpD (D) ;
print (i,gelijk(G[il,eD));
od;
end:

A.3 Solving the general case

This section shows the way we were able to solve the general case of the cubic homo-
geneous polynomial maps in dimension four.

A.3.1 The system of equations for rank two

We start with some initialization.

read part5h;
with(linalg):
X:=[x1,x2,x3,x4]:

# generic polynomial map for n=4

H1 := al*x173 + bl*x172%x2 + cl*x172%x3 + dl*x172%x4 + el*x1%x272 +
flex1*x2%x3 + glxx1*x2%x4 + hl*x1%x372 + il*x1*x3*x4 + jl*x1*x472 +
k1%x273 + 11%x272%x3 + m1*x272%x4 + nl*x2%x372 + ol*x2%x3%x4 +
pl*x2%x472 + q1*x373 + r1*x372%x4 + s1*x3*x472 + t1%x473:

H2 := a2%x173 + b2%x172%x2 + c2%x172%x3 + d2%x172%x4 + e2%x1%x272 +
f2xx1%x2%x3 + g2*x1*x2%x4 + h2%x1%x372 + i2%x1%x3*%x4 + j2*x1%x472 +
k2%x273 + 12%x272%x3 + m2%x2"2%x4 + n2*x2*x372 + 02%x2%x3%x4 +
P2*x2%x472 + q2%x373 + r2*%x372%x4 + s2%x3%x472 + t2%x473:

H3 := a3*x173 + b3*x172%x2 + c3%x172%x3 + d3*x172%x4 + e3*x1%x272 +
£3xx1%x2%x3 + g3*x1*x2%x4 + h3*x1%x372 + i3*x1%x3*x4 + j3*x1%x472 +
k3*%x273 + 13%x272%x3 + m3*x2”72%x4 + n3*x2%x372 + 03*x2%x3*x4 +
p3*x2%x472 + q3%x373 + r3*x372%x4 + s3%x3%x472 + t3*%x473:

H4 := ad4%x173 + b4*x172%x2 + c4*x172%x3 + d4*x172%x4 + ed*x1%x272 +




faAxx1%x2%x3 + gdkx1*x2%x4 + hd*x1%x372 + i4*x1%x3%x4 + j4*x1%x472 +
k4%x273 + 14%x272%x3 + m4*x272%x4 + ndxx2%x372 + 04*x2*x3*x4 +
p4*x2%x472 + q4*x373 + r4*x372%x4 + s4*x3%x472 + t4*x4"3:

F1 := x1 - H1:
F2 := x2 - H2:
F3 := x3 - H3:
F4 := x4 - H4:

H:=[H1,H2,H3,H4]:
F:=[F1,F2,F3,F4]:

M := array(1..4,1..20,[[a1,bl,c1,d1,el,f1,g1,h1,i1,j1,
k1,11,m1,nl1,01,pl,ql,rl,s1,t1],
[a2,b2,c2,d2,e2,£2,82,h2,i2,j2,
k2,12,m2,n2,02,p2,92,r2,s2,t2],
[a3,b3,c3,d3,e3,£3,83,h3,i3,3j3,
k3,13,m3,n3,03,p3,q93,r3,s3,t3],
[a4,b4,c4,d4,ed,f4,g4,h4,i4, 4,
k4,14,m4,n4,04,p4,q4,14,s4,t41]);

Now we continue by computing JH,JH?,JH?3 and JH? X. Furthermore we collect all
entries of JH? and JH?.X and put these twenty polynomials in a list. From this list
we extract the coefficients of all monomials and put them in two systems: af contains
all equations from JH? = 0 and bf contains all equations from JH?.X = 0. The set
cf is the union of af and bf.

=

N := jacobian(H, [x1,x2,x3,x4]):

N2:=evalm(N~2):
N3:=evalm(N2x*N) :

N2X:=evalm(N2*X) :

N3N2X:=[]:
for i from 1 to 4
do
for j from 1 to 4
do
N3N2X:=[op (N3N2X) ,collect (N3[i,j],X,distributed)]
od
od:

for i from 1 to 4
do

N3N2X:=[op (N3N2X) ,collect (N2X[i] ,X,distributed)]
od:

af:={}:
for i from 1 to 16
do
af :={op(af) ,coeffs (N3N2X[i],X)}
od:

bf:={}:
for i from 17 to 20
do
bf :={op (bf) ,coeffs (N3N2X[i],X)}
od:




cf := af union bf:

A3.2 JH?=0and JH:.X =0

In this case we had two matrices to substitute in the system.

subl:={al=0,a2=1/3,a3=0,a4=0,b1=0,b2=0,b3=0,b4=0,c2=0, c3=0, c4=1,
d1=0,d2=0,d3=0,d4=0};

sub2:={a1=0,a2=1/3,a3=0,24=0,b1=0,b2=0,b3=0,b4=0,c1=1, c2=0, c3=0, c4=0,
d1=0,d2=0,d3=0,d4=0};

df :=es4(subl,cf):

es1(df);
ee:=solve(");
df :=es4(",df) :

es1(df);

solve(");
ee:=subs(",ee) union ":
df :=es4(",df):

es1(df);

solve(");
ee:=subs(",ee) union ":
df :=es4(",df):

es1(df);

solve(");
ee:=subs(",ee) union ":
df :=es4 (",df):

es1(df);

solve(");
ee:=subs(",ee) union
df :=es4 (",df):

es6 (df) ;
df3:=es3(df,{},{c1,£2});
ool:=[solve(df3,{f2})]1;"[1]:
ee:=subs(",ee) union ":

df :=es4 (",df):

es6 (df) ;
df3:=es3(df,{},{i1,c1,h3,r3});
002:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":

df :=es4 (",df):

es6 (df) ;
df3:=es3(df,{},{c1,h3,n1});
003:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":

df :=es4 (",df):




es6(df) ;
df3:=es3(df,{},{c1,02});
oo4:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":
df :=es4(",df):

df3:=es3(df,{},{c1,h3,j2});
oo5:=[solve(df3d)];"[1]:
ee:=subs(",ee) union ":

df :=es4 (",df):

df3:=es3(df,{},{c1,n4,h3});
006:=[solve(df3)];
zf:=df:

At this point we have to choose one of the following cases:

1.cg=0and ny =0
2. ¢ =0and ns #0

3. C1 ;é 0
The first case:

eea:=subs(006[1],ee) union oco6[1]:
df :=es4 (eea,zf) :

es1(df);

solve(");

eea:=subs(",eea) union ":

df :=es4 (",df):

es1(df);

solve(");
eea:=subs(",eea) union ":
df :=es4(",df):

df3:=es3(df,{},{i4,h3});
o007:=[solve(df3d)];

"[1]1;

eea:=subs(",eea) union ":
df :=es4 (",df):

es1(df);

solve(");
eea:=subs(",eea) union ":
df :=es4(",df):

es1(df);

solve(");
eea:=subs(",eea) union
df :=es4(",df):

es1(df);

solve(");
eea:=subs(",eea) union ":
df :=es4 (",df):

es1(df);




solve(");
eea:=subs(",eea) union ":
df :=es4 (",df):

soll:=subs(eea,subl) union eea:

The set soll represents a solution.

The second case:

eeb:=subs (006[2] ,ee) union o0o06[2]:
df :=es4(eeb,zf):

es1(df);

solve(");

eeb:=subs(",eeb) union ":

df :=es4 (",df):

es1(df);
solve(");

No solutions in this case since we have a contradiction with ny # 0.

The third case:

eec:=subs (006[3] ,ee) union o0o6[3]:
df :=es4 (eec,zf):

esl(df);

solve(");
eec:=subs(",eec) union ":
df :=es4 (",df):

df3:=es3(df,{},{c1,id});
008:=[solve(df3,{id})1;"[1]:
eec:=subs(",eec) union ":

df :=es4 (",df):

df3:=es3(df,{},{t2,s1});
009:=[solve(")];"[1]:
eec:=subs(",eec) union ":
df :=es4 (",df):

df3:=es3(df,{},{c1,t2});
0010:=[solve(")];"[1]:
eec:=subs(",eec) union ":
df :=es4 (",df) :

df3:=es3(df,{},{cl1,s4});
ooll:=[solve(df3)];"[1]:
eec:=subs(",eec) union ":
df :=es4 (",df):

df3:=es3(df,{},{i2,h1,n2}):
0012:=[solve(")];"[1]:
eec:=subs(",eec) union ":
df :=es4 (",df):

df3:=es3(df,{},{c1,h1,r1}):
0013:=[solve(df3)];
# c1<>0 so only the second solution is valid

"[2]:




eec:=subs(",eec) union ":
df :=es4 (",df):

df3:=es3(df,{},{h4,cl,r1});
0014:=[solve(df3)];"[1]:
eec:=subs(",eec) union ":
df :=es4(",df):

df3:=es3(df,{},{i2,c1,h4}):
0015:=[solve(df3)];"[1]:
eec:=subs(",eec) union ":
df :=es4 (",df):

df3:=es3(df,{},{cl1,hd,rd}):
0016:=[solve(df3)];"[1]:
eec:=subs(",eec) union ":
df :=es4 (",df):

df3:=es3(df,{},{h4,c1,s2});
0017:=[solve (df3)]1;"[1]:
eec:=subs(",eec) union ":
df :=es4(",df):

df3:=es3(df,{},{ql,c1,q94});
0018:=[solve(df3)];"[1]:
eec:=subs(",eec) union ":
df :=es4 (",df):

df3:=es3(df,{},{c1,h4,r2,h2}):
0019:=[solve(df3)];"[1]:
eec:=subs(",eec) union ":

df :=es4 (",df):

df3:=es3(df,{},{h2,c1,hd,q4});
0020:=[solve (df3)]1;"[1]:
eec:=subs(",eec) union ":

df :=es4(",df):

factor (df) ;
0021:=[solve(df,{q2})]1;"[1]:
eec:=subs(",eec) union ":

df :=es4 (",df):

s0l12:=subs (eec,subl) union eec:
The set so0l2 represents the second and last -as will follow from the next case- solution
of this case.

The second substitution matrix yields the following result:

df :=es4 (sub2,cf):

es1(df);
solve(");
df :=es4 (",df):

es1(df);
solve(");

df :=es4 (",df):

es1(df);




solve(");
df :=es4(",df):

es1(df);
solve(");
df :=es4(",df):

es6(df);
df3:=es3(df,{},{h3});
ool:=[solve(df3)];

df :=es4 (oo1[1],df):

es1(df);
solve(");
df :=es4 (",df):

df3:=es3(df,{},{nl1});
002:=[solve(df3)];

It is easy to check that this system of equations df3 has no solutions.

So for this case we have a list of two solutions:

sol:=[so0l1,s012]:

A.3.3 JH*=0and JH.X #£0

In this case there was only one substitution matrix. Note further that we only use af
in this case.

sub3:={al1=0,a2=1/3,b2=0,b3=1,b1=0,c2=0,d1=0,c3=0,c4=0,
a3=0,d2=0,d3=0,d4=0,a4=0,b4=0,c1=0};

df :=es4 (sub3,af) :
es1(df);
ee:=solve(");

df :=es4 (",df):

es1(df);

solve(");
ee:=subs(",ee) union ":
df :=es4(",df) :

df3:=es3(df,{}, {h3,£2});
ool:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":
df :=es4(",df):

df3:=es3(df,{},{e1,h3});
002:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":
df :=es4 (",df):

df3:=es3(df,{},{g2,13,e2,£3}):
003:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":

df :=es4 (",df):




df3:=es3(df,{},{h3,n1});
oo4:=[solve(df3)];"[1]:

ee:=subs(",ee) union ":

df :=es4(",df):

es1(df);

solve(");
ee:=subs(",ee) union ":
df :=es4(",df):

es1(df);

solve(");
ee:=subs(",ee) union ":
df :=es4(",df):

df3:=es3(df,{},{m1,i3,g4});
005:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":

df :=es4 (",df):

df3:=es3(df,{},{t1,j2,j4});
006:=[solve(df3d)];"[1]:
ee:=subs(",ee) union ":

df :=es4(",df):

df3:=es3(df,{},{e4,e2,14,g4});
oo7:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":

df :=es4(",df):

es1(df);
solve(");"[1];
ee:=subs(",ee) union
df :=es4 (",df):

es1(df);

solve(");
ee:=subs(",ee) union ":
df :=es4(",df):

es1(df);
solve(");"[1];
ee:=subs(",ee) union
df :=es4(",df):

es1(df);

solve(");

ee:=subs(",ee) union ":
df :=es4 (",df):
df3:=es3(df,{},{k1,12});

008:=[solve(df3)];
zf:=df:

Here we have to make a choice:

1. k1:0
2.k £0

The first choice gives the following path:




eea:=subs(008[1],ee) union oo8[1]:
df :=es4(eea,zf):

df3:=es3(df,{},{02,r3});
009:=[solve(df3)];"[1]:
eea:=subs(",eea) union ":
df :=es4(",df):

df3:=es3(df,{},{s2,i3});
0010:=[solve(df3)];"[1]:
eea:=subs(",eea) union ":
df :=es4(",df):

df3:=es3(df,{},{i3,p4});
ooll:=[solve(df3)];
zf1l:=df:

At this point we have to make a choice again. Together with the assumption made
before we now have:

1. ky=0and p, =0
2. ky=0and ps #0

eeaa:=subs (0011[2] ,eea) union ool11[2]:
df :=es4(eeaa,zf1):

es1(df);

solve(");"[1];

eeaa:=subs(",eeaa) union ":

df :=es4(",df):

df3:=es3(df,{},{p2,s3});
0012:=[solve(df3)];"[1]:
eeaa:=subs(",eeaa) union ":
df :=es4(",df):

df3:=es3(df,{},{e4,i3,04});
0013:=[solve(df3)];"[1]:
zf2:=df:

ff:=eceaa:

Again another choice:

1. ki =0,pa=0and ey =0
2. k1 =0,pa=0and es #0

ffa:=subs(0013[2],ff) union o0013[2]:
df :=es4 (ffa,zf2):

df3:=es3(df,{},{12,n3}):
ool4:=[solve(df3)];"[1]:
ffa:=subs(",ffa) union ":
df :=es4(",df):

es1(df);
solve(");
ffa:=subs(",ffa) union ":




df :=es4 (",df):

es1(df);

solve(");
ffa:=subs(",ffa) union ":
df :=es4 (",df):

df3:=es3(df,{},{i3,k4});

0015:=[solve(df3)];
zf3:=df:

Again another choice:

1. k1 =0,ps=0,ea=0and i3=0
2. k1 =0,pa=0,es=0and iz #0

ffaa:=subs (0015[1],ffa) union oo15[1]:

es1(df);

solve(");

ffaa:=subs (",ffaa) union
df :=es4(",df):

es1(df);

solve(");

ffaa:=subs (",ffaa) union
df :=es4(",df):

es1(df);

solve(");
ffaa:=subs(",ffaa) union
df :=es4(",df):

df3:=es3(af,{},{t2,k4});
0016:=[solve(df3)];
zf4:=df:

gg:=ffaa:

And the final choice in this branch:

1. k1 =0,ps=0,e4=0,i3=0and k4 =0
2. k1:07p4:()7e4:0,i3:0andk47ﬁ0

gga:=subs(0016[2],gg) union oo16[2]:
df :=es4(gga,zf4):

subs (sub3,gga,F) ;

so0l3:=subs (gga,sub3) union gga:

At this point we have found the first solution of this case: sol3.
The choice k1 = 0,py = 0,e4 = 0,43 = 0 and k4 # 0 gives:
ggb:=subs (0016[1],gg) union oo16[1]:
df3:=es3(df,{},{j2,k4});

{j2=0}:
ggb:=subs(",ggb) union ":




df :=es4(",df);

df3:=es3(df,{},{k4,j3,p3,t3,g3,m3});
{j3=0,p3=0,t3=0,83=0,m3=0};
ggb:=subs (",ggb) union ":

subs (sub3,ggb,F) ;
sol4:=subs (ggb,sub3) union ggb:

Here we have a second solution, sol4.

Now we are on our way back to the top of the tree of choices. We go on with the
assumption k1 = 0, py = 0,e4 = 0 and i3 # 0.

ffab:=subs (0015[2] ,ffa) union o0o015[2]:
df :=es4 (ffab,zf3):

es1(df);

solve(");

ffab:=subs (",ffab) union ":

df :=es4(",df):

df3:=es3(df,{},{i3,e3});
{e3=0};

ffab:=subs (",ffab) union ":
df :=es4(",df):

df3:=es3(df,{},{m2,i3,03});
0017:=[so0lve(df3)];

#tonly first solution valid (i3<>0)
00l17[1];

ffab:=subs (",ffab) union ":

df :=es4(",df):

df3:=es3(df,{},{i3,m3});
{m3=0};

ffab:=subs (",ffab) union ":
df :=es4 (",df):

df3:=es3(df,{},{i3,k3});
{k3=0};

ffab:=subs(",ffab) union ":
df :=es4 (",df):

df3:=es3(df,{},{i3,83,s3});
0018:=[solve(df3,{g3})];
"[1]:

ffab:=subs (",ffab) union ":
df :=es4 (",df):

df3:=es3(df,{},{s3,i3,p3});
0019:=[solve(df3,{p3})1;"[1]:
ffab:=subs (",ffab) union ":
df :=es4 (",df):

subs (sub3,ffab,F);
s0l15:=subs (ffab,sub3) union ffab:

This was the third solution of this system. Now further with k1 = 0,ps = 0 and e4 # 0.

ffb:=subs (0013[1],ff) union oo13[1]:
df :=es4 (ffb,zf2) :




es1(df);

solve(");
ffb:=subs(",ffb) union ":
df :=es4(",df):

df3:=es3(df,{},{12,n3});
0020:=[solve (df3)];"[1]:
ffb:=subs(",ffb) union ":
df :=es4(",df):

es1(df);

solve(");
ffb:=subs(",ffb) union ":
df :=es4(",df):

es1(df);

solve(");
ffb:=subs(",ffb) union ":
df :=es4 (",df):

df3:=es3(df,{},{m2,e4,j2});
{m2=0, j2=0};
ffb:=subs(",ffb) union ":
df :=es4 (",df):

es1(df);

solve(");
ffb:=subs(",ffb) union ":
df :=es4(",df):

df3:=es3(df,{},{g3,e4});
{g3=0};

ffb:=subs(",ffb) union ":
df :=es4 (",df):

df3:=es3(df,{},{j3,t2,m3,e4});
{n3=0, j3=0,t2=0};
ffb:=subs(",ffb) union ":

df :=es4 (",df):

0021:=[solve(df,{p3,t3})1;"[1]:
ffb:=subs(",ffb) union ":
df :=es4 (",df):

subs (sub3,ffb,F);
$016 :=subs (ffb,sub3) union ffb:

Now s016 contains the fourth solution. Further with k1 = 0 and p4 # 0.

eeab:=subs (0011[1],eea) union ool11[1]:
df :=es4 (eeab,zf1):

es1(df);

solve(");

eeab:=subs (",eeab) union ":
df :=es4(",df):

es1(df);
solve(");
eeab:=subs (",eeab) union ":




df :=es4(",df):

df3:=es3(df,{},{12,n3});
0022:=[solve(df3)];"[1]:
eeab:=subs(",eeab) union ":
df :=es4(",df):

es1(df);

solve(");
eeab:=subs(",eeab) union ":
df :=es4 (",df):

es1(df);

solve(");
eeab:=subs(",eeab) union ":
df :=es4 (",df):

df3:=es3(df,{},{j3,p4,t4,t3});
{j3=0,t3=0,t4=0};
eeab:=subs(",eeab) union ":

df :=es4(",df):

es1(df);

solve(");
eeab:=subs(",eeab) union ":
df :=es4 (",df):

es1(df);
solve(");

This path leads to a contradiction with the assumption ps4 # 0. Further with k1 # 0.

eeb:=subs (008[2],ee) union 008[2]:
df :=es4 (eeb,zf):

df3:=es3(df,{},{02,r3});
0023:=[solve(df3)];"[1]:
eeb:=subs(",eeb) union ":
df :=es4 (",df):

df3:=es3(df,{},{k1,k2,m2,r3});
{m2=0,k2=0,r3=0};
eeb:=subs(",eeb) union ":

df :=es4 (",df):

es1(df);

solve(");
eeb:=subs(",eeb) union ":
df :=es4 (",df):

df3:=es3(df,{},{k1,i3,e2});
{e2=0,13=0};
eeb:=subs(",eeb) union ":
df :=es4 (",df) :

esl(df);
solve(");

Also this path leads to a contradiction and since we are now back at the top of the tree
we have found all solutions of this system.




sol:=[op(sol),s013,s014,s015,s016]:

A.3.4 The system of equations for rank three

In the rank three cases we didn’t use JH* itself; we only used an equivalent set of
equations described in [Wright 93]. So here we have to calculate some new systems
af,bf and cf.

sub4:={a1=0,a2=1/3,a3=0,a4=0,b1=0,b2=0,b3=1,b4=0,
c1=0,¢2=0,c3=0,c4=0,d1=1,d2=0,d3=0,d4=0} ;

subb5:={a1=0,a2=1/3,a3=0,24=0,b1=0,b2=0,b3=1,b4=0,
c1=0,¢2=0,c3=0,c4=1,d1=0,d2=0,d3=0,d4=0} ;

af :=simplifyM(M,4) [2]:

N3X:=evalm(N3*X) :
N3XX:=[1;

for i from 1 to 4 do
N3XX:=[op(N3XX) ,collect (N3X[i],X,distributed)]:od:

bf:={};
for i from 1 to 4 do
bf :={op (bf) ,coeffs (N3XX[i],X)}: od:

cf:=af union bf:

A.3.5 JH*=0and JH>.X =0

The process goes similar as in the previous sections. So we omit the comments between
the different parts of the Maple session. There are only some comments to indicate in
what branch of the tree we are working.

df := es4(subd,cf):
ee:=gubd;

es1(df);

solve(");
ee:=subs(",ee) union ":
df :=es4 (",df):

es1(df);

solve(");

ee:=subs (",ee) union ":
df :=es4(",df):

df3:=es3(df,{},{g2,i3});
ool:=[solve(df3)]1;"[1]:

ee:=subs(",ee) union ":

df :=es4(",df):

df3:=es3(df,{},{j4});




002:=[solve(df3)]1;"[1]:
ee:=subs(",ee) union ":
df :=es4 (",df) :

df3:=es3(df,{},{e4,f1,g4,i1,g1,i2}):
003:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":

df :=es4 (",df):

df3:=es3(df,{},{h3,f2,e2,f3,e4,h2}):
004:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":

df :=es4 (",df):

es1(df);

solve(");
ee:=subs(",ee) union ":
df :=es4 (",df):

esl(df);

solve(");
ee:=subs(",ee) union ":
df :=es4 (",df):

df3:=es3(df,{},{e1,h3,n2,q3});
oo5:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":

df :=es4 (",df):

df3:=es3(df,{},{02,r3});
006:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":
df :=es4 (",df):

df3:=es3(df,{},{n4,q3,h3});
007:=[solve(df3)];

zf:=df:

R RERRR AR RR R RS R ER AR RR R EN4=0
eea:=subs(007[1],ee) union oo7[1]:
df :=es4 (eea,zf):
df3:=es3(df,{},{ql,h3,e4});
008:=[solve(df3)];

zf1l:=df:

AR BHRHRFRERE R F R BRBRRRE B AR EN4=0 ,h3=0
eeaa:=subs (008[1],eea) union oo8[1]:
df :=es4 (eeaa,zf1):
df3:=es3(df,{},{n1,14});
009:=[solve(df3)];"[1]:
eeaa:=subs(",eecaa) union ":

df :=es4 (",df):

df3:=es3(df,{},{n1,e2,e4});
0010:=[solve(df3)];"[1]:
eeaa:=subs(",eeaa) union ":
df :=es4 (",df):

es1(df);

solve(");
eeaa:=subs(",eeaa) union ":
df :=es4 (",df):

es1(df);




solve(");"[1];
eeaa:=subs (",eeaa) union ":
df :=es4 (",df):

df3:=es3(df,{},{i3,04,e4,r1});
ooll:=[solve(df3)];"[1]:
eeaa:=subs (",eecaa) union ":

df :=es4 (",df):

es1(df);

solve(");

eeaa:=subs (",eeaa) union ":
df :=es4(",df):

es1(df);

solve(");

eeaa:=subs (",eeaa) union ":
df :=es4 (",df):

df3:=es3(df,{},{12,n3,r3})
0012:=[solve(df3)]1;"[1]:
eeaa:=subs (",eeaa) union ":
df :=es4(",df):

df3:=es3(df,{},{k2,13,k1,e2});
0013:=[solve(df3)];"[1]:
eeaa:=subs (",eeaa) union ":

df :=es4(",df):

es1(df);

solve(");

eeaa:=subs (",eecaa) union
df :=es4 (",df):

es1(df);

solve(");

eecaa:=subs (",eeaa) union
df :=es4 (",df):

es1(df);

solve(");

eeaa:=subs (",eeaa) union
df :=es4(",df):

es1(df);

solve(");

eeaa:=subs (",eeaa) union
df :=es4(",df):

df3:=es3(df,{},{p2,s3,j1,i2,m2,03});
0014:=[solve(df3)];"[1]:

eeaa:=subs (",eecaa) union ":

df :=es4 (",df):

df3:=es3(df,{},{m1,i2,e3});
0015:=[solve(df3)];

{m1=0};

eeaa:=subs (",eeaa) union ":
df :=es4 (",df):

df3:=es3(df,{},{p4,i2,m2,k3});
0016:=[solve (df3)]1;"[1]:




eeaa:=subs(",eeaa) union ":
df :=es4 (",df):

es1(df);

solve(");
eeaa:=subs(",eeaa) union ":
df :=es4 (",df):

df3:=es3(df,{},{p1,i3}):
0017:=[solve(df3)];"[1]:

#no solutions

R BHRHRFREREBR R RS BRBRRRERER EN4=0 ,h3<>0
eeab:=subs (008[2],eea) union o0o08[2]:

df :=es4 (eeab,zf1):

es1(df);

solve(");
eeab:=subs(",eeab) union ":
df :=es4 (",df):

df3:=es3(df,{},{h3,k4,n1});
0018:=[solve(df3)];

#no solutions h3<>0

R R AR AR RR R B RRRR BB HRERRENA<50
eeb:=subs (007[2] ,ee) union o0o7[2]:
df :=es4(eeb,zf):

es1(df);
#no solutions n4<>0

So this case had no solutions.

A.3.6 JH*=0and JH>.X #0

df :=es4 (subb,af) :

ee:=subb;

es1(df);

solve(");
ee:=subs(",ee) union ":
df :=es4 (",df):

es1(df);

solve(");
ee:=subs(",ee) union ":
df :=es4 (",df) :

df3:=es3(df,{},{h1,i2,£f1,g2,3j3}):
ool:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":

df :=es4 (",df):

df3:=es3(df,{},{g2,i3,j4,m2,03,p4});
002:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":

df :=es4 (",df):




df3:=es3(df,{},{02,r3,s4,e1,£2,g3,i3,j4,h2}):
003:=[solve(df3d)];"[1]:

ee:=subs(",ee) union ":

df :=es4(",df):

df3:=es3(df,{},{e2,£3,g4,p2,s3,t4}):
oo4:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":

df :=es4(",df):

df3:=es3(df,{},{e1,g3,h3,i4,e1,k2,13,m4,j3,n2,q93,r4}):
o0o5:=[solve(df3d)];"[1]:

subs (",ee) union ":

es4(",df):

ee:
df:

df3:=es3(df,{},{s1,13,j3,h2});
006:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":

df :=es4 (",df):

df3:=es3(af,{},{h2, t2, i3, j3});
oo7:=[solve(df3)];"[1]:
ee:=subs(",ee) union ":

df :=es4(",df):

df3:=es3(df,{},{p1, el, h2, i3, j3}):
008:=[solve(df3[2])];

"[1]:

ee:=subs(",ee) union ":

df :=es4(",df):

df3:=es3(df,{},{m1,i3,g4,h2,g3,e1,i3,h2,12,n3,04}):
009:=[solve(df3d)];"[1]:

ee:=subs(",ee) union ":

df :=es4 (",df):

df3:=es3(df,{},{el, h2, i3, j3});
0010:=[solve(df3)];

zf:=df:
HEFHEERBRRRRBHER RSB R HEBH RS j 3=0
eea:=subs(0010[1],ee) union oo10[1]:
df :=es4 (eea,zf):
df3:=es3(df,{},{h2,i3,r1});
ooll:=[solve(df3)];"[1]:
eea:=subs(",eea) union ":

df :=es4 (",df):

df3:=es3(df,{},{h2,i3,s2});
0012:=[solve (df3)];"[1]:
eea:=subs(",eea) union ":
df :=es4(",df):

df3:=es3(df,{},{i3,h2,t3});
0013:=[solve(df3)]:

zfl:=df:

BRHERRE R BB R R B HRRHER R ER BHH#HE §3=0,h2=0
eeaa:=subs (0013[1],eea) union oo13[1]:
df :=es4 (eecaa,zf1):

es1(df);
solve(");
eeaa:=subs (",eeaa) union ":




df :=es4(",df):

df3:=es3(df,{},{s3,t4});
ool4:=[solve(df3)];"[1]:
eeaa:=subs(",eeaa) union ":
df :=es4(",df):

es1(df);

solve(");
eeaa:=subs(",eeaa) union ":
df :=es4 (",df):

es1(df);

solve(");
eeaa:=subs(",eeaa) union ":
df :=es4 (",df):

df3:=es3(df,{},{p3,s4,r3});
0015:=[solve(df3)];
zf2:=df:

ff:=eceaa:

BEBRRRRRBRBREHERRB AR B RRERERE j3=0,h2=0,p3=0
ffa:=subs(0015[1],ff) union ool15[1]:
df3:=es3(df,{},{r3,s4});
0016:=[solve(df3)];"[1]:

ffa:=subs(",ffa) union ":

df :=es4(",df):

df3:=es3(df,{},{m2,p4});
0017:=[solve(df3)];"[1]:
ffa:=subs(",ffa) union ":
df :=es4(",df):

df3:=es3(df,{},{q2,m3});

0018:=[so0lve(df3)];

zf3:=df:
BEBRBREERRRHHHERR SRR R BRHRERE j3=0,h2=0,p3=0,m3=0
ffaa:=subs (0018[2] ,ffa) union o0018[2]:

df :=es4(ffaa,zf3):

df3:=es3(df,{},{g3,h3,e1});

0019:=[solve(df3)];

zf4:=df:

gg:=ffaa:
HHERFRRRIFRERRR R R RH R RRHRS j3=0,h2=0,p3=0,m3=0,g3=0
gga:=subs (0019[1],gg) union o0o19[1]:
df3:=es3(df,{},{el, n1, h3});

0020:=[solve(df3[1]1)];

"1

gga:=subs(",gga) union ":

df :=es4 (",df):

df3:=es3(df,{},{h3,e1,h3,e1,q2,n2});
0021:=[solve(df3)];"[1]:
gga:=subs(",gga) union ":

df :=es4(",df):

es1(df);

solve(");
gga:=subs(",gga) union ":
df :=es4(",df):




es1(df);

solve(");

"[17;

gga:=subs(",gga) union ":
df :=es4(",df):

df3:=es3(df,{},{n3,04});
0022:=[solve(df3)];"[1]:
gga:=subs(",gga) union ":
df :=es4 (",df):

df3:=es3(df,{},{k1, e2, g4});
0023:=[solve(af3)];"[1]:
gga:=subs(",gga) union ":

df :=es4(",df):

0024:=[solve(df)];"[1]:
gga:=subs(",gga) union ":
subs (gga,F);

s0l7:=gga:

R RR RIS R R R HRHE §3=0 ,h2=0,p3=0,m3=0,g3<>0
ggb:=subs (0019[2],gg) union 0019[2]:
df :=es4(",zf4):

df3:=es3(df,{},{n1,92,93,83});
0025:=[so0lve(df3)];

#no solutions g3<>0
BEFRBREBBRRRBHESBRRSH HESF RS ) 3=0,h2=0,p3=0,m3<>0
ffab:=subs (0018[1] ,ffa) union oo18[1]:

df :=es4(",zf3):

df3:=es3(df,{},{n2,q3});

0026:=[solve (df3)]1;"[1]:

ffab:=subs (",ffab) union ":

df :=es4(",df):

df3:=es3(df,{},{el, n1, g3, h3});
0027:=[solve(df3)];"[1]:
ffab:=subs (",ffab) union ":

df :=es4 (",df):

es1(df);

solve(");

ffab:=subs (",ffab) union ":
df :=es4(",df):

df3:=es3(df,{},{n3,m3});
{n3=0}:

ffab:=subs (",ffab) union ":
df :=es4 (",df):

df3:=es3(df,{},{m3,04});
{04=0};

ffab:=subs (",ffab) union ":
df :=es4(",df):

df3:=es3(df,{},{m3,n4,h4});
{h4=0,n4=0};

ffab:=subs (",ffab) union ":
df :=es4(",df):




df3:=es3(df,{},{m3,q4});
{q4=0};

ffab:=subs (",ffab) union ":
df :=es4 (",df):

df3:=es3(df,{},{kl, e2, m3, g4});
0028:=[solve(df3)];"[1]:

ffab:=subs (",ffab) union ":

df :=es4(",df):

#note from now on g4<>0 (since m3=g4°2)

df3:=es3(df,{},{k2, 13, f4, g4});
0029:=[solve(df3[1])];

"[2];

ffab:=subs (",ffab) union ":

df :=es4(",df):

0030:=[solve(df)];

"[1]1;

ffab:=subs (",ffab) union ":
df :=es4(",df):

subs (ffab,F);
sol8:=ffab:

HREREEBRHEERHRR B RESRHERHREEH §3=0,12=0,p3<>0
ffb:=subs (0015[2],ff) union oo15[2]:

df :=es4(",zf2):

df3:=es3(df,{},{q2,p3});

{q2=0};

ffb:=subs(",ffb) union ":

df :=es4(",df):

df3:=es3(df,{},{n2,93});
0031:=[solve(df3)];"[1]:
ffb:=subs (",ffb) union ":
df :=es4(",df):

df3:=es3(df,{},{p3,q4});
{q4=0};

ffb:=subs(",ffb) union ":
df :=es4(",df):

df3:=es3(df,{},{p3,e1,83});

0032:=[so0olve(df3)];

zf5:=df:
HEFRBRBRHRERHHEBBESR R RS BHEESE )3=0,12=0,p3<>0,e1=0
ffba:=subs (0032[1] ,ffb) union 0032[1]:

df :=es4 (ffba,zf5):

df3:=es3(df,{},{n1, g3, h3});
0033:=[solve(df3)]1;"[1]:

ffba:=subs (",ffba) union ":

df :=es4(",df):

es1(df);

#no solutions p3<>0

HHBHRHRFER RS HR R RR H R R #HE j3=0,13=0,p3<>0,e1<>0
ffbb:=subs (0032[2] ,£fb) union 0032[2]:

df :=es4 (ffbb,zf5):

#note from now on g3<>0 since p3=-1/2 g372




df3:=es3(df,{},{g3,e1});

{g3=0};

# no solutions g3<>0
BEFRERERBRRRBHERBRSRHHRBHREH 3=0,13<30
eeab:=subs (0013[2] ,eea) union o0013[2]:
df :=es4(",zf1):

df3:=es3(df,{},{i3,t4});
{t4=0};

eeab:=subs (",eeab) union ":
df :=es4 (",df):

df3:=es3(df,{},{i3,g3,s3});
0033:=[solve(df3)];

"[2]:

eeab:=subs (",eeab) union ":
df :=es4 (",df):

df3:=es3(df,{},{p3,i3,s3});
0034:=[solve(df3,{p3})];

" [1] .

eeab:=subs (",eeab) union ":
df :=es4(",df):

df3:=es3(df,{},{i3,p4,s3,s4});
0035:=[solve(df3,{p4})];

"[1]:

eeab:=subs (",eeab) union ":

df :=es4 (",df):

df3:=es3(df,{},{i3,01,s3});
0036:=[solve(df3)];

"[2];

eeab:=subs (",eeab) union ":
df :=es4 (",df):

df3:=es3(df,{},{i3,s3,e1,h3});
0037 :=[solve(df3)];

"[31;

eeab:=subs (",eeab) union ":

df :=es4(",df):

es1(df);

solve(");

eeab:=subs (",eeab) union ":
df :=es4 (",df):

es1(df);

solve(");

eeab:=subs (",eeab) union ":
df :=es4(",df):

df3:=es3(df,{},{i3,m2,m3,g4});
0038:=[so0lve(df3)];

"[2]:

eeab:=subs (",eeab) union ":

df :=es4(",df):

df3:=es3(df,{},{i3,s4,e3,k1,k3});
0039:=[so0lve(df3)];
11[2] B

eeab:=subs (",eeab) union ":




df :=es4(",df):

df3:=es3(df,{},{i3,e4});
0040:=[solve(df3)];

#no solutions i3<>0
BREBRRRRRRBRRHBERRE AR B BRHEERE j3<O0
eeb:=subs(0010[2],ee) union o0o010[2]:
df :=es4(eeb,zf):

df3:=es3(df,{},{r1, s2, h2, g3, j3, i3});
0041:=[solve(df3)];"[1]:

eeb:=subs(",eeb) union ":

df :=es4(",df):

df3:=es3(df,{},{s2, h2, g3, h3, j3, i3,t3});
0042:=[solve(df3)];"[1]:

eeb:=subs(",eeb) union ":

df :=es4(",df):

df3:=es3(df,{},{ol, h2, g3, h3, j3, i3, g4});
0043:=[solve(df3)];"[1]:

eeb:=subs(",eeb) union ":

df :=es4(",df):

df3:=es3(df,{},{h2, g3, h3, j3, i3, t4});
0044:=[solve(df3,{t4})]1;"[1]:
eeb:=subs(",eeb) union ":

df :=es4(",df):

df3:=es3(df,{},{o1, h2, g3, h3, j3, i3}):
0045:=[solve(df3)];

zf6:=df:

R R S A  3<50,h2=-3/4 i3
eeba:=subs (0045[1] ,eeb) union o0o045[1]:

df :=es4 (eeba,zf6):

df3:=es3(df,{},{s3, o1, e2, g3, h3, j3, i3}):
0046:=[solve(df3)];"[1]:

eeba:=subs(",eeba) union ":

df :=es4 (",df):

df2:=es2(df):

0047 :=[solve(df2)];"[1]:
eeba:=subs(",eeba) union ":
df :=es4(",df):

df3:=es3(df,{},{s3, g3, h3, j3, i3}):
0048:=[solve(df3)]:

zf7:=df:

hh:=eeba:

# four choices
HERREEBRHREBR BB BRESRH RS BR SRR HE#H3<>0,53=0
hha:=subs(0048[1],hh) union 0048[1]:
df :=es4 (hha,zf7):
df3:=es3(df,{},{j3,p3,s4,r3});
0049:=[solve(df3)];

"[3]1;

hha:=subs(",hha) union ":

df :=es4(",df) :

df3:=es3(df,{},{p4,j3});
{p4=0};




hha:=subs(",hha) union ":
df :=es4 (",df):

df3:=es3(df,{},{r3, j3, i3, f4});
0050:=[solve(df3)];"[1]:
hha:=subs(",hha) union ":

df :=es4(",df):

df3:=es3(df,{},{m2, j3, i3, e4});
oo51:=[solve(df3)];"[1]:
hha:=subs(",hha) union ":

df :=es4 (",df):

df3:=es3(df,{},{q2, r2, r3, k1, n1, m2, j3, i3}):
0052:=[solve(df3)];"[1]:

hha:=subs(",hha) union ":

df :=es4 (",df):

df3:=es3(daf,{},{j3,n2});
0053:=[solve (df3,{n2})]1;"[1]:
hha:=subs(",hha) union ":

df :=es4(",df):

df3:=es3(daf,{},{j3,93});

0054:=[solve(df3)];

#no solutions since j3<>0

b R §3<>0,83<>0(= 13450, 8j353<>i3“2)
hhb:=subs (0048[2] ,hh) union 0048[2]:

df :=es4 (hhb,zf7) :

df3:=es3(df,{},{p3, s4, g3, j3, i3}):
0055:=[solve(df3)]:

"[1]:

hhb:=subs(",hhb) union ":

df :=es4 (",df):

df3:=es3(df,{},{q2, r2, r3, n1, g3, j3, i3, f4}):
0056:=[solve(df3)];

subs (hhb,0056[1],s3) ;

#no solutions since s3<>0

HREFEHER R §3<50,83<00 (= 13<>0, 8j3g3<>i372)
hhc:=subs(0048[3] ,hh) union 0048[3]:

df :=es4 (hhc,zf7) :

df3:=es3(df,{},{p3, s4, g3, j3, i3}):
0057:=[solve(df3)];

"[1]:

hhc:=subs(",hhc) union ":

df :=es4(",df):

df3:=es3(df,{},{q2, r2, r3, n1, g3, j3, i3, f4}):

0058:=[so0lve(df3)];

subs (hhc,0058[1],s3) ;

#no solutions since s3<>0

b R §3<>0, 83<>0(= 13<>0, 24j3g3<>16h3j3—13‘2)
hhd:=subs (0048[4] ,hh) union o0048[4]:

df :=es4 (hhd,zf7) :

df3:=es3(df,{},{p4, p3, =4, g3, h3, j3, i3}):
0059:=[so0lve(df3)]:

zf8:=df:

RRFRHABEBRBREREBRFRERER SRR SR




hhda:=subs (0059[1] ,hhd) union 0059[1]:
df :=es4 (hhda,zf8):

df3:=es3(df,{},{r3, m2, g3, h3, j3, i3, e4, f4}):
0060:=[solve(df3)];"[1]:

hhda:=subs ("' ,hhda) union ":

df :=es4(",df):

df3:=es3(df,{},{k1, m2, g3, h3, j3, i3});
0061:=[solve(df3)];"[1]:
hhda:=subs ("' ,hhda) union ":

df :=es4(",df):

df3:=es3(df,{},{r2, r3, n1, m2, g3, h3, j3, i3}):
0062:=[s0lve(df3)]:

nops (") ;

for i from 1 to 9 do

subs (hhda,0062[i],s3) od;

#so only solution 6 and 8 are valid
zf9:=df:

ii:=hhda:

AR RHRHRFRBREBRBRERRE BB RS BT R S
iia:=subs(0062[6],ii) union 0062[6]:
df :=es4(iia,zf9):

df3:=es3(df,{},{q2, r2, 93, n2, h3, j3, i3, o04}):
0063:=[s0lve(df3)]:

nops (") ;

#in order to check that there are really no solutions in these 15 equations:
df4:=es3(df3,{},{q2, r2, n2, h3, j3, i3}):
0064:=[solve(df4)];

df3:=es4(0064[1],d£3):

df4:=es3(df3,{},{r2, 93, h3, j3, i3});
0065:=[solve(df4)];

#so no solutions in df4 so we can restrict ourselves again
df3:=df4:

0066:=[solve(df3[4])];

df3:=es4(0066[1],df3);

df3:=factor(df3);

0067:=[solve(df3[1])];
df3:=factor(es4 (0067 [1],df3));
0068:=[solve(df3[2])];

df3:=factor(es4 (0068[1],df3));

#this leads to a contradiction since j3<>0
BUBRBBEBRERHRERBRBHR BB HR SRS B

iib:=subs (0062[8],ii) union 0062[8]:

df :=es4(iib,zf9):

df3:=es3(df,{},{q2, r2, n2, h3, j3, i3, o4}):
0069:=[so0lve(df3)]:

subs (iib,0069[1],s3);

subs (iib,0069[2],s3);

0069[1]:

iib:=subs(",iib) union ":

df :=es4(",df):

df3:=es3(df,{},{r2, g3, h3, j3, i3, m3}):
0070:=[s0lve(df3)]:

#no solutions in 14 equations

df4:=df3:

0071:=[solve(df4[1])]:
df4:=factor(es4(0o71[2],df4)):




0072:=[solve(df4[10])];

subs (iib,0071[2],0072[1],83);

#this yields zero so certainly no valid solutions
HHERBERBEERH RSB AR R B R BREREBES
hhdb:=subs (0059 [2] ,hhd) union 0059[2]:

df :=es4 (hhdb,zf8) :

df3:=es3(df,{},{r2, p3, r3, n1, m2, g3, j3, i3, e4, f4}):
0073:=[solve(df3)]:

subs (hhdb, 0073[1],s3) ;

subs (hhdb, 0073[2],s3) ;

0073[2]:

hhdb:=subs (" ,hhdb) union ":

df :=es4 (",df):

df3:=es3(df,{},{q2, r2, k1, n2, g3, j3, i3}):
0074:=[solve(df3)]:

subs (hhdb, 0074[1],s3) ;

0074[1]:

hhdb:=subs (" ,hhdb) union ":

df :=es4 (",df):

df3:=es3(df,{},{r2, 93, g3, j3, i3}):
0075:=[solve(df3)]:

#no solutions in 5 equations
df4:=df3:

0076:=[solve(df4[1])]:

subs (hhdb, 0076[1],s3) ;

subs (hhdb, 0076[2],s3) ;
df4:=factor(es4(oo76[1],df4)):
0077:=[solve(df4[2])]:

subs (hhdb, 0076[1],0077[1],s3) ;
df4:=factor(es4(oo77[1],df4)):
0078:=[solve(df4[3])]:

#no solutions j3<>0

HRH R R R  3<>0,h2<>-3/4 i3
eebb:=subs (0045[2] ,eeb) union o0o045[2]:
df :=es4 (eebb,zf6):

df3:=es3(df,{},{ql, r2, s3, e2, h2, h3, j3, i3, h4}):
0079:=[solve(df3)]:

" [1] :

eebb:=subs (",eebb) union ":

df :=es4(",df):

df3:=es3(df,{},{p3, s4, h2, h3, j3, i3}):
0080:=[solve(df3)];"[1]:

eebb:=subs (",eebb) union ":

df :=es4(",df):

df3:=es3(df,{},{p4, h2, h3, j3, i3}):
0081:=[solve(df3)]:

"[2]:

eebb:=subs (",eebb) union ":

df :=es4(",df):

df3:=es3(df,{},{r2, h2, h3, j3, i3, f4}):
0082:=[so0lve(df3)]:

" [1] :

eebb:=subs (",eebb) union ":

df :=es4(",df):




df3:=es3(df,{},{r2, r3, 11, h2, m2, e3, h3, j3, i3}):
0083:=[solve(df3)]:

" [1] .

eebb:=subs (",eebb) union ":

df :=es4(",df):

df3:=es3(df,{},{s4, h2, h3, j3, i3}):
0084:=[solve(df3[3])]:

"[1]:

eebb:=subs (",eebb) union ":

df :=es4 (",df):

df3:=es3(df,{},{r2, n1, h2, h3, j3, i3, e4,r3}):
df5:=es3(df,{},{h2, h3, j3, i3}):

df3:=df3 minus df5:

0085:=[solve(df3)]:

for i from 1 to 6 do subs(o0085[i],[h2,i3]) od;
#four choices

jj:=eebb:

zf10:=df:

BERBBBARRRBRB BB BB ERRRRRHE R BT 2<50
jja:=subs(0085[1],jj) union o0085[1]:
df:=es4(jja,zf10):

df3:=es3(df,{},{k1,j3,r2,h3});
0086:=[solve(df3)]:

"[2]:

jja:=subs(",jja) union ":

df :=es4 (",df):

es1(df);

solve(");

jja:=subs(",jja) union ":

df :=es4(",df):

df3:=es3(df,{},{j3,r2});

# no solutions since both j3 and r2 <> 0
BERHHBERBRFRF BB BERERERRRR R HH H BT 2=0
jjb:=subs(0085[2],jj) union 0085[2]:

df :=es4(jjb,zf10):

es1(df);

solve(");
jjb:=subs(",jjb) union ":
df :=es4(",df):

df3:=es3(df,{},{j3,q3,m2,13,k1});
0087:=[solve(df3,{q3,m2,i3,k1})]1;"[1]:
jjb:=subs(",jjb) union ":

df :=es4(",df):

df3:=es3(df,{},{j3,n2});
0088:=[solve(df3)];

# no solutions since j3<>0
BERHBBERBRFHFRRBEBERERBRRFHF R BT 2<>0,0h3<>0
jjc:=subs(0085[4],jj) union o0085[4]:

df :=es4(jjc,zf10):

df3:=es3(df,{},{h2, h3, i3}):

0089:=[solve(df3)]:

#since h2<>-3/4 i3 only first solution possible, but
subs (0089[1],jjc):

#Error, division by zero




#so no solutions
BRUBBRRRWRBERBRBRERERHR BB HF B E2<>0,0h3=0
jjd:=subs(0085[6],jj) union 0085[6]:
jid;

%1

[allvalues(")];

jjda:=subs (¥1="[11,jjd):

jjdb:=subs (%}1=""[2],jjd):
BRUHBERBUFRFRBRBRERER IR W RRE RS
jjda:=simplify(jjda):

df :=es4(jjda,zf10):

df3:=es3(df,{},{r2});
0090:=[solve(df3)];

#no solution since r2<>0
FRFRBRBRBRBRSREBRRRE R SR SSRSR RS
jjdb:=simplify(jjdb):

df :=es4(jjdb,zf10):

df3:=es3(df,{},{r2});
0091:=[solve(df3)];

#no solution since r2<>0
fiRidinidinidinidini s R R S R

To give an indication of the complexity of this solve process: at the end of this session
Maple showed us the following characteristics:

bytes used=3229462752, alloc=113946236, time=46606.15

And this was not even the complete process. Because of a reboot of our machine we
couldn’t do it in one session.

A.4 Solving the Druzkowski system

The druzkowski system was computed with simplifyM. Here is the session in which we
solved the system:

read part5;
:=maakdruz(4);
:=[’x.i-F[i]’$’i’=1..4];
:=expand (H) ;
:=sort(H);
:=array(1..4,1..20);
for i from 1 to 4
do
for j from 1 to 20
do
M[i,j]l:=coeffs(op(j,H[i]), [x1,x2,x3,x4]):
od
od:
df :=simplifyM(M,4)[2]:

=2E@mnmIom




read druzkowskistelsel:

cf:=df:

een:={a4=0,b4=0,c4=0,d4=0};
cf:=es4(een,df):

df :=cf:

df3:=es3(df,{},{al, b2, c3, ci1, c2});
ool:=[solve(df3)];

ffa:=ool1[1]:

ffb:=001[2]:

ffc:=o001[3]:
#AFRBRRFR B AR RFRFRRBRBRFRRTEc: c1=0,c2=0
df :=es4(ffc,df):
df3:=es3(df,{},{a1,a2,b2});
002:=[solve(df3)];

ffca:=subs(002[1] ,ffc) union oo2[1]:
ffcb:=subs(002[2] ,ffc) union 002[2]:

Htdd AR Rt f ca: a2<>0
df :=es4(ffca,cf):
df3:=es3(df,{},{a1,bl,a2});
o0o4:=[solve(df3)];
ffcaa:=subs(oo04[1],ffca) union oo4[1]:
ffcab:=subs(004[2],ffca) union oo04[2]:
#AdddR AR R ittt f caa: al=0
df :=es4(ffcaa,df):

subs(een,ffcaa,F);

HAFR ARG AR L f cab: al<>0
df :=es4(ffcab,cf):

o0o5:=[solve(df)];

#only second solution is valid (al<>0)
ffcab:=subs(0o5[2] ,ffcab) union oo5[2]:
subs(een,ffcab,F);

##dRHR ARG Rt fcb: a2=0
df :=es4(ffcb,df):

003:=[solve(df)];

ffcb := subs(oo3[1],ffcb) union o0o3[1]:
subs(een,ffcb,F);

#AFR AR RFR AR RRRRFRGRRRRBRBFRTED . c1=0,c2<>0
df :=es4(ffb,cf):

df3:=es3(df,{},{c3, b3, c2});
006:=[solve(df3)];

ffba:=subs(o006[1] ,ffb) union oo6[1]:
ffbb:=subs(006[2] ,ffb) union o0o6[2]:
Htddad At foa: c3=0
df :=es4(ffba,df):

esi(df);

ffba:=subs({a1=0},ffba) union {ai1=0}:

df :=es4(ffba,df):
df3:=es3(df,{},{c2,a3,b3,b1});
0o7:=[solve(df3)];

#only first and fourth solution valid (c2<>0)
ffbaa:=subs(oo7[1],ffba) union oo7[1]:
ffbab:=subs(007[4],ffba) union oo7[4]:
#A##HRRRRR AR RRRRRR R A E T fbaa: a3=0
df :=es4(ffbaa,df):
df3:=es3(df,{},{c2,b1,a2,b3});
008:=[solve(df3,{a2,b1,b3})];
ffbaaa:=subs(008[1] ,ffbaa) union oo8[1]:




ffbaab:=subs(008[2] ,ffbaa) union oo8[2]:
ffbaac:=subs(008[3] ,ffbaa) union 008[3]:

SRR AR R R R R f £ baaa: a2=0

# no new solution: symmetry al=a2=a3=a4=0 to cl=c2=c3=c4=0
H#IRF AR RRRRR AR AR fbaab: a2<>0,b1<>0
df :=es4(ffbaab,cf):

009:=[solve(df3,{b3,d1,d3})];

ffbaaba:=subs(009[1],ffbaab) union o0o9[1]:
ffbaabb:=subs(009[2],ffbaab) union 009[2]:

#ERRRRER AR LR R AR R T fbaaba: b3=0

# no new solution: symmetry al=a2=a3=a4=0 to cl=c2=c3=c4=0
#ERARF AR ARB R ARFRRRR R BRI T fbaabb: b3<>0
df :=es4(ffbaabb,cf):

subs(een,ffbaabb,F);
RAFBBHRRBRFRRFRFRF LR FR R BB R T fbaac: a2<>0,b1=0
# no new solution: symmetry bl=b2=b3=b4=0 to cl=c2=c3=c4=0
H#ERF AR HRRRR AR ERRER ARG R fbab: a3<>0

# no new solution: symmetry bil=b2=b3=b4=0 to cl=c2=c3=c4=0
#ER##HRARRRRRRRRFRBRBRRBRBRBRRARL L DD c3<>0

df :=es4(ffbb,cf):

df3:=es3(df,{},{c3,c2,a2,a3});

0010:=[solve(df3,{a2})];

ffbb:=subs(0010[1] ,ffbb) union oco10[1]:

df :=es4(ffbb,df):

esi(df);

ffbb:=subs({a1=0},ffbb) union {al=0}:

df :=es4(ffbb,df):

df3:=es3(df,{},{b1,a3,c3});

ooll:=[solve(df3,{bl,a3})];

ffbba:=subs(oo11[1] ,ffbb) union ool11[1]:
ffbbb:=subs(0011[2],ffbb) union ool11[2]:
SRR R Rt fbba: a3=0

# no new solution: symmetry al=a2=a3=a4=0 to cl=c2=c3=c4=0
#EdRRR ARG R R R £ bbb a3<>0

df :=es4(ffbbb,cf):

df3:=es3(df,{},{c3,c2,d2,d3});

oo12:=[solve(df3,{d2})];

ffbbb:=subs(oco12[1] ,ffbbb) union oo12[1]:

df :=es4(ffbbb,df);

subs(een,ffbbb,F);

###RdR ARttt fa: c1<>0

df :=es4(ffa,cf):

df3:=es3(df,{},{b2, ¢c3, c1, a2, c2, a3}):
o0013:=[solve(df3[1],{a2})];

ffa:=subs(oo13[1] ,ffa) union oo13[1]:

df :=es4(ffa,df):

df3:=es3(df,{},{b2, c3, c1, c2, a3}):
ool4:=[solve(df3,{b2,a3})];

ffaa:=subs(o014[1],ffa) union oco14[1]:
ffab:=subs(o0014[2],ffa) union oco14[2]:

#EdRdR LRttt faa:

# no new solution al=0

#ER#RH AR ARR R RRFRRRR R T ab

df :=es4(ffab,cf):

df3:=es3(df,{},{c1, b2, c2, bl, c3, b3}):

df3[8];

ool15:=[solve(df3[8],{b2,b3})];




ffaba:=subs(oo15[1] ,ffab) union oo15[1]:
ffabb:=subs(0015[2] ,ffab) union oo15[2]:
F#dR R R R it f aba:

# no new solution al=0

Fitdd AR R R L £ abDb

df :=es4(ffabb,df):

df3:=es3(df,{},{cl, b2, c2, bl, c3}):

df3[11];

o0o016:=[solve(df3,{b2})];

#only second and third valid
ffabba:=subs(0016[2] ,ffabb) union oo16[2]:
ffabbb:=subs(0016[3],ffabb) union oco16[3]:
H#dRFR AR R f £ abba:
# no new solution al=0

F#ddR R R R E £ abbb:
df :=es4(ffabbb,df):

0017:=[solve(df[5],{d3})];
ffabbb:=subs(0017[1] ,ffabbb) union ocol7[1]:

df :=es4(ffabbb,df):

0018:=[solve(df,{d1,b1})];

#only second and third valid
ffabbba:=subs(0018[2],ffabbb) union o0o18[2]:
ffabbbb:=subs(0018[3],ffabbb) union 0018[3]:
HitA AR A R R R R L fabbba:
df :=es4(ffabbba,df);

subs(een,ffabbba,F);

Hitdd A R R R R R R L £ abbbb
# no new solution al=0

ffabbba:=simplify(ffabbba):
druzo:=[ffcaa,ffcab,ffcb,ffbaabb,ffbbb,ffabbbal:

G:=[1;

for i from 1 to 6 do
G:=[op(G),subs(een,druzo[i] ,F)]:
od:

D:=maakdruzmat (druzo):
powersim(D[6],2):
opsysi[1];




Bibliography

[Adjamagbo et al. 88] K. Adjamagbo, A. van den Essen. A resultant criterion and

[Appelgate et al. 85]

[Bass et al. 82]

[Druzkowski 83]

[Druzkowski 85]

[Druzkowski 93]

[Essen 90]

[Essen 91]

[Essen 92a)

[Essen 92b]

[Essen 93]

[Geddes et al. 92]

[Joseph 76]

formula for the inversion of a polynomial map in two variables.
Journal of Pure and Applied Algebra, 1990, 64:1-6.

H. Appelgate, H. Onishi. The Jacobian Conjecture in two vari-
ables. Journal of Pure and Applied Algebra, 1985, 37:215-227.

H. Bass, E.H. Connell, D. Wright. The Jacobian Conjecture:
reduction of degree and formal expansion of the inverse. Bulletin

of the American Mathematical Society, 1982,7(2):287-330.

L. Druzkowski . An effective approach to Keller’s Jacobian con-

jecture. Math. Ann., 1983, 264:303-313.

L. Druzkowski , K. Rusek. The formal inverse and the Jacobian
Conjecture. Annales Polonici Mathematici, 1985, 46:85-90.

L. Druzkowski . The Jacobian Conjecture in case of rank or
corank less than three. Journal of Pure and Applied Algebra, to
appear in 1993.

A. van den Essen. A criterion to decide if a polynomial map is
wnvertible and to compute the inverse. Communications in Alge-
bra, 1990 18(10):3183-3186.

A. van den Essen. Polynomial Maps and the Jacobian Conjec-
ture. Computational Aspects of Lie Representations and Related
Topics, Proceedings of the 1990 Computational Algebra Semi-
nar, CWI Tract., 1991, 84:29-44.

A. van den Essen. Locally finite and locally nilpotent deriva-
tions with applications to polynomial flows and polynomial mor-

phisms. Proceedings of the A.M.S., 1992, 116(3):861-871.

A. van den Essen. The Erotic World of Invertible Polynomial
Maps. Department of Mathematics, Catholic University of Nij-
megen, The Netherlands, february 1992, report 9204.

A. van den Essen. Inverteerbare Veeltermafbeeldingen. Depart-
ment of Mathematics, Catholic University of Nijmegen, The
Netherlands, Lecture notes.

K.O. Geddes, S.R. Czapor, G. Labahn. Algorithms for computer
Algebra. Boston; Dordrecht [etc.], Kluwer Academic Publishers,
cop. 1992, ISBN 0-7923-9259-0.

A. Joseph. A wild automorphism of U (sl(2)). Math. Proc. Camb.
Phil. Soc., 1976, 80:61-65.

115




[Keller 39]

[Magnus 55]

[McKay et al. 86]

[McKay et al. 88]

[Meisters 91]

[Meisters et al. 92]

[Meisters 93]

[Nagata 88]

[Nakai et al. 77]

[Rosenlicht et al. 62]

[Rusek 89]

[Wang 80]

[Wright 87]

[Wright 93]

[Yagzhev 80]

0. Keller. Ganze Cremona- Transformationen, Monatshefte fur

Mathematik und Physik, 1939, 47:299-306.

A. Magnus. On polynomial solutions of a differential equation.
Math. Scand., 1955, 3:255-260.

J. McKay, S. Wang. An inversion formula for two polynomials
in two variables. Journal of Pure and Applied Algebra, 1986,
40:245-25T7.

J. McKay, S. Wang. On the inversion formula for two polynomi-
als in two variables. Journal of Pure and Applied Algebra, 1988,
52:103-119.

G.H. Meisters. Inverting Polynomial Maps of N-space by Solving
Differential Equations. In A.M. Fink, R.K. Miller and W. Klie-
mann, editors, Delay and Differential Equations, Proceedings in
Honor of George Seifert on his Retirement, Ames, lowa October
18-19, 1991, 107-166, Singapore e Teaneck, NJ e London e Hong
Kong, 1992. World Scientific Pub. Co. Pte. Ltd. Bibliography of
208 entries. ISBN 981-02-0891-X.

G.H. Meisters, C. Olech. Global Stability, Injectivity, and the
Jacobian Conjecture. In Lakshmikantham, editor, Proceedings of
the First World Congress of Nonlinear Analysts, held at
Tampa, Florida, August 19-26, 1992. Nonlinear Analysts, Wal-
ter de Gruyter & Co. Berlin, 1994.

G.H. Meisters. Power-Similarity: Summary of First Results
1993, preprint.

M. Nagata. Two dimensional Jacobian Conjecture. Proceedings
of K.I.'T. Mathematics Workshop 1988, 77-98 and Some remarks
on the two dimensional Jacobian Congecture. Chinese J. Math.,
1989, 17:1-7: a revised version of both papers.

Y. Nakai, K. Baba. A generalization of Magnus’ theorem. Osaka
J. Math., 1977, 14:403-409.

M. Rosenlicht, A. Bialynicki-Birula. Injective morphisms of real
algebraic varieties. Proceedings A.M.S., 1962, 13:200-203.

K. Rusek. Polynomial automorphisms. IMPAN preprint 456, In-
stitute of Mathematics, Polish Academy of Sciences, ul. Rey-
monta 4, PL-30-059, Krakow, Poland; also IMPAN, Sniadeckich
8, P.O.Box 137, 00-950 Warszawa, Poland, may 1989. Presented
by Prof. Dr. Stanistaw Lojasiewicz.

S. Wang. A Jacobian criterion for separability. J. Algebra, 1980,
65:453-494. MR83e: 14010.

D. Wright. Formal inverse expansion and the Jacobian Conjec-
ture. Journal of Pure and Applied Algebra, 1987, 48:199-219.

D. Wright. The Jacobian Conjecture: Linear Triangularization
For Cubics in Dimension Three. Linear and Multilinear Algebra,
volume 34, 1993, 85-97.

A. Yagzhev. On Keller’s problem. Siberian Math. J.; 1980,
21(5):747-754.




Index

bepaalopl, 76

characteristic, 3, 6, 15
Cheng, v
computeD, 43, 81
computeexpD, 43, 82
Conjecture

14,2

1.7, 3

1.12,4

2.4, 22

4.5, 36

5.9, 51
Corollary

1.19,5

1.21,5

2.6, 23

2.8, 25

2.9, 25

5.5, 50

Definition

1.25,7

1.29,9

1.30, 9

1.31,9

1.32,9

2.1, 15

4.1, 33

4.3, 35

6.1, 59
deltah, 81
deltahnumber, 42, 81
derivation

locally nilpotent, 41-43, 48, 50
Druzkowski, 5

form, 33-35, 39, 40

system, 34, 63

easysystem, 74
easysysteml, 70
easysystem2, 71
easysystem3, 72
easysystem4, 72
easysystem5, 72
es, 60, 74

es6, T4
Example

117

2.3, 18
3.4, 30
5.15, 56
6.2, 60
6.3, 61
6.4, 61
6.5, 62
6.6, 62

face polynomials, 7, 8
firstsummand, 68

gelijk, 83
genereeralg, 75

homogeneous
cubic, 1, 5,9, 11, 15, 22-25, 33, 34,
51, 55, 59, 63
linear cubic, 5963
quadratic, 51

iterationnumber, 81
iterationtest, 55, 80

Jacobian
Conjecture, 1-3, 5, 39, 40, 63, 64
Generalized Conjecture, 3
hypothesis, 5, 9, 10, 15, 22, 24, 40,
51, 55
matrix, 2, 9, 15, 51, 56
package, v, 8

Lemma,
1.6, 3
1.13, 4
1.28, 8
1.34, 10
3.1, 27
5.1, 42
5.4, 48

maakdruz, 76

maakdruzmat, 78

maakhomogeen, 74

maakjacobiaan, 75

maakmonoom, 75

maakopl, 76

Maple, 8, 10, 11, 36, 37, 52, 65, 77, 97,
111




Meisters, v, 33, 35, 36, 55, 77

nilpotency
index, 36, 55, 56, 77, 80
nilpotencyindex, 80
nilpotent, 9, 10, 15, 16, 21, 36, 41, 51,
55
strong, 51, 54, 55

ordern, 83
ordertest, 83

pairs, 67
partitions, 66
pospart, 67
powersim, 77
powsim, 36
Proposition
1.35, 10
22,16
4.4, 35

Question
1.1, 2
1.2,2
1.5,3
1.8,3
5.12, 55

resultant, 7

secondsummand, 68
simplifyM, 12, 70
smallpart, 69
solve, 11, 36
solvesystem, 73
strongnilclass4, 51, 79
strongnillist, 79
strongnilpotent, 51, 79
struct, 82

subpart, 66

sumpart, 66

testexp, 43, 84

Theorem
1.3,2
1.9, 3
1.10, 4
1.11,4
1.14, 4
1.15,5
1.16, 5
1.17, 5
1.18,5
1.20, 5
1.22,6
1.23, 6
1.24, 6

1.26, 7
1.27, 8
1.33,9
2.5, 23
2.7, 24
3.1, 27
4.2, 34
4.6, 38
4.7, 38
4.8, 40
4.9, 40
5.2, 43
5.3, 48
5.6, 50
5.7, 50
5.8, 51
5.10, 51
5.11, 51
5.13, 55
5.14, b5
5.16, 56
5.17, 56
trans, 78
transform, 82
triangular, 5, 9, 23, 51
triangularizable, 11, 12, 16

wrbeta, 69
Wright, v, 1,5, 9, 11, 21




