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FORWORD

When I was asked by the Department of Mathematics of the University of Nij-
megen to organize a one day conference in honour of Ton Levelt’s retirement, my im-
mediate answer was “Yes, of course!”.

“Yes, of course!”, since Ton has had an enormous influence on our depart-
ment (and me). During his 35 years stay at our institute he has been a chair-
man for many, many years, a task in which he has put an enormous amount of en-
ergy.

On the more mathematical level he has given courses ranging over allmost all dis-
ciplines of mathematics and organized many interesting and stimulating semi-
nars (my first contact with Ton was in 1971-1972 when he gave a course in num-
ber theory followed by a seminar in class field theory).

Internationally his pioneering work on differential equations is world wide rec-
ognized (a clear example is Prof. Bolibruch’s lecture in which Levelt’s the-
ory plays a crucial role in the solution of the Riemann-Hilbert problem).

During the last twenty years his interest for computers grew rapidly, which fi-
nally turned him into an apostel for Computer Algebra, giving lectures wher-
ever he could to explain to all of us the beauty and power of it! The influ-
ence on our institute has been enormous. As I wrote on another occasion “he cre-
ated a Mathematics department in Nijmegen in which the use of Computer Alge-
bra is almost as normal as the use of pencil and paper!”.

Of course it was an easy job for me to find speakers for the conference. Every-
one I invited immediately responded very positively. Unfortunately Prof. Varadara-
jan and Prof. M. Singer where not able to come but nevertheless they were spiritu-
ally by sending each a nice text, which I presented in their name during the confer-
ence (these texts can be found at the end of this proceedings).

Let me end by saying: THANK YOU VERY MUCH for all you did for many of us.
We all wish you all the best for a happy and healthy future together with Joke, Math-
ematics and Computer Algebral

Arno van den Essen
November, 1997
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LEVELT’S VALUATION METHOD AND THE RIEMANN-
HILBERT PROBLEM

ANDREY A. BOLIBRUCH

Steklov Mathematical Institute of Russian Academy of Sciences
ul. Gubkina 8, 117966 Moscow, GSP-1

Russia

bolibr@class.mi.ras.ru

Abstract.

This article is a version of a lecture presented on January 10, 1997 in Nijmegen at
symposium “Differential and difference equations and Computer algebra” in honor
of the 65th birthday of A. Levelt. Here we present the concept of Levelt’s valuations
of a system of ODE with regular singular points and show how this concept is
used in the investigation of the Riemann—Hilbert problem (both classical and many-
dimensional ones).

1 Regular and Fuchsian systems on the Riemann sphere

I am very happy and proud to participate at the symposium in honor of Professor
A. Levelt whose works played a very important role in my mathematical activity.
The first of all I mean his remarkable work [21], where among other problems® he
considered a problem on distinguishing of Fuchsian systems on the Riemann sphere
among all systems with regular singular points. Let me remind basic notions of
Fuchsian and regular singular points.

Let a system

dy

— = DB(z 1

5, = By (1)
with unknown vector function y = (y!,...,%?)! (t means transposition) have
singularities az, ..., ay; that is, B(z) is holomorphic in C\ {ai,...,a,} (where C

is the Riemann sphere).

The system is called regular at a; (and a; is a reqular singularity for this system),
if any of its solutions has at most polynomial (in 1/|z — a;|) growth at a; as z tends
to a;, remaining inside some sector with the vertex at a; (without going around this
point).

This work was partially supported by Grant 96-01-00207 from the Russian Found of Basic
Researches.

!This work is devoted to a classification of local connections which appear from differential
equations.



2 Andrey A. Bolibruch

The system is called Fuchsian at a; (and a; is a Fuchsian singularity of the
system) if B(z) has a pole there of order at most one. The system is Fuchsian if it
is Fuchsian at all a;.

It is well known [16] that any Fuchsian system is regular, but a regular system
needs not to be Fuchsian. Thus the class of regular systems is broader than the
Fuchsian one.

Consider system (1) in a neighborhood O; of a singular point a;. Let Y (z) be
a fundamental matrix to (1) in O; \ a; and let G; be a monodromy matrix of Y(z)
(i.e., G; is a matrix of a linear transformation of Y'(z) under an analytic continuation
along a loop, going around a; in O; \ a;). '

Denote by E; the matrix 1/(2m%) In G; with eigenvalues p! normalized as follows

0 <Rep! < 1. (2)
The matrix Y'(z) of regular system (1) can be decomposed in the following way
Y(2) = M(2)(z — )™, (3)

where M (z) is meromorphic at a;.

This decomposition takes place for Fuchsian systems as well. Thus, one can see
that locally every Fuchsian system is meromorphically equivalent to a reqular one.
May be this is the reason why the problem of distinguishing Fuchsian systems among
all regular ones was not considered before Levelt.

In order to investigate this problem Levelt introduced the concept of valuation
for a solution to system (1) at a regular singular point a;. Let me remind it.

It follows from (3) that every solution to (1) can be presented in the form of
finite “logarithmic sum”

y(2) = hi(2)(z = @) W (z - ay), (4)
k,l

where pf are from (2), b; € Z, b; > 0, hy;(z) are functions meromorphic at a;. Denote
by my; the order of zero (the order of pole with the sign minus) of the function hy;(z)
at a;. The minimum ;(y) of my; over all k,l from the logarithmic sum is called the
valuation p;(y) of y(z) at a;. By definition ¢;(0) = oc.

For instance,

©i ((1/(2 — ai)Q) (z—a;)"/?In(z — ai)) = -2

It was proved in [21] that the valuation ¢; takes a finite number of values
o > Pl > ... > 9™ on the space X of solutions to system (1), considered in
O; \ a;. Moreover, it generates a filtration

0cX'c...cxm™=X (5)

of X by vector subspaces X/ = {y € X|yi(y) > ¥’} and the local monodromy
operator preserves this filtration. Consider a Levelt’s basis y1(z),...,yp(z) of the
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space X, that is the basis associated with filtration (5) and such that the monodromy
matrix G; has an upper-triangular form in this basis. Denote by Y;(z) a fundamental
matrix to (1) whose columns coincide with the elements of this basis. Then the
following statement (which is due to Levelt [21]) takes place.

Theorem 1 The fundamental matriz Y;(z) has the following decomposition in

Oi \ (47

Yi(2) = Ui(2)(z — ) (2 — @)™, (6)

where U;(z) is holomorphic at a;, A;=diag(e},...,¢"), gog = ¢i(y;), E; is an upper-
triangular matriz defined above from the monodromy matriz G;.

The next statement which is also due to Levelt [21] completely solves the local
problem of distinguishing of Fuchsian systems among all regular ones.

Theorem 2 System (1) regular at a; is Fuchsian at this point if and only if the
matriz U; from decomposition (6) for the system is holomorphically invertible? at a;.

Theorem 2 in particular means that each Fuchsian system is completely determined
(up to a holomorphically invertible at a; change of the dependent wvariable) by
its monodromy and its weighted Levelt’s filtration (filtration (5) with values of
valuations) at the point a;. It can be used for the classification of logarithmic
connections in vector bundles constructed from a monodromy representation of a
system (see [6], [10], Appendix D).

The numbers 3] = ¢! + p! are called the ezponents of the system at a;. As it
follows from (6) they coincide with the orders of asymptotics of solutions to (1) at
a;.

To every regular singular point a; one can attach a number

p .
W=30
J=1

(a sum of all exponents at a;). Unfortunately, in general there is no connection
between different Levelt’s filtrations at any two different singular points. Nevertheless
there is one important connection among all filtrations at all singular points on the
Riemann sphere. And exactly this unique connection provides the answer to the
global problem of distinguishing Fuchsian systems among regular ones. The following
statement also is due to Levelt [21].

Theorem 3 For any regular system (1) with singular points ai,...,a, on the
Riemann sphere the following relation holds

S=) s<0, TeZ (7)
=1

2A decomposition similar to decomposition (6) for Fuchsian systems was obtained earlier by
Gantmacher in [11], but he never investigated the problem formulated above and he did not
introduced a concept of valuation.
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The system is Fuchsian on the whole Riemann sphere if and only if

= 0. (8)

In fact, here Levelt created a very important and useful tool for the investigation
of the so-called Riemann-Hilbert problem. Let me remind very briefly the curious
history of the problem.

For every system (1) with singular points aq, ..., a, on the Riemann sphere an
analytic continuation of a fundamental matrix to the system along a loop lying in
C\ {a1,...,a,} with a starting point zo generates a linear representation

x:m(C\{a1,...,an},20) — GL(p,C) (9)

which is called a monodromy representation to the system or simply monodromy.

Riemann was the first to mention the problem of the reconstruction of a Fuchsian
equation from its monodromy representation in a note at the end of the 1850’s. In
1990 Hilbert included it in his list of “Mathematical Problems” under the 21st
number. It was formulated as follows ([17]):

Prove that there always exists a linear differential equation of Fuchsian type with
given singular points and a given monodromy group.

Historically the three following variants of this problem were considered: for
scalar Fuchsian differential equations, for regular systems, for Fuchsian systems of
differential equations.

As for scalar Fuchsian equations, it was known that time that the problem has a
negative solution. This follows from the fact that a Fuchsian equation of pth order
with singularities ay,...,a, contains fewer parameters than the set of classes of
conjugate representations (9). This goes back to Poincaré [23]), who calculated the
difference between these two numbers of parameters. So in general it is impossible
to construct a Fuchsian equation without an appearance of additional singularities.

Very often in mathematical literature the 21st Hilbert problem for Fuchsian
systems is called the Riemann—Hilbert problem.

For a number of years people thought that the Riemann-Hilbert problem was
completely solved by Plemelj [22] in 1908. Only recently it was realized that there
was a gap in his proof (for the first time this was observed by Yu.S. II’yashenko [2]
and T. Kohn [18]). It turned out that Plemelj obtained a positive answer only to
the problem concerning regular systems instead of Fuchsian ones.

According to this result of Plemelj the Riemann—Hilbert problem can be reduced
to the following one

Prove that every system with regular singular points on the Riemann sphere is
meromorphically equivalent to a Fuchsian system with the same singular points.

Now one can see that Levelt’s Theorem 3 really could provide an algorithm for
the investigation of the Riemann—Hilbert problem. Due to this theorem to prove
the problem it is enough to prove that for every regular system on the Riemann
sphere there always exists a meromorphic transformation such that the transformed
system has the same singular points and its sum of exponents ¥’ is greater than the
sum of exponents ¥ of the original system. Indeed, if the latter statement is true
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one can apply the corresponding meromorphic transformations until the resulting
system has the sum of exponents equal zero. Then this system is Fuchsian due to
Theorem 3 and we are done.

To illustrate the method let us prove the Riemann—Hilbert problem for dimension
p = 2. The corresponding result is due to W. Dekkers [8] who used some results of
the work [9] instead of Levelt’s Theorem 3. The proof of Dekkers is complicated
enough. But the application of the method of valuations provides a straightforward
and simple proof.

Consider system (1) regular at singular points with the given monodromy. In
particular let it be regular at a; = 0. Since in decomposition (6) det U1(0) = 0,
without loss of generality one can assume that U;(z) has the following decomposition

at zero:
1 *
Ui(z) = ( ek gem )(1+0(2)), k>0,m>0.

Let k = 1. Consider the matrix

I(s) = ( (1) —11/cz )

Under the transformation Y/ = I'Y our system is transformed to the system with
the same singular points and such that decomposition (6) for the system at zero has
the following form

€Zl *

cz dz™

Y{(2) = T(2)Yi(2) = T(2)Uy(2)z 1 25 = < ) (14 o(2))zM1 25 =

62171 * Al _Ey
—(F0 ) (eetian,

C

where the sign * denotes entries holomorphic at zero, [ > 0,

1 0
AI1:A1+<0 0)

The form of the matrix A} of valuations at zero means that the sum s} of exponents
at zero of the new system is greater than the sum s; of exponents of the original one:
s} = s1+ 1. Since the transformation I' is holomorphically invertible outside of zero,
it does not change the exponents at other singular point. Thus, for the resulting
system we get

Y=Y+1>%

and we are done.

For the case k > 1 the corresponding proof is just slightly more complicated (one
has to change the entry —1/cz of the matrix I" by an appropriate polynomial in 1/z
of degree k).

In fact the presented proof has a gap. It works only for the case ¢ # 0. What
does the equality ¢ = 0 means? It means that the fundamental matrix Y7i(z) is of

the form
* %
Yl(z) = ( 0 >
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And in turn it means that all monodromy matrices of the system are of the
same form. But the latter means that the monodromy representation (9) is
reducible. Thus, for p = 2 the method of valuations works well only for irreducible
representations. And it shows us the difference between irreducible and reducible
cases. A reducible case for p = 2 can be done from the following reasons: every two-
dimensional representation is either commutative or one of monodromy matrices of
the representation is diagonalizable. In the first case the proof is obvious, in the
second one it follows also from one of Plemelj’s result (see [2] or [1]).

The attempt to apply the same method to three dimensional irreducible
representations turned out successful. It was proved in [5], (see also [1]) that the
Riemann—Hilbert problem has the positive solution for such representations. As
for reducible ones the corresponding attempt leaded to the counterexample to the
Riemann—Hilbert problem. It turned out that for p = 3, n = 4 there exist reducible
representations which cannot be realized as monodromy representations of any
Fuchsian systems [5]. So, in this way it was proved that in general the Riemann—
Hilbert Problem has a negative solution.

As for p > 3 the direct method of valuations does not work so far. Nevertheless
using some additional ideas (from the theory of vector bundles) it is possible to
prove that for every irreducible representation the Riemann—Hilbert problem has a
positive solution (see [6], [19]).

I would like to mention once more that the application of the method of valuations
shows us the difference between irreducible and reducible cases and it initiated us
to consider the reducible case separately. Other methods do not provide reasons to
do it.

2 Many-dimensional Fuchsian systems

The concept of valuations can be applied to Pfaffian systems
dy = wy (10)

on analytic complex manifolds. Here w is a matrix-valued differential form on a
complex manifold M™ holomorphic outside of a divisor D = U}, D; with normal
crossings. System (10) is assumed to be completely integrable with regular singular
points only. The notion of regularity is defined in the same way as for systems (1) on
the Riemann sphere. System (10) is called Fuchsian at D if it has at most logarithmic
singularities there.

Various aspects of the theory of many-dimensional Fuchsian systems were
considered by M. Yoshida and K. Takano [25], R. Gérard [12], A. Levelt [13],
R.M. Hain [15], V.A. Golubeva [14], V.P. Leksin [20], by myself [3] and by other
mathematicians. In many respects these investigations were inspired by problems of
mathematical physics, in particular by the theory of Feynman integrals.

In [25] with the help of methods of normal forms a decomposition for Fuchsian
system (10) similar to (6) was obtained. A generalization of Levelt’s results on
classical Fuchsian systems was presented partially in [12] and finally in [3]. Valuations
were defined with the help of many-dimensional logarithmic sums similar to (4). It
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turned out that for every brunch D; of divisor D it was possible to attach the number
si = ) 5_y B{— the sum of exponents corresponding to D;. Then, the following
generalization of Theorem 3 was proved (see [3]).

Theorem 4 Completely integrable Pfaffian system (10) with regular singularities
along a dwisor D = U}, D; with normal crossings on a compact Kdhlerian manifold
M™ 4s Fuchsian if and only if the cycle

Y= zn: SZ‘Di
1=1

18 homologically trivial.

Note here that the classical Levelt’s condition (8) also is homological. Indeed,
relation (8) means that the zero-dimensional cycle ¥ = )", s;a; is homologious to
Zero.

The condition of Theorem 4 can be directly used to obtain counterexamples to
the generalized Riemann—Hilbert problem. This problem is formulated in the same
way as the classical one. One must only change the notion of a Fuchsian system (1)
by a Pfaffian Fuchsian system (10) and representation (9) by a representation

X i (M™\ D,py) — GL(p,C). (11)

Let M™ = P™(C). Then every D; can be determined by a homogeneous
polynomial P; of degree k; as follows: D; = {z € C™!|P(z) = 0}. Since D is
a divisor with normal crossings, the group 71 (P™(C) \ D) is commutative with n
generators g, . .., g, (corresponding to loops going around every D;) and with only
one relation:

n
[ =e (12)
=1

It turns out that for this case the condition of Theorem 4 is formulated as follows

isikz‘ =0. (13)
i=1

Now we get all we need to present a counterexample to the many-dimensional
Riemann—Hilbert problem (see [4]).

Example 5 Let m = 2,n = 2,p = 1,P; = z% +z§ +z§,P2 = 52%+32§+z§,
X'(91) = i,X'(92) = V2/2 +i/2/2. The one-dimensional representation (11) defined
by the data D1, D2, x'(91), X' (g2) cannot be realized as a monodromy representation
of any Pfaffian Fuchsian system on P?(C).

Indeed, since valuations to a system are integers, condition (13) is equivalent to
the following one

Zpiki =0 (mod d),
i=1
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where p; = ?:1 p{ is a sum of eigenvalues of the matrix F; from (2), d is the most
greatest divisor of the numbers k1, ..., k,. In our case one has

p1=1/4,p2=1/8,d=2, and 2(1/4)+4(1/8)=1#0 (mod 2).

Thus, this representation cannot be realized by any Pfaffian Fuchsian system. (Note
here that necessary condition (12) is fulfilled.)

The complete answer to the Riemann—Hilbert problem for the case of a divisor D
with normal crossings in M™ = P"*(C) is presented in the following simple statement
(see [4]).

Proposition 6 Let monodromy matrices G; = x'(gi;) of representation (11) be
reduced simultaneously to an upper triangular form. Let G; = R; + N;, where R;
are diagonal matrices and N; are nilpotent. Then the representation can be realized
by some Fuchsian system on P™(C) with singularities along D if and only if the
following relation holds

> Fiki = 0(mod d),
=1

where F; = 1/(2mi)InR;.

3 Congratulations

Here I presented just two applications of Levelt’s results on Fuchsian systems. I said
nothing about his remarkable work [13] on generalized hypergeometric functions,
about the connection between the exponents of a Fuchsian system and invariants
of vector bundles on the Riemann sphere constructed by means of its monodromy
representation (see [7]). These invariants can be calculated algorithmically from the
Fuchsian system. But here we enter the region of Computer algebra and I hope that
other speakers will say better about Levelt’s activity in this domain.

At the end of my talk I would like to pass to Professor Levelt congratulations
and best regards from Moscow mathematicians D.V. Anosov, Yu. II’yashenko,
V.A. Golubeva, V.P. Leksin.
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Dedicated to Ton Levelt on the occasion of his 65th birthday

This paper is an extended version of a lecture given in honour of Ton Levelt’s
retirement at the University of Nijmegen. Over a long period, Ton Levelt and I have
cooperated on the subject of algebraic aspects of differential equations. My interest in
Kovacic’s algorithm and more generally in computer algebra for differential equations
has its origin in Ton’s activities in this area of Mathematics. This paper is meant as
a present, thanking him for his stimulating ideas.

Many types of equations will be discussed. The main theme is concerned with
differential and difference equations. Ordinary Galois theory (in other words solving
polynomial equations in one variable over a field) is also presented here in order
to stress the anology with differential and difference equations. For the latter type
of equations we aim to give an exposition of some current themes of research and
results. However this paper is far form being a survey of the subject.

In general, the equations that we look at will have no (or few) solutions in the base
field (or ring) K over which they are defined. We will indicate how one constructs
an extension L of the base field K which contains all solutions. The group of the
automorphism of L/K (which preserve some additional structure) is the Galois group
associated to the equation. This group is the key for producing symbolic solutions
to the equation. Algorithms for this Galois group and for symbolic solutions are the
main issue of this paper.

1 A polynomial equation f(z) =0 over a field

This is the ancestor of the problems that concern us here. Let K denote a field.
Suppose that the polynomial f € K|[z]| has degree n and that f is separable, i.e. the
g.c.d. of f and its derivative % is 1.

One wants to make a “minimal” extension of K in which f has n (distinct) roots.
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Consider the ring extension K C R given by
R=K[X1,...,X,,1/d]/(f(X1),..., f(XR))

where d = [[,,;(Xi — Xj). The polynomial f has n distinct roots in R. Indeed, the
images of the X; in R are roots of f and they are distinct since d is invertible in R.

However R is not “minimal”. Let m be any maximal ideal of R. Then the field
L = R/m has this minimality property. One calls L the splitting field of f over K.
It is unique up to isomorphism. The Galois group G of f over K is the group of
the K-automorphisms of L/K. Let {x1,...,z,} denote the images of the {X;} in
L. This is the set of the roots of f in L. The group G acts on the set {z1,...,2,}
and in fact G can be considered as a subgroup of the group S,, of all permutations
of the roots {z1,...,x,} of f. At this point one can ask many questions:

1. What groups G C S, do occur?
2. Is G computable?
3. Can one find “symbolic solutions”?

The answer to those questions depend of course on the base field K. The historical
question about symbolic solutions asks if all the solutions can be expressed by means
of (repeated) radicals, i.e. nth roots o The historical answer is: “yes” if and only
if the group G is solvable.

For special fields, like Q or number fields or finite fields, there are theoretical
algorithms which determine G. Solving polynomial equations over finite fields is
rather easy. The most interesting case is K = Q. The equation f(z) = 0 can be
considered over all the completions of QQ, i.e. the field of real numbers R and for
every prime p the field of p-adic numbers Q,. Over those fields it is easier to “solve”
the equation. Solving f(z) = 0 over Q,, is closely related with solving the equation
modulo p, i.e. solving f(z) = 0 mod p.

Using group theory and reductions modulo primes p of the equation one has made
practical implementations of the algorithm for say n < 12.

Question 1. above for K = Q is the famous unsolved “inverse problem of Galois
theory”. It has inspired many mathematicians.

2 Differential equations in characteristic 0

An algebraic way to look at linear differential equations is the following. One
works over a base field K, which is equipped with a differentiation a — a’. The
differentiation is supposed to be nontrivial and to satisfy the rules (a +b)' = a’ + ¥’
and (ab)’ = a’b + ab’. Such a field is called a differential field. The subset of the
constants C' := {a € K| a’ = 0} is a subfield of K as one easily sees. For the sequel
it is important to suppose that C is algebraically closed. The standard (and maybe
most interesting) example is:

K = C(z) with C D Q an algebraically closed field and " = di
z
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A (linear homogeneous) differential equation can be given in the form
v + a1y + L+ ary +agy = 0.

It is sometimes more efficient to work with a differential equation in matrix form.
We will do this here. A differential equation in matrix form is

v = Av with A a n X n-matrix with coefficients in X and v € K".

One wants to find a “minimal” extension of K where the equation has n linearly
independent solutions of the field of constants of the extension. Consider the ring
R = K[X,;, é]lgi,jgn with d = det(X; ;). The differentiation " on R extends the
differentiation of K and is given by (X/ ;) = A-(X; ;). In this “differential ring” the
equation has n independent solutions. They are the columns of the matrix (X ;).
The ring is not minimal in general.

Let I by an ideal of R which is maximal among the set of ideals J satisfying

the condition J’ C J. It turns out that I is a prime ideal. The ring PV := R/I is
“minimal” and is called the Picard-Vessiot ring of the equation. It has the property
that the field of fractions L of PV, which is again a differential field, has the same
field of constants as K. The Picard-Vessiot extension is unique up to isomorphism.
The fundamental matrix F' = (x;;), this is the image of the matrix (X;;) in
PV, has as columns n independent solutions over C. The group of all differential
automorphisms of PV/K, consists of the K-algebra automorphisms o : PV — PV
which commute with ’. This group is by definition the Galois group G of the equation
v/ = Av over K.
The group G acts C-linear on the n-dimensional C-vector space Sol of all solutions
with coordinates in PV. In fact G is an algebraic subgroup of GI(Sol) = Gl(n,C).
After having explained this theoretical construction we are left the already familiar
questions.

1. What algebraic subgroups G C Gi(n,C) do occur?
2. Is G computable?
3. Can one find “symbolic solutions”?

Of course, the answers will depend on the choice of the differential field K. The
third question was posed by Liouville and solved by him in the special case y(?) = ry
with 7 € C[z]. In modern language, “symbolic solutions” are solutions which can be
expressed by using repeatedly three types of operations:

(a) Adding to the differential field M roots of a polynomial equation f(7") = 0 with
feMI[T].

(b) Adding to the differential field M an integral [ adz of an element a € M (or in
other terms a solution of y' = a).

(¢) Adding to the differential field M an expression e/ ¥ where a € M (or in other
terms a nonzero solution of 3’ = ay).

The well known answer to question 3. is: All solutions of the equation are
“symbolic solutions” if and only if the neutral component G° of the differential



14 Marius van der Put

Galois group G is a solvable group.
The reader will have noticed that this does not really answer the third question, but
translates it into a special case of question 2. What can one say about the latter?

For n = 1 the situation is rather transparent for the field C(x) (with C a
computable algebraically closed field such as Q). The equation reads 3’ = ry. Its
Galois group G is an algebraic subgroup of GI(1,C) = C* and can only be C* or
the group p, of the nth roots of unity.

The group G is equal to u, if and only if all the residues of rdx at the points of
C' U {oo} are rational and have n as their common denominator.

This is a complete answer. Further, by definition, any solution of ¢y’ = ry is a
“symbolic solution”.

For n = 2 and the field C'(x), question 3. was answered by Kovacic. The algorithm
which is named after him uses three ingredients:
(a) A classification of the algebraic subgroups of GI(2,C) (or more precisely of
Si(2,0)).
(b) For any point v of C'U {co} the solutions of the order two equation over the
completed field C(x),.
(c) A gluing of “local solutions” at the points v € C' U {oco} to a possible “global
solution” over C(z).

We note that for a point v # oo this completion C(z), is the field of formal

Laurent series in = — v, i.e. the field C((z — v)). For v = oo this completion is
C((=71)).
Kovacic’s algorithm has many times been refined and implemented. Although this is
not made explicit in the literature, one can use Kovacic’s algorithm to determine the
differential Galois group. Kovacic’s algorithm does not use the full determination of
the “local Galois group at the point v”. This local Galois group is defined as the
Galois group of the equation over the field C'(x),. This group can easily be read of
from the formal classification of the differential equation over C(x),.

This classification is usually attributed to Turrittin (and maybe also to G. Birkhoff).
It seems almost superfluous to remind the reader that A.H.M. Levelt and his
Ph.D. students R. Sommeling, M. van Hoeij have made considerable theoretical
and algorithmical contributions to the classification of linear differential equations
of any order over the fields C(x),. Their work culminated in algorithms for factoring
(locally and globally) differential operators of any order.

Papers of M.F. Singer and F. Ulmer generalize the Kovacic algorithm (at least
theoretically) to the case n = 3 and K = C(x) (with C' a computable and
algebraically closed field). It seems that in principle the questions 2. and 3. are
answered for n = 3 and K = C(x).

The second question is strongly related with finding the ideal I in the
construction of PV as we will indicate.
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Any B € Gl(n,C) acts as an automorphism op on the K-algebra

R =K[X;;, éhﬁi,jsn
by the formula (o5(X;;)) = (X;;) - B~!. Then B belongs to G C Gl(n,C) if and
only if opl = 1.
Suppose that [ is known and let B € Gl(n,C) by a matrix with “indeterminates”
as coefficients. The Grobner basis algorithm gives an answer to the question: What
are the algebraic conditions on B such that op(X; ;) € I for all X; ;. More precisely:
explicit generators of the ideal I lead to explicit generators for the ideal which defines

G.

We are not certain that the converse statement is also true. More precisely,
suppose that a basis for the ideal defining the Galois group G is given. Can one
find explicitely a Picard-Vessiot extension? In the case that G is connected one
knows that K ® O(G) (where O(G) is the algebra of the regular functions on G) is a
Picard-Vessiot extension for the equation. In the general case, there is a finite Galois
extension K’ of K such that K’ ® x PV (with PV a Picard-Vessiot extension) and
K' ® O(QG) are isomorphic.

Suppose that one knows that the Galois group G of the matrix differential
equation 3y’ = Ay over K is reductive. Then there is a theoretical algorithm for
finding the ideal I and the Picard-Vessiot extension. This method uses “invariant
theory for G” and the possibility of finding all rational solutions (i.e. defined over
K) of any differential equation derived form y’ = Ay by “linear algebra”.

It is believed that there is a theoretical algorithm for determining the Picard-
Vessiot extension and the Galois group G for K = C(z) (and with C' a computable
algebraically closed field like Q).

Some work on implementation for n = 3 and special equations has been
done. The algorithms make an essential use of the theory of linear algebraic
groups: classification of algebraic subgroups of Gi(2,C),GI(3,C), invariant theory,
representations et cetera.

3 Ordinary difference equations

A difference field K is a field equipped with an automorphism ¢. The field of
constants C' is defined as C = {a € K|¢p(a) = a}. We will assume in this section
that C is an algebraically closed field of characteristic 0 and that K # C. A linear
difference equation is something of the form

and"(f)+ ...+ a10(f) +aof =0, with ay,..,ap € K and a,,ag # 0.

It is often practical to formulate the techniques and the results for a difference
equation in matrix form. This is an equation of the type:

¢(v) = Av where A € Gl(n, K) and v € K".
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It is obvious how to translate the first equation into a matrix difference equation.
If we choose for K the field C(z), then there are essentially two choices for ¢, namely:
(i) ¢(2) = z + 1. In this case one speaks of ordinary difference equations.

(ii) ¢(z) = gz with ¢ € C* not a root of unity. This choice defines the g-difference
equations.

3.1 The Picard-Vessiot extension

The pattern for the construction of a Picard-Vessiot extension for the equation
¢(v) = Av is the following:

Consider the ring R = K[X; ;, é]lgi,jgn with d = det(X; ;). The action of ¢ on K is
extended to R by the formula (¢X; ;) = A-(X; ;). This ring is in general too big and
one wants to divide out by an ideal I. The action of ¢ on R is supposed to induce
an action on R/I (i.e. we must have ¢(I) C I). One takes for I C R an ideal which
is maximal among the collection of all ideals J satisfying the condition ¢J C J. It
turns out that I is a radical ideal and thus PV := R/I has no nilpotent elements.
The extension PV of K has the properties:

(1) ¢ extends to an automorphism of PV.

(2) There is an invertible matrix F, called a fundamental matrix, with coefficients
in PV satisfying ¢(F) = AF.

(3) PV has only trivial ¢-invariant ideals.

(4) PV is generated over K by the coefficients of a fundamental matrix.

An extension of K with the properties (1)-(4) above is called a Picard-Vessiot

extension for the equation ¢(v) = Av over the field K. We have seen that such an
object exists. It can be shown that the Picard-Vessiot extension is unique up to
isomorphism and that its set of constants is again C.
The Galois group G of the equation ¢(v) = Av over K is the group of the
automorphisms of PV/K which commute with ¢. This group acts on the n-
dimensional C-vector space Sol of all solutions of the equation with coordinates
in PV. As before G is a linear algebraic subgroup of GI(Sol) = Gl(n,C).

Example 1 In this example we will demonstrate that the Picard-Vessiot extension
of K can have zero divisors.

One considers the equation f(z 4+ 1) = (f(z) with ¢ a primitive nth root of unity
(and n > 1). Let any ring extension A D K be given, such that

(i) A is a domain with a ¢-action extending ¢ on K.

(ii) C is the set of constants of A.

Suppose that f € A satisfies the equation ¢(f) = (f. Then ¢f™ = f™ and f* € C
and thus f € C. Therefore f = 0.

The construction above leads to the Picard-Vessiot extension PV = K[X]/I
with X = (X and I maximal among the ¢-invariant ideals. It is easily seen that
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I = (X™ —1) is such an ideal. The ring PV = K[X]/(X"™ — 1) has clearly zero
divisors. The Galois group is the cyclic group of order n.

3.2 The difference field C(z) with ¢(z) =z +1

We recall the three basic questions:

1. Which algebraic subgroups of Gl(n,C) are difference Galois groups?
2. Is the difference Galois group of an equation computable?
3. Can one find “symbolic solutions”?

The answer depends on the choice of the difference field. We will consider here
the situation of an ordinary difference equation in characteristic 0, i.e. K = C(z),
C' an algebraically closed field of characteristic 0 and ¢(z) = z + 1. A rather deep
result holds in this case ([6]):

Theorem 2
G is the smallest algebraic subgroup of Gl(n,C') such that the equation ¢(v) = Av
can be transformed into ¢(w) = ¢(B~Y)AB w with ¢(B~1)AB € G(K).

With regard to question 1, the current situation is:

e It is conjectured that an algebraic subgroup G of Gl(n,C) is the Galois group
of an ordinary difference equation if and only if G/G° is cyclic.

e The previous theorem implies that any difference Galois group G has the
property that G/G° is cyclic.

e Any connected algebraic subgroup of Gl(n,C) is a difference Galois group.

e For many algebraic subgroups G C Gl(n,C) with G/G° cyclic, it is proved that
G is a difference Galois group.

The questions 2. and 3. are strongly related. We will sketch how the previous

theorem solves both questions for n = 2. The method can be seen as a “Kovacic
algorithm” for ordinary difference equations.

3.2.1 An algorithm for ordinary difference equations of order two

The field C is supposed to be a “computable” field. In practice we may suppose that
C = Q. The difference equation of order two can be written in the form

¢*(y) + ad(y) + by = 0 with a,b € K, b # 0.

The first step is the classification of the possible algebraic groups G C Gl(2,C)
which can be difference Galois groups:

1. Any reducible group with G/G®° finite cyclic.

2. Any infinite imprimitive group with G/G° finite cyclic.

3. Any group containing SI1(2,C).

Associated to the equation above is the Riccati equation u¢(u)+au+b = 0. One
has:
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a) If there is no solution u € K then G is irreducible.

b) If there is one solution u then G is of type 1, but not a diagonal group.

c¢) If there are two solutions u then G is a diagonal group, not contained in C*Id.
)

(
(
(
(d

If there are more than two solutions then G C C*Id.

There is a quick algorithm for finding the possible u’s. It consists of finding locally
at z = oo the possible expansions of v and then trying to match those expansions
with a rational function.

In the cases (b), (c) and (d) one has essentially to study rank one difference equations
in order to calculate G. In case (a) one has to find out whether the group G is
imprimitive or not. This is done with the criterion:

G is imprimitive if and only if the equation

»*(E)E + <¢2 <S> — ¢(a) + @) E+ @ =0 has a solution E € K.

If E exists then the equation is equivalent to ¢?(y) + ry where r = —ag¢(a) +
#(b) + ad?(E + g) The equation ¢?(y) + ry is seen as an order one equation for ¢2
in the place of ¢. This can easily be solved and G can be determined.

If E does not exist then G contains SI(2, C'). The precise form of G can be determined
by considering the second exterior product, i.e. the rank one equation ¢(f) = —af.

This ends the algorithm which determines the difference Galois group G. One
can define “symbolic solutions” in a way similar to the case of differential equations.
All solutions are symbolic if and only if G° is a solvable group.

We remark that this algorithm is less involved than Kovacic’s algorithm since we
do not have to consider the finite subgroups of GI(2,C') which are not cyclic.

Example 3 ¢*(y) + 2¢(y) + zy = 0. There is only one solution for the Riccati

equation, namely v = i%; Using this one can transform the equation in matrix
form
1 - 23—-622492—3
d(v) = (z2=1)%(2=2)* | o,
0 —z

From this form one concludes that the Galois group is G = {< g g ) | a? =1}.

Moreover all the solutions are “symbolic”.

4 ¢-Difference equations with general ¢

Let C be an algebraically closed field of characteristic 0. The field C(z) is equipped
with the automorphism ¢ given by ¢(z) = gqz. We suppose that ¢ is # 0 and is
not a root of unity. Then the field of constants is the algebraically closed field C.
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The Picard-Vessiot theory, the Galois theory and the algorithms resemble those of
ordinary equations. However the structure is more complicated due to the following
result:

The Galois group G of an equation has the property that G/G° is a commutative
group generated by at most two elements.

A new feature of ¢-difference equations, when compared with ordinary difference
equations, is the existence of two points, namely 0 and oo, where one can study the
equation locally. A particular nice set of equations are the equations ¢(v) = Av,
which are trivial locally at 0 and co. We will call those equations regular. The
precise definition is that the equations are both over C((z)) and C((z7!)) equivalent
to the trival equation ¢(v) = Iv with I the identity matrix. In the case C = C
one can compare the local solutions at 0 and co. This leads to a connection matrix
which determines the Galois group of the regular equation. This is used to prove the
following noticable result

Theorem 4 An algebraic subgroup G of Gl(n,C) is the Galois group of a regular q-
difference equation if and only if G is connected.

In [6] and [1] one can find the current results about the “inverse problem” of the
Galois theory, a “Kovacic algorithm” for equations of order two and the interesting
hypergeometric ¢-difference equation.

5 More equations

There are other types of equations. Of particular interest are:

1. Differential equations in characteristic p > 0
2. g-Difference equations with q a root of unity.
3. Ordinary difference equations in charateristic p > 0.

The previous methods and theory fails to work here. The main problem is the non-
existence of a good Picard-Vessiot theory. The reason for this seems to be that the
field of constants cannot be algebraically closed.

Let us sketch the situation in the first case, that of differential equations in
characteristic p > 0. The derivation ' of the differential field K is supposed to be
non trivial. If every element a € K is a pth power, then one finds the contradiction
a’ = (b)) = pbP~' = 0 and ’ is identically zero. Thus it is essential that K is not
algebraically closed.

We continue with a standard situation K = k(z), with k is algebraically closed
and ' = d%. The field of constants is k(zP). This is a rather big field and close
to K itself. Consider the equation v = av with a € K* chosen such that there
is no solution # 0 in K (e.g. a = z). As before, one tries to make a Picard-
Vessiot extension of the form R = K[X, X !]/I. On K[X, X 1] one extends ' by
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the formula X’ = aX. The ideal I is chosen maximal among the ideals J with
J' C J. Choose any A € k(z)*. Let I(\) C R be the ideal (X? — AP). This ideal
is clearly invariant under ’; since (X? — A\P)’ = 0. Any bigger ideal has the form
(X — \)? for some i with 0 < i < p and is not invariant under differentiation.
Thus I()\) is maximal among the "-invariant ideals and R(\) := R/(X? — \?) should
be a Picard-Vessiot extension for the equation y’ = ay. We note that R(\) has
nilpotent elements. This is not a serious obstruction. The main difficulty is that the
differential rings R(\1) and R(A2) are isomorphic if and only if :\\—; € K?. What we
found can be formulated as: “the equation ¥ = ay admits non-isomorphic Picard-
Vessiot extensions”. The conclusion must be that there is no suitable Picard-
Vessiot theory which defines the Galois group of the differential equation 3y’ = ay.

The machinery of Tannakian categories is the theory which produces a suitable
Galois theory for the three types of equations that we have mentioned above. In
fact, the Tannakian approach also works for the equations considered earlier and
produces the same Galois theory. We will not go into this but try to translate the
results in an elementary way for special cases.

6 Differential equations in characteristic p > 0

Take K = k(z) with k =k D F, and ' = d%' The field of constants is K? = k(zP).

An equation reads in matrix form (-4 — A)v = 0. The operator - — A acts on K™,
Then ¢ = (diz — AP : K™ — K" is a K-linear! operator called the p-curvature.

This ¢ determines the equation in this special situation. From ¢ one can construct
a commutative p-Lie algebra over KP? = k(zP) and also a commutative algebraic
Galois group of height one with this prescribed p-Lie-algebra.

Example 5 The p-curvature of the equation vy’ = ay is the 1 x 1 matrix
aP~1) 4¢P € KP. The p-curvature of the equation y” = ry is the matrix

( —1/2f" fr—1/2f" )
f 1/2f ’

where f is a special solution of the equation f®) — 4y —2f7r(1) = 0 (the second
symmetric power of the original equation).

One of the interesting points about differential equations in positive characteristic
is the link with differential in characteristic 0. We will explain this in the special
situation of a differential equation over the differential field Q(z) (with ' = d%). In
order to find the Galois group (or symbolic solutions) for the equation y’ = Ay we
have seen that the local Galois groups, i.e. the Galois groups over the completions
Q(2), (for points v € P1(Q)), are rather important. There are other completions. For
every rational prime p one can consider the same equation over the field Q,(z). The

Galois group over this field is closely related with the study of the reduction of the
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equation modulo the prime p (which has a sense for all but finitely many primes).
This seems to be the idea for Grothendieck’s conjecture which can be formulated as:

All the solutions of the matriz equation y' = Ay over the field Q(z) are algebraic
over this field if and only if for all but finitely many primes p the p-curvature of the
reduction modulo p is zero.

N. Katz has extended this conjecture to one which describes the Lie-algebra of the
Galois group in terms of the p-curvature for almost all primes p. Moreover N. Katz
has proved that Grothendieck’s conjecture holds for differential equations coming
form algebraic geometry and (more recently) for “rigid” differential equations.

7 ¢-Difference equations with ¢"" =1

One considers the difference field K = C(z) where: C' an algebraically closed field
of characteristic 0 and ¢(z) = ¢z and ¢"™ = 1 for some integer m > 0.

We note that the field of constants C'(2™) is rather big and close to K itself. An
equation in matrix form ¢(v) = Av can be rewritten as an operator A~!'¢ : K™ —
K™. This operator is C(z™)-linear. The m-curvature of the equation is defined as
the operator ¥, = (A71¢)™ : K™ — K™. The main result is that the operator v,
is K-linear and determines the equation!

The Galois group, defined by means of a suitable Tannakian category, turns out to
be the algebraic subgroup of Gl(n,C(z™)) generated by vp,.
It seems that equations of this type have some interest in theoretical physics.

8 Ordinary difference equations for p > 0

We summarize this theory. The difference field is K = k(z) with k = k D F,
¢(z) = z + 1. The field of constants k(zP — z) is again rather big. Any matrix
equation ¢(v) = Av can be transformed into an operator (A~1¢) : K — K". The
p-curvature is defined as ¢ = (A71¢)P : K™ — K™. The main result is that the map
1) is K-linear and determines the equation.

In particular, ¥ € Gl(n, k(2P — z)) and the Galois group is the algebraic subgroup
of Gl(n, k(2P — z)) generated by .

It is tempting to compare ordinary difference equations over Q(z) with their
reductions modulo primes p (this reduction exists for all but finitely many primes
p). Consider the ordinary difference equation

z+1/2
2

y(z+1) = y(z) over the field Q(z).

It has no algebraic solution # 0 over Q(z) and its Galois group is therefore the
multiplicative group G,,.
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However for p > 2 the p-curvature of the reduced equation is

z+p—14+1/2 2z4+1+1/2 z+1/2
z+p—1 z+1 z

= 1 modulo p.

In fact, there is a non zero solution for the equation over F,(z). Let k£ = 1/2 modulo
p with 0 < k < p. Then y(z) :=2(z +1)...(2+ k — 1) is a solution.

This example shows that the naive formulation of Grothendieck’s conjecture for
ordinary difference equations is false! The example is not well understood and we
do not know how to formulate Grothendieck’s conjecture for ordinary difference
equations.
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Abstract.

An overview is given of what can be done to solve ordinary differential equations
by computer algebra, focussing in particular on the work of the CATHODE project,
in which Levelt was a partner, and within that on the exact solution methods. The
importance of Levelt’s areas of interest to this work is shown.

1 Introduction

I was quite shocked to find myself at Ton’s retirement. Ton seemed much too young
to be retiring. I am not sure when we first met, but I think it was at the 1988 CADE
meeting organized by Evelyne Tournier and others. From this and the early stages
of planning our European collaboration on differential equations, I got to know him
well. From the start I was impressed by his energy and enthusiasm. I was also very
aware of his human warmth, which, if I may tease him, occasionally turns into fiery
heat. Fortunately on those occasions his good humour, his human sympathies, and
his liking for stimulating discussions quickly return. I have enormously enjoyed his
company and his breadth of understanding and interests during the last few years.

I was not sure who to talk to. Ton Levelt? The rest of the audience about Ton?
In the end I suppose I opted mainly for the latter, in that I said again some things
Ton had heard me say before ([19, 20]). I can only hope that although he is a
mathematician he will be like the physicists who are said to enjoy nothing better
than having explained to them something they know perfectly well already. Whether
I can live up to the qualification ‘clearly explained’, which is usually added, remains
to be seen.
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2 The CATHODE project

Ton Levelt and I were two of the partners in the ESPRIT Working Group CATHODE
= Computer Algebra Tools for Handling Ordinary Differential Equations. Our
motivation, to quote the original application, was

To provide a portable computerized toolkit (CATHODE) for analytically
studying ordinary differential equations (ODEs) that scientists and engi-
neers throughout industry and academia would use on their workstations
in conjunction with numerical methods and simulators currently running
on supercomputers.

Among the many parts to this task are:

making use of the best methods in the extensive literature

combining them, which had not been done before

adding new high-level methods

expressing resulting algorithms in a portable way, with common primitives
implementing the result in one or more algebra systems

providing interfaces to numerical and graphical techniques

Note that the first 3 of these are mathematical in orientation while the other
three are more IT-oriented. Nijmegen has contributed to them all (the last only
rather indirectly).

It is natural to ask why one would want to do this. There are very sophisticated
numerical methods for ordinary differential equations and systems. Do we need
analytic methods? There are several reasons, for example

e When available, a formula covers all cases and is accurate, saving multiple
numerical integrations

e one can vary parameters

e one can use the result in a subsequent stage of calculation (this is to my mind
very important, and we should remember it when considering outputs from our
programs)

What difficulties did we face?

e The wide range of types of equation and system
e The correspondingly enormous number of methods, mostly somewhat heuristic
e The difficulty of devising a systematic framework for these

The variety of equations and systems to be dealt with can be shown by
considering the following alternatives:
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e single equations or systems
e linear or nonlinear
e first or higher order

The variety of results sought from analysis may also be considerable, e.g.

closed form solutions

first integrals

series solutions

normal forms

symmetries

bifurcations

numerical and graphical results

3 Levelt and the research done within CATHODE

In my talk, I could not compress more than 70 pages of reports, which were
themselves already compressed, into 30 minutes. The greatest advances have come
in linear equations and systems. This is one of the areas where Ton Levelt played
an important part. From the beginning he saw the importance of fast methods for
operations such as normal form calculations, and his ideas were very important in
the development of the tools we have now. The pervasiveness of linear methods has
driven the development of the common primitives for linear differential operators and
related problems which was a major success (and of which Thom Mulders’ Maple
code made the crucial test).

Differential Galois theory, which I learnt partly from Ton’s ‘Indigationes
Mathematicae’ paper ([14]), has also played a big part. (The approach taken
there is similar that of van der Put’s contribution to this meeting, not, as Levelt
remarked, entirely coincidentally!) This topic concerns linear equations or systems
with coefficients in a differential field %k, from which one can form the Picard-
Vessiot extension, the differential field K = k(y1, yo, ..., yn), where the y; are the
solutions linearly independent over k. K is an n-dimensional vector space over k.
The differential Galois group consists of the differential field automorphisms of K
which leave k fixed.

Use of the resulting concepts and theorems to actually solve equations, at least
for equations of order 2 and 3, has developed enormously during our collaboration,
and in particular has been related to factorization of linear differential operators
([28, 29]). The new work has been largely concerned with the algebraic aspects, but
one of Ton’s strengths is the recognition of the relation of this to local and global
analytic properties. As I expected, that appeared in his own talk at the meeting and
that of Mark van Hoeij.
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He has also always had a strong motivation to applications, perhaps in part
due to his family connections (note the references in [15]), and has been one of our
more successful contactors of industry (oddly since he professes to be a real pure
mathematician).

Finally, he is, among our group, one of the most knowledgeable about differential
algebra and differential Grobner bases, as well as normal Grébner bases (cf. [4] and
[16]).

In my remaining time I want, without too many details, to use the particular
sub-part of CATHODE concerned with closed form solutions as a sample subject to
give some sense of the interrelatedness of these areas of interest I just mentioned,
though I must point out that those themes have been at least as significant in series
developments of solutions of linear systems around singular points, and normal forms
of non-linear systems.

4 Closed form solutions of single equations

A useful organizing principle for explaining the currently-known techniques is
provided by Lie symmetry methods, as discussed in recent texts ([23, 30]), and
so that is where I will begin.

A Lie point transformation for an ODE
y " =,y gy Y)
in variables x, y is a mapping
z—x(z,y), Y-yl ).
It is a Lie point symmetry if the new variables obey the original equation,

H(z,y,9,...)=0.

We are usually interested only in continuous families of Lie point symmetries. Then
we can impose XH = 0 (mod H = 0) where the operator X is defined to be

X =80, + 10y + 10y + ...,

using the abbreviated notation for partial derivatives (so z — z + €£ etc is the
infinitesimal transformation). There are formulae to get n’ etc from 7 and &, a
process known as prolongation.

For normal types of H, equating coefficients in this equation gives an overdetermined
set of PDEs (in this case, linear ones, but when one investigates more general
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symmetries, they may be non-linear). The formal methods of reduction come exactly
from differential algebra and differential Grobner bases, though in practice these
methods are often mixed with heuristic use of integrations.

Eventually one hopes to isolate one of the dependent variables (using a
lexicographic order of terms in a Grobner basis calculation), and then one wants,
hopes and expects to end up solving a series of linear homogeneous equations (so
we reach for our differential Galois theory) or single first-order equations.

These two types of outcome have a grim irony: they are themselves exactly the
cases where Lie symmetry is useless (in the linear case because the Lie symmetries
include addition of the complementary function, and in the first-order case because
there are infinitely many Lie symmetries but no algorithm). Let us look further at
the first-order case.

Suppose we have an equation Pdy/dx = @ or a system & = P, § = @, with
P and @ in k[z, y] for some field k. If D = PO, + Q0,, these are solved if we
can find a function F'(z, y) such that DF = 0 (with F' non-trivially dependent on
the variables). Darboux showed how to tackle this using what we now call ‘Darboux
polynomials’, which are solutions of D f = fg for some g, and this was re-investigated
in [25] (which proved the essential theorem that all elementary F' took a form which
generalises in a simple way Liouville’s theorem for integrals and set the method out
as a clear procedure). With my student Y.K. Man, we found more effective ways
to implement this, which in particular can be done over the integers if P and @)
have rational coefficients, except for a final integration step which may introduce
algebraic extensions ([22]).

As an example, consider the (disguised linear) equation

dy 2

— 4 1)=0
Vg TVt z(x+1)
P =1,Q = —(y?>+4z(z+1)). In our method, we look for Darboux polynomials whose
leading and trailing homogeneous parts are products of irreducible factors over the
integers of the leading and trailing parts of xQ —yP which is —(x+1)(y%+42?) here.
One such is obviously f = (y? + 42?), and one quickly finds 1/f is an integrating

factor, leading to the solution
1
x+ 3 log(y? + 42%) = ¢
where c is an arbitrary constant.
These ideas, remarkably, fed back (though only partially due to CATHODE)
into the study of linear systems and equations, through the work of Weil ([32]), who
showed some beautiful relations between Darboux polynomials (in this more general

context) and differential Galois theory. For example, for a linear system y = Ay,
the Darboux polynomials are given by the differential invariants and semi-invariants
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of the differential Galois group, and are findable as solutions of suitable symmetric
products of the corresponding linear operator (now where did I put that introduction
to differential Galois theory?).

This has led to a simpler and quite effective implementation, due to Ulmer and
Weil, of the Kovacic algorithm for finding Liouvillian solutions (solutions “in closed
form”) of second-order linear equations ([31]). [It must be noted that at the time
CATHODE started, the known versions of Kovacic and similar algorithms required
some quite unpleasant calculations (and were not really effective), and had not
been very closely related to factorization of operators. The developments during the
CATHODE period, by Singer, Ulmer, Weil, Bronstein, van der Put and Hendriks,
and Zharkov, altered the picture greatly. We now have more rational methods, very
much related to the properties of the symmetric powers of the operator in the input
equation. They rest on a deeper understanding of differential Galois group structures
and properties.] I should mention that factorization of linear operators (cf. van
Hoeij), normal forms of linear systems, linear algebra, and Grébner bases all re-
appear in these methods.

Another generalization of the use of Darboux polynomials has been to non-
linear equations linear in their leading derivative: for instance, [1] has shown how
in that case there are ways to exploit the special form of the system to reduce
the task of finding first integrals to systems of more elementary equations. The
examples included the Painlevé equations (whose interest arises precisely from the
properties of their singularities). Yet another very active area (though not within
CATHODE) has been the use of Darboux polynomials in studying the behaviour
of plane dynamical systems and in particular in attempts to explore Hilbert’s still-
unsolved 16th problem (see e.g. [8, 17, 26, 7]).

5 Equivalence problems

Mention of dynamical systems brings us back to applications. Now it is time for a
confession. I have been pretending to be a sort of pure mathematician or perhaps
computer scientist. But I really work in general relativity, and I just got dragged into
all this differential equations stuff by several accidents. Apart from Lie symmetries,
which happened to be a second interest of my close friend and colleague Hans
Stephani, the main one was an interest in a problem which can be expressed as
“Where (and when) are we?”.

More formally, if we have two (pseudo-)Riemannian four-dimensional metrics,
which describe (coordinate patches in) space-times satisfying Einstein’s equations,
how do we test whether they are the same solution in different coordinates? There
is a classical procedure initially given in [6], refined by [5], [3] and [13], which has
now become practicable (for technical reasons it is not formally decideable, but this
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is not the obstacle in real-life cases, see [18]). Completing the method in such a way
as to make it usable in practice, and exploiting it in examples, has formed a large
part of my research since 1980, and I still work on it a good bit of my time. (For a
review see [21].)

The method is essentially to use the fact that the structure group (in this case
the Lorentz group) and the connection define uniquely a set of vector (or covector)
fields on the frame bundle over the space-time, and that for isomorphism these sets
of vector fields must map into each other identically (up to any ambiguity arising
from symmetries of the space-times themselves).

Now what has this to do with differential equations? Well, the link is with the
problem of transformations of differential equations which are not Lie or other
symmetries, i.e. which genuinely alter the equation and may give a form simpler
to solve. Indeed one can (only half jokingly) characterize the search for solution
methods entirely as the search for reduction of the DEs to one of the forms y’ = 0,
y” =0 ...which are the only ones we can really solve!

If we think of the equations in terms of a connection in the manifold of a
jet bundle J, the transformations create from it a larger bundle, locally J x G,
whose structure group G is given by the transformations allowed (appropriately
prolonged). Unlike the frame bundle in relativity, this bundle need not have uniquely-
defined vector fields (I think of it as being less rigidly determined than the frame
bundle is by the Riemannian structure in relativity). To overcome this, and reach
a suitably unique structure, one has to introduce two extra steps: (a) “Lie-algebra
compatible absorption of torsion” in which the basis vectors are changed to simplify
the derivatives (linear algebra, normal forms...) and (b) if the result is still non-
unique one may need to repeat the construction of a higher bundle. (For the details,
which I did not have time for in the talk, see [9, 11, 24].)

To show that this method might be useful, consider the following case: one can by
this means characterize all second-order non-linear equations which are equivalent to
a linear one under Lie point transformations in which £ = z(z) ([12]). The equations
for the transformations required can themselves be reduced to a linear problem plus a
non-linear one of lower order ([2]). This suggests we can obtain a strategy for solving
such problems by considering equivalence. (The techniques are also related to the
way [27] recently characterized all possible Lie symmetries of second- and third-
order equations and [10], at QMW, all third order ones.)

Equivalence transformations are the complement of the (Lie or other) symmetries.
So far, unlike the symmetries, they have not been much used in algorithms, except
for the heuristic of trying standard and well-known simple transformations. Maybe
they will be more important in future work. However, one may note that like Lie
symmetries, they are again useless for single first-order equations (because all such
equations are equivalent to y' = 0) and linear equations, so the other methods
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mentioned earlier are again important.

6

Conclusion

This brings me full circle, back to the Lie symmetries I began with, and in particular
to the point that these variegated methods I have mentioned involve, often in
combination, the themes with which I associate Ton Levelt.
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1 The Next Goal for Symbolic Computation

Symbolic computation aims at automating mathematical problem solving in all areas
of mathematics and for all phases of mathematical work:

e for the phase of exploring a problem and experimenting with known concepts,
theorems and algorithms that may be relevant for the solution of the problem
with the goal of arriving at conjectures for new theorems on the basis of which
the problem can be solved,

e for the phase of proving conjectures,

e for the phase of programming, i.e. turning relevant theorems into computer-
implemented algorithms.

Current symbolic computation software systems are quite impressive in terms
of the range of mathematical problems for which algorithms have been invented
and implemented, wich can be used in the phase of exploring given problems. Also,
the software technology provided by these systems for programming new algorithms
is quite satisfactory. In contrast, relatively little help is given to the user of these
systems in the phase of proving theorems. On the other hand, existing theorem
proving systems are quite strong (but still not strong enough) for support in the
proving phase but quite weak in the exploring and programming phase.

We believe that one of the most natural, important, and challenging features of
the next generation of symbolic computation systems should be the availability of
tools for supporting the phase of proving theorems. In this talk we summarized, by
sketching the main ideas and giving some examples, two approaches for expanding
current symbolic software systems by tools for computer-supported proving;:

e theorem proving by reduction to algebraic algorithms,
e theorem proving by imitating human general and special proof techniques (the
“Theorema” project).
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2 Theorem Proving by Reduction to Algebraic Algo-
rithms

In the past two decades, this approach has been developed very successfully for
various special classes of mathematical propositions: For each of these classes P of
propositions, a translation functions 7" has been invented that maps P into a class
of algebraic problem instances for which we have a solution algorithm. One then
proves, on the meta-level, that

p € Pistrue iff A(T(p)) = TRUE.
Examples of this approach are:

e the automated decision about the truth of certain geometrical propositions in
a formulation using coordinates by reduction to the computation of Groebner
bases, see the tuturial (Wang 1998, [11]);

e the automated decision about the truth of propositions in the theory of real
closed fields by reduction to the computation of certain “cylindric algebraic
decompositions” of Euclidean space, introduced in (Collins 1975, [7]), see also
the collection of recent research articles (Caviness, Johnson 1998, [5]);

e the automated decision about the the truth of certain geometrical propositions
— and the automatic generation of such propositions — in coordinate-free
formulation by reduction to the algebraic problem of “Cayley factorization”,
see (Sturmfels 1993, [10]), p. 110;

e the proof of first-order equalities in equational theories by reduction to
simplification in “complete theories”, using the completion algorithm introduced
in (Knuth-Bendix 1970, [8]), see also (Buchberger, Loos 1982, [3]);

e the proof - and the automatic generation — of combinatorial identities involving
the sum and product quantifiers by reduction to the computation of Groebner
bases in non-commutative algebras and/or the computation of “greatest
common factorials” using the Zeilberger-Paule approach, see the original articles
(Paule 1995, [9]) and (Zeilberger 1991, [13]) and the tutorial (Chyzak 1998, [6]).

3 An Alternative: The Theorema Project

In order to close the gap between current symbolic computation systems and theorem
proving systems one could start from either of the two sides. In the Theorema project,
we decided to start from an existing computer algebra system, namely Mathematica,
version 3.0, see (Wolfram 1996, [12]), and to add proving facilities. The basic design
of the Theorema project was introduced in (Buchberger 1996, [1]), the current state
is described in (Buchberger et al. 1997, [4]).

The Theorema system is being built up in the following layers:

e A symbolic computation software system (at present, Mathematica 3.0) as the
basic implementation frame.

e A mathematical language as a common frame for both non-algorithmic and
algorithmic mathematics. Basically, we take a version of higher order logic
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(with the additional concept of “sequence variables”, a concept borrowed from
Mathematica). The syntax of this language is implemented by using the syntax
extension facilities of Mathematica. The part of the language that consists
of “executable formulae” (function definitions using induction and bounded
quantifiers) gets a semantic interpretation by writing appropriate functions in
Mathematica.

The concept of “functor” as the general mechanism for building up towers of
mathematical domains. Using higher-order variables, the Currying mechanism,
and the module concept, functors can be implemented elegantly in Mathematica.
A general predicate logic prover of a “natural style” introduced in earlier
papers by Buchberger, see for example, (Buchberger, Lichtenberger 1981, [2])
implemented in Mathematica.

Various special theorem provers corresponding, in a natural way, to the various
functors that build up mathematical domains. The design and implementation
of these provers is the present main priority in the Theorema project. All
these provers produce proofs that imitate “natural” proof styles of human
mathematicians. By now, an induction prover for the natural numbers and one
over the domain of lists over a given domain are already implemented, a prover
for the domain of multivariate polynomials over a given domain of monomials
is under way. Other special provers in this category (for the matrix functor, the
power series functor, the finite sets functor, etc.) are planned. Currently, we also
engage in the design of a special prover for the typical €/ proofs of analysis.
All implementations are done in Mathematica.

The incorporation of special black-box theorem provers that decide the validity
of theorems by reduction to algebraic problems, see the previous section.

A general facility that allows the presentation of proofs in natural language and
in the form of “nested cells”, which is crucial for being able to read complicated
proofs without losing the overview. This facility is based on the facilities for
manipulating cells in Mathematica notebooks.

Mechanisms for the automatic generation of complicated knowledge bases from
algebraic properties of given domains and the definition of functors.
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1 Introduction

Let k[X] = k[x1,...,2z,] be the polynomial ring in n variables over a field k of
characteristic zero, and let k(X) = k(z1,...,2,) be the quotient field of k[X].
Assume that f = (f1,..., fn) € k[X]", and consider a system of polynomial ordinary
differential equations

da:l- (t)
dt

= filx1(t),...,zn(t)), i=1,...n. (1.1)

This system has a clear meaning if & is a subfield of the field C of complex numbers.
When £k is arbitrary then there also exists a meaning. It is well known and easy to
be proved that there exists a solution of (1.1) in k[[¢]], the ring of formal power series
over k in the variable £.

The present paper is devoted to the first integrals of the above system. An element
@ of k[ X]\k (resp. of k(X)\k) is said to be a polynomial (resp. rational) first integral
of the system (1.1) if the following identity holds

~ 00 _
Z:fzaxi =0. (1.2)

Throughout the paper we use the vocabulary of differential algebra (see for
example [15] or [16]). Let us assume that R is a commutative ring containing the
field k£ and d is a k-derivation of R, that is, d : R — R is a k-linear mapping such
that d(ab) = ad(b) + d(a)b for all a,b € R. We denote by R? the ring of constants of
d, that is, the kernel of d:

R% = {a € R; d(a) = 0}.

The set R is a k-subalgebra of R. If R is a field then R? is a subfield od R containing
k. If R is without zero divisors, the derivation d can be extended in a unique way to
its quotient field by setting: d(a/b) = b=2(d(a)b — ad(b)).
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We shall use the above notations for the ring k[X|] and its quotient field k(X). Let
us note that a k-derivation of k[ X] is completely defined by its values on the variables
ZiyeeosTp. I f = (f1,..., fn) € E[X]" then there exists a unique k-derivation d of
k[X] such that d(x;) = f; for all i = 1,...,n. This derivation is defined by

"9
d(p) = Zfia—f, (1.3)
i=1 v

for any ¢ € k[X]. Thus, the set of all polynomial first integrals of (1.1) coincides
with the set k[X]?\ k, where

k(X" = {p € k[X]; d(p) = 0}

and d is the k-derivation defined by (1.3). Moreover, the set of all rational first
integrals of (1.1) coincides with the set k(X)?\ k, where

k(X)? = {p € k(X); d(y) =0}

and d is the unique extension of the k-derivation (1.3) to k(X).

The rings of constants k[X]? and k(X)? are intensively studied from a long time;
see for example [9], [10], [24], [26], [27], where many references on this subject can
be found.

Derivations of polynomial rings play an important role in commutative algebra
and algebraic geometry. Several known problems may be formulated using derivations
of k[X] and their rings of constants; in particular: the fourteenth problem of
Hilbert, the Jacobian conjecture, the Cancellation problem. Many interesting results
concerning polynomial derivations can be found in the papers of Arno van den Essen
(University of Nijmegen) ([6], [7], [8], [9]). Note also that Harm Derksen (University
of Nijmegen), in [3], showed that the famous Nagata’s counterexample [23] to the
fourteenth problem of Hilbert can be put in the form k[X]¢ for some k-derivation d
with n = 32. Thus, he proved that there exists k-derivation d of k[x1, ..., z32] such
that the ring k[X]? is not finitely generated over k. Today we know ([28], [4]), that
there exists also such a derivation for n > 7.

If d is a given k-derivation of k[X] then it is difficult to describe its ring of
constants; to decide whether this ring is finitely generated or to find its generating
set. But it is also difficult to decide if the ring of constants is trivial, that is, k[X]? = k
or k(X)% = k. Let us recall that this is equivalent to the problem of the nonexistence
of polynomial, respectively rational, first integral for the associated system (1.1) of
polynomial ordinary differential equations.

There exists an algebraic method of proving the nonexistence of nontrivial
constants for some polynomial derivations. Maciejewski and Strelcyn, in [19] (see
also [20]), called this method as the Lagutinskii - Levelt procedure.

In this paper we describe some applications and the basic steps of the Lagutinskii
- Levelt procedure.
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2 A theorem of Jouanolou
In Chapter 4 of his book [14], J. -P. Jouanolou gives the following result.

Theorem 1. Let s > 2 be a natural number and let d be the k-derivation of k[z,y, 2]
defined by
d(z) = 2% dy) ==% d(z)=1y". (2.1)

Then, for every polynomial P in k[x,y, z], the following equation
d(F)=PF (2.2)

does not admit a nontrivial solution F in klx,y,z]. In particular, the field of
constants k(x,y, 2)? reduces to k, or equivalently, the system of differential equations
dx dy dz

Ot s _ .8 e s 9.
A T T (2:3)

does not admit any nontrivial rational first integral.

The theorem would fail for s = 1; the subfield of constants does not reduce to k
as 23 + 93+ 23 — 3zyz for instance is a constant of d. Moreover, in this case, equation
(2.2) has very simple solutions with P # 0; for example, P =F = x + y + z.

Assume now that P = 0 and consider the equation

d(F) =0, (2.4)

that is, try to find some nonconstant polynomial, that will be a first integral of
system (2.3). At the present time, we do not know any direct proof of the fact that
no such first integral does exist, even for the most simple case s = 2.

At a first glance, it seems feasible to look for a homogeneous polynomial solution
F of a given degree p of equation (2.4) by the method of ”indeterminate coefficients”.
A homogeneous polynomial F' of degree p in k[z,y, z] can indeed be written

F(‘T) Y, Z) = Z aijkxiyjzkv (25)
i+j+k=p

so that the right-hand side of (2.5) can be substituted to F' in equation (2.4). All
that leads to a linear system L(p) for the unknowns a;;;. In principle, for a given p, it
is possible to write down the system £(p) and to solve it; but, finding a general rule
to get L(p) for an arbitrary p is much more difficult. In particular, we have to make
use of computer algebra to write down £(10) and no general rule for £(p) appears.
In what concerns nonsolvability of equation (2.2), the direct proof for second degree
polynomials F' is already astonishingly long and complicated.

In Jouanolou’s book, two different proofs of his theorem are given. The first one,
described on pages 160-192, is due to Jouanolou and the second one, sketched on
pages 193-195, is due to A. M. H. Levelt, the referee of the book.

Trying to understand the proof of Levelt, we have gradually realized that the
starting point of it relies on some very clever and general ideas, which can be applied
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to many other derivations. The proof of Levelt (published in [14]) is unfortunately
written in an extremely concise way. The same proof, with a detailed discussion of
all its steps, one can find in the paper of Moulin - Ollagnier, Strelcyn and the author
[22].

The proof under consideration divides in two parts, the “local analysis”, which
is fairly general and the “global analysis” which relies on elementary algebraic
geometry and is very specific to Jouanolou’s example (see [22]).

This is a remarkable fact that in many nontrivial examples, the local analysis

is sufficient to yield the nonexistence of nontrivial constants of derivations. In this
paper we consider only the local analysis.
In fact, the basic ideas of the method were already introduced by M. N. Lagutinskii
in his pioneering, but unfortunately completely unknown, works [17] and [18]. See
[5], where one can find more details on Lagutinskii and his papers on integrability
which are direct continuation of the Darboux paper [2].

3 Darboux polynomials

Let us introduce (as in [21], [22]) a new notion that dates back to Darboux’s memoir
[2]. Let d be a k-derivation of k[X]. We say that a polynomial f € k[X] is a Darbouz
polynomial of d if f # 0 and d(f) = hf, for some h € k[X]. In this case the
polynomial h (which is unique) is said to be a polynomial eigenvalue of f.

Darboux polynomials with nonzero eigenvalues (for £k = R or C) are well known
in the theory of polynomial differential equations. They coincide with the so-called
partial first integrals (see, for example, [21] and [29]) of the system of polynomial
differential equations determined by d.

Every element belonging to the ring of constants with respect to d is of course a
Darboux polynomial. In the vocabulary of differential algebra, Darboux polynomials
coincide with generators of principal differential ideals, that is, f € k[X] is a Darboux
polynomial iff f # 0 and the ideal (f) is differential (i.e., d(f) € (f)).

Note now some simple, but useful, propositions.
Proposition 2. If f € k[X] is a Darbouz polynomial of d, then all factors of f are

also Darboux polynomials of d.

Thus, looking for Darboux polynomials of a given k-derivation d reduces to
looking for irreducible ones.

Proposition 3. Let d be a k-derivation of k(X) such that d(k[X]) C k[X] (where k
is a field). Let f and g be nonzero coprime polynomials in k[X]. Then f/g € k(X)¢
iff f and g are Darbouz polynomials with the same eigenvalue.

We say that a k-derivation d of k[X] is homogeneous, if the polynomials
d(zy,...,d(xy,) are homogeneous of the same degree.

Proposition 4. Let d be a homogeneous k-derivation of k[X]. If f € k[X] is
a Darboux polynomial of d, then the eigenvalue h of f is homogeneous and all
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the homogeneous components of f are also Darboux polynomials with the common
etgenvalue equal to h.

Note that Darboux polynomials of a homogeneous derivation are not necessarily
homogeneous. Indeed, let n = 2, d(x1) = z1, d(z2) = 279, and let f = 22 + 2. Then
d is homogeneous, f is a Darboux polynomial of d (because d(f) = 2f), and f is
not homogeneous.

If n = 2 then homogeneous k-derivation of k[X] have the following special

property

Proposition 5 ([22]). Every homogeneous k-derivation of k[x1,x2] has a Darbouz
poly-nomial.

If n > 2 then the above property does not hold, in general (see for example
Theorem 1).
4 Basic steps of the Lagutinskii - Levelt procedure

Let Vi,..., V;, be n homogeneous polynomials of the same degree s in k[X] and
consider the derivation dy defined by

dy(x;)) =V, 1<i<n. (4.1)

We will be interested in the following general equation
dy(F) = E Vi— = PF 4.2

in which F' is an unknown polynomial of some degree m > 1, while the “eigenvalue”
P is some unknown element of k[X].

We may assume (by Section 3) that F' is a homogeneous irreducible nontrivial
polynomial of some degree m and P is a homogeneous polynomial of degree s — 1.
Using Euler’s formula

~ OF
ina - =mkF, (4.3)

we get from (4.2) an equation in which the partial derivative of F' with respect to
the last variable x,, no longer appears:

n—1

F
E (Vi — xlvn)—:;)x = (zp, P — mV,)F. (4.4)
i=1 i

A point Z € P !(k) will be called a Darbour point of derivation dy if vector
V(z) = (Vi(2),...,Vn(z)) is proportional to the vector z = (z1,...,z2,), for every
system z of homogeneous coordinates of Z.

Let then Z be a Darboux point of the derivation dy; without lost of generality,
we can suppose that the last coordinate z, of z = (z1,...,2,) is equal to 1. By
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the definition of a Darboux point, all the differences V;(z1,...,1) — z;Vi(21,...,1)
vanish so that [P(z1,...,1) —mVy(21,...,1)]F(21,...,1) = 0. Let us stress the fact
that we cannot a priori exclude the possibility that F(z1,...,1) # 0.

Choose now the local affine coordinates yi,...,y,—1 defined by =1 = 21 +
Yly«--yTn-1 = Zn—1 + Yn—1. This change of coordinates sends the studied Darboux
point Z to the origin of our new coordinate system. Let f € k[y1,...,yn—1] be the
polynomial defined by

f(yl, c. ,ynfl) = F(Zl + Y1,y 2n—1 1+ Yn—1, 1) (45)
In this local system of coordinates, equation (4.4) becomes
n—1 8f
D (i~ (a4 giJun) g - = (p = mwn) . (4.6)
i=1 !

The study of this equation will be called the local analysis of our derivation dy .
Looking simultaneously at many or all such equations in various Darboux points
and at their relationships will be called a global analysis of the derivation.

Note now the following lemma which is easy to be proved.

Lemma 6. Let fi,..., fr,p,g be polynomials in k[z1,...,x,] such that

(a) f1(0) =--- = fr(0) =0,
(b) g #0,
(€) s+ + fr 2L = pyg.
Let fl, e ,fr be the linear homogeneous components of f1,..., fr, respectively, and

let h be the nonzero homogeneous component of the lowest degree of g. Then

Figee + -+ g = p(0)h.

We are interested in equation (4.6), that we need study around the point
(0,...,0) of k"' The involved polynomials are in general nonhomogeneous
polynomials in n — 1 variables and can be decomposed into their homogeneous
components: ¢ = Z(b(i), where each polynomial ¢; is homogeneous of degree i;
in particular, ¢ is the constant term of polynomial ¢. Let uz(F) be the lowest
integer such that f(; # 0, i. e., the multiplicity of F" at point Z. Using now Lemma
6 we get

n—1 oh
D (vi— (2 + yi)vn)(l)a—y = (p — mvn)(0)hs (4.7)
i=1 !

where h is the nontrivial homogeneous component f(,,(r)) of lowest degree of f.
In equation (4.7), partial derivatives of h are multiplied by linear homogeneous
polynomials and h by a constant.
Then, homogeneous polynomial A is a nontrivial eigenvector of a linear derivation
(linear differential operator) dy, : k[t1,...,t,| — k[t1,...,t,] defined by

“. Oh
di(h) =) lim- = xh, (4.8)
i=1 t
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where coefficients [; are linear forms in variables ¢, ..., t,; lj(t1,...,t,) = Z]”-:l lijt;
and L = (l;j)1<i j<v is the v X v corresponding matrix.

Of course, in our case, t; = y;, 1 <i <n—1, x is the constant term (p — mvn)(o)
while the /; are the linear components (v; — (z; + ¥i)vn)(1)-

Lemma 7 ([22]). Let h be a nontrivial homogeneous polynomial eigenvector of the

derivation dy, defined in the equation (4.8), where x is the corresponding eigenvalue.

Denote by p1,...,p, the v eigenvalues of L (belonging to an algebraic closure of k).
Then, there exist v non-negative integers i1, ...,1, such that

> piii = X
)
Y ij = deg(h)

Jj=1

(4.9)

The above eigenvalues p1, ..., p, is said to be the Lagutinskii - Levelt exponents
(see [19], [20]).

In the next sections we present several applications of the Lagutinskii - Levelt
procedure.

5 The Halphen system

Consider the following three-dimensional system of differential equations:

dd% = X2T3 — .%'1(172 + .733
dd% = xI3T1] — IEQ(CL‘g + xl) (51)
dd% = X1x2 — .%'3(331 + 332

This system is called the Halphen system ([12], [19]) or the Darboux - Brioschi -
Halphen system ([1]).

As an illustration of the Lagutinskii - Levelt procedure we prove the following
proposition.
Proposition 8 ([19]). The system (5.1) does not admit any polynomial first

integral.

Proof. Let d be the k-derivation of k[x1, x9, 23] defined by the system (5.1), that is,

d(z1) = x93 — 21(T2 + T3),
d(z2) = w321 — 22(23 + 21),
d(xg) = x1T9 — .CL'3(£C1 + wg).

We must prove that k[zi,xs,23]% = k. Suppose that there exists a polynomial
F € k[z1,x9, 23] \ k such that d(F') = 0. Let m = deg F' > 1. Since the derivation d

is homogeneous, we may assume that the polynomial F' is homogeneous.
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Consider the point z = (1,1,1). Observe that z is a Darboux point of d. Now

the equation (4.6) has a form wlaa—yfl + wgg—;; = qf, where

wi = —y1(1+ 2y +y192),
wy = —y2(1 42y + y1y2),
qg = -m(yiy2—1).

Thus the Lagutinskii - Levelt exponents are: p; = ps = —1, and x = m. By Lemma
7, there exist two nonnegative integers j; and js such that

—(J1 +J2) = jipr + jap2 = m > 1;
but it is a contradiction. O

Maciejewski and Strelcyn, in [19], prove that the system (5.1) does not have
also any rational first integral. In the proof of this fact they use the Lagutinskii -
Levelt procedure.

Consider now the following two n-dimensional generalization of (5.1).

n

dzx; ; .
d—tj == Z(_1)1$j+i71x]’+ia J = 1, ey ny (52)
i=1
where x,4+; =x; fori=1,... n.
dz; 2 1
— = — - — | ziz0xp, j=1,...,n. (5.3)
dt (33]' zz_; $Z> "

If n = 3 then the above systems coincide with (5.1).

As a consequence of the Lagutinskii - Levelt procedure we obtain:

Theorem 9 ([20]). For odd n > 3 the system (5.2) does not admit any rational
first integral.

Theorem 10 ([20]). For n > 3 the system (5.3) does not admit any polynomial
first integral.
6 An example
Let d be the k-derivation of k[X| = k[x1,...,xz,] defined for n > 2 by:
d(xz) = (xi+xi+1)su 1= 17"'777’7 (61)

where s > 1 and z,41 = 71.

If n = 2, then [X]¢ # k; the polynomial z; — x5 belongs to k[X]?. However, by
the Lagutinskii - Levelt procedure, we have:

Theorem 11 ([22]). Let d be the derivation defined by (6.1). Then k[X]? = k, for
alls>1 and n > 3.
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7 Linear derivations

Let d be a k-derivation of k[X] = k[x1,...,z,] such that

n
d(.’L’Z) = Zai]’x]’, 1= 1,...,n, (71)
j=1
where each a;; belongs to k. Let Aq,...,\, be the n eigenvalues (belonging to an

algebraic closure k of k) of the matrix [a;;].

Using the Lagutinskii - Levelt procedure we may prove the following two
theorems.

Theorem 12 ([25], [26]). If d is a k-derivation of k[X] of the form (7.1), the
following conditions are equivalent:

(1) k[X]? = k;
(2) The eigenvalues A1, ..., \, are N-independent.

Theorem 13 ([25], [26]). If d is a k-derivation of k[X] of the form (7.1). The
following conditions are equivalent:

(1) k(X)* = k;
(2) The Jordan matriz of the matriz [a;;] has one of the following two forms:
Al 0
(CL) . . 1
0 An
where the eigenvalues A1, ..., A\, are Z-independent; or
oy 0
i1
A1
(®) { 0 it }
Ait2
| 0 A |
for somei € {1,...,n—1} where \; = \j+1 and the eigenvalues \1, ..., Ny Ni+2, -+, An

are Z-independent.

8 Factorisable derivations

Let n > 2 and let W1, ..., W,, € k[X] = k[z1,...,x,] be homogeneous Z-independent
polynomials of the same degree s > 1. The k-derivation

d(a:l) :xiWi, 1= 1,...,n, (81)
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as well as the corresponding system of ordinary differential equations is called
factorisable.

The factorisable systems of ordinary differential equations was intensively studied
from a long time; see for example [13] and [11], where many references on this subject
can be found.

One of the main features of a factorisable derivation is the fact that the
polynomials x1,...,x, are always Darboux polynomials of it. Consequently any
polynomial of the form

n
C H x;, (8.2)
i=1
where C' # 0 and ayq, . .., a, are nonnegative integers, is also a Darboux polynomial

of it.

As a consequence of the Lagutinskii - Levelt procedure we obtain the following
two theorems.

Theorem 14 ([22]). Let d be a factorisable derivation defined by (8.1). Suppose
that all its homogeneous Darbouzx polynomials are of the form (8.2). Then:

(1) All its Darbouzx polynomials are also of this form;

(2) k(X)4 = k.

If W is a homogeneous polynomial of degree s, then W(*) denotes the coefficient
of the monomial zj which appears in W.

Theorem 15 ([22]). Let d be a factorisable derivation defined by (8.1).

(1) If for some k, 1 < k < n, the elements Wl(k), e ,Sk) are N-independent,
then k[X]¢ = k.
(2) If for some k € {1,...,n}, the elements Wl(k), ce T(Lk) are Z-independent,

then k(X)4 = k.
Consider now the k-derivation d of k[X] defined (for n > 2) by:
d(l‘z) = XjTi+1, 1= 1, ..o n, (8.3)

where the index n 4 1 is identified with the index 1, i. e., 41 = x1.

It is a factorisable derivation for which Theorem 15 cannot be applied.
Nevertheless the Lagutinskii - Levelt procedure, together with specific arguments,
leads to the proof that k[X]? = k and even k(X)¢ = k (see [22]).

Acknowledgments. I like to thank A. M. H. Levelt, A. van den Essen
and the organizers for the possibility of participating in such a nice conference.

I also like to thank J.-M. Strelcyn, A. Maciejewski and J. Moulin-Ollagnier for
many inspiring discussions concerning the Lagutinskii - Levelt procedure.



On the Lagutinskii - Levelt procedure 47

References

1. M. J. Ablowitz, S. Chakravarty, B. M. Herbst, Integrability, computation and applications,
Acta Appl. Math., 39(1995), 5 - 37.

2.  G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du
premier degré Bull. Sc. Math. 2éme série t. 2 (1878), 60-96, 123-144, 151-200.

3. H. G. J. Derksen, The kernel of a derivation, J. Pure Appl. Algebra 84(1993), 13 — 16.

4. JK. Deveney, D.R. Finston, G, actions on C* and C”, Communications in Algebra 22(1994),
6295 - 6302.

5. V. A. Dobrovolskii, N. V. Lokot, J. -M. Strelcyn, Mikhail Nikolaevich Lagutinskii, Preprint
1995.

6. A.van den Essen, Locally finite and locally nilpotent derivations with applications to polynomial
flows and polynomial morphisms, Proc. Amer. Math. Soc., 116(1992), 861 — 871.

7. A. van den Essen, An algorithm to compute the invariant ring of a Ga-action on an affine
variety, J. Symbolic Computation, 16(1993), 551 — 555.

8. A.van den Essen, Locally finite and locally nilpotent derivations with applications to polynomial
flows and polynomial morphisms, Proc. Amer. Math. Soc., 116(1992), 861 - 871.

9. A. van den Essen, Locally nilpotent derivations and their applications III, J. Pure Appl.
Algebra, 98(1995), 15 - 23.

10. A. van den Essen, Seven lectures on polynomial automorphisms, Proceedings of the Curacao
Conference, Kluwer Academic Publishers, 1995, 3 - 39.

11. B. Grammaticos, J. Moulin Ollagnier, A. Ramani, J. -M. Strelcyn, S. Wojciechowski, Integrals
of quadratic ordinary differential equations in R3: the Lotka — Volterra system, Physica —
A, 163 (1990), 683-722.

12.  G.-H. Halphen, Sur un systéme d’equations différentielles, C. R. Acad. Sci., 92(1881), 1101 -
1103, 1404 - 1407.

13. J. Hofbauer, K. Sigmund, The Theory of Fvolution and Dynamical Systems. Mathematical
Aspects of Selection, London Mathem. Society Student Text 7, Cambridge University Press,
Cambridge, 1988.

14. J. -P. Jouanolou, Equations de Pfaff algébriques, Lect. Notes in Math. 708, Springer-Verlag,
Berlin, 1979.

15. 1. Kaplansky, An Introduction to Differential Algebra, Hermann, Paris, 1976.

16. E. R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, London,
1973.

17. M. N. Lagutinskii, Partial Algebraic Integrals (in Russian), Kharkov, 1908.

18. M. N. Lagutinskii, Applications of the polar operations to integration of ordinary differential
equations in the finite form (in Russian), Soobshch. Kharkov. Mat. Obshch, 12(1911), 111-
243.

19. A. Maciejewski, J.-M. Strelcyn, On the non-integrability of the Halphen system, Preprint 1994.

20. A. Maciejewski, J.-M. Strelcyn, Non-integrability of the generalized Halphen system, Preprint
1995.

21. J. Moulin Ollagnier, Liouvillian first integrals of homogeneous polynomial 3-dimensional vector
fields, Collog. Math., 70(1996), 195-216.

22. J. Moulin Ollagnier, A. Nowicki, J. -M. Strelcyn, On the non-ezistence of constants of
derivations: The proof of a theorem of Jouanolou and its development, Bull. Sci. Math.,
119(1995), 195 - 233.

23. M. Nagata, On the fourteenth problem of Hilbert, Proc. Intern. Congress Math., 1958, 459 —
462, Cambridge Univ. Press, New York, 1966.

24.  A. Nowicki, Rings and fields of constants for derivations in characteristic zero, J. Pure Appl.
Algebra, 96(1994), 47 - 55.

25.  A. Nowicki, On the non-existence of rational first integrals for systems of linear differential
equations, Linear Algebra and Its Applications, 235(1996), 107 - 120.

26. A. Nowicki, Polynomial derivations and their rings of constants, UMK, Torun, 1994.

27. A. Nowicki, M. Nagata, Rings of constants for k—derivations in k[z1,...,z»],

J. Math. Kyoto Univ., 28(1988), 111 — 118.

28. P. Roberts, An infinitely generated symbolic blow-up in a power series ring and a new
counterezample to Hilbert’s fourteenth problem, J. Algebra 132(1990), 461 — 473.

29. H. Zoladek, On algebraic solutions of algebraic Pfaff equations, preprint 1993.



48



FACTORIZATION OF DIFFERENTIAL OPERATORS WITH
RATIONAL FUNCTIONS COEFFICIENTS

MARK VAN HOEILJ

Department of Mathematics
University of Nijmegen
Toernooiveld, 6525 ED Nijmegen
The Netherlands
hoeij@sci.kun.nl

Abstract.

This paper is an extended version of a talk at the symposium “Differential and
difference equations and Computer algebra” in honor of the 65’th birthday of
professor A.H.M. Levelt.

1 Introduction
A differential equation
Y + a1y Y+ ary + agy =0
corresponds to a differential operator
F=0"+a,_10" 1+ 4 qpd°

acting on y. The coefficients a; are elements of the differential field k(z) and 0
is the differentiation d/dx. The field k is the field of constants. It is assumed
to have characteristic 0. k is the algebraic closure of k. The differential operator
f is an element of the non-commutative ring k(z)[0]. Multiplication in this ring
corresponds to composition of differential operators. A factorization f = LR where
L, R € k(z)[0] is useful for computing solutions of f because solutions of the right-
hand factor R are solutions of f as well.

The topic in this paper is a new method for factorization in the ring k(x)[0)].
In previous methods (c.f. [3, 4, 11, 19, 20]) one of the steps in the algorithm is to
combine local data at all singularities in order to find a first order factor. Combining
all this local data can lead to exponentially large algebraic extensions of the field
of constants k. To avoid this computational difficulty, we will give a method that
tries to construct a factor (not necessarily of order 1) of a differential operator using
not all local data simultaneously, but computing with only 1 singularity at a time.
This leads to an efficient algorithm that can compute first order and higher order
factors of differential operators in many cases. For the case of factors of order 1 the



50 Mark van Hoeij

algorithm can easily be completed, so all first order factors and can be computed,
but not all higher order factors. To complete the algorithm for the case of higher
order factors we can use a method, obtained from the literature (c.f. [3, 5, 21]), that
will be the exterior power method.

One ingredient of the algorithm is the following: When r is a local factor of an
operator f, i.e. r has coefficients in k((x)) instead of k(z), then, given some bounds
on the degrees that occur in the rational functions coefficients, we can construct an
operator R € k(z)[0] of minimal order such that r is a right-hand factor of R. Then
R is a right-hand factor of f.

The problem is that there can be infinitely many local factors r, and that usually
for most irreducible local factors r the operator R constructed from r equals f even
when f is reducible. For this reason we need to introduce some terminology, the
exponential parts, which helps us choose (one or several) local factors r, such that
either f is irreducible or at least one of these local factors r will result in a non-
trivial factor R of f. The exponential parts can be defined and computed using an
algorithm for local factorization, or (as we will do below) using formal solutions.
Or (in particular for matrix differential operators) one can also use Sommeling’s
approach [18] based on Levelt’s [12] work on singularities of matrix differential
equations.

2 Exponential parts of local differential operators

Let V' be the universal extension (called R in lemma 2.1.1 in [7]) of k((x)). This is
a differential ring extension of k((x)) consisting of all solutions of all f € k((z))[d].

Let 0 = x0. Let f € k(())[d] \ {0} be a differential operator. The action of f
defines a k-linear surjective map

V-V

The kernel of this map, denoted as V(f), is the solution space of f. V' contains all
solutions of f. Hence the dimension of the kernel of f on V' is maximal

order(f) = dim(V(f)).

This number dim(V'(f)) is useful for factorization because it is independent of the
order of the multiplication, i.e. dim(V(fg)) = dim(V (gf)). To obtain more of such
useful numbers we will split V(f) in a direct sum and look at the dimensions of the
components (Ve, E and ~ are defined below)

The V. are k-vector spaces and also k((z))[d]-modules. So f(V.) C V. for all
f € k((x))[d] \ {0}. Then f(Ve) = V. because f is surjective on V. The kernel
of f on V; is denoted by Ve(f) = V(f) () Ve. Denote

pe(f) = dim(Ve(f)).
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These u. are useful for factorization because they are independent of the order of
the multiplication, i.e. if f,g € k((x))[d] \ {0} then

pe(9f) = pe(fg) = pe(f) + pre(g)-

This follows from the fact that the dimension of the kernel of the composition of
two surjective linear maps equals the sum of the dimensions of the kernels.

We will define E, ~ and V, in such a way that the subspaces V, of V are as small
as possible (more precisely: V. is an indecomposable k - k((x))[6]-module) because
then the integers pe(f) give as much as possible information about f. Denote the

set
E=J&z"/"

and the map
Exp: F -V

as Exp(e) = exp([ £dx). To define Exp(e) without ambiguity one can use the way
that the universal extension was constructed. Then Exp(e; + e2) = Exp(e;)Exp(es)
so Exp behaves like an exponential function. For rational numbers ¢ we have

Exp(q) = 7 € k((x)). Denote
Ve = Bxple) - (B - k((x)[e]) log(x)] € V-

Note that k- k((z))[e] = k- k((x'/™)) where n is the ramification index of e. Define ~
on FE as follows: e; ~ es if and only if e; —e5 is an integer divided by the ramification
index of e;. Vg, = V., if and only if e; ~ ey so V, is defined for e € E/ ~. Hence
te(f) is defined for e € E/ ~ as well.

Vi) = @ V)

ecE/~

An element e € F/ ~ is called an ezponential part of f if p.(f) > 0. The number
te(f) = dim(Ve(f)) is called the multiplicity of e in f. The sum of the multiplicities
of all exponential parts of f equals the order of f.

3 The main idea of the algorithm

Let f € k(z)[0] and suppose a non-trivial factorization f = LR exists with
L, R € k(x)[0]. We want to determine a right-hand factor of f. This could be done
if we knew a non-zero subspace W C V(R), cf. section 4. However, a priori we only
know that V(R) C V(f) but this does not give any non-zero element of V(R).

For any exponential part e of f at a point p € P(k) we have (after applying
a transformation we may assume that p = 0) V.(R) C Vo(f) and pe(L) 4+ pe(R) =
te(f). Suppose that we are in a situation where p.(L) = 0. Then the dimensions of
Ve(R) and V.(f) are the same and hence we have found a subspace Ve(f) = V.(R) of
V(R). Then we can factor f (cf. section 4). Note that we do not necessarily find the
factorization LR, it is possible that instead of R a right-hand factor of R is found.

So now we search for situations where we may assume p.(L) = 0. There are
several instances of this:
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1. Suppose that order(L) = 1 and that f has more than 1 exponential part at the
point p. Let e % ey be two different exponential parts of f. Then pe, (L) = 0 or
te, (L) = 0 because the sum of the multiplicities (L) for all exponential parts
e € E/ ~ is the order of L which is 1. So we need to distinguish two separate
cases and in at least one of these cases we will find a non-trivial factorization

of f.
2. More generally suppose order(L) = d and that at a point p the operator f has
at least d + 1 different exponential parts ey, ..., eqr1. Then for at least one of

these e; we have i, (L) = 0. Hence by distinguishing d+1 cases i = 1,...,d+1
we will find a non-trivial factorization of f.

So we can factor any reducible operator which has:

1. A first order left-hand factor and a singularity with more than 1 exponential
part.

2. Or more generally: an operator with a left-hand factor of order d and a
singularity at which there are more than d different exponential parts.

3. By using the adjoint we can also factor operators which have a right-hand factor
of order d and a point p with more than d different exponential parts.

4. An operator which has a singularity with an exponential part e of multiplicity
1. Then we can distinguish two cases p.(L) = 0 or u.(R) = 0. The latter case
is reduced to the former case using the adjoint. We call the minimum of the
multiplicities taken over all exponential parts of all singularities the minimum
multiplicity. By checking both cases pe(L) = 0 or p(R) = 0 any operator f with
minimum multiplicity 1 is either irreducible or it is factored by our method.

If a first order left or right-hand factor exists, then our approach can compute a
factorization whenever there is a singularity with at least two different exponential
parts. This reduces the problem of finding all first order factors to the same problem
for lower order operators. The only case that remains is when each singularity
has only 1 exponential part. However, this special case is a trivial case for Beke’s
method because we need to check only one possibility in Beke’s method, and in
fact this reduces to problem to computing rational solutions after having applied a
transformation 9 — 0 + r for some rational function r that we can compute from f.
Combining this with the algorithm above, we obtain an algorithm that can compute
all first order factors. It can also compute higher order factors in many cases. The
remaining cases can be treated by the exterior power method that can be found in
the literature. In this method the problem of computing factors of order d is reduced
to computing factors of order 1 of the d-th exterior power of f.

4 Computing a right-hand factor R

After having applied a transformation (and a field extension of k if p € &k \ k) we
may assume that the singularity p in the previous section is the point p = 0.

The assumption from section 3 was that an e € E is known for which p.(f) > 0
and pe(L) = 0. From this we concluded that V.(f) C V(R). Using this information
and the algorithm for local factorization it is possible to compute an r € k((z))[d]
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such that V(r) C V(R), i.e. r is a right-hand factor of the operator R that we look
for.

Let n = order(f). The goal is to compute an operator R = a0 + - - - 4 agd° €
k[x, 0] that has r as a right-hand factor. Here d should be minimal. Because r divides
both f and R on the right it also divides GCRD(f, R). Then GCRD(f,R) = R
because d is minimal. We conclude that R is a right-hand factor of f. If d < n a non-
trivial factorization is obtained this way.

There are two ways of choosing the number d. The first is to try all values
d=1,2,...,n — 1. Suppose that for a certain d we find an R that has r as a right-
hand factor and for numbers smaller than d such R could not be found. Then d
is minimal and hence R is a right-hand factor of f. The second approach to take
d=n—1.If we find R = ag0? + - - - + apd” that has r as a right-hand factor we can
compute GCRD(R, f). This way we also find a right-hand factor of f.

We can compute a bound N (cf. [9]) for the degrees of the a;. So the problem
now is

e Are there polynomials a; € k[z] of degree < N, not all equal to 0, such that r
is a right-hand factor of R = agd® + - - - 4+ agd°?
Let m be the order of r. Write D = k((x))[0]. The D module D/Dr is a k((x))-
vector space of dimension m with a basis 9°,9',...,0™ L. Write 9°,9,...,0% on
this basis as vectors vy, ...,vq in k((x))™. Now multiply v, ...,vg with a suitable
power of x such that the v; become elements of k[[z]]™. r is a right factor of R if
and only if
agvp + -+ - + aqug = 0

in k[[z]]™. This is a system of linear equations with coefficients in k[[x]] which should
be solved over k[z]. One way of solving this is to convert it to a system of linear
equations over k using the bound N. A much faster way is the Beckermann-Labahn
algorithm which was found first by Labahn and Beckermann, and later independently
by Derksen [6, 2]. Their method is as follows

Sketch of the Beckermann-Labahn algorithm

e Let M; C k[z]?*! be the k[z]-module of all sequences (ag,ay, . ..,aq) for which
v(agvo+- - -+aqug) > i. The “valuation” v of a vector is defined as the minimum
of the valuations of its entries. The valuation of 0 is infinity.

e Choose a basis (as k[z]-module) of M.

e For i =1,2,3,... compute a basis for M; using the basis for M;_.

This sketch looks easy and the algorithm is short (Derksen’s implementation is only
a few kilobytes) but it is absolutely non-trivial. The difficult part is how to construct
a basis for M; from a basis for M;_1 in an efficient way. Labahn, Beckermann and
Derksen give an elegant solution for this problem by computing a basis with a certain
extra property. Given a basis for M;_; with this property they are able to compute a
basis for M; in a very efficient way. Again this basis has this special property which
allows the computation of M;,1 so one can continue this way.

Define the degree of a vector of polynomials as the maximum of the degrees of
these polynomials. From the basis for M; we can find a non-zero A; € M; with
minimal degree. Suppose there exists a non-zero R = agd? + --- + agd® € k|z, 0]
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having r as a right-hand factor. Then there exists such R with all deg(a;) < N
where N is a bound we can compute, cf. [9]. So then there is a non-zero (ao, ..., aq)
of degree < N which is an element of every M;. Because of the minimality of
deg(A;) it follows that then deg(A;) < N for all i. So whenever deg(4;) > N
for any 7 we know that there is no R € k(x)[0] of order d which has r as a right-
hand factor.

Algorithm Construct R
Fori=0,1,2,... do
e Compute M; and A; € M; of minimal degree.
o If deg(A;) > N then RETURN “R does not exist”.
o If deg(A;) = deg(A;_3) then
Comment: the degree did not increase 3 steps in a row so it is likely that a
right-hand factor is found.
If A; = (ao,...,aq) then write R = ag0? + - - - + apd°. Divide by a4 to make R
monic. Test if R and f have a non-trivial right-hand factor in common. If so,
return this right-hand factor, otherwise continue with the next .

Suppose the algorithm does not terminate. Then deg(A4;) = By for all i« > By for
some integers By and Bs. Define D; C M; as the k-vector space generated by A;
with 7 > 4. These D; are finite dimensional k-vector spaces and D; 1 C D; for
each 7. Then there must be an integer 7 such that D; is the intersection of all D;.
Let (ao,...,aq) = A;. This A; is an element of every D; C M; so the valuation of
agvg + -+ + aqug is > j for any j. Then agvg + - - - + aqug = 0 so r is a right-hand
factor of agd? + - - - + ap0°. Then we have a contradiction because this means that
the algorithm will find a right-hand factor in step i. So the algorithm terminates.
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1 Introduction
Here is an example of the type of equations we have in mind:

2%y + (Br — 1)y +y=0 (1)
which has the ‘solution’

oo
Y= E nlz™.
n=0

Putting y1 =y, yo = ¢ in (1) we get

i yl) < ) : )<y1>
— + o =0. 2
da:<y2 %2 3:5—21 Y2 @)

The solution space of this system of homogeneous first linear differential equations
can be viewed as the null space of the differential operator

Y1 d ([ y 1 Y1
D: — + o .
<y2>Hd:v<y2> < %)(zn)

2 Definitions and notations

=

L

e k is a field of characteristic 0.

e O = k[[z]] is the ring of formal power series in x with coefficients in k.

o K = k((x)) is the field of fractions of O, the field of formal Laurant series in x
with finite pole order.

e 0 is the formal derivation x d/dz on K

% 7

H(Z a;xt) = Z iax.

=m =m
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e V is a finite dimensional K vector space.
e D :V — V is a differential operator, i.e.
(i) D is k-linear.
(ii) D(av) =60(a)v+ aD(v) for all a € K,v € V.

e K C L is a finite field extension. If k is algebraically closed, then L = k((t)),t =
z/P for some p € N*. In that case K = Ugilk((xl/p)) is the algebraic closure
of K. In the sequel finite extension fields of K are taken within K.

e 0 : L — L is the (unique) extension of the derivation # on K. (Note that
0(t) = t/p.)

e V1 = L®Kk V, extension of scalars.

e Dy : Vi — V, the differential operator defined by

Dr(a®@v)=0(a) ®v+a® D(v) for all a € L,v € V.

If no confusion arises we’ll write sometimes D instead of Dy,.

A choice of a basis in V leads to a matrix representation of the differential
operator and makes the connection with what was called ‘differential operator’ in
the introduction.

Let e = (e1,...,en) be a K-basis in V. Define the n x n matrix A with entries
Aj,i by

n
D(e;) = ZAjﬂ'ej for all i € {1,...,n}.
j=1
A is called the matriz of D with respect to the basis e. Now let f = (f1,..., fn) be
another basis of V' and B the matrix of D with respect to f. Define the (invertible)
matrix T by

fi = ZTNB]- for alli € {1,...,n}.
j=1
Then one has

B=T7'AT +T7'0(T).

D = K < 6 > denotes the ring of (abstract) differential operators P = >, a;0"°
where the coefficients a; belong to K. The (non-commutative) multiplication is the
the composition of differential operators.

A couple (V, D) of a vector space plus differential operator can be viewed as a

left D-module by P(v) =Y, a;D*(v) for all v € V.
3 A theorem and a problem

Differential operators D : V — V in the above sense closely resemble linear
applications in finite dimensional vector spaces. Here follows an example.

Theorem 1 (Levelt, 1974) There exists a semi-simple differential operator S : V. —
V' and a nilpotent linear transformation N : V. — N such that:
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(i) D=S+ N.
(i) S and N commute.

The couple S, N 1is uniquely determined by the above conditions.

Corollary 2 There exist a finite field extension K C L = K'((t)), k C k' finite and
t = 2P and an L-basis e of Vi, such that

AN % oo - 0
0 :

Mat(Dp,e)=1 © - . - 0o |, (3)
0 0 An

where \; € K'[1/t] and * =0 or x = 1.

In particular, after a convenient scalar extension K C L the operator D has a non-
zero eigenvector.

Problem How to define the characteristic polynomial of D?

[T, (T = X\i) doesn’t work, because the A; are not uniquely determined by D, but
only up to the addition of m/p, m € Z. Normalizations of the type 0 < Re()\;) < 1
lead to bad properties, e.g. [[;~; (7" — A;) will not belong to K[T] in general.

Here the question arises what one expects from a ‘characteristic polynomial’.
One could think of the following requirements:

e It should classify semi-simple differential operators.

e It should have good functorial properties (e.g. convenient formulas for direct
sums and tensor products).

e Rationality: it should be an algebraic object defined over K.

The problem was solved by R. Sommeling in his Ph.D. thesis (Characteristic
classes for irregular singularities, University of Nijmegen, 1993). In the sequel a
somewhat simplified version will be presented. For most proofs the reader is referred
to Sommeling’s thesis. In order to avoid technical digressions we shall assume from
now on that k is algebraically closed.

4 Eigenvectors, normalization, simple modules

As was said before for given (V, D) there exist a finite extension K C L = k((t)),t =
/% a € L,v € Vi \ {0} such that D(v) = av.

Now for ¢ € L,c # 0 define w = cv. Then D(w) = bw, where b = a + 0(c)/c.
Here we have a problem: there are too many eigenvalues. One can partly restrict the
choice by normalization. For this note that

0(c)

1
= = 20+ 21t + 29t> + - - - where ziEk,ZOGEZ. (4)
c
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Conversely, for given 21, 29, ... € k,z0 € (1/d)Z there exists ¢ € L satisfying (4). So
we see that D has an eigenvalue
b:ﬁ*—m+--'+%+ﬁg, where 3; € k,m € N.

tm
We need a more precise result.

Proposition 3 There exists a € K and v € Vi (a),v # 0 satisfying

(1) Dg(a)(v) = av.
(i)
a = a*_m_f_..._k%—{—ao, where a; € k,t:$1/d7K(a) = k((t)).

a is called normalized eigenvalue.

Definition 4 a,b € K are callﬁd equivalent, notation a ~ b, if there exists ¢ € K*
such that b = a + 6(c)/c. a € K is called special if for all conjugates b of a over K
the relation b ~ a implies b = a.

One easily checks that normalized eigenvalues are special and that to each eigenvalue
a there exists a normalized eigenvalue b equivalent to a.

We shall now construct a D-module to any special a € K. Let d be the degree
of A over K and t = z'/%. Then K(a) = k((t)) and there exist ag,ay,...,a4_; € K
such that

a1 aq—1
a:a0+7+...+td_1'

Define V(a) as the K-vector space K% and D : V(a) — V(a) by D =0 + A — J,

where

ad—1 al

aO T .« DY ? O

. 1
al ' d

A = . 5 Jd =
ad—1 .
x d—1
a/d—l “ e “ e al ao d

Then (V(a), D) is called the canonical module associated to a.

Properties:
e (V(a),D) is a simple D-module.
e Any simple D-module is isomorphic to a (V(a), D).
e If b € K is another special element, then V(a) >V (b) <= a ~ b.
e D(v) = av for some non-zero v € V(a) g (q)
o (p(v)pecai(K(a)/K) 18 a K(a)-basis of V(a)g(q)-
e Minimal polynomial of a/K equals the characteristic polynomial of A.
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5 Characteristic classes

Here follows another list of notations and definitions.

e M is the set of monic polynomials in K[T]. M is closed under multiplication;
it is an abelian monoid.

e 7 is the subset of M of the irreducible polynomials.

e p ~ q for p,q € T means:

(i) p and g have the same splitting field L.
(ii) There exists ¢ € L* such that ¢(T') = p(T + 0(c)/c).

e Since ~ is compatible with the multiplication in M the multipication induces
a monoid structure in M/ ~.

e ¢(V, D) for a (V, D) is defined as follows. Choose a special such that (V, D)=V (a).
Then ¢(V, D) € M/ ~ is the equivalence class of p,, the minimal polynomial of
a over K.

o f~gfor f,g € M is defined as follows. Factorize f, ¢ into elements of Z. Then
there exists a bijection between the two sets of irreducible factors such that
corresponding factors are equivalent.

o ¢(V,D) for (V,D) general can now be defined with the help of a composition
series V.= Vy D Vi D -+ DV, =0, D(V;) C V;. The quotients V;_1/V;
are simple D-modules. Let f; € 7 represent V;_1/V;. Then f;--- f, represents
¢(V, D). The well-known properties of composition series guarantee that this is
a valid definition of the characteristic class of (V, D).

The following exactness property immediately follows from the above definitions.
If
0=V -V -V"=0 (5)

is an exact sequence of D-modules (we have omitted D), then
(V) =c(V)e(V").

In order to define the characteristic map we first define the subgroup @ of K (7')*
by @ ={f/g| f,g € M}. ~ can be extended (uniquely) to Q. We will denote by C
the abelian group @/ ~. On the other hand, let Ky(D) the Grothendieck group (free
abelian group of isomorphism classes of D-modules modulo the subgroup generated
by [V] = [V'] — [V"] for all exact sequences (5)). Then by standard arguments the
map (V, D) — M/ ~ induces the characteristic map

c: Ko(D)—C (6)
The characteristic map is an injective homomorphism of abelian groups. From now
on we shall write the group operation in C as an addition.
6 Multiplicative structure

The tensor product (Z, D) of D-modules (V1, D1), (Va, D2) is defined by
(i) Z =V, ® V5 as a K-vector space.



62 A H.M. Levelt

(ii) D(v1 ® v2) = D1(v1) ® va + v1 ® D(ve) for all v; € Vi, vy € Va.

This tensor product induces a (commutatitive) multiplication into Ko(D) which
turns the Grotendieck group into a commutative ring. The characteristic map ¢
transports this ring structure to Im(c). We want a direct description of the product
structure in I'm(c). Hence

Problem Compute ¢(Z, D) from ¢(Vi, Dy) and ¢(Va, D2).

Obviously it suffices to do this for V4 = V(a), Vo = V(b), where a, b are normalized
eigenvalues.

Solution Define

R(T) = resultantg(pa(S),ps(T — S)) € K[T). (7)
Let .
R(T) =[] 1" (8)
j=1
be the prime factorization of R(T') in K[T]. Define
I = lem(deg(f1),...,deg(fn)), 9)
l
hy = . 10
deg(f:) (10
Then ¢(Z, D) is represented by
n h;—1
[ my\ Hi/hi
1111 7 (T+—) . (11)
i=1 m=0 ¢

Sketch of a proof. For the normalized eigenvalues a, b we have the following diagram
K(a) C K(a,b) = L = k((t))
U U (12)
K < K(b)),

where t = z'/!. Define d, = deg(a/K), dy = deg(b/K), d = ged(dy,dp), | =
lem(dg,dp). Then [L : K| = [ and d,dp = dl. Let p be a generator of the Galois
group G of L over K. There exist eigenvectors v, w

CAS V(G)K(a)vv 7é OvD(U) =av,

w € V(b)gwy,w # 0, D(w) = bw.

Note that
(v, p(v), ..., p% 1(v)) is a basis of V(a) Kk (a)
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and
(w, p(w), ..., p% H(w)) is a basis of V() kw)-

Define ‘ ‘
zij=p'(v) @ p!(w) for 0 < i < dgy, 0 < j < dy.

Then z; ; € Z1,, (%5):,; is an L-basis of Z, and
D(zi5) = (p'(a) + 7 (b))zi,5.
Note that p’(a) + p?(b) is special (even a normalized eigenvalue). In the table

20,0 p(20,0

l_
Y 0
210 plz10 P (21,0)

~— —

:l—l(

2410 P(Zi—10) - 0 P (24-10)

we have again all elements of the basis (z; j); ;. To each row of the table we are going
to apply the following theorem.

Theorem 5 (Structure Theorem) Let (V,D) be a D-module, K C L a finite
extension with Galois group G, a € L special and v € V' \ {0} such that D(v) = av.
Assume that (0(v))seq is linearly independent over L. Then there exists a D-
submodule W; of V' having the following properties:

(i) Wr, =3 e Lo(v) as Dr-modules.
(ii) WSV (/1) @ --- & V((h — 1)/1)) @k V(a), an isomorphism of D-modules,
where h = [L : K(a)].

Application of the Structure Theorem.
For i € {0,...,d — 1} look at the eigenvector z;0 of D : Z; — Zr. We have
D(zi0) = (p'(a) + b)zio and p'(a) + b is special. Moreover, (p’(z;0))o<j< is linearly
independent over L. Hence, in virtue of the Structure Theorem, there exists a D-
module W; of V' such that:

Wi = IE_ELPj(Zi,o),
=0
W, 5 (V <%>@"'@V(hil_1>>®KV(pi(a>+b),

hi = [+ K(pi(a) + b)] = 1/ deg(p(a) + b).
Define W = Wy + -+ + Wy_1. Then

where

d—11-1
Wy, = L’ (2i0) = Z1, (13)
i=0 j=0
d—1 h;—1
WS V(%) ok Vip' (@) +b).
i=0 m=0
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Because of (13) we have W = Z = V(a) @k V(b).

Let p; be the minimal polynomial of p?(a) +b over K. Then it is easy to see that
pi(T 4+ m/l) represents the characteristic class of V(m/l) @ V(p*(a) + b). Hence the
characteristic class of Z is represented by

d—1h;—1

111 » (T+?). (14)
=0 m=0
Note that p; = p; is possible for ¢ # j. The zeros of p; are
p'(a) +b,p(p'(@) +b), ..., p% (p'(a) + 1),

where d; = deg(p'(a) +b) = [K(p(a) +b) : K]. Since [L : K(p*(a) + b)] = h; and
[L: K] =1 we have | = d;h;. It follows that

p'(a) +b,p(p'(a) +b),....0' " (p'(a) + b)

is the sequence of zeros of p?l Hence

d—11-1 o d—1
IR R ORRES | P
i=0 j=0 i=0
The left-side equals
do—1dp—1 ' ‘
T T1 (T - (v'(a) + /(b)) = resultants(pa(S), po(T - S))
i=0 j=0

and now (11) immediately follows.

Due to M. van Hoeij’s local factoization algorithm (cf. Factorization of Linear
Differential Operators, Ph.D. thesis, University of Nijmegen, 1996) characteristic
classes of differential operators can now be computed. Formula (11) leads to an
algorithm for the characteristic class of a tensor product (i.e. the product in the
characteristic ring).
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A TOAST TO TON

MICHAEL SINGER
Mathematics Department

North Carolina State University
Raleigh, NC 27695-8205

USA

singer@math.ncsu.edu

Here’s to Ton! Has it been so long?
Must he really now be retired?
I guess it’s true and now’s the time
To wish him well from those he’s inspired.

His first result that I did learn

Is elegant, concise and far surpasses the norm.
Who can dispute the power and beauty

Of Levelt’s Differential Jordan Normal Form?

And then I found he had done much more.

A very nice thesis — go, take a look —
That rested dormant, waiting to be used

To answer Hilbert’s question by Bolibruch.

And if you are interested in forms that are Pfaffian

But don’t want proofs that appeal to none but a pagan.
You can find an anonymous gem in Jouanalou’s book

Due to our man right here in Nijmegen!

There is more — from classes characteristic to computations symbolic,
Many results about which he could boast.

But now join me and wish him — good health, much fun, good luck to come
And raise your glasses to Ton — A Toast!
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DEAR TON

WIM SCHIKHOF

Department of Mathematics
University of Nijmegen
Toernooiveld, 6525 ED Nijmegen
The Netherlands
schikhof@sci.kun.nl

We have been colleagues at the same institute for many years, and there may be
several things worth mentioning at an occasion like this, but let me just pick one
particular experience.

I can be announced as your first PhD student.

To indicate the importance of your mathematical influence on me, we have to go
back quite some years: it was in the sixties, when you entered the Mathematical
Department as a young professor. At that time I was a junior staff member, trying
to find a suitable subject and advisor for a PhD. The summer course you presented
made such an impression on me that I decided to try and ask whether you would
be interested in p-adic harmonic analysis, a subject I'd got involved in currently
through suggestions of Professor Springer.

You answered two things:

1. I don’t know anything about that subject, and
2. Why not? Let’s give it a try.

Almost at once you organized weekly meetings in the evening at your house in which
we worked together. That is to say, and stated more correctly: you were working and
I was watching and listening.

Well, Ton, maybe you don’t even remember these sessions (I recall we had only
seven or eight, probably because you decided that after that I was able to work on
my own), but I do, and I like to let you know that they had a big influence on my
further research activities. Why?

Because here, for the first time, I witnessed the process of mathematical research,
how to get ideas and when it is time to drop some, the importance of having good
examples, of attitude, endurance, preparedness to do ugly computations, etc.

True, in the years that followed you always have been willing to listen to me, giving
advice, encouraging me, and I thank you for that too, but I think that during
those first sessions I learned how to become a grownup mathematician, and I am
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remembering this period as being the most important lesson you taught me, and
this opportunity seems to be appropriate to finally say a special thank you for it.

I regret that I cannot be present at this celebration. So, I have to wish you by means
of this reading: very fine years to come and that they may be filled with activities
that have your enthousiasm.

Wim Schikhof



PERSONAL LETTER

V. S. VARADARAJAN
University of California

Los Angeles, CA 90095-1555
USA

vsv@math.ucla.edu

I have been fortunate to know Professor Levelt for the past several years and
have always admired his deep insights in many beautiful parts of mathematics. I
am thinking of his work on generalized hypergeometric functions which was the
foundation for the work of Beukers and Heckman; his pioneering work on the
reduction theory of meromorphic connections which was a source of great inspiration
for my own work with Donald Babbitt on problems of reduction and moduli for
meromorphic connections; and his ideas on tensor categories and differential Galois
theory. I must also mention his beautiful work with Van den Essen on Pfaffian
connections in several variables which brought to light several issues of nilpotents
over general rings that also arose in my work with Babbitt. I could go on and on
and I am sure there are many more that I have not known or understood.

I am sure even after retirement he will interest himself in mathematical questions.

I wish him many happy years of retirement, and hope that one day soon I can visit
him.

Raja
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