A new class of invertible polynomial maps

Arno van den Essen and Engelbert Hubbers

Abstract

In this paper we present a new large class of polynomial maps FF = X + H :
A" — A" (definition 1.1) on every commutative ring A for which the Jaco-
bian Conjecture is true. In particular H does not need to be homogeneous.
We also show that for all H in this class satisfying H(0) = 0 the n-th iterate
Ho---oH =0.

Introduction

In [1] it was shown that it suffices to prove the Jacobian Conjecture for cubic
homogeneous polynomial maps, i.e. maps of the form

F=X+H: :C"=>C

where H = (Hy,..., H,) and each H; is either zero or a homogeneous polynomial
map of degree three. In this case the Jacobian condition det(JF') € C* is equiva-
lent to JH is nilpotent. (JF and JH are the Jacobian matrices of F' and H.) So
understanding nilpotent Jacobian matrices is crucial in the study of the Jacobian
Conjecture. In [14] Wright showed that if n = 3 all JH where H is cubic homo-
geneous are linearly triangularizable. In [10] the second author gave a complete
description of all cubic homogeneous Jacobian matrices in case n = 4. They are no
longer linearly triangularizable. However it turns out that the rows of the Jacobian
matrices are linearly dependent over C (or equivalently that Hy, Hy, H3 and Hy are
linearly dependent over C). Already in [4] Druzkowski and Rusek conjectured that
if Hy = (3,...,H, = [, where each /; is a linear form, then the nilpotence of
JH implies the linear dependence of Hy,..., H,. The same question of linear de-
pendence of Hy,..., H, was raised by Olech in [13] and Meisters in [12], in case
H,,..., H, are cubic homogeneous.

Then it was observed by the authors that the following more general dependence
problem would imply the Jacobian Conjecture: does JJH nilpotent (not necessarily
homogeneous) and H(0) = 0 imply that Hy,..., H, are linearly dependent over C?
(Recently in [3] this dependence problem appeared as a Conjecture, the Nilpotent
Conjecture, where it was shown that an affirmative answer would imply the Jaco-
bian Conjecture.) Our aim was to investigate what consequences could be deduced
assuming that the dependence question had an affirmative answer.



2 The class H,(A)

The result is that for every commutativering A we defined a large class, denoted
H,(A), of polynomial maps H € A[Xy,...,X,]" such that the Jacobian matrix JH
is nilpotent. It is shown that for all H € H,(A) the map F := X + H is invertible
with det(JF) = 1 and that the inverse is of the form X + G with G € H,(A
Furthermore we show that H" = Ho---oH = 0 for all H € H,(A), with H(0) =
a phenomenon first observed by Meisters in [11].

Then in section 4 we consider the question if every H with J H nilpotent belongs
to H,(A) (which, if true, would imply the Jacobian Conjecture). We show that
the answer is yes if n = 2 and A is a Q-algebra which is a U.F.D. (this result was
already obtained by the second author in [10]), and that the answer is no for all
n > 3 and every domain A, which is a Q-algebra. This last result is based on

).
0,

recent counterexamples to the dependence problem for all n > 3 obtained by the
first author in [7].
Finally in section 5 we show that all counterexamples found in [5], [8] and [2]

belong to H,,(C) (which is a subclass of H,(C)).
In a subsequent paper [9] we make a detailed study of the class H,(A) and
show that all F' of the form X + H with H € H,(A) are stably tame. This implies

that all cubic homogeneous maps in dimension 4, obtained in [10], are stably tame.

1 The class H,(A)

Throughout this section A denotes an arbitrary commutative ring and let us de-
note by A[X] := A[Xy,..., X,] the polynomial ring in n-variables over A. Let
F = (F,....,F,) € A[X]". Such an F is called invertible over A or Fy,...,F),
is called a coordinate system of A[X]if A[Fy,...,F,] = A[X1,...,X,]. In other
words, if there exist Gy,...,G, € A[X] such that X; = G;(F,..., F,) for all
.. It is an immediate consequence of the formal inverse function theorem that
G = (Gy,...,G,) is uniquely determined and satisfies F o G = X.

Now we come to the main definition of this paper. First we put

N, (A) = {H € A[X]" : JH is nilpotent }.

For each n € N, n > 1 and each commutative ring A we are going to define
a set H,(A) C A[X]™ which will turn out to be a subset of the set N, (A). (cf.
Theorem 2.3.)

Definition 1.1 Put H;(A) = A, for each commutative ring A and inductively
forn > 2 and H € A[Xl” we define that H € H,(A) if and only if there exist
T e M,(A),ce A" and H € H,_i(A[X,]) such that

H:Adj(T)(SI)'TX—I—c (1)

where Adj(T') denotes the adjoint matrix of T and |7 x the ‘evaluation at the vector
TX.
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Hy

Example 1.2 Let H = ( H,

) € A[Xy, X3]*. Then H € Hy(A) if and only if

t1 1o
a; asz

there exist T = (
such that

(& )=( % ) (%)

In other words: if and only if H; and H, are of the form

) € My(A), c1,¢2 € A and f(X3y) € Hi(A[X2]) = A[X]

1
L Xy 41X, t ( Ca ) '
a1 Xy + a X,

Hi = ayf(ar1 X1+ a2 X2)+
Hy = —a1f(ar Xy +a;X3) + ¢

for some ay,az, ¢1,c2 € A and f € A[X,].

Remark 1.3 It was shown in [10, Theorem 3.1] that if A is a Q-algebra and a
unique factorization domain then Hy(A) = Ny(A). We will give a short proof in
section 4 (theorem 4.3). However if A is a domain which is not a unique factoriza-
tion domain it can happen that Hs(A)&N3(A) (see section 3 below).

2 Properties of H,(A)

Lemma 2.1 Let H € H,(A), r€ A, c € A". Then
i) tH +ceH,(A).
ii). If S € My(A) then Adj(S)Hsx € Ha(A).

iii). If ¢ : A — S is a ringhomomorphism then o(H) € H,(S) where o(H) is
obtained by applying ¢ to the coefficients of H.

Proof. i) and iii) follow readily by induction on n. It therefore remains to prove

ii). So let € M,(A) and H € H,(A). Then according to definition 1.1 we get

Adi(S)Hisx = Adj(S) (Adj(T)([g) +(;)
|TX ISX

= Adj(S) Adj(T) (( Sf )|TX)|SX +e

= Adj(TS) ( H) +e
0 |(ToS)X

and this is of the desired form. O



4 Properties of H,(A)

Corollary 2.2 Let A[Y] be the polynomial ring in one variable over A. Let a € A.
If H=(H,,...,H,) € H,(A]Y]), then H(YY = a) € H,(A).

Proof. Apply lemma 2.1.iii) to the substitution homomorphism ¢ : A[Y] — A
sending Y to a. a

To simplify notations we abbreviate (1) by H = [:[[T, ¢l or by H = [:[[T] in case
¢ = 0. As before we denote the Jacobian matrix with respect to Xy,..., X, of an
element H € A[X]” by JH or if confusion is possible by J,H. One then easily
verifies that

JL AT, ¢ = Adj(T) ( (J”-lf)lTX ' ) T. (2)

Theorem 2.3 For all rings A and n € N, n > 1 we have H,(A) C N,(A).

Proof. Induction on n. The case n = 1 is obvious. So let n > 2 and let
H = F[[T, ¢| for some T € M,(A), ¢ € A" and H e Hn-1(A[X,]). By the in-
duction hypothesis we have that Jo_1 H is nilpotent. Hence so is (Jn—1ﬁ>|TX-
From remark (2) it then follows that .J, H[T,c] = J, H is nilpotent. a

Theorem 2.4 Let H € H,(A). Put F:= X + H. Then

i). det(JF)=1 and

ii). F is invertible over A. Furthermore F'=X+G with G € Ha(A).

Before we can prove this theorem we need some preliminaries. Therefore con-
sider the polynomial ring
A[T;) == A[Ti;;1 <id,j <n]

in n? indeterminates over A. Put T,, = (T};), d := det(T,) and consider the ring
S = A[T;][d™"]. We claim that A[T;;] C S. This follows immediately from
Lemma 2.5 d is not a zero-divisor in A[T};].

Proof. We use induction on n; the case n = 1 is obvious, so let n > 2. Write
dn—l = det(Tij>1§i,j§n—1- Put A* = A[Tm,Tm,l S 2 S n — 1] and B := A*[Tw, 1 S
i,j <n—1]. So B = A[Ti;(i,7) # (n,n)]. If we now develop d with respect to
the n'" column we get

d= dn—lTnn +b

for some b € B. In particular b does not contain any 7T,,. Now suppose d is a
zero-divisor in A[T};]. Then there exists an element 0 #£ g € A[T};] with dg = 0.
Now develop g after powers of T,,, i.e.

g=9gnTrn + -+ g0

with m > 0, g # 0 and g; € B for all i. Looking at the coefficient of T/2*! in
the equation dg = 0 we get d,—19,» = 0. But if we apply the induction hypothesis
to the ring A. we get that d,,—; is no zero-divisor in A.[T;;;1 < 4,7 < n — 1].
Consequently g, = 0, a contradiction. Hence d is no zero-divisor in A[T};]. a
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Proof of theorem 2.4. By induction on n. Again the case n = 1 is clear. So
let n > 2 and let H = ]:][T,c] for some T' = (t;;) € M,(A), ¢ € A" and H ¢
H,—1(A[X,]). Since the transformation 7, : z — x4 ¢ is bijective with inverse T_.,
we get that T_, 0 H = H[T] and hence we may assume that ¢ = 0 without loss of

generality.

0.

ii).

Let S = A[T;;][d™'] as above and put Sy := A[T};]. By lemma 2.5 we have
that Sy is a subring of S. By lemma 2.1 we can view H as an element of
Hoo1(S0[X0]) C Hpo1(S[X,]). Now define the universal H, := ]:][Tu] and
F, =X+ H,. Note that

So we get

det(J,F,) = det(J, (X + Hy,))

= det (Tu‘lJn (X + ( ad )) Tu)
0 |T. X

= det(Ju_r (X' + dH))i1,x

where X' = (X,...,X,_1)". However since dH € H,—1(S[X,]), the last
determinant equals 1 by the induction hypothesis. So also det(JF,) = 1
Finally making the substitutions T;; — t;; we obtain det(JF) = 1.

Since H € Hp—1(S0[X,]) and d € Sy we get dH ¢ H,—1(S0[Xn]). So by the
induction hypothesis we get that X'+dH is invertible over Sy[X,,] with inverse
X'+ G where G € H,,_ 1(SO[X ]) The equdtlon (X' +dH) (X' + é) = X'
implies that X' + G+ dH(X' + G) "so G = —dH(X’ + G) Now observe

that ~
_ dH
F,=T (X + ( 0 >)|TuX

and that its inverse over S is given by

e (& e saimo (39)

Since G = — (X' + G) belongs to So[X,]"~!, it follows that F, is in fact

inver‘rlble over Sy. As in i) we conclude the proof by making the substitutions
T:; — t;; for all 4, 5.

a

The next result shows a remarkable nilpotence property of the elements of H,(A).

For special examples this property was discovered by Meisters in [11].
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Theorem 2.6 Let H € H,(A). Then H* = Ho---o H € A" for alln > 1. In
particular if H(0) =0, then H* = 0.

Before we can give the proof of this theorem we first present two lemmas.

Lemma 2.7 Let H = (Hy,...,H,) € AX]" and assume H, = ¢, € A. Now
write for each 1 <i<n—1 Hyy= H;(X, =¢,). Pul

HO = (Hl()) . -7H(n—1)0) S A[X17 e ?Xn—l]n_l'
Then for all p > 2
Hp _ ( Hé)—l(H17...7Hn—1) ) .

C

Proof. We use induction on p. First observe that forall 1 <:<n —1
Hi(Hla'--aHn): HiO(Hla---aﬂn—1> (3)

which proves the case p = 2. Now let p > 3. Then by the induction hypothesis

-1
Hp:Hp_IOH:(Hg (Hla"'aHn—1)>oH

Cn
So by (3) we get

o (Hg‘l(Hlo(Hl,...,Hn),...

Cn,

7H(n—1)0(Hla"'aHn)> )
B ( HE(Hy,y ... Holy) )
Cp,

a

Proof of theorem 2.6. et H = ﬁ[T, ¢| for some ¢ € A", T = (1;;) € M,(A)
and I ¢ Hn-1(A[X,]). As in the proof of theorem 2.4 consider the ring S and
H, € S[X]". It suffices to prove that H? € S™, for then H € S™ N A[T;;][X]"* =
A[T;;]", so making the substitutions Tj; + 1;; gives H" € A" as desired. Now
observe that

H, =T ( o ) TN (Tue) = T ( " )
|TuX a [T X

where ( H ) = ( ) + T,c. Observe that a € S and I%[ € Hu1(S[X,]). We

a
deduce that o
Hr =T ( H ) .
¢ Jir.x
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So it suffices to show that ( i ) € S". Therefore we may assume that
a
H, Hy
H=| : |eAX] with H = : € Ho1 (A[X,])
Hn Hn—l

and H, € A. Write ¢, instead of H,. So we need to show that H" € A"™. We use
induction on n. First write H; = Hjy + (X,, — ¢,) H as in lemma 2.7 above and

put Hy = (Ho, . .., H(n—l)O)- Then lemma 2.7 gives

. ( Hg‘l(Hl,;l..,Hn_l) ) )

C

Furthermore by corollary 2.2 we have Hy € H,—1(A). So if n = 2 then H? € A%
Finally if n > 3 then the induction hypothesis, applied to Hy, gives that H}™" ¢
A" whence H” € A” by (4). O

3 A domain A with Hs(A) & N>(A)
Throughout this section A denotes the domain Z[X,Y, Z]/(X*+ Y Z).

Theorem 3.1 Let H1 = 01X1 + CQXQ; H2 = lel + d2X2 mn A[Xl,XQ] where
a=X,c6=Y,d =7 and dy = —X. Then

i). H=(Hy, Hy) € Ny(A).
ii). H g Ha(A).
iii). YH € Hy(A).
Proof.
i), JH = ; _77 . Since Tr(JH) = 0 and det(JH) = —(X* +YZ) = 0 we
deduce that H € N,(A).

ii). Suppose H € Hy(A). Then by example 1.2 there exist aj,a; € A and
f € A[T] with f(0) = 0 such that

Hi = ayf(a1 X1+ a2X3)
Hy = —aif(a1 Xy + a3 X3)

Now since both deg(H;) = deg(Hz) = 1 we deduce that f(T') = bT for
some b € A\ {0}. Consequently X = bajay and Y = ba2. Let Ay, Ay, B €
Z[X,Y, Z] such that a; = Ay, ay = Ay and b = B. Then multiplying X by a
and Y by a; we obtain a;X = a,Y, i.e. A,X — A)Y = C(X2 + Y Z) for some



8 The class H,(A)

c € Z[X,Y, Z]. Consequently X(A; —cX) =Y (A1 +¢Z). So Ay —cX =dY
for some d € Z[X,Y, Z] and hence A, + ¢Z = dX. Summarizing

A =dX —c¢Z and Ay = cX +dY

with ¢,d € Z[X,Y,Z]. Consequently the equation X = baja,, i.e. X —
BAAy € (X2 +Y7Z), implies X € (X,Y,7)% a contradiction. So H ¢
Ha(A).
S YXX, +Y7'X
YH = 20T 2
i) ( YZX, -V XX,
ar =X, a; =Y and f(T) =T to get the desired form of example 1.2.

). Since Y 7 = —72, we see that we can take

a

4 The class H,(A)

In the previous section we saw that there exists a commutative domain A such
that H € A[X]*, H € Hy(A) but rH € Hy(A), for some 0 # r € A. This leads
us to the following definition, where we take the closure of H,,(A) with respect to
this property.

Throughout this section: A is a commutative domain.

Definition 4.1 First define H;(A) = A. Now let n > 2 and H € A[X]". Then

H € H,(A) if and only if there exist 0 # r € A, T € M,(A), ¢ € A" and
H € H,_1(A[X,]) such that

rH:Adj(T)(H) b
0 ITX

As in section 2 we have the following result.

Theorem 4.2 ). H,(A) C N,(A), for all n > 1.

ii). Let H € H,(A) and put F:= X + H. Then det(JF) =1 and F is invertible

with inverse F~! equal to X + G where G € Hn(A)

iii). Let H € H,(A). Then H* € A, for all n > 1

Proof. (Sketch.) The proofs of these theorems are obtained from the proofs of

theorems 2.3, 2.4 and 2.6 given in section 2 by replacing H,(A) by H,(A) and
using localizations. a

Finally we consider the question whether H,(A) = N,(A)?
As already observed earlier, it was proved in [10] that in case A is a U.F.D.,

then Hz(A) = Ny(A), hence Ha(A) = N3(A). Since the paper [10] is not easy

available we give a short proof of this result.
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Theorem 4.3 ([10], 1994) Lelt A be a U.F.D., then Hy(A) = N3(A).

Proof. i). First assume that A =k is a field. Then the result is proved in [1].

ii).

iii).

iv).

Now let A be a U.F.D. and let H = (Hy, H,) € NQ(A). Then H € NQ(K)
where K is the quotient field of A. So by i) there exist g(T') € K[T] with
g(0) =0 and 11,1, d1,dy € K such that

Hi = wg(nXi+1nX,)+d
Hy, = —ug(nXi+1.Xy)+d;

(see example 1.2). So clearing denuminators we get: there exist a € A, a # 0,

F(T) € A[T] with f(0) = 0 and p1, 2, ¢1,cz € A such that

alHy = pog(pXa+12X2)+ ¢ (5)
alHy = —pig(p Xy + peXs) + ¢

Substituting X; = X3 = 0 in (5) we obtain that ¢; = aé; and ¢; = aé; for
some ¢1, & € A. So replacing H; by H; — ¢; we may assume that ¢; = ¢; = 0.

Now we show that we may assume that ged(gy, 12) = 1: therefore let p = it d,
pe = pizd where d = ged(p1, p2). So gcd(/{l,/lz) = land p; f(p1 Xy + p2Xz) =
fadf (d(p1 X1 + 4i2X32)). Hence if we put f(T') = df (dT') we get

pif (pa Xy + p2Xs) = f(ﬂ1X1 + 12 X3).

Consequently we may assume that ged(py, pup) = 1. Write f = SN f.T°,
with f; € A. From (5) we see that we may assume that ged(a, fi1,..., fv) = 1.
Claim: a is a unit in A (and hence we are done).
Suppose that pis a prime factor of a. Then (5) implies that p divides f(u1 X1+
p2Xz2) (since ged(pr, p2) = 1). So in particular p divides both f(p;X;) and
f(p2X3), so p divides fip} and fiuh for all i > 1 and hence p divides f; for
all 1 > 1 which contradicts ged(a, f1,..., fv) = 1. So a is a unit.

d

In the remainder of this section we will show that such a result is no longer

true if n > 3. More precisely we have:

Theorem 4.4 Let A be any Q-algebra. Then H,(A)GN,(A), for all n > 3.

To prove this result we need the following lemma.

Lemma 4.5 Let A be a domain, n > 1 and H € H,(A) with H0) = 0. Then
there exist A\y,..., A\, € A, not all zero, such that \\Hy +---+ A, H, = 0.
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Proof. If H = 0 we are done, so let H # 0. Then there exist 0 # r € A,
T e M,(A),ce A" and H € H,_;(A[X,]) such that

rH = Adj(T) ( H ) +c
0 T X
So, multiplying by T" we get

'TH = det(T) ( " )lTX 4 Te (6)

i). If det(7T") = 0 it follows from (6) that rTH = Tc. Since H(0) =0 and A is a
domain we deduce that TH = 0. Since T' # 0 (otherwise H = 0) there exists
a non-zero row, say the i-th, whence t;1 Hy + --- + ¢;, H, = 0, as desired.

ii). If det(7T") # 0, then equating the n-th components of the vectors in (6) we
get r(TH), = (Tc¢),. Since H(0) = 0, we get (T¢), =0, so (TH), =0 i.e.
tpiHi+- - -+1,,H, = 0. Obviously ¢,; # 0 for some j (otherwise det(7") = 0).

a

Now let n > 3 and A be a Q-algebra. It was shown in [7] that the following
H = (H,,...,H,) € A[X]" belongs to N,,(A): let

a(Xy) = X77
Hl = X2 — OZ<X1>
H;i = X+ ((-_1])>,04(77_1)(X2 —a(X))) " for2<i<n-—1
1 — .
—1)"
i, = D G (x, — e,

(n—1)!
Proof of theorem 4.4. let n > 3 and H be as defined above. Then, as observed

H € N,(A). However if H € H,(A), then by lemma 4.5 there exist Ay,..., \, € A,
not all zero, such that A\ H; + --- + X\, H, = 0. It follows readily that Ay = --- =
An = 0 (look at the monomials X35, X4, ..., X, respectively). So \yHy + A, H, =0,
which easily implies that also Ay = A, = 0 (n > 3!), contradiction. So H ¢ H,(A).

O

In particular this proof shows that the dependence problem, or the Nilpotent
Conjecture from [3], is false. (See [7] for more details.)

5 Final remarks

To conclude this paper we explain the counterexamples found in [5], [8] and [2].
They all belong to H,(C). To see this consider example 1.2. First take A =
C[X37X4], ap = ”3, a9 = X4, cp=c =0 and f(T) =T. Then

(Hy, Hy) = (Xa(X3X0 + XuXo), = X5( XX 4+ X Xy))
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belongs to Hy(C[X4][X3]). Consequently (Hy, H3,0) belongs to Hs(C[X4]) and
hence (Hy, Hy, X}) belongs to H3(C[X4]). This implies that (Hy, Hy, X3 ,0) belongs
to H4(C) and hence that H := (Hy, Hy, X3,0,...,0) belongs to H,(C) for all n > 4.
Then X + H is exactly the counterexample to Meisters’ Linearization Conjecture
given in [5].

Similarly, taking f(7') = T we find the counterexamples to the Deng-Meisters-
Zampieri Conjecture and the Discrete Markus-Yamabe problem given in [8].

Finally the counterexamples to the Markus-Yamabe Conjecture and the Dis-
crete Markus-Yamabe problem in [2]: take A = C[X5], a1 = 1, a2 = X3,¢1 = ¢2 =0
and f(T) = T? in example 1.2. Then

(Hy, Hy) = (X5(X: + X3X2>27 —(Xi+ X3X2>2)

belongs to H2(C[X3]), hence (Hy, Hz,0) belongs to Hs(C) and consequently the n-
dimensional map (Hy, H,,0,...,0) belongs to H,(C) for all n > 3. Then —X + H
resp. %X + H are exactly the counterexamples to the Markus-Yamabe Conjecture
resp. the Discrete Markus-Yamabe problem given in [2].
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