D, (A) for a class of polynomial automorphisms
and stably tameness

Arno van den Essen and Engelbert Hubbers

Abstract

In this paper we introduce a set, denoted by D,,(A), for every commutative
ring A and every positive integer n. It is shown that the elements of this
set can be used to give an explicit description of the class #,,(A) introduced
in [5]. We deduce that each polynomial map of the form F = X + H with
H € M, (A) can be written as a finite product of automorphisms of the form
exp(D), where each D is a locally nilpotent derivation satisfying D?(X;) =0
for all 7. Furthermore we deduce that all such F’s are stably tame.

1 Notations, definitions and an explicit descrip-
tion of the class H,(A)

1.1 Notations

Throughout this paper A denotes an arbitrary commutative ring and A[X] :=
A[X,,..., X,] denotes the polynomial ring in n variables over A. Furthermore
if G = (Gh,...,G,) € AIX]" and S = (5;;(X)) € M,,(A[X]) then S(G) or
Sie denotes the p x ¢ matrix (Sj;(Gh,...,Gr))i;. In particular if F' € A[X]"
(= M,1(A[X])) then the composition of the polynomial maps F and G, denoted
F o @, is equal to F'(G).

Matrix multiplication will be denoted by the symbol ‘+’. Soif S,T" € M, (A[X])
then the matrix product of S and T is denoted by S« T. By X we denote the
column vector (X7i,...,X,)". In the sequel we also need another multiplication in
M, (A[X]), which we denote by ‘A’. This multiplication is defined as follows:

SAT :=S(T*X)«T

for all S, T € M,(A[X]).
One easily verifies that this multiplication is associative, so it makes sense to
write
S1AS30 -+ AS,
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for each n-tuple Sy,..., S5, in M,(A[X]). Sometimes we need to extend a vector of
length 1 < p <n—1orapxpmatrix to a vector of length n respectively an n x n
matrix. This is done as follows: let 1 <p <n —1, c€ A[X]|? and T' € M,(A[X]).

Then ¢* denotes the vector

)

=1 . | €AX],
0
obtained by extending ¢ by n — p zeros and T™ denotes the matrix

'ﬁ:(g Jﬂ)eMﬂMﬂ%

obtained by extending 7" with the n — p x n — p identity matrix. To simplify the
notations we drop the superscript ‘n’ and write ¢ and 7', even sometimes when

n=1 respectively 7! instead of &

it is clear from the context that we mean ¢
respectively 7™,

Finally the adjoint of a matrix 7" is denoted by Adj(T) and if ay,...,a, are
elements of a (non-necessary commutative) ring then [[;—; a; denotes the element

a/l...a/p.

1.2 D,(A) and the class H,(A)

In [5] we introduced a new class of polynomial maps, denoted by H,(A), and
showed that for each H € H,(A) the Jacobian matrix JH is nilpotent and that
the polynomial map F = X + H is invertible over A with det(JF') = 1.

Let us recall the definition of H,(A).

Definition 1.1 First if n = 1 we define H;(A) = A. If n > 2 we define H,,(A)
inductively as follows: let H € A[X]", then H € H,(A) if and only if there exist
T € M,(A), c€ A" and H, € H,_1(A[X,]) such that

H:Amﬂ*(%)mX+a (1)

The main aim of this section is to give an explicit description of the elements of
H,(A). Therefore we introduce some useful objects.

Definition 1.2 Let n > 2. Then D, (A) is the set of (2n — 1)-tuples
(T,c):=(Ty,....Th,c1,...,¢,)

where T,, € M,(A), T; € Mi(A[Xiy1,...,Xy]) forall 2 < i <n-—1,¢, € A%(=
M, 1(A)) and ¢; € M; 1(A[Xig1,...,X,]) forall 1 <i<n—1.
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If n > 3 we get a natural map 7 : D,(A) — D,_1(A[X,]) defined by
T(Toy ..., Thyeryoyen)) = (To, oo, Taca,cry ooty Camt).
Instead of ©((T,c)) we often write (77, ).
Definition 1.3 Let n > 2 and 0 < p < n — 2. Then
E.,:D,(A) = AX]"
is given by
L Eao((T,¢) := Adj(Ty) * éney 1ex for all (T, c) € Dy(A).

2. If n >3 and 1 <p <n —2, then inductively (with respect to n)

Fun(T.)) = Adi(r,) (ot () )|

Instead of E,,((T,c)) we simply write E, ,(T,c).

Now we are able to give the main result of this section.

Proposition 1.4 Let n > 2 and H € A[X]|". Then H € H,(A) if and only if
there exists (T, c) € D,(A) such that

n—2

H = Z Eop(T,c) + cy.

p=0
Proof. By induction on n. The case n = 2 is obvious, so let n > 3. Then

H = Adj(T,) * ( }é ) +
|Trx X

where T,, € M, (A), ¢, € A" and H, € H,_1(A[X,]). So by the induction hypo-

thesis we have

Z n-1p(T7, ) + ¢y

0
for some (T*,¢*) € Dn (A[X,]). P ( ¢) .= (T*,T,,C*, ¢,) and observe that
(T,c¢) € D,(A) and (T",¢') = (T* *)

H = ZAdJ )* B (T, ) imex + Adj(T,) * ( “n-1 ) +c,
|Tr*xX

n—2

= E.y(T,c)+ Eno(T,c)+ cp

S 3
|
[

= E,, (T, ¢)+ cp.

=3
Il
=
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Proposition 1.5 Letn >2, 0<p<n—2 and (T,c) € D,(A). Then
En,p(Tv C) = Adj(Tn—pA T ATH—IATn) * 6n—P—1 |(Tn_pA~~-ATn_1 AT )*xX

Proof. By induction on p. The case p = 0 is obvious. So let p > 1. Then
Envp(T’ C)

= Adj(T)+ ( Bt (T, €) )
" 0
| T X

= (by the induction hypothesis)

Adj(T,) * [Adj(Tn_pA s AT 1 )| Tasx ¥ <5n—p—1 |(T"‘PA"'AT"‘1)*X>|Tn*X]

= AdJ(Taepts -+ AT ) mex * T) % Enpr (Tnep s+ - AT 1) rex ) * T % X

= Adj(To—ptr- - ATuy AT # Cnmpr |(TaepteaTr 1 AT )% X

a

Example 1.6 Consider the polynomial map F := X + H : C* — C* where H
equals

m?2
—X2X42 - €4X32X4 - 2%X2X3X4 — g4X1X3X4 — k4X§’ - g—gXQXSQ - m4X1X32
_/YngZ - 63/Y§/Y4 + g4/Y2/Y3/Y4 - kBJYg) + m4/X'2/Y§ + gZXI/X'??
—%Xff
0

and es, k3, €4, ga, ka,ma € C and g4 # 0. This F' is invertible. In fact if we take
P = P! = (X4, X3, X5, X1), we have that PF P is one of the eight representatives
of the cubic homogeneous maps in dimension four as given by the second author
in [6], also published in [4, Theorem 2.10].

Now consider the following element (7, ¢) of D4(C) where

1 00 0

N tooy (510
o gi )(3 ga )(4 + iy X’g ’ 0 0 1 ’ 0 0 1 O

0 0 0 1

and

0
_ —X3(ea Xy + ks X3)
_ —21X 316444 423
¢ ( g 2 )’( —X3XZ — 63X4X32 - k3X§ ’ —1(;(3 ’
3 M4

o O OO

Our claim is that

2
H = Z E47p<T, C) + Cy.

p=0
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To prove this we will compute Fyg, F41 and F4 5 by the method of proposition 1.5.
Note that ¢4 = 0. Since Ty = T5 = 14, E4p and F4, are easy:

0
: ~ ~ 0
E4,0 == AdJ(T4> * C3 |T4*X = c3 = —_1X3
3 4
0
—XZ(eaXs + ka Xs)
(T ~ . —XaX2?2 — e X X2 kX3
E4,1 = Adj(T‘gAT4) * Cg |(’ﬁ%AT4)*X = (g = 3Ny 630 4 N3 3 X3
0
Before we compute F4 we present the following identities:
1 0 00
AT i 2X5 Xy +maXs 0 0
TQAT';ATLl = T2 — 940 3 g4 4 0m4 3 1 0
0 0 0 1
gaXs+myX3 0 0 0
2
(TyAT _ —93 X3 1 0 0
Adj(TyaTsATy) = i D et i, 0
0 0 0 9a X4+ maXs
Xy
. 2 ;v o
(TyATsAT)) + X = 91 X1 X5+ 94);? 4+ maXo X5
3
X4
— X1 X3 — ;—4X2X4 — ?—§X2X3
C 0
! |(T2AT3AT4)*X - 0
0

and finally

TQATgAT;;)*X

E4,2 - Adj(TQAT3AT4) * 61 |(
- (X4 + %X%> (94X1 Xz + Xo Xy + %XQXB)
X3(gi X1 X5 4+ g2 X2 Xg + ma X2 X3)

0
0

It is easy to verify that H = F40+ F41 + F42 + ¢4, which was our claim.

2 Nice derivations

Let B := Alz1,...,x,] be afinitely generated A-algebra and D a subset of Der 4(B).
By B” we denote the set of all b € B such that d(b) =0 for all d € D.



6 Nice derivations

Definition 2.1 Let D C Dery(B) a finite subset and 7 € Der4(B).

1. We say that 7 is deriwed from D in al most one step if 7 is of the form

T =Y 4ep bad, where by € BP for all d € D.

2. Let m > 2. We say that 7 is derived from D in at most m steps if there
exists a sequence of finite subsets

D:DOaDlaDQV"aDm

of Dery(B) such that 7 € D,, and all elements of D; are derived from D;_;
in at most one step, for all 1 < ¢ < m. If furthermore the elements of D
satisfy dida(x;) = 0 for all di,dy € D and all i, then 7 is called nice of order

< m, with respect to z1,...,z, and D.

Proposition 2.2 Notations as in definition 2.1. If didy(z;) =0 for all dy,dy € D
and all i, then dydy(z;) = 0 for all dv,dy € D, and all i. In particular d*(z;) =0

for every nice derivation.

Proof. We use induction on m. The case m = 0 is obvious since Dy = D. Now let

m > 1. Then di = Y4ep._, bad, do = Y yep._, byd with by, by € BPm=1. Then

didy(x:) = 3 bd( )+ 3 bablydd (x (2)

d,d’ d,d’

Now observe that d(b,) = 0 since b, € BPm-1 and d € D,,_;. Finally the induction
hypothesis gives dd'(z;) = 0 for all d,d’ € D,,—; and all 7, so (2) implies dydz(z;) =
0. d

We demonstrate these aspects by the so-called Winkelmann derivation. See [10].

Example 2.3 Let 7 = (1 + Xy Xy — X5X3)0x, + X50x, + X40x,, a derivation on
B = A[X,, Xy, X3, X4, X5]. Let D = {0x,,0x,,0x,}. Then 7 is nice of order two
with respect to X7, X5, X3, X4, X5 and D. To show that this is true, we present a
sequence of finite subsets of Ders(B),

D = Dy, D1, D,

Take Dy := {0x,, X50x, + X40x,} and Dy := {7}. Note that in definition 2.1 it
is not demanded that the set D; of this sequence is a subset of D;y;. The only
demand is that each D; is a finite subset of Der4(B). Since Xy, X5 € BP it follows
immediately that dx, and X50x, + X40x, are derived from D in one step. And
from 1 + X, X, — X5X5 € BP1 it follows that 7 is derived from D; in one step.
Obviously we have didy(X;) = 0 for all di,d; € D and hence with proposition 2.2
also 7%(X;) = 0.
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3 Derivations associated to polynomial maps

The main aim of this section is to show that for each 0 < p < n —2 the polynomial
map X + F, ,(T,¢c) (where (T,c) € D,(A)) is of the form exp(d), for some nice
A-derivation d of A[X]. Observe that d is locally nilpotent if d is nice with respect
to X1,..., X, since d*(X;) = 0 for all i, by proposition 2.2.

In order to prove this result (see theorem 3.3), we need to generalise some of
the notions of section 1 to arbitrary finitely generated A-algebras. So let B :=
Alzy,...,z,] be a finitely generated A-algebra and ¢ : A[X,..., X,] — B the
A-ringhomomorphism defined by ¢(X;) = x; for all i. For each p,q > 1 consider
the natural extension

©: M, (A[X1,...,X,]) = M,,(B).
Then for each (T, c¢) € D, (A) we define
Enp(T,¢)(x) := p(En (T, c)) € B

Now let (01,...,0,) be an n-tuple of A-derivations of B. To each vector b =
(by,...,b,)" € B™ we associate the following A-derivation of B:

2
D(b;01,...,0,) =010+ + 0,0, (=bx| : |).
I

To formulate the next lemma we need some more notations: let (7, ¢) € D,(A).

Put

(2%, ..., al) = Tk (xr,...,2,)"
(0,...,00) = (Ad)(T,))" * (0,...,0,)
"= (2, 1)
(T%,¢") = (T'(Xn = 27,), ' (Xn = 27,)) € Dy (Afz7])

Lemma 3.1 Letn >3 and 1 <p <n—2. Then

D(EWP(T? C)(LC), a17 R an) - D(En—l,p—l(T”7 C//)($II>; a{, e 8' )

) Yn—1

Proof.

D(E, (T, c)(x);01,...,0,)
0

= (Bup(Tc)(@)) * |

On

0
= (((Bucipm1 (T, 1a)’ 0 ) # (Ad§(T,)) 5 |
On,
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o
_ ( (Bnetpet (T”, ") (")) 0 ) «
9,
e DBy (T", )& 0,
O

Lemma 3.2 Notations as above. Let a € A and let 0y,...,0, be A-derivations of
B such that 0;(x;) = ad;; for all i,j. Then

a;(”c;) = adet(T,)d;;

for all 1, 5.
Proof. Denote the i-th column of Adj(T,) by (¢;,...,t%,)" and the j-th row of T),
by (¢j1,...,tjn). Then
a;(”c;) = (Zt si ) (Zt sxs)
s=1 =

n

= > atilys

1
= a(T, * Adj(T,));i
= adet(Tn)(S”

w

Now we are able to prove:

Theorem 3.3 Let 0y,...,0, be A-derivalions on Alxy,...,x,] such thal there ex-
ists an element a € A such that 0;(x;) = ad;; for all i, 5. Let (T, c) € D, (A). Then
the A-derivation d := D(E, ,(T,¢)(x);04,...,0,) is nice with respect to zy,...,z,
and Do :={01,...,0,}, for alln >2 and all 0 < p <n — 2.

Proof.
1. The hypothesis on the d; imply that dd'(z;) = 0 for all d,d" € Dy and all 1.
2. First we consider the case p = 0. Then
En,O(T, C) = AdJ(Tn) * En—l |Tn*X.
o

d= (&n—l |Tn*X)t * (AdJ(Tn))t * :
On
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Write & _; = (m1(X5), ..y ¥n=1(X4),0). Then the definition of 2], and the 0;
imply that

n—1
d = (y(2)s sy (27),0) % (05, 0,) = D i) (3)
=1

Put Dy := {0),...,0/_,} and observe that D; C Ders(B) and that each
element of Dy is derived from Dy in at most one step. Finally since 9/(z],) = 0
forall 1 < ¢ < n —1 (by lemma 3.2) we get that ~,(z]) € B for all

1 <i<n-—1. S0 (3) implies that d is derived from D; in at most one step.
Consequently d is derived from Dy in at most two steps. So d is nice with

respect to xy,...,x, and Dy by case 1.

3. Now we prove the theorem by induction on n. If n = 2, then p = 0 and we
are in case 2. So let n > 3. By case 2 we may assume that p > 1. Then by
lemma 3.1 we have

d = D(Ep_ypor(T", ") (2"); ), ..., 0._))

» Yn—1

with (7", ¢") € D,—1(A[z]]). By lemma 3.2 we can apply the induction hypo-
thesis to the ring A[z/,] and the (n—1)-tuple of A[z]]-derivations 01, ..., 0,

> Yn—1
on the Afz!-algebra B’ := A[z!][2],..., 2/ _,]. So the A[z!]-derivation d on
B’ is nice with respect to D := {0;,...,0,_,} and z{,..., 2, _,. So there

exists a sequence
Dy, Dy, ..., D!

of finite subsets of Der 4,/ 1(B’) such that d € D! and Dj is derived from
Di_; in at most one step for all 1 < < m. Now observe that Djj C Der4(B)
and that B’ C B since by definition obviously z! € B for all :. Consequently
if d is an A[z]]-derivation of B’ derived from D} in at most one step, then
d" € Ders(B). Hence D} C Ders(B). Arguing in a similar way we conclude
by induction on ¢ that D! C Ders(B) for all 0 < i < m. Since as remarked
in case 2 above, all elements of D, (= D; in case 2) are derived from Dy in
at most one step we deduce that d is derived from Dy in at most m + 1 steps.
Just define D, := D!_, for all 1 <1 < m 4 1. Hence d is nice with respect to

T1y..., 2, and Dy by 1.
O
Corollary 3.4 Let (T,c) € D,(A) and 0 <p <n —2. Put
0 0
D:=D|E,,(T,¢); —,...,— | .
( ATy, 8Xn)
Then D is nice with respect to Xy,...,X, and {%, ey %} Furthermore we

have exp(D) = X + E, ,(T,c) and the inverse map is given by exp(—D) = X —
E.,(T,c).

Proof. The first part is an immediate consequence of theorem 3.3. Furthermore
D?*(X;) = 0 by proposition 2.2. So exp(D)(X) = X 4+ E,,(T,¢) and the inverse
map is given by exp(—D)(X) = X — E, ,(T,c). O
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4 The main theorem

In this section we show that for every H € H,(A) the polynomial map F' = X + H
is a product of n polynomial automorphisms of the form exp(D), where each D is
a nice derivation on A[X]. More precisely

Theorem 4.1 Let F'= X+ H, where H = Zg;g E.,(T,c)+cn, for some (T, c) €
D,(A). Then

a a n—2 a a
F =exp(D (Cn, ax; aXﬂ))pl;[OeXp(D (En,p(T, ¢); ax, 8—Xn>>

Proof. Observe that

d d 2
exp(—D (cn; X, X )) o F =Y E,,(T,c).

p=0

So the case n = 2 follows from corollary 3.4. Hence we may assume that n > 3.
Now theorem 4.1 follows directly from proposition 4.2 below and corollary 3.4. O

Proposition 4.2 Letn >3, 0<p<n—3 and (T,c) € D,(A). Then

exp(—=D(E,,(T,c)))o (X + ”Z—: E..T,c)=X+ ”Z—: E,..(T,c).

q=p 9=p+1

Proof. Put G := exp(—D(FE,,(T,¢))). So G =X — E, ,(T,¢) (by corollary 3.4).
Hence if we put

U:=T,_pn--- 0T, 0T,
then by proposition 1.4 we get

G=X-— AdJ(U) * &n—p—l |U%X -

So if we put
n—2
f=X+ Z E, (T, c)
9=p
then

Gof=[—=AdjU(f))* np-1w(s)es
Since U(f) = f (by corollary 4.4 below, with j = 0) we get
G o f = f — AdJ(U) * En—p—l |Uxf-

Now observe that each component of ¢,_,-1 belongs to A[X,_,,..., X,] and that
for each i > n—p (U f); = (U * X); (by lemma 4.3 below). So ¢,—,—1 Usf =
Cn—p—1 |Uxx and hence
Gof = [— Adj(U) * Cr—p—1 |UsX
- f - En,p<T7 C)

(by proposition 1.4). O
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Lemma 4.3 Let n > 3,0 < p<n—-2,0<j <pand (T, c) € D,(A). Put
f=X+ ZZ;; E, ,(T,c). Then

[(Trepii - ATy AT, 5 fli = [(Treps& - ATy AT,) % X
forallt >n —p+ 7.
Proof. Put U :=T,_, ;A AT, 1 AT,. Tt suffices to show that for each g > p
U« E,,(T,c)];=0 (4)
forallt >n—p+y. Solet ¢ > p, then ¢ > p — 5.

1. We first treat the case that ¢ = p — 3. Then 7 = 0 and ¢ = p. Con-
sequently U = T,,_,A--- AT,_1 0Ty, E, (T, ¢) = E,,(T,¢) and hence by
proposition 1.4

U * ETMQ(T? C) = U * Ad.](U> * an—p—l |U*X

= det(U) * énop1 usx
Since the last p 4+ 1 coordinates of ¢,_,_; are zero, we obtain that
[U* E, (T, c)]; =0
for all 2 > n — p, which proves the case that ¢ = p — j.

2. Now assume that ¢ > p—j53+1. Son—¢g<n—-p+j5—1. PutV .=
Ty~ AT,_,y;—1. Then by proposition 1.4 we can write

Eng(Tic) = Adj(VAU) * Emgor |(var)ex
= Adj(V|U*X * U) * Crogr [(VAU)xX
- Ad](U> * AdJ(WU*X) * 6n—q—l [(VAU)*X

Consequently
U qu(T, C) = det(U) * AdJ(WU*X) * 6n—q—l [(VAU)xX (5)

Note that V', and hence Vi, x, is of the form B for some B € My _pij—1(A[X]).
Furthermore (¢,-,-1); = 0 if ¢ > n— ¢ which implies that (¢,_,—; (VAU)*X)Z' =
0ifi >n—p+j (sincen—p+j > n—gq). Now the desired result (4) follows
from (5).

d
Corollary 4.4 Notations as in lemma 4.3. Then

(Tn—p-l-jA st ATn_lATn)(f) = Tn—p-l—jA st ATn_lATn
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Proof. By induction on N :=p— 5. If N = 0 the result is obvious. So let N > 1.
Then

(O ST N
= Daepti (Foeprysr aesTos aT) ()ef ¥ (Dnmprjrr 8- AT 1 8T,)(f)

R

= n—p+j |(T’n—p+]+l A---A’fn_l ATn)*f * (Tn—p+]+1A e ATn_lATn)(f)

by the induction hypothesis. Finally observe that the matrix elements of Tn_pﬂ-
depend only on X,,_,4;41,..., X,. The result follows immediately from lemma 4.3

(with 7 + 1 instead of j). d

5 Stably tameness

With theorem 4.1 we are now able to prove the stably tame generators conjecture
for all maps in our clas H,(A). And will also show that this result is ‘sharp’: we
give an example of an element of our class which is not tame, so in general we
cannot get a better result than this stable tameness.

First let us recall the conjecture (it was already mentioned in [1], [2], [3], [4]

and [7]):

Conjecture 5.1 For every invertible polynomial map F : k" — k™ over a field k
there exist ty,...,t, such that

FIrl = (Fity, .o ) KPP — B
is tame, i.e. F' is stably tame.

Theorem 5.2 et FF'= X + H with H € HH(A) Then F is stably tame.

To do this we use the following result due to Martha Smith in [9]:

Proposition 5.3 Let D be a locally nilpotent derivation of A[X]. Let a € ker(D).
FExtend D to A[X][t] by setting D(t) = 0. Note that tD is locally nilpotent. Define
p € Auty A[X][t] by p(X;) = Xi,e=1,...,n and p(t) =t 4+ a. Then

(exp(aD),t) = p~' exp(—tD)pexp(tD).

Corollary 5.4 Let D, a be as in proposilion 5.3. If D is conjugate by a tame
automorphism to a triangular derivation, then (exp(aD,t)) is tame.

Lemma 5.5 Let 7 be a nice derivation of order m with respect to Xy,..., X, and
D = {8871, el %} on A[X]. Then exp(ar) is stably tame for all a € ker(r).
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Proof. We use induction on m. Consider the case that m = 1. Then 7 = 3" cp bad
with b; € A[X]P? = Ngepker(d) = A. And hence 7(X;) € A and clearly 7 is on
triangular form. So now we can apply corollary 5.4 and find that exp(ar) is stably
tame.

Now consider the case m > 1. We may assume that for all nice derivations
o € Derys(A[X]) of order m — 1 with respect to D and Xi,..., X, and for any
commutative ring A we have that exp(ao) is stably tame for all a € ker(o). Let 7
be nice of order m. Define p and extend 7 to A[X][t] as in proposition 5.3 (in fact
we extend all derivations of D; to A[X][t] in this way). Now from

(exp(ar), t) = p~" exp(—tr)p exp(ir)

it follows that it suffices to see that exp(i¢7r) is stably tame. Now we see that
i1 = Y gep,._, thad with tby € A[X][t]”=-1. But from this it follows that

exp(tT) = exp( E tbad)

dEDm—l

= H exp(tbyd)
dED,,_1
This last equation follows from proposition 1.5. Obviously it suffices to prove that
each exp(tbyd) is stably tame to conclude that exp(i7) is stably tame. But d is a
nice derivation of order m — 1, tb; € ker(d) and hence we can apply the induction
hypothesis to the ring A[t] and find that exp(i¢7) is stably tame and hence exp(at)
is stably tame. O

Proof of theorem 5.2. Now if we look at theorem 4.1 we see that each F' =
X + H with H € Hn(A) can be written as the product of a finite number of

exp(a;D;)’s where each D; is a nice derivation with respect to Xp,..., X, and
{3871, cee %} and a; € ker(D;). Applying lemma 5.5 n times gives us the desired
result: [ is stably tame. O

Remark 5.6 Note that we don’t give an indication of the value of m in conjec-
ture 5.1. As can be seen from the proof above, this m can be very high. At the
highest level we have n exp(a;D;)’s, but each of these factors can give rise to a
great number of extra variables, depending on the ‘order of niceness’ of each D;.

To conclude this paper we show that in general the automorphisms F' = X + H
with H € H,(A) need not be tame. Actually, this idea was already presented by
Nagata in [8].

Example 5.7 Let A be a domain, but not a principal ideal domain. Let a,b € A
such that Aa + Ab is not a principal ideal. Let f(T') € A[T] with deg(f) > 2 and

let F =X 4+ H with
7 — bf(aXy 4+ bX3)
o —(J,f((],,)(l + bX2>

Since H € Hy(A) F is an automorphism of A[X;, X3]. However, it is shown in [§]
that F is not tame.
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