Cubic Similarity in Dimension Five

Engelbert Hubbers

Abstract

In this paper we shall give a complete classification of all Druzkowski maps
F =X+ (AX)?: k> — k° for which J((AX)?) is nilpotent. Furthermore we
use this classification to find all representatives of Meisters’ cubic similarity
relation in dimension five.

1 Introduction

Throughout this paper k denotes an algebraically closed field of characteristic zero.
The inspiration to start with research on this particular topic originated mostly
from Arno van den Essen and Gary Meisters.

1.1 Druzkowski’s paper

After having described cubic homogeneous maps and cubic-linear homogeneous auto-
morphisms, also known as Druzkowski forms, in dimension four [5], we now present
some results in this area in dimension five. Since [5] was written, two years have
passed. The main reason it took so long before the results of this paper were found,
was the complexity of the five dimensional case. It was only very recently we redis-
covered that the paper [2] by Druzkowski in conjunction with a theorem of [5], offers
a great reduction to the triangular cubic-linear case.

Definition 1.1 Let A be a linear matrix over k. Then the map F' = X + (AX)3 is

called cubic-linear or in Druzkowski form.

Theorem 1.2 Let r € N. If the Jacobian Conjecture holds for every polynomial
map F : k" — k" where F has the special form

T H](I],...,ZUT>
T

F— -73.2 i H?(Ila.'"a*

x, H.(zy,...,z,)
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with H; = 0 or deg(H;) = 3 (H; homogeneous for all i € {1,...,r}) then for all
n >r and all A € Mat,, (k) the Jacobian Conjecture holds for all Druzkowski forms

G=X+(AX)?
with rank(A) = r and X = (z1,...,z,).
Proof. See [5]. a

Because [5] cannot be accessed easily, most of the important theorems are reprinted

in [3].

Lemma 1.3 Let F' = X + (AX)? with A € Matss(k) and J((AX)?) is nilpotent.
Then there exists linear invertible T such that T7'FT = X + (BX)3 where the last

row of B is a null row.

Proof. It is well known that the hypothesis on A implies that r := rank(A) < 4.
Let AX = ( 4(X) ) for i = 1,...,5. Therefore there exists some T' € GLs(k) such
that AT is on column Echelon form. Now define G = T~ FT. Then

, )

Z
7$7“)

T + hl(;cl, .
G o X eriaryy < | T
Iy + h5(:v1,. . ,CU,-)

where h; is homogeneous of degree three. Since r <4 h;(z,...,z,) does not contain
z5. It follows that J,, ., (h1,..., hs) is nilpotent. But then by [5, Corollary 2.8] we
have that

dimg[hi (X)), ha(X), ha(X), ha(X)] < 4

but then also
dimk[f‘;’(TX),E‘;’(TX),@(TX),Ei(TX),Eg’(TX)] < 5.

And substituting X := T7'X gives dimy[6(X), £5(X), (X)), 63(X), £2(X)] < 5. But
this implies that there exists S € GLs(k) such that S™'FS is on Druzkowski form
and has the last row equal to zero. O

We now present an improvement of [2, Theorem 2.1] for the case n = 5.

Theorem 1.4 If a polynomial map F = X + (AX)? : k° — k° has det(JF) = 1
and rank(A) < 3 or corank(A) < 3, then there exists an invertible linear map L such
that Lo F o L™ = X + (BX)?, with B is upper triangular with null diagonal.

Proof. Though the original theorem in [2] only claims that F' is a tame automor-
phism, we can almost copy the proof in that paper. Simply because in three of the
four cases it is shown that LFL™" has the desired form (and hence F' tame).
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e rank(A) = 1. The proof is exactly the same as in [2].

e corank(A) = 1. From lemma 1.3 it follows that we are always in case (i) of
Druzkowski’s paper.

e corank(A) = 2. From lemma 1.3 it now follows that we are always in case (iii)
of Druzkowski’s paper.

e rank(A) = 2. This is the only part where Druzkowski doesn’t show that F' can
be transformed to the desired form. To prove this case we use the lemmata 1.5,

1.6 and 1.8.
O

Lemma 1.5 Assume rank(A) = 2. By lemma 1.3 we have that the last row is equal
to zero. Now if we write

ap dz as a4 das as
bi by by by by v b
A= ¢ ¢ ¢35 ¢4 c5 | = cs
dy dy ds dy ds ds
0 0 0 0 O 0000 O

and we consider the Druzkowski form X'+ (A'X")? (where X' = (x1,...,24)) we

may assume that A" equals

a1 a2 as Qg a1 a3 as a4
Aoai Azaz Agaz  Agay by by b3 by
Aza; Asaz Asasz  Asag or Aay + pby Aaz 4 pby  Aas + pbs  Aasg + pby
)\4&1 )\4&2 )\4&3 )\4&4 O O O O

and ds = 0.

Proof. This lemma is again based on Druzkowski’s paper. Naturally if rank(A) = 2
we have rank(A’) = 1 or rank(A’) = 2. The first case obviously coincides with the
first matrix. Now if rank(A’) = 2 we know that we can transform the matrix such
that the first two rows are independent. But since we deal with a 4 X 4 matrix,
rank(A’) = 2 means also corank(A’) = 2 and here we can use Druzkowski’s proof,
since J((A’X")?) is nilpotent if J((AX)?) is nilpotent, where he states that at least
one of the rows of this 4 X 4 matrix is parallel to another row. Say

(dl,...,d4):)\(a1,...,a4) (1)

Also (di,...,ds) = pi(ar,...,a5)+p2(bi, ..., bs) (since rank(A) = 2 and (ay,...,as),
(b1,...,bs) are independent). So in particular

(di,...,ds) = prlas,... as) + pa(by,. .., bs) (2)

Since (ai,...,as) and (by,...,bs) are independent it follows from (1) and (2) that
p1 = Aand py = 0. So (di,...,ds) = Mai,...,as5). Then making a change of

coordinates, we may assume that d; = --- = d5 = 0, which proves the lemma. a
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Lemma 1.6 Let A and A’ be as in lemma 1.5. Assume

aq Gy a3 Gy
- Aaay Agaz Agaz  Aqay
Asay Azly  AszGz  Asay

Asay Agay  Agaz  Agay

Then there exists a linear invertible map T € k[X] and B € GLs(k) such that
Tl o(X+ (AX)*)oT = X 4 (BX)? with B is upper triangular with null diagonal.

Proof. Note that if either Ay, A3 or A\; equals zero, we are in a special case of
lemma 1.8. Hence we may assume AA3As # 0. If we now look at A itself, we
see that we are done if A is triangularizable or if we have that two rows of A are
parallel to each other. After these observations we now start by showing we may

as
assume a5 = 0. Take T' = (27 — —x5, 29,23, 74,75). (Of course we may assume
ay

a; #0.) Then T7'FT is on Druzkowski form with the matrix:

a, as as ay 0
Agay  Agag Ajaz Ayay  —Mgas + bs
Asay  Asay Asaz Asay  —Asas + cs
Mgy Agay Agaz Agay  —Agas + ds
0 0 0 0 0

and by putting b, = —Xyas + bs, ¢t = —Asas + ¢5 and di = —Aga5 + d5 we get the
same structure as our original A, only with a5 = 0.

Now put Y7 = a121 + asx2 + aszs 4+ asxs. Using the nilpotency of the corresponding
Jacobian matrix we obtain the following polynomial in ¥; and x5 by looking at the
1 x 1 principal minors:'

M, = a1 Vi + Ay ay (A2 Y] + b5 !175)2 + Azas (A3Y1 +cs $5)2 + Agag (A Ys +ds $5)2

Collecting the coefficients of the monomials 22, Y}* and z5Y; we get three equations:?

{)\3 azcs® + Ay azbs® + Agasds® X5 as + N ay 4+ ar + A ay,
2)\22 a9 b5 + 2)\42 a4 d5 + 2)\'32 as C5}

We will show how this system can be solved completely. Tt is common knowledge
that Maple’s solve doesn’t always give all solutions. So we solve this system by hand.
Sometimes we have to make assumptions. This leads to a tree of solutions. During
this process, the set given directly after aa*x is the remaining set of equations after
substitution of aa* in the original system. At top level we start with solving the

second equation:?
aa = {CLl = —/\33 a3 — /\23 g — /\43 CL4}

Tt is obvious we don’t have to look at the n x n principal minors with n > 2 for they are always
zero because of the dependency relation.

2The ‘= 0’ part in the equations is omitted.

3The first two letters in the name aa* are completely arbitrary; the letters following these two
show to which branch a certain solution belongs.
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{)\3 ases’ + A azbs® + Agasds® 0,20  azbs + 2 X  asds + 2237 as Cs}

Unfortunately this is the last place where we have a unique solution. Already here
we have to make assumptions. Choose between a; = 0 and ay # 0. Let’s start with
ay = 0 and take a leftmost depth first strategy.*

aaa = {a2 =0,a; = —XA3° a3 — \,° a4}

{)\4 asds® + Xz azcs®, 0,207 agds + 2 5% as Cs}

Again two choices: a3 = 0 or az # 0.
aaaq 1= {Clg =0,a=0,a1 = - a4}
{Maads? 0,22 as ds }
Here we choose between a4 = 0 and a4 # 0.
aaaaa = {az = 0,a9 = 0,a4 = 0,a; = 0}

{0}

So aaaaa is a solution of the original system. Now back to aaaab. Here we have

aq # 0 and hence d5 = 0.
aaaab = {(1,3 =0,ds =0,a, =0,a; = —\s° a4}

{0}

And also aaaab is a solution. Backtracking gives us that in aaab a3 # 0 and hence
we can solve for cs.

aaab = {(1,2 =0,a1 = —X3" a3 — N\ ag, 05 = —

)\42 ady d5 }

/\32 as

{ Mg ay d52 ()\43 aq + )\33 CLB) 0}

)\33 as

Unfortunately we have to choose again, but this time we have three choices:
o a,=0,
e ay# 0and ds =0 and

e a, # 0 and ds # 0.

4Figure 1 on page 8 explains why this is a leftmost depth first strategy.
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Following these three branches we get:

aaaba = {05 =0,ay=0,a4 =0,a, = —\5° a3}

{0}
aaabb = {05 =0,ds =0,a2 =0,a; = —Xs32as — \° a4}

{0}
/\43 gy . d5 /\3

aaabc :={ a3 = — ———, 5 = ——
A4

At
10}

So also aaaba, aaabb and aaabe are solutions. Here at this moment the branch of
ay = 0 is completely solved, so now we start with a; # 0. Here we can solve for bs.

,CLQZO,Cll :0}

1 2)\42a4d5-|—2)\32(1,3c5
aab :=<by = — —

3 3 3
2 Ja1 = —A3"az — A" ay — A" ay
2 )\2 a9

Az ascs? A® 4 Ay agds® Mg
Ao
n Mt as?ds? + 2007 agds A5 ages + Mg as? cs’ 0}

)\23 a9

This equation may seem a bit complicated. However if we multiply by ay (and we
already know ay # 0) we get a linear equation in az. So what we have to do is check
whether the coefficient of a, in this linear equation equals zero. There are three
solutions for which this coefficient equals zero:

e cs=0and as =0
e ¢s=0,a4#0and ds =0 and

/\4(146[?

N 2
ABCS

o ¢s #0and a3 =

So these solutions provide the first three branches at this place. The fourth branch
is of course the solution assuming that the coefficient of ay # 0:

()\ia4d5 + )\3’03C5>2

)\%(/\4(146[% + )\3&30%)

® Uy =

Exploring the first two branches we directly find solutions of the complete system.

aaba = {a4 =0,¢5 =0,b5 =0,ay = X2 az — \? ag}

{0}
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aabb := {d5 = 0705 = 0,b5 = O,Cll = —/\33 az — /\23 ay — )\43 Cl4}
{0}

The third case is different:

aabc ;=< a3 = — A ayg ds” be — Aqagds (—Ascs + Az ds)
' ’ Nacs? T cs Aot ay ’
—As? Agagds® + N ayes? + /\43 Gy 652}
a) = — >
Cs

2

{)\42 as? ds’ (—Xies + A3 d5)2 0}

)\23 az Cs

At this point we have again three choices:
o ays =0,
e a4 # 0and ds = 0 and
e a4 # 0 and ds # 0.

aabca = {a4 =0,b5s =0,a; = -7 ay, a3 = O}

{0}

PV 2400 2
aabeb = {alz— 2 926 +2 4 44 ,d5:0,b5:0,a3:0}
Cs
{0}
A N> a
aabece = d5:4—c5,a3:—4—?765:0’a1:_,\23a2
A3 A3

{o}
So again we have found three solutions: aabea, aabeb and aabee. Now we can go back
to aabd.

2
%1 Xy (/\42 asds + X3° az Cs)

ay = —
2 2 ? ?
A" agds + A" azcs

aabd = {65 = VA
2

a)p =

%1
%] = )\4 G4 d52 + )\3 as C52

_ A agAgas (—Agcs + ds )\3)2}

{0}
So finally we have found all solutions of the original system: aaaaa, aaaab, aaaba,

aaabb, aaabe, aaba, aabb, aabca, aabeb, aabee and aabd. The corresponding tree of
solutions is shown in figure 1.
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aa
a7 y
aaa aab
a3=0 a3#0 c5=0,a4=0 3
! 2

aaaq aaab aaba aabb aabe aabd
a4:O a4:0 a4750,d5750 a4:0 a47$0,d5750
a47é0
470, | ds=0 a4 #0, | ds=0
aaaad aaaab aaaba aaabb aaabe aabca aabeb aabee
1:c5=0,a47#0,d5=0 ) _ Aga4dd ) Xgagd2
2.05#0,&3—— )\3(% 3.057é0,a3;é— )\3(‘_%

Figure 1: Solution tree of lemma 1.6.

Now if we substitute these solutions into our original A, together with a5 = 0, we
get eleven matrices. The first ten all have two rows which are parallel to each other
and hence we are done with these ten cases. The eleventh matrix is not of this type.
It is given by:

A3 ag Ay aq %2° %3 0
— ——  «a a
%1 NP%L N
B A2 As as Mg ag %2° _ %3” Yoae Mg %1 Xg
B := As? as My aq %2° As %3
_ %] — )\ 3%1 /\3(1,3 /\3 a4 Cy
2
DYDY 2?2 s %32
4 3 (;?1&4 % . )\43(7;?)1 /\4 as /\4 " d5
2" /0
0 0 0 0 0

%1 = )\'3 as C52 + )\4 a4 d52
%2 = —)\4 Cs + )\3 d5
%3 = )\42 ay d5 + )\32 as Cs

However if we define
2 2 3 3 3 2
T := <$17$27$37 (— 2X37az A" as 1 A" csds + Az az As” agxy A" cs

3 3 72 4 2 2 4 252
+ A7 az Agag 1 A" ds” + o AT az"es” F g Ay ay” ds

+ 2z /\42 aygds )\32 (3 Cs — A3 T3 )\23 Ay ay d52 - 032 T3 )\23 A3 052
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- Cl42 Ty /\23 /\4 d52 — Q4 Ty )\23 /\3 as 052) /(a4/\23 (/\4 ay d52 + /\3 as 052) ) s $5)
we get T~ o (X + (BX)S) oT =X+ (CX)3 where C'is given by

00 0 —ay 0
()\4 asds® 4+ X3 a3 652) Ag
M’ agds + N3” azcs
0 0 0 —Azay Cs
(—)\4 cs + ds )\3)2/3 051/3 031/3 d51/3

()\42 asds + X3° az CS) e
0 00 0 0

0 0 0 —)\2 a4

0 00 0 —

and in particular we see that (' is on triangular form. Before we can finish the proof
we must add a minor remark: this eleventh solution aabd excludes the cases aaba,
aabb and aabc hence the factor Agasdi + Azazci # 0. So the only way this 7' might
be undefined is if a4 = 0. But if we substitute a4 = 0 into the matrix B we get a
matrix where the second and the third row are parallel to each other, so the case
as = 0 is also no problem. Hence the proof is finally completed. O

Remark 1.7 At first the given T' may seem to appear out of nowhere, but in fact
it doesn’t. It is of the form:

T 0
T2 0
T3 — 0

Bi 1 B Bi3 Bis
—T4 Bia 1 + By T2 —I_ B17 3 + B174 Ty
Ts 0

which is a natural choice.

Lemma 1.8 Let A and A’ be as in lemma 1.5. Assume

@y 4P) as a4

A/ — bl 62 b3 b4
Aay + pby Aag + pby  Aas + pbs  Aas + pby

0 0 0 0

Then there exists a linear invertible map T € k[X]| and B € GLs(k) such that
T 'o(X 4+ (AX)?)oT = X + (BX)? with B is upper triangular with null diagonal.

Proof. Obviously, since the first two rows of A" are independent, also the first two
rows of A are independent. But then it follows that ¢s = Aas 4+ pbs. Furthermore if
ds # 0 we have that the fourth row is parallel to either the first or the second row. It
cannot be a non-trivial combination of these rows since ay, aq, as, aq and by, by, b, by
are independent. But in that case we can conjugate with a suitable transformation
and get the complete fourth row equal to zero. Hence we may assume ds = 0. We
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also assume both A # 0 and p # 0. Put Y} := a1z 4+ ayzxy + azzs + asz4 and
Yy = bixy + byry + baxs + byxs. Now if we look at the principal minors, we get the
following polynomials in Y7, Y; and z5. Here M; stands for the polynomial we get
by looking at the 1 x 1 principal minors and M for the 2 x 2 principal minors.

M; :==a; (Y1 +as $5)2 + by (Ys + bs $5)2 (3)
+ (Xay + pbs) (AYy 4 p Yo + (as A + bs ) w5)°

My := (a1 by —az by) (Y7 4 as $5)2 (Y2 + bs $5)2 (4)
+ (a1 pbs —azpby) (Yo +asa5)* (AY: + pYa + (a5 A+ bs pr) @5)°
+ (by Xaz — by Xay) (Y2+55$5)2 (AYi +pYs + (as A+ bs ) $5)2

Collecting the coefficients of the monomials in Y7, Y, and x5 gives us a set of 21
equations. We solve these equations by looking at the easy ones® and substitute
their solutions in the original system. We start with:

{2 (Vs + ubs) i N}

Since A # 0 and p # 0 we have

bh:{@:—i@}
7

Substituting this solution gives as new (very) easy equations

{a1, b2}

Adding this information to what we already know gives:

bb = {a,l =0,by =0,b3 = _E}
]

By repeating this we get:
{2 )\3 as CLQ}

Here we have two solutions, depending on the fact whether a3 = 0 or a3z # 0.

bba :={a3 =0,a1 = 0,by = 0,b3 = 0}

A
bbb = {a2:07a1 =0,b0 =0,b3 = —ﬂ}
i

Substituting the first set gives as easy equations:

{—azbi}

and again we have two solutions:

bbaa := {az = 0,a2 = 0,a; = 0,b, = 0,b3 =0}

5‘Basy ones’ should be read as: with the smallest number of variables.
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bbab = {a3:0,a1 :O,bl :0,b2 :0,b3 :0}

If we substitute these two solutions we see that in both cases the complete system
vanishes. So now we must go back to the branch given by the set bbb. Substituting

this one gives:
_ 3 b
{=nasti}
But here we use the fact that asz # 0 in this branch so we only get the solution by = 0:

\a:
bbb := {a2=0,a1 =0,b =0,by, =0,b3 = _ﬁ}
4

And if we substitute this solution into the original system, we see that the complete
system vanishes.

Hence we have found three solutions to the equations given by (3) and (4). Substi-
tuting these three solutions in our original A gives:

0 0 0 ay as
by 0 0 by bs
bbaa : by 0 0 Xag+pby asA+bsp
0 0 0 0 0
0 0 0 0 0
0 ay O a4 as
0 0 O by bs
bbab 0 Xaz 0 Xag+pby asA+bspu
0 0 O 0 0
0 0 O 0 0
0 0 as ay as
Aas
0 0 ——— by bs
bbb a
00 0 Aag+ by asA+bsu
0 0 0 0 0
0 0 0 0 0

The third matrix is already on triangular form. Swapping the first and the third row
and column brings the first matrix on triangular form and swapping the second and
third row and column brings the second matrix on triangular form. In particular we
have that in all cases A is triangularizable.

What if A = 0 or (exclusive or) p = 07 Without loss of generality we may assume
A=0.

In the same way as before we now derive:

M, = a (Yl + as $5>2 + by (Y2 + bs '7:5)2 (5)
+ pubs (Y2 —{—b5,u1;5)2
M2 = (al 1)2 — dy bl) (3/1 + ax .735)2 (3/2 + bS 3;5)2 (6)

+ (a1 pbs — az pby) (Y5 +GS$5>2 (,LLYQ-I-bs,LHUs)Q
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After collecting the coefficients of the monomials in Y7, Y, and x5 we get as easy
equations and their solutions:

{a1} — cc:={a; =0}
{bg + ,u3 bg} —  cc = {bg = —,u3 bs, a1 = 0}
{=bi (Was+ar)} — coai={ay=0,by = —p’ by, by =0}
—  cch = {al =0,b, = —,u3 bs,ay = —p° Clg}

Substituting these solutions gives:

0 as as ay as 0 —,u3 as  as ay as
0 —p?bs by by bs by —p’by by by bs
cca: | 0 —p*bs pby pby bsp cch | pby —ptbs pubs pby bsp
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

And here we see that in both cases the third row is p times the second row and due
to this parallelnes we can transform this case to the case where A = 0 and p = 0,
which we will describe now:

My = a (Yi+as $5)2 + by (Y + bs 155)2 (7)
My = (a1by —azby) (Y1 +as $5>2 (Yy + bs -7?5)2 (8)
These polynomials results in the following chain of easy equations and solutions.
{ai,b,} — dd:={a1 =0,b, =0}
{—ayb;} — dda:={a; =0,b, =0,b, =0}
— ddb :={a; = 0,b; = 0,a, = 0}

And this results in the matrices:

0 ay as a4 as 0 0 as a4 as
0 0 b3 by bs by 0 by by by
dda: 1 0 0 0 0 O ddb:1 0 0 0 O O
0 0 0 0 O 0 00 0 O
0 0 0 0 O 0 0 0 0 O

And indeed these are the matrices given by cca and ccb where pp = 0. Furthermore
one easily verifies that dda is already on triangular form and ddb is on triangular
form after swapping the first and the second row and column. And in particular the
case of lemma 1.8 is always triangularizable. d

1.2 Cubic similarity

With the reduction of theorem 1.4 it was possible to give a complete classification of
all cubic-linear automorphisms in dimension five. Now with this new classification
in dimension five we did an analogous thing as in [5]: use it to find representatives
with respect to Meisters’ cubic similarity equivalence relation. (See [6].)
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Definition 1.9 Let F = X + (AX)3 and G = X + (BX)3 be two polynomial
automorphisms on Druzkowski form. Then the matrices A, B € Mat,, ,(k) are called
cubic similar (A J B) if there exists a linear invertible polynomial map T with

T-'FT = G.

The idea behind this definition is that it is rather special that if T is a linear invertible
map and F' is a Druzkowski form one has that 7-' F'T is again on Druzkowski form.

Definition 1.9 is in terms of maps. For computational use however it is often
preferable to work in terms of matrices.

Lemma 1.10 Let F' = X + (AX)? and G = X + (BX)? be two polynomial maps

on Drutkowski form. Then A X B if and only if there exists T € GL, (k) with
(ATX)*> =T(BX)®.

Proof. The following statements are equivalent:
o AR B.

o There exists an invertible map T' with T~'FT = G.

There exists an invertible map 7' with T_I(TX + (ATX)S) =X+ (BX)S.
e There exists an invertible map 7" with X + T_I(ATX)S =X+ (BX)S.
e There exists an invertible map T with T~} AT X)? = (BX)".

There exists an invertible matrix 7" with T_I(ATX)3 = (BX)S.
e There exists an invertible matrix 7" with (AT X)? = T(BX)?.

This proves the lemma. O

1.3 Meisters’ matrices

In [8] Meisters gives a list of eighteen mutually inequivalent representatives in di-
mension five. His naming convention is based on the following notions. As stated
in [7], the rank of A and the nilpotence index of J((AX)?) are invariants.® So both
these numbers are mentioned in the name of the matrix: the first number is the
rank, the second number is the nilpotence index. Furthermore we have J’s, N’s and
P’s. The J means that the matrix is on Jordan normal form. The N means that
it is nilpotent but not on Jordan form and has no parameters in it. The P means
that there are some parameters left in the matrices which cannot be reduced to a
complex number. The small letters at the end of the name are simply added as an
index, since the N and P classes have more than one element with the same rank
and nilpotence index. Finally for some P matrices an integer is appended to show
the number of parameters in it.

6Note that the nilpotence index of A itself is not an invariant. In fact A doesn’t need to be
nilpotent in general.
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o There is one J-matrix of rank one:

|

OO O

o OO

—_

™
oo O
—

1 0 0 0

o OO

0 0 0 0O

0

o O O

|

e There are two J-matrices in rank two:

0O 1 0 0 O 0 0 0 0
0 00 0O 0 1 0 0
0 00 10 0 0 0 0 O
0 00 0O 0 0 0 0 O
0 00 0O 0 0 0 0 O
(
e In rank three we have two J-matrices

J(2,3)

J(2,2)

and one N-matrix:

—
cocoocoo
O - — OO
—\— o oo
cocoocoo
oo o oo
~N———

—~

o

=

0
0
0 0

1

10 0 0
0 0 0
0 0 01

0
0 00 00O
0 00 00O

oO— oo o
—o o oo
coo oo
S————

J(3,4)

and five N-matrices:

0 0

1

0

0

1

0 0

0 0 1 0
0 0 0

0

1

1
0 0 0 0O

0 0 0

0
0
1
1
0

0 0
0 1
00 0 1
0000
0 0 0
N(3,4c)

0
0
0

N ——

e In rank four we have one J-matrix,

10 0 0

i

0
1

1
00000

0 00
0 0 00

J(4,5)
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four N-matrices

01 1 0 0 01 0 0 O
0 01 0 O 0 0 1 1 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 O 0 0 0 0 O
N (4, 5a) N (4, 5b)
01 1 0 0O 01 0 1 0
0 01 1 0 0 01 0 0
0 00 1 0 0 0 0 1 0
0 00 0 1 0 0 0 0 1
0 0 0 0 O 0 0 0 0 O
N(4,5¢) N(4,5d)
and two P-matrices:
0 1 1 0 0 01 1 & 0
0 01 a O 0 01 a O
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 O
P(4,5¢) P(4,5¢2)

Remark 1.11 Note the following points:

e P(4,5¢) is not called P(4,5a), which should be natural if one uses the small
letter just as an index as with the N-matrices. However in this case the ¢
is used because P(4,5¢),=1 = N(4,5¢), where P(4,5¢)|,=1 means substitute
a=11in P(4,5¢c).

e Note also that P(4,5¢),=0 = N(4,5a). Hence we add the restriction that
a ¢ {0,1} for P(4,5¢).

o P(4,5¢)|uza, # P(4,5¢)uma, if a1 # as.

o P(4,5¢2)p=0 = P(4,5¢), hence we add the restriction b # 0 for P(4,5¢2). Note

that there are no restrictions on the a in P(4,5¢2).

Meisters already stated that these matrices were not a complete set of representatives.
But due to lack of time he hasn’t found more matrices. However, apart from this
incompleteness, there is also an incorrectness in this set of matrices. In fact we have:

Lemma 1.12 The matrices J(3,4) and N(3,4d) are cubic similar.
Proof. Let T := (x1, 73 — x4, T3, T4, 75). Then it is easy to see that
T=' o (X + (N(3,4d)X)*) o T = X + (J(3,4)X)?

which implies N(3,4d) N J(3,4). O
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2 Classification in dimension five

As we have seen in theorem 1.4, we may assume that the Druzkowski map is on
triangular form. So the most general Druzkowski map in dimension five is F' =

X + (AX)? where A is the matrix:

0 ay asz a4 as
0 0 by by bs
A=10 0 0 ¢4 ¢
0 0 0 0 ds
0 0 0 0 0

If one computes J((AX)?) one sees that this Jacobian matrix is always nilpotent,
independent of the choices of the ten parameters. In fact it is even strongly nilpotent.
However since our goal is a classification with respect to cubic similarity and the
nilpotence index of this Jacobian matrix is an invariant of this relation (see [7]), we
divide the general case into the five possible values for the nilpotence index.” For
each of these values n we compute the matrix (J((AX)?))” and assume it is equal to
the null matrix. This gives each time a set of equations which turns out to be easy
to solve.

In order to be sure one has found all solutions, one cannot trust the standard
‘solve’ mechanism of Maple. So the method used to solve these systems consists
of a lot of, very simple, hand-work. Just start with the small equations, like single
variables or products of a few variables, solve them and substitute the solutions in the
original system and look again for the simple, small equations. The best situation is
of course if such small equations have a unique solution. Unfortunately this doesn’t
happen very often. Most of the time one has to make assumptions that either a
variable equals zero or that it doesn’t, which gives you two branches to examine.
One branch is simplified because all terms this variable appears in, vanish. And
the other is simplified because one knows that one can safely divide through this
variable.® But since the systems are pretty small (the largest one consists of 123
equations) this branching is not a big problem. Using Maple on a computer with
over 128 Mb of internal memory, all systems were solved on one single day.

Before we give the results of this process, we remark that J((AX)?) has nilpotence
index one if and only if A equals the null matrix itself. So we only consider the cases
with nilpotence index > 2. Furthermore, we represent all solutions by their matrix
form and we explicitly show the assumptions we had to make to find each solution.

"The fact that we choose the nilpotence index of the corresponding Jacobian matrix as the
invariant, and for instance not the rank of the matrix A, is based on the observation that it is
easier to compute J((AX)?)" and see which conditions must be fulfilled in order to get n as the
nilpotence index than to choose a general matrix of a certain rank and compute J((AX)?)® and
solve the system.

8See the proof of lemma 1.6 and lemma 1.8 for examples of this process.
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2.1 Nilpotence index two

Assuming J((AX)?)? = 0 gives a system of 119 equations. We get the solution tree
of figure 2 on page 18. The boxed numbers coincide with the numbers of the matrices
below. Because we ordered the solutions afterwards by rank, the order of the boxed
numbers may seem a bit strange. Furthermore we swapped branch 1 and 2 in order
to get a nicer diagram, so the leftmost approach is visually a bit disturbed. However
the numbered assumptions still follow this strategy.

If we substitute these solutions we get:

0 0 0 0 as
00 0 0 bs
1 0 0 0 0 ¢ |, rankl.
00 0 0 ds
00 00 0
0 a9 a3z G4 dasg
0 0 0 0 0
2 0 0 0 0 0 |,rank 1, ay+#0.
0 0 0 0 0
0 0 0 0 0
0 0 0 G4 dpy
00 0 0 bs
3 000 0 ¢ |,rank 2, a4#0.
000 0 O
000 0 O
0 0 3 dg djy
00 0 0 b
4 00 0 0 0 |,rank2, a3#0.
00 0 0 0
00 0 0 0
3
ascC
0 0 as — ;:5,’5 as
0 0 0 0 bs
5. k2 a 0, d 0.
00 0 0 cs y ran y a3 7£ s U5 7£
0 0 0 0 ds
0 0 0 0 0
b3
0 a9 —a2—35 a4 das
Cs
0 0 0 0 b
6. 5 k 2 0 0.
0 0 0 0 cs , ran 7a27éac57é
0 0 0 0 0
0 0 0 0 0
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16

gol [ 2] 5

*
15 17 18 20
19

N

*

11
[6]

1:b3=0,c4=0 11:b3=0,c4 =0,b4=0,a2,c5#0,ds =0
2:b3=0,c47#0,d5=0 12:b3=0,c4 =0,b4=0,a2,d5 #0
3:b3#0,c4=0,a2=0 13:b3=0,c4 =0,b4 #0,a3=0,a2=0,d5=0
4:b3=0,c4=0,b4=0 14:b3=0,c4 =0,b4,a3#0,a2=0,d5=0,c5 =0
5:b3=0,c4=0,b4 #Z0,a2=0,d5 =0 15:b3=0,c4 #0,a2=0,a3=0,d5 =0
6:b3=0,c4=0,b4=0,a2=0,a3=0,a4=0 16:b3=0,c4,a2#0,a3=0,b5=0,b4=0,d5 =0

7:b3=0,c4=0,b4=0,a2=0,a3=0,a4 #0,d5 =0 17:b3=0,c4,a2,b4 #0,ds=0
8:b3=0,c4=0,b4=0,a2=0,a37#0,d5 =0,c5 =0 18:b3#£0,d5=0,c5 =0,c4=0,a2=0
9:b3=0,c4=0,b4=0,a2=0,a3,ds #0 19:b3,d5#0,a3=0,a4=0,c4=0,a2=0
10:b3=0,c4 =0,b4=0,a2#0,c5=0,b5 =0,ds =0  20:b3,d5,a37#0,c4=0,a2=0

Figure 2: Solution tree for nilpotence index two.
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—ayb: — azc:
0 a3 a3 ———> a5
z
0 0 O 0 bs
7. 00 0 0 o | rank 2, ay # 0, ds # 0.
0 0 O 0 ds
0 0 O 0 0
0 0 0 a4 as
0 0 0 by bs
8 0 00 0 ¢ |,rank2, by #0.
000 0 O
000 0 O
0 0 a3 a4 as
0 0 0 by bs
9 00 0 0 0 |,rank2,a3#0,bs#0.
00 0 0 O
00 0 0 O
0 0 0 a4 as
0 0 0 by bs
10. 0 0 0 ¢4 ¢ |,rank 2, ¢4 #0.
000 0 O
000 0 O
0 a9 0 a4 ax
0 0 0 0 O
11. 0 0 0 ¢ ¢5 |, rank 2, ay # 0, ¢4 # 0.
0 0 0 0 O
0 0 0 0 O
3
0 aq —a254 as as
Cy
bics
12.10 0 0 bs ot ,rank 2, ag £ 0, by #0, ¢4 # 0.
0 0 0 cys s
0 0 0 0 0
0 0 0 0 0
0 0 a3 a4 as
0 0 by by bs
13.]0 0 0 0 0 |,rank 2, b3#0.
00 0 0 O
00 0 0 O
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14.

15.

oo o O

O oo O

oo O ()

O oo O

bsc
b _2—25
0 0
0 0
0 0
asc:
as — dg
bscl
bs —%gﬁ
0 0
0 0
0 0

, rank 2, by # 0, d5 # 0.

as

,rank 2, a3 # 0, b3 # 0, ds # 0.
Cs

ds

2.2 Nilpotence index three

This case gives a system of 123 equations. The solution tree is a little bit simpler as
one can see in figure 3 on page 22. Ordered by rank the solutions are:

16.

17.

18.

19.

O OO OO OO OO O OO O OO

OO OO O

ay

0

0
0
0

O OO OO

as
bs by
0 0
0 0
0 0

O OO OO
a o
NN

ay

as

bs
0
0
0

, rank 2, as # 0, by # 0.

, rank 2, ds # 0.

, rank 2, az # 0, d5 # 0.

, rank 3.
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21.

23.

24.

25.

O OO oo

O OO oo

o O o O

o O OO OO

o OO o

O OO OO

O O OO
O OO oo

O OO oo
o O oo

agci

bi

o OO O

as

bs

OO OO O
)

0

o OO (e

O OO OO
o

o 2

%]
A

o O

o~
N

o OO

as

o O o O

G4

by

0

as
bs

Cs

as
bs

Cs

as
bs

Cs

0

, rank 3, az # 0, d5 # 0.

,rank 3, as £ 0, by # 0, ds # 0.

as

b405

—— |, rank 3, a3 # 0, by £ 0, ca # 0, d5 # 0.

Cq
Cs

, rank 3, b3 # 0.

, rank 3, az # 0, d5 # 0.

, rank 3, by # 0, ¢4 # 0.

2.3 Nilpotence index four

This case gives a system of 56 equations. We get a very simple solution tree (see
figure 4 on page 22). Ordered by rank the solutions are:
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[19] [17] \20 \18\

*
[22]

1:b3=0 5:b3=0,d5 #0,a2=0,a3=0 8:b3=0,d5,a3,b4 70 11:b3#£0,c4=0,a2=0
2:b3 #£0,c4=0 6:b3=0,d5,a2#0,b4=0,a3=0 9:b3=0,d5,a3,b4#0,c4=0  12:b3,a27#0,d5 =0,c5=0
3:b3,04#0,a2=0,d5 =0 7:b3=0,d5,a37#0,b4=0,c4=0 10:b3=0,d5,a3,bs4 ,c4 #0 13:b3,a2,ds #0
4:b3=0,d5=0

Figure 3: Solution tree for nilpotence index three.

AR

126 ] 127 ] 128 ] [29]
1:a7=0 3:az,b3#0,c4=0
2:&2#0,53:0 4:a2,bs,04¢07d5=0

Figure 4: Solution tree for nilpotence index four.
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0 0 a3 a4 as
0 0 by by bs
26 0 0 0 ¢4 ¢ |, rank 3.
00 0 0 ds
00 0 0 O
0 a; a3z a4 as
0 0 0 by bs
27. 0 0 0 ¢4 ¢ |,rank 3, ag #0.
0 0 0 0 ds
0 0 0 0 O
0 ay as a4 as
0 0 bs by bs
281 0 0 0O 0 e¢5 |,rank 3, ay#0, b3 #0.
0 0 0 0 ds
0 0 0 0 O
0 ag a3 a4 Ay
0 0 b3 by bs
29 0 0 0 ¢4 ¢ |,rank 3,a3#0,b3 #0, cqa #0.
0 0 0 0 O
0 0 0 0 O

2.4 Nilpotence index five

As was stated before, all triangular forms have a nilpotent Jacobian matrix, so there
is only one matrix with nilpotence index five for the corresponding Jacobian matrix,
namely the general map:

0 ay as a4 as
0 0 by by bs
30, | 0 0 0 ¢4 ¢ |,rank4,ay; #0,b3#0, ¢4 #0,ds #0.
00 0 0 ds
00 0 0 0

3 Power similarity

With the thirty matrices presented in section 2 we are now looking for representatives
of Meisters’ cubic similarity relation. We do this by grouping those matrices by their
rank. In particular we choose the rank invariant at this point, because this is easier
now that we already have the thirty matrices. It is easier to see what the effect on
the rank will be in case a variable is assumed to be zero than what the effect on the
nilpotence index of the corresponding map will be.

Ordered by rank we try to find transformations 7" such that T='o(X + (AX)?)oT

is as easy as possible. In other words, we try to reduce the number of parameters in
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the thirty matrices. As we have already seen with P(4, 5¢) and P(4, 5¢2) it sometimes
isn’t possible to reduce all parameters.

Because all transformations must be linear invertible maps we have to be careful
with these general transformations still containing the parameters. Essentially we
are looking for maps T' of the form:

T = Niwo(sy + pi(@035)) 9)

where o is an element of the permutation group S5 and p;(7,(;) is a linear function
in {z1,...,25} \ {Z,()}. Since these are linear maps, they are invertible as soon as
det(J(T;)) # 0. This can only be the case if A; # 0 for all ¢ and g, is not involved in
divisions by zero.

Our approach to find these transformations depends heavily on this observation.
We use the assumptions we already have as a result of the process to find those thirty
matrices (i.e. the ones listed in section 2), define a general map T as in (9), conjugate
with this 7', and solve for A; and p; in order to get a simple matrix. If we substitute
such a solution into T', we compute det(JT'), and see which extra assumptions we
need to be sure that this determinant is never zero. Furthermore we sometimes have
to add extra assumptions to avoid divisions by zero.

In fact this almost completely describes how we get to the list of separate cases
in section 3.2. In a way these cases can be read best from bottom to top: the last
case for each map is the first transformation we find. We see what extra conditions
we need, and climb to the first case of a map by assuming that these extra conditions
are not fulfilled. The only reason why we put them in the opposite order is that the
first case of a map contains more ‘a=0" assumptions and is hence shorter.

3.1 New matrices

As stated before, Meisters’ set of matrices is not complete. During the process
described before we found the following new matrices, which are not cubic similar
pairwise and also not cubic similar to Meisters’” matrices.

e Rank two: two N-matrices:

00010 0001 0
000 1 1 000 1 1
0000 1 000 1 -1
0000 O 0000 1
0000 O 0000 0
N(2,2a) N(2,3b)

The last matrix deserves some special attention. The —1 seems a bit strange:
why isn’t it P(2,3a) with a parameter a on the place of the —1. The answer is
in fact pretty simple. As long as a € {0,1}, P(2,3a) 2 N(2,3b). Furthermore
P(2,3a)j4=0 < P(2,3a))4=1 2 N(2,3a). So independent of the value of the
parameter a, P(2,3a) can be reduced to a matrix with no parameters left in
it. So there’s no need to add a P-matrix.
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e Rank three: this is the most difficult case.” We found one new representative

for which the nilpotence index of the corresponding Jacobian matrix equals

three:

—
co—-oco
c—ococo
e
— o o 0O
NG
—cococoX
cocoocoo
/|‘\

With nilpotence index four we have found six N-matrices:

O — O — O

i

—

o

0

0 01
0 01
0 00

i

o

o

i

o

o

0

1

oo

oo —
S O s
co X

o O

\J
o— o —o
———oox
o
COo O OO
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—oc oo o
coocoo
(
—
o - o - o
<F
-0 O OO
ach
—ocococo
cooc oo
(\
—
—oc o o
—_
—o ooz
<
— = oo o4
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coococo &
cooc oo
(\

And six P-matrices with one parameter:

0

1

0 0

0

a

0 0

1

0 0 0

1

0 0 0

.~
o so —o

—_.—— O O

)

<+

cCoo oo

&

oo ookl
coocoo
(
—
o — o o

O~ = OO~
<
SO O OO

&
—oc o oo
cocooc oo
(\
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Soo - o

— O — O O
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<
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o oo g

NG
coococol
cocooc oo
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And also two P-matrices with two parameters

—
oo O — O
<
TS OO oo o
o
P
— O O O O N,
[ e e R an e
/|\
.~
oo o — O
—_
S — — O O N
<
— — O O O .
o
=
OO OO OoONQ
[ R R an e
/|\

°Tt is not a surprise that this is the difficult case. Tt is quite usual that a large or a small rank

doesn’t give as much freedom as a rank somewhere in the middle.
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Rank four is relatively easy: we found one N-matrix and one P-matrix with
one variable:

01 0 10 01 0 1 0
001 10 0 01 a O
0 0 0 10 0 0 0 10
00 0 01 00 0 01
000 00O 000 00O
N(4,5€) P(4,5e)

Together with Meisters” matrices brings this a total of 36 representatives for the

cubic similarity relation.

The names of the P-matrices are based on the observations that:

P(3,4a)j4=1 ~ N(3,4a) and P(3,4a),— = N(3,4b).
P(3,4¢)ju=1 ~ N(3,4¢) and P(3,4¢)ju=0 = N(3,4b).
P(3,49) =1 = N(3,4g) and P(3,49)ja—0 ~ N(3,4a).
P(3,4h) =1 = N(3,4h) and P(3,4h)ju=0 ~ N(3,4b).
P(3,40)j4=1 = N(3,4i) and P(3,43),—0 ~ N(3,4a).
P(3,47)ja=1 = N(3,45) and P(3,4j)ja=0 ~ N(3,4a).

P(3,4a2),—0 = P(3,4c) and P(3,4a2)—0 = P(3,4a), hence P(3,4c2) would

have been a correct name also.

P(3,452)1,=0 = P(3,45). Furthermore we have P(3,452)j=04=—1 N N(3,3a)
and P(3,472) =0 ,az0a2-1 ~ N(3,4a).

P(4,5€)j=1 = N(4,5¢) and P(4,5€),20 = N(4,5d).

So we add for P(3,4a), P(3,4¢), P(3,4¢g), P(3,4h), P(3,41), P(3,45) and P(4,5¢)
the restriction that a ¢ {0,1}. For P(3,4a2) and P(3,452) we add a,b # 0.

3.2

Description of the cases

All maps are grouped by their rank. The numbers coincide with the numbers in
front of the solutions in section 2. For each map F we see whether we can find a
suitable transformation map 7" such that T='F'T is one of the representatives listed
before. Most of the time this means that we have to make some assumptions on the

parameters in F'. At the beginning of section 3 we explained how we have come to
this distinction between cases.

The proof that these assumptions lead to those representatives is given in section 4

by showing the concrete transformations.
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3.3

Rank one

In section 2 we have seen that there are two maps of rank one: the cases 1 and 2.

1.

3.4

Obviously at least one of the four variables should be unequal to zero. Because
the first four columns are equal to zero, we can permute the first four rows
without any consequences with respect to the cubic similarity relation. Hence
we may assume as # 0 and then this map is cubic similar to J(1,2).

We are in a case where we already know that ay # 0. This gives that this map
is cubic similar to J(1,2).

Rank two

Here we have sixteen matrices to examine.

3.

10.

We know a4 # 0. Note that either bs or ¢5 # 0, otherwise the rank is one. We
may assume ¢; # 0. Then this map is cubic similar to J(2,2).

We know a3 # 0. Because of the rank we must have b5 # 0. Now also this map
is cubic similar to J(2,2).

We know a3 # 0 and ds # 0. Cubic similar to J(2,2).

Here we have a; # 0 and ¢5 # 0. Cubic similar to J(2,2).

In this case we have ay # 0 and ds # 0. Again cubic similar to J(2,2).
We know by # 0.

(a) Assume a4 = 0. We may assume c¢5 # 0, because if ¢; = 0 we must have
as # 0 and we can safely permute the first and third rows, since the first
and third columns are completely zero. Then cubic similar to J(2,2).

(b) Assume a4 # 0 and ¢5 = 0, hence asby — asbs # 0. Then cubic similar to

J(2,2).

(¢) Assume ag # 0 and ¢5 # 0 and asby — agbs = 0. Then cubic similar to
J(2,2).

(d) Assume ag # 0 and ¢5 # 0 and asby — agbs # 0. Then cubic similar to
N(2,2a).

We have a3 # 0 and by # 0. Hence cubic similar to J(2,2). After permutation
of the first two rows this is basically the same map as map 13b.

We have ¢4 # 0. If either by = 0 or a4 = 0, we can permute the rows such that
¢4 # 0 appears on the fourth place in the second row, and a zero (either a4 or
bs) appears on the fourth place in the third row. But then we have the same
map as map 8. Hence we may assume that ay # 0, by # 0 and ¢4 # 0.
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Furthermore we also have that either as, bs or ¢5 # 0. But since we can also
swap the fourth and the fifth column, we know that if asbses = 0 we can
permute this map such that we get a zero on the fourth place in the third row
and a non-zero element on the fourth place in the second row. Or in other
words, we can reduce this case to map 8. So we may even assume that none of
the appearing variables is equal to zero.

(a) Assuming bsas — asbs = 0 and cqa5 — ascs = 0 gives a rank one case, so
let’s assume byas — asbs = 0 and cqas5 — ases # 0. Then cubic similar to
J(2,2).

(b) Assume byas — asbs # 0 and cqa5 — ascs = 0. Then cubic similar to J(2,2).

(c¢) Assume byas — asbs # 0, caas — agcs # 0 and bycs — cabs = 0. Then cubic
similar to J(2,2).

(d) Finally assume byas — agbs # 0, cyas — agcs # 0 and bycs — ¢abs # 0. Then
cubic similar to N(2,2a).

11. We have a; # 0 and ¢4 # 0. Basically the same as map 9: permute second and
third rows and columns and substitute a; = a3, ¢4 = by and ¢5 = bs. Hence
also cubic similar to J(2,2), just like map 9.

12. We have ay # 0, by # 0 and ¢4 # 0. Cubic similar to J(2,2).

13. Here we know b3 # 0.

(a) Assume a3 = 0 and ay = 0. Then a5 # 0. Cubic similar to J(2,2).

(b) Assume a3 = 0 and a4 # 0. Cubic similar to J(2,2).

(c) Assume a3 # 0, asby — byay # 0 and azbs — bsas = 0. Cubic similar to
J(2,2).

(d) Assume az # 0, asby — bsay = 0 and azbs — bsas # 0. Cubic similar to
J(2,2).

(e) Assuming az # 0, asby — bsaqy = 0 and azbs — bsas = 0 gives a rank one
case, hence the only case left is a3 # 0, azby —bsay # 0 and azbs —bsas # 0.
Cubic similar to J(2,2).

14. We have b3 # 0 and ds # 0. Cubic similar to J(2,2).

15. We already know a3 # 0, by # 0 and ds # 0.

(a) Assume azbs — byas = 0. Cubic similar to J(2,2).

(b) Assume asbs — bsas # 0. Cubic similar to N(2,2a).

16. We know a3 # 0 and by # 0. So this map is cubic similar to J(2, 3).

17. We know ds # 0. Of course at least one of a4, bs or ¢4 # 0. Since the first

three columns are equal to zero, we can change the order of the first three rows
without disturbing the structure of the matrix. Hence we may assume that

614#0.
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(1)
()

Assume by = 0 and ¢4 = 0. Then cubic similar to .J(2, 3).

Assume by = 0, ¢4 # 0 and ascs — c4as = 0. Then cubic similar to J(2, 3).
Assume by = 0, ¢q # 0 and agcs—cqas # 0. Then cubic similar to N(2, 3a).
Assume by # 0, ¢4 = 0 and bsas — asbs = 0. Then cubic similar to J(2, 3).
Assume by # 0, ¢y = 0 and bgas—a4bs # 0. Then cubic similar to N(2, 3a).
Assume by # 0, ¢4 # 0, byas — asbs = 0 and ascs — cqa5 = 0. Then cubic
similar to J(2, 3).

Assume by # 0, ¢4 # 0, byas — asbs # 0 and agcs — cuas = 0. Then cubic
similar to N(2,3a).

Assume by # 0, ¢4 # 0, byas — asbs = 0 and ascs — cqas5 # 0. Then cubic
similar to N(2,3a).

Assume by # 0, ¢4 # 0, byas —asbs # 0, ascs —cqas # 0 and byes — c4bs = 0.
Then cubic similar to N(2,3a).

Assume by # 0, cq # 0, byas — asbs # 0, agcs — cqas # 0 and byes —cqbs # 0.
Then cubic similar to N(2,3b).

18. Here we have a3 # 0 and d5 # 0.

(a)
(b)

Assume a3b? + azci 4+ aqd: = 0. Cubic similar to J(2,2).
Assume a2b3 + azci + aqdi # 0. Cubic similar to J(2,3).

3.5 Rank three

We have eleven matrices to examine.

19. Obviously we must have that either ay or a3 # 0. Since swapping columns two
and three also swaps rows two and three and we have no restrictions on by, bs

and cq4, c5, we may assume that ay # 0. Furthermore it is clear that in order to
have a rank three case we must have bscs — cabs # 0.

Assume by = 0 and a3 = 0. Hence ¢4 # 0 and b5 # 0. Cubic similar to
J(3,3).

Assume by = 0 and a3z # 0. Hence ¢4 # 0 and b5 # 0. Cubic similar to
N(3,30b).

Assume by # 0, ¢4 = 0 and a3 = 0. Hence ¢5 # 0. Cubic similar to J(3, 3).

Assume by # 0, ¢4 = 0 and a3 # 0. Hence ¢5 # 0. Cubic similar to
N(3,3b).

) Assume by # 0, ¢4 # 0 and a3 = 0. Cubic similar to J(3,3).

Assume by # 0, ¢4 # 0, a3 # 0 and a4 = 0. Cubic similar to N(3,3b).
Assume by # 0, ¢4 # 0, a3z # 0, ay # 0 and asbs — bsas = 0 and hence

ascqs — csag # 0 (otherwise contradiction with bscs — cabs # 0). Cubic

similar to N(3,3b).
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(h) Assume by # 0, ¢4 # 0, a3 # 0, as # 0 and asby — bsas # 0. Cubic similar
to N(3,3b).

20. We already know ay # 0 and ds # 0. However if ¢4 = 0 we have a rank two
case. Hence we may assume ¢4 # 0.
(a) Assume aqdi + azbi = 0. Cubic similar to J(3,3).
(b) Assume asd; + a2b? # 0 and b5 = 0, hence ay # 0. Cubic similar to
N(3,3a).
(c) Assume aud; + azbi # 0 and bs # 0, hence aq # 0. Cubic similar to
N(3,3a).
21. We know a3 # 0, by # 0 and ds # 0.

(a) Assume agc‘g + a4d‘g = 0. Then cubic similar to J(3, 3).
(b) Assume ascg + asd; # 0. Then cubic similar to N (3, 3a).

22. We know a3 # 0, by # 0, ¢4 # 0 and ds # 0.

(a) Assume ay = 0. Then cubic similar to J(3,3).
(b) Assume a4 # 0. Then cubic similar to N(3,3a).

23. We have bs # 0. Furthermore ¢5 # 0 or ds # 0, and a3 # 0 or a4 # 0. It is also
obvious that asbs — byas # 0.

(a) Assume a4 = 0, hence by # 0 and a3z # 0. Now if ¢5 # 0, we can conjugate
with (zq, 21, 24, x3,25) and we are back in case 21. So we may assume

¢s = 0 and hence ds # 0. Cubic similar to J(3,3).

(b) Assume a4 # 0 and a3 = 0. If we now assume d5 # 0 then we can
conjugate with (4, 21, 23, 24, x5) and we are again back in case 21. So we
may assume ds = 0, and hence ¢5 # 0. Cubic similar to J(3,3).

(c) Assuming a4 # 0, a3 # 0, azca+asds = 0, bycs +bsd: = 0 and azbs—bzas #
0 gives a rank two map, so we may assume a4 # 0, az # 0, agc‘;’—l—a4dg’ =0,
bsci 4 byd2 # 0 and asbs — bzas = 0. Hence ¢5 # 0 and ds # 0. Cubic
similar to .J(3, 3).

(d) Assumeay # 0, a3z # 0, azc2+aqdi =0, byc2+byd: # 0 and azbs—bzas # 0,
hence ¢5 # 0 and d5 # 0. Cubic similar to J(3,3).

(e) Assume aq # 0, az # 0, ascs 4+ asdz # 0 and bsc2 + badi = 0, hence ds # 0.
Cubic similar to J(3,3).

(f) Assumeay # 0, az # 0, azci+asds # 0, bycz+bads # 0 and azbs —bzas = 0.
Cubic similar to N(3,3a).

(g) Assume aq # 0, a3 # 0, ascd + asd? # 0, bscg + bad: # 0, asbs — bsas # 0
and ds = 0, hence ¢5 # 0. Cubic similar to N(3,3a).
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(h)

Assume ag # 0, a3 # 0, asci + aqd2 # 0, bzc + bydi # 0, azbs — bsas # 0
and ds # 0. Cubic similar to N(3,3a).

24. Here we have a; # 0 and ds # 0. But it is obvious that b3 = 0 gives a rank two
case, so we also have bs # 0.

(a)
(b)

Assume azci 4 aqdi = 0. Then cubic similar to J(3, 3).
Assume asci 4 aqdi # 0. Then cubic similar to N(3,3b).

25. We have b3 # 0 and ¢4 # 0.

(a)

Assume a3z = 0. If we assume ascqy — csaq4 = 0 we get a rank two case,
SO we may assume ascy — csaq # 0. Assume furthermore a4 = 0, hence

as # 0. Cubic similar to J(3,3).
Assume a3 = 0, ascqy — csaq # 0 and ay # 0. Cubic similar to J(3,3).
Assume a3 # 0 and agbs — bsay = 0. If in addition aszbs — bzas = 0 then we

have a rank two case, so we may assume azbs — bsas # 0. Cubic similar

to N(3,3a).
Assume a3 7£ 0 and (J,3b4 — b3a4 7£ 0. If C5<a3b4 — b3a4> — c4(a3b5 — b3a5> =0

we have a rank two case, so we may assume cs(asby — bzaq) — cq(aszbs —

bsas) # 0. Cubic similar to N(3,3a).

26. If ds = 0 we are back in case 25, hence we may assume ds # 0. Furthermore if
¢y = 0 and b3 # 0 we are back in case 23. And if both ¢4 = 0 and b3 = 0, we
must have as # 0 and by # 0 to remain in a rank three case. Since we already
knew that ds # 0 we are back in case 21. Hence we may assume ¢4 # 0.
Furthermore, the case a3 # 0 and b3 = 0 is equivalent with b3 # 0 and a3 =0

since we can swap the first two rows.

(a)
(b)
()

(d)
(e)

Assume a3 = 0, b3 # 0, ay = 0 and by = 0. Cubic similar to J(3,4).
Assume a3 = 0, by # 0, ay = 0 and by # 0. Cubic similar to N(3,4a).

Assume a3 =0, b3 # 0, ay # 0, by = 0 and ascqy — csaq = 0. Cubic similar
to J(3,4).

Assume a3z = 0, b3 # 0, ag # 0, by = 0 and ascq — csaq # 0. Cubic similar
to N(3,4f).

Assume az = 0, bs # 0, as # 0 and by # 0. Cubic similar to P(3,4g).

However, for specific choices we have

e N(3,4a) if as = dats.
C4
14C 14ds /b

e N(3,4¢g) if a5 = a6 + da i’b Ly (Since asbyds # 0 these two cases
Ca Cq 3

really exclude each other.)
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(f) Assume az # 0, b3 # 0, by = 0, ay = 0 and azbs — bsas = 0. Cubic similar
to .J(3,4).

(g) Assume az # 0, bs £ 0, by = 0, ay = 0 and azbs — bsas # 0. Cubic similar
to N(3,4e).

(h) Assume as # 0, by # 0, by = 0 and a4 # 0. Cubic similar to P(3,4h). For

some specific choices we get a different matrix:

bg(a5C4 —-c5a4)

(3Cy

o N(3,4b) if by =

bs(a504 - 05G4)

b d 3 4
o N(3,4h) if by = _ - 5\/;4. (Note that the last frac-

a3Cq RVACE

tion is never zero, so these two cases really exclude each other.)

(i) Assume a3 # 0, by # 0 and by # 0. Cubic similar to P(3,4a2). For some

specific choices we get a different matrix:

3bs and bs = %bS.

3 as

e N(3,4a) if ay =

. 03(5405 - 0455)

b3C4

——a364d5:3b%b4-+-a5b§c4-+-agbgb4c5

e N(3,4b) if ay = 0 and a5 =

e N(3,4¢) ifay =0 and by = —

agb3C4

C5(a3b4'—'bga4>-— Q3b5C4

e P(3,4a) if a5 = — and a4 ¢ {0, “2:4}.

53 Cq

—a3bads I b3b, + asbicy, + asbsbyc
o P(3,4¢) if ag = 0 and by # — 4OV T 7T T TG

aSbSC4

27. Now we have ay # 0. If ds = 0 we are in case 19, so d5s # 0. Furthermore if
by = 0 and ¢4 = 0, we have a rank two case. So at least one of them should be
unequal to zero. Note also that if by = 0 and a3 = 0 we are back in case 20. So
if by = 0 we may assume ag # 0.

(a) Assume by = 0 and a2b2 + a4di = 0, hence ¢4 # 0 and a3 # 0. Then cubic
similar to J(3,4).

(b) Assume ¢4 = 0 and azcs + aqd? = 0, hence by # 0. Then cubic similar to
J(3,4).

(c) Assume by = 0 and ayb: 4 asds # 0, hence ¢4 # 0 and a3 # 0. Then cubic
similar to N(3,4a).

(d) Assume ¢y = 0 and azci + aqds # 0, hence by # 0. Then cubic similar to
N(3,4a).

(e) Assume by # 0, cqa # 0, ay = 0, bycs — c4bs = 0 and azbi + asci = 0. Then
cubic similar to .J(3,3).
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(f) Assumeby # 0, ¢y # 0, ay = 0, byes — cabs = 0, azbi +azc; # 0 and a3 = 0.
Then cubic similar to J(3,4).

(g) Assumeby # 0, ¢4 # 0, ay = 0, bycs — cabs = 0, azbi +azci # 0 and a3 # 0.
Then cubic similar to .J(3,4).

(h) Assume by # 0, ¢4 # 0, ay = 0 and byes — cabs # 0. Then cubic similar to
P(3,41).
e N(3,4f) if a3 = 0.
agbi

T
Cy

o N(3,4i) if ag = —

(i) Assume by # 0, ¢4 # 0 and a4 # 0. Then cubic similar to P(3,452).

. bsc ayb3

e N(3,3a) 1fc5:%and a3 = — 224.
b 203

e N(3,4a) if ¢5 = 2564 and az # _a234'
b4 C4

bec
o P(3,4j) if c5 # 2—64 and a3z = 0.
4

b ds $/a
o N(3,45) if o5 = 264 _ %04

— and as = 0.

b by

28. We have ay # 0 and b3 # 0. Note that if ¢ = 0 and d5 = 0, we are back in
case 16.
(a) Assume ds =0 and a3 = 0. Hence ¢5 # 0. Cubic similar to J(3,4).
(b) Assume ds = 0 and a3 # 0. Hence ¢5 # 0. Cubic similar to N(3,4a).

(c) Assume ds # 0, azc2 + asd? = 0 and byci 4+ bydi = 0. Cubic similar to
J(3,3).

(d) Assume ds # 0, azc2 + asd? = 0 and bycd + badi # 0. Cubic similar to
J(3,4).

(e) Assume ds # 0, azc2 + asd? # 0 and bycd + bydi = 0. Cubic similar to
N(3,3b).

(f) Assume ds # 0, azci + aqdi # 0 and bsci + badi # 0. Cubic similar to
N(3,4a).

29. We have a; # 0, b3 # 0 and ¢4 # 0.

(a) Assume az = 0. Cubic similar to J(3,4).
(b) Assume a3 # 0. Cubic similar to N(3,4a).
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3.6 Rank four

In the rank four case we have only one matrix to examine.
30. In this case we know ag # 0, by # 0, ¢4 # 0 and d5 # 0.

(a) Assume a3z =0, ay = 0 and by = 0. Cubic similar to J(4,5).
(b) Assume a3 =0, ag = 0 and by # 0. Cubic similar to N (4, 5b).
(¢) Assume az = 0 and a4 # 0. Cubic similar to P(4, 5e¢).

o N(4,5d) if by = 0.

o N(4,5¢) if by = 7‘a4b362.
Vay
(d) Assume ag # 0. Cubic similar to P(4, 5¢2).
e N(4,5a) if ay = 0 and by = 0.
o N(4,5¢) if ay = 0 and by = bscids.
o P(4,5¢) if ay = 0 and by & {0, bycidS}.

Remark 3.1 In the description given above it sometimes happens that we start
with a matrix A where J((AX)?) has a certain nilpotence index, but after applying
some assumptions it has a smaller nilpotence index. (See for instance the cases 18a,
27e, 28c and 28e.) In fact we could have deleted these cases from the list because
it must be equivalent to one of the other cases done before, because this nilpotence
index is also an invariant of the cubic similarity relation, but because this way it is
easier to verify that we really have a complete description of all cases, we left them
in.

4 Transformations

In this section we present the actual transformations used in the cases of section 3.
Since this is the only ‘proof’” we can give, it must be clear that there are no typing
errors in this list. Therefore we used the Maple to WTEX feature from version 5.3.
Unfortunately this has as disadvantage that the transformation mappings are not
always in their nicest form. Furthermore, Maple uses %n in the expressions as an
abbreviation. The actual value of %n is given directly below the map.

| | T | T7'FT |
Rank one
b 53 x d®x, x
5 ./1 ,5 ./1 /5 ./1 ./2
1 T, 5+ ———, T3+ ——5—, T4 + T T J(1,2)
(473 (473 asg asg
(P as Ts a4 Ty asz T3
2 (xla_ - - - ,$3,$4,$5> '](172)
a9 a9 a9 a9
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| T [ TFT
Rank two
3 <CL43 L1, Ts + b53 3, 053 X3, Ty — a2$4,$4> J(E, 2)
4
4 (a33$1,b53 T3, Ty — 44 5 — s x4,lL'5,ZL'4> -](2,2)
a3 a3
b <(l33 w1, 05 + bs” @, 5 + ¢5° 13 — M; ds’ 3, $4> J(2,2)
3
6 (%3 Ty, To + 553 T3 — Mt B x47053 $37$57$4) J(272)
as T . aZa T 2 .
7 <6123$1,$2— S 555$3— ° 4aT5+Cs $3,d5 503’334) J(272)
a9 a9
. . bs x
Sa (ilfs + as® 23, b4° 11, ¢5% 3,75 — 1_647 $4> J(2,2)
4
bs aq — by as)’ bs ay — by as)’
sh (— (bs 24 b;‘,%> o Beaazbias) T 7(2,2)
4 Q4
a5 Ty T2 b5 )
- y Ly — Ty
a4 b4
bsxy T
8¢ (*I'S + CL43 T3, b43 T3, L1, T4 — 1)5 T27 2) J(27 2)
4 C5  Cs
bsas —byas)’ x; (bsay —byas)’ x
8d (( 205 —bads) o1 (bs s Za5> "2 ey, N(2,2a)
b4 G4
(b5a4 - b4a5) Ty _ a5 ISx
b4d4 ay ¥
b —b b
9 (a33 $1,b43$37$2 _ 4Ty + ( 5 dg 4615) $57x4 . 5_5357:1;5) J(2,2)
as by as bs
(—csas + cs a4)3 3 bs” (—caas + cs a4)3 3 )
10a (— 3 , Ts — P ) J(2,2)
4 -4 U5
(—csas + cs 664)3 1 C5 T4 aq $2)
- 3 7"132 - 7"1"4 -
ay Cq ay
3 3 b aq4 T2 as b4$4
10b 3 33y, by g, D04 T1 5 G4TD : J(2,2
(a4 Ts + a4° T1,04" T3 a,53 %1 %1 ( )
b4a4;c2 b4 a4 T4
%1 %1
%1 = b5 a4 — b4 ay
(—caas + cs 614)3 z1 bs® s as T4
10 - J(2,2
‘ ( cs” Tt T s, 3, B2 —cqas + ¢saq’ (2,2)
_ Cyq X9 + agq Ty )
Cs —C4 05+ C5 0y
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| T [ TFT |
10d (%13 (—64 as + ¢s a4)33:c1 — (7013351727 _ (—04 as + 25 414)3 5537 N(Z,Ea)
a53 (—b4 Cy +65 (,'4) as as
%1 C5 Ty +$ _ Cyq %1 T4 _ ag $5>
as (—bycs + bsca) > as (—=bycs + bscy) as
%] = b5 a4 — b4 ax
11 (023 T1,Tg — fata + (Zeads £ s aq) x5,043 T3, T4 — o %’3:5) J(2,2)
as Cq G2 Cq
12 ( (123 L1, + b43 T3 — 414 + (_C4 s + CS a4) J:S, J(2,2>
a9 Cq 49
3 C5 Ty
Cq T3,T4 — —,T5
C4
by x bs
13a <a53 $17633 T3, T4 — ‘IZ)TEJ - 1—”7:1:571.2) J(272)
3 3
b b —b
13b <a43 Ihbss L3, Lq — T2 - ( o 4a5) $57I2 - %,Is) J(2a2>
b, a4 b3 a4
T by az asbsry as Ts
13c as® xq, b3 x4, — + - , J(2,2
( U T g %1 as (2.2)
CL363£L‘4 Clgbgl'z
- + y Ls
%1 %1
%1 := —byas + a4 bs
29 bs a as bs x a4 as bs x
13d a5 0y, by g, 2208 Qooa T4 Ml G808 J(2,2
( 371,03 T3 71 71 s 5 71 ( )
CL3b3.’L'4
%1
%1 = b5 a3 — ds bg
9 65 as ay b3 Ty (b5 aq — b4 a5) Ty
13e as® 1, b3’ s, — — , T5, J(2,2
(00 a0 O T
_ az bz xy n azbs iy n (—bsas + as bs) x5
%1 %1 %1
%] = b5 (3 — dsy b3
3 3 3 bs 9 3
14 T5 + as” xy,b3” x5, 14 + 57 1y — b—’d5 T1, T J(2,2)
3
15a x5 + az® w1, bs° 1, w0 + 5P a5 — & J647(17/53-753,-774 J(2,2)
as
3h3% esd bsasx
15b as®xy, by Ty, x _ s P 5 T ekl N(2,2a
(b = S e (2,20
Cls3 6133 533 T3 az bz xs
%1 7 %l
%1 = b5 a3 — dg b'g
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T

[ TFT |

16

17a

17b

17¢

17d

17e

17f

17g

17h

3 9 3
(02 b3 Ilab:a To— -

asxs (—bgasz+ asbs) xq  (bsas —asbs) x5

(%) b3 az ba a2
b4 Ty bs Ts5
- 5, .'L'4, Iy

bs b

as T

379 3 3 3 543
<(l4 ds” xq, x4 + bs” 29,25 + ¢5° 9, d5” 19 — ,$3>

G4

as T
379 3 9 3 523
as”ds” k1,04 + b5 w9, 05 +ds” cq $1,d5 To — $3>

(%14\/%2,@1 %11)53\/%2.7(;3Jr %14 \/%212

T3 —

Zs, ;

)
044 d54 a4 Cq d54 ay Cq ds (14

%] V %2']13 a5 \/ %2 T4 V %2 T4>

Cq Gy d5 dl; (4] d5

%1 .= —C4 a5 + Cy dg

%2 :=

%1
cadsay
<(143 ds® 1,04 4 b ds” w1, w5 + 5® 29, d5° 7y — aix3’$3>
%1 \/%”01 %1 \/%152 %105 \/%JU% '
( bitdstay, T obydstast bydst ay
%1\/%103 Gs\/%ih \/%254)

s,

b4 (47 d5 d5 ay4 ’ dS

%] = b5 a4 — b4(l5

%2

%01
b4d56l4
as? ds® vy, 24+ b4° d5° w0, s + d5° s wy, dsP g — az$3,$3>
(%14\/%$1 %14\/%332 %14043\/%331 '
bitdstay, T bydstast T bt dst agt
%1\/%333 05\/%364 \/%334)

Is,

b4 aq d5 B d5 ay ’ dS

%1 = b5 aq — b4(15

%2

%1

b4d5a4
(%1 V%22, %162 VA2 2, %1* V%2 x4

Ts, ;

9
C44 d54 a4 C‘44 (]54 04 Cq (]5 (14

%] V %2']13 a5 \/ %2 T4 V %2 T4>

Cq Gy d5 dl; (4] d5

%1 = —C4 a5 + Cy dg

%2 :=

%01

Cq ds Gy

J(2,3)

N(2,3a)

7(2,3)

N(2,3a)

N(2,3a)
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| T [ TFT |
. %1 VI22, %1 V%2 7y %1 ¢4 V%2
17 T , 3 Ts, — , N(2,3a)
by" ds” ay by ds™ as* by" ds” as®
%1 V%2 3 _ as V92xs VH2x4
b4 a4 d5 d5 a4 ’ d5
%1 = 65 aq — b4 ax
h2i=g ?1
4 U5 G4
17 %14 V %QII %14 V %2.’E2 V %2C4 (—b4C5+b5 C4) %12 %S.Tl N(‘) 3b)
) b44 d54 G4 ’ b4 d54 CL44 b44 d54 (l43 =
+ l V %2 Cy (—64 as + Cy CL4) %12 %3 T2
2 b43 d54 a44 )
B l V%2¢4 (—caas + csaq) (—bgcs + bs cq) %1% 3
2 d54a43 b43
. V %2 (—C4 as + Cy CL4) (—b4 Cy + b5 C4) %1 %3 T4
d54 CL43 b43 ’
%1 V %27’4 . as '/ %2715 V %2735
b4 a4 d5 d5 a4 ’ d5
%1 = 65 aq — b4 ax
%1
2=
& by ds ay
%3 = b5C4CL4—|—CL4b4C5 —204a564
18a <a33 z1, 75 + bs® 3,20 + ¢5° 13 — fofs B $57d53 $37$4> J(2,2)
as as
181’) ((CI,Q b53 +C53 (13+(I4 d53)3 Jll,b53 T +.7J4 — b53 s, J(2,3>
3 3
P g — a5 T3 Gy 14 (a2 bs” + a4 ds > Ts5 Py — de o, 7'3)
as as as
Rank three
19a (a23659$1,b53$2+ (_64a5+65 a4) e - a4x5, J(3,3>
a9 Cyq a9
e’ Ty, — SR + 25,23 )
Ca
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| T T-TFT
b 3 1/3
(zcrostcsan) v ()
19b CZ23 b59 Ty, b53 9 + €495 C5 da) T4 — s 5 N(g, Sb)
a9 Cyq @3 Cy
1/3
Ts
a9 b53 $37_ Cy Ty + a3 4
as Cy Cy
—bsay + byas) x
19¢ (023 b49 1517543 Ty — Mt _ ( 204t 405) TS,CSS Tq, J(373>
a9 a9 b4
T3 — bs 7 T
3 b4 s h
(653 ag)l ?
3 “4 M (Cbsas+b
19d | | es® ag?ay, 22272 @ _ (bsas+ bya) 51 N(3,3b)
a9 a9 b4 a9 b4
cs? as 1/3
3 a9 . 65 Ty
C5~ X3, b4 b4 s L5
G23 (b4 cs — bs C4)9 £ (b4 cs — bs 64)3 () (—64 as + ¢s G4) Z3 .
19e 5 , 3 - — | J(3,3)
“4 Cyq Qg Cy
(—b5 as + by GS) Ts (b4 cs — bs 64)3 T4 C5T3 bs x5 et
a9 b4 ’ b43 ’ Cq b4 ’ ? >
a az 1" v by x
19f a23%19 T %13 i) + as T4 . ° as 643 45 a9 %13 I3 N(?) 3[))
' C49 ’ C43 a9 %] a9 a3 C43 ’ ’
3\ 1/3 3\ 1/3
2 %1° 2 %01
bs az % Ts a6 by s
Cs XLy as C43 + as 643
— —x
c4 %1 o %1
%1 = b4 Cy — b5 Cy
19 a® b’ %1% 21 b2 %1% 1y %las %1% azbs® 23 s a4 N(3.3b
v8 a4? 49 T aBe ages | azaded ey (3,30)
l4” Cq 14" Cq 12 C4 13 (4" C4 °4
%13612643 1/3 %13a2 b43 1/3
“ as a43 C43 s i as a43 C43 44 s
—x
%1 o %1




40 Transformations
| T [ TTFT
%1 := —cqas + c5aq
/3
Pay)
30719 3 (—csas + cs aq) <% a;,) T4
19h as %1 T %1 a3 Ty . a9 b4 . N(S 3b)
' b49 ’ ao b43 as %1 ’
%13 as 1/3
C — = T
(—bs as + by as) x5 %1% 25 > ay by’ 4 B
ao b4 ’ b43 ’ %1
%13 as 1/3
b5 Ty ag b43 cata +
, — T
b %1 °
%1 = b4 Cy — b5 C4
3 (CLQ Cs b53 + as d53 04) xs3
20a CL23 .’E4,b5 XTo — 3 +.’L'5, J(3,3>
a- d5( Cy
dsg s® T, d53 T — %7 T3 )
Cq
(az ds cqas — ax'® as® cqas + ay'l® a1 Cs) T4
20b ay° T, + N(3,3a)
[2%) d5 Cq Gy
(—04 as + ¢s a4) Zs C43 Cl23 Tyl d2 3 a21/3 C5 T4
(1122/3 d5 Cq (1,41/3 ’ (J,43 ’ G4 Cq (1,41/3 d5
(1,21/3 Cs Iy (1,21/3 Ty (J,QI/S Iy
Cy CL41/3 d5 ’ CL41/3 d5 (l41/3 d5
20c ((CLQ b53 —|—a4 d53)3 172,[)53 T3 + N(3,3CL)
(Cs ay — Cq4 a5+ agbs® cq + ayds” 04) T4
a9 Cyq
(—caas + csas) x5 ds® e® 2y, ds® g — C5 T4 C5T5 Lzt ;c;,)
Cyq U9 Cyq Cy
bs cs2 as + byas ds®) z
21a a33$4,b43d59x1,c53$2— ( P i S0 ) i —|—$57 -](3,3)
as d53 b4
b
d53 Ty — 5—$37 T3 )
bs
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| T [ TFT |
21b ((C53 a3 + a4 d53>3 T + Ts, b43 d59 g, N(S, 3(1)

5 (b4 as — bsay + asby d53) Ty (—bsay + byas) x5
Cy T3 — — ,
by as by as
by + byds?) x4 B
d53:L'3+( i - 5) i 5$5,$4+$5
by by
22a <a33 Lq, b43 d59 -731,(159 C43 Ty — & + s, d53 L2 — © x37$3> J(37 3)
as Cq
asds’ ¢y — cqas + csaq) T
22b (CL43 d59 .’112,643 d59 $1,d59 C‘43 I + ( e e i 4) : - N(3,3a)
as3 Cy
(0465 - C5Cl4) IS,C[sSlﬂg R _ 05$5’$4 T s
as Cyq Cq Cq
37 3
as b4 Tg 3 as T3 b4$5
2 —— by 1y, — '
3a‘ ( 633 s U4 Tl? 3d5 bg bl J(37 3)
. _(65(13—@563).1'3_T ZC_3
../2 a3 b4 d5 ./5’ dS
23b (143 -734,533 C59 3”1,653 ry + (_bS a1+ bs a5) S b x;,’ J(Sag)
a4 b3 b3
B ts +$5a$3)
Qg
3 3 3)3
as (b3C5 +b4ds) T4 5 2\ 3
23¢ (— d59 b33 s (bg Cg + b4 d5 ) L1, J(?), 3)
b
s’ 2y — s 4—;65,d53 To + Ts5, T3
a3 b3
23d 2 @l T2 e 2 J(3,3)
ds” b3 %17 ds*’ ds” %1
(b5 ¢sPaz + by as d53> T3 byxs as® %23 T + as %2 xs
— , —T Ty, —a——
ds® %1 by T %1%ds T dS %l
%1 = b5 a3 — dxy bg
%2 = b3 C53 + b4 d53
bs® %1° 24 (as by cs® + ay ds® bs) T3
2 1° 2y, = By — .
36 (% xl) d59 a33 765 {) 63 %.l + ](3, 3)
G4 Ts d53 (bs a3 — ds 53) T3
2273 —
P 50Ty + b %1 T5,T3
%1 = c5® az + aqs ds®




42 Transformations

| | T | T7'FT |

23f (<c53 as + aq d53)3 T, <b3 cs® + by d53>3 Ty, C5° T3 — N(3,3a)

3 3
(a4a3b305 + aq a3 by ds —}—a5b4a3—a5a4b3) T4

(b4 a3 — dy b3) as

as (53 c5® + by d53) Ty

as Ts

7d53$3+ , T4+ X5
as byas — a4 bs
b —b bs c5°
23g 659 CL33 .fl,bgg C59 .’EQ,C53 xry — ( 495 SCL;—E @475 G5 ) T4 — N(3,3a)
0
(=bs as + bsas) x5 (—bsas+ asbs + 5 az bs) x4 B
%1 , ’ ) %1
bt —tsblzs

%1 = b4a3 — (l4b3

ds? %2 [ds? %2
%2* bS ;%1 Ty (bs cs® + by d53)3 %2 65 (;%1 Ty
23h 8 2 3 20 N(3,3a)

bytds %1 byt ds %1* ’
207«
%2 cs3 wxa
V by %1 N
bs ds %1
[ds? %2
(agb4b5+a4bgb5—2a563b4) b3%1 $4_
bs ds %3
ds® %2 ) ds* %2
(—bs as + by as) b %1 x5 ds” %2 b 001 Z3
ds %3 ’ bs %1
ds? %2 5 ds? %2 ds? %2 ds? %2
—x —_— —_— —_—
b %l TV % V% Tt Vb %1
d5 %3 d5 %3 ’

%1 = C53 a3 + a4 d53
%2 = b5 (3 — dsy bS
%3 = b4 (3 — a4 b3

a3 T3 b5 (3 — dsy b3 Iy
24a CL23 b39 $1,b33 Ty — ( )

H J(S’ 3)

az 53 az

b x
3 545 3
Ty + 50 x4 — ——, ds” T4, T5

bs
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I T T-'FT
%1 1/3
as — Ty
s e (o)
24} %13301’% $3+(5¢13 as 3) Tg P ,c53:1:2— N(S,Sb)
as as bs ag bs
%1 1/3
bs x4 i (E) o d-3
Ty, T
bS bS 9 5 27 4
%1 = c5® az + aq ds’
b bycs — b
2ba (CLSS iL‘47533 049 $1a043 Ty — 4 s ( 1 564) IS, '](373)
b3 b3 Cq
Cy Ty )
T3 — ,$5
Cq
(—csas + cs 614)3 x4 by’ (—csas + cs 614)9 1
9 _ _
25h ( o , v , J(3,3)
B (—csas + cs 04)3 Ty (=bs as + byas) x5
(143 G4 b3
<b4 Cg — b5 C4) .f57 g T3 _ Csg .f57 s + 135)
bs c4 Gy Cq
25¢ <a33 ca? x4, bs® ed? a1 ,Ca° T+ N(3, 3a)
(—csagazbsca® + asagby — agbsaz + az® ¢4” bs) x4 B
) (bs a3 — as bs) as
(4 Ty (613 bs cs 042 — a5 bs + bs Cls) Ty bs as 043 Ty
Ty, — ——————————
as b5 a3 — dx bg b5 a3 — ds bg
. %2' VI3 ws K2 VT3 K2VI3rs  VT3baws
25d - - - N(3,3a)
Cyq” a3 b3 Cq4 a3 bg as b3 Cq Cy b3
V%3 (=bsag + byas) x5 V%3 x4 B
%1 ’ Cq
V %3 <b5 (3 — dgy bS) Ty V %3 %2 Is
%01 ’ %1
%1 := —bsascs + by ascy + by cs az — bs cqaz
%2 = b4 a3 — dg b3
2
%3 = — %
c4 a3 bs
b
26& ($5 + a53 $3,C49 d527b;33 $1,C43 d59 To — sb—m,d53 I3 — o $4,$4> J(3,4)
3 Cq
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Transformations

T

[ TTFT |

26b

26¢

26d

26e

261

26g

(L53 \/%11’3 . b44 V %1.L1 b4 \Y %1.1,2 -|-
bs c4? d53 o 532 c4° ’ 532 c4?
1/3
<b4 Cs — b5 C4> (b,%z Cy \/%1) Tq 1/%1$3
632 C42 d5 ’ b3 C42

Cs (532 Cq \/%) e Ty (532 Cq \/W) e $4)

bs c4? d ’ bs ca ds
%1 = bg b4 Cyq
379, L5
<a4 ds” vy + 633 o d539’

as T4

3

ds” x5 — - Ta
a4

.9 271 3 3 9
cq” ds®" by T1,C4 ds” o —

bS L4

by

(%14\/%2352 bs® %13 V%2 2, %14\/%2953_

y ’
(142 d55 C45 CL414 d514 C45 (l45 d55 C42

bs V%2zs N1 VR2zs s VH2x5 VA2 25

(4] d52 Cyq b37 CL42 d52 C42 a4 d52 C42 ’ (4] d52 Cyq
%1 := —cqas + c5aq

%2 = —dagy d5 Cyq %1
\/ %1 b4 CL43 X9 b44 \% %1 KATEY, %1 b4 Z3 +
b32 C45 ’ 632 C45 ’ 632 042
1/3
(632 Cq \/%1) (b4 cs — bs 04) Ts /%1 a4
632 C42 d5 ’ b3 C42 a

Cs (532 Cq \/%)]/3 Ts (532 C4 \/W)]/3 xS)

3
bs c4? ds bs c4 ds
%1 = bg b4 Cq
3.9 727 9 7271 3 €5
(ag Cq d5 L1,Cq d5 bg 1 —

Y
CL33 C412 d539

as T Cy T
3 9 54 3 5 L4
Cq d5 To — ,d5 T3 — s L4
as Cy

)

6 6 > 3 6
ba Cl33 C43 d5 bs a36 C43 d5

(bs as — as bs) %1'/° r3  bs %1'/# Ts5 %1%/# X4

(_ (b5 a3 — ds bg)B %13/8 T (b5 a3z — dy b3)3 %13/8 9

3

- 3
632 CL32 Cq d52 632 a3 Cy d52 d53 b33 (1,33 C43

Cy %11/8$5 %11/8 Ty
b3 as 642 d527 b3 as Cy d52

%01 := (=bs as + as bs) by" as” cy® ds”

N(3,4a)

J(3,4)

N(3,4f)

P(3,49)

J(3,4)

N(3,4e)
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| | T | T7'FT |

2,5 5.5 ’ 2,2 P(3’4h>
az® Cyq’ as” Cyq' a3” Cq

‘)6h (\/%1 CL44 T 6144 b33 \Y %1L2 V %1@4 T3 _

1/3
b5 <a32c4 %1) Ty 1/%1:54

2

a3 Cy b3 d5 ’ a3 Cyq

(4132 Cq \/%) e C5 T (%2 Cq \/%) e 1'5)

Y

as cq? d5 a3 Cyq ds

%1 :=aqas¢q4

as? by V1L 21 VBl byt w0 V%1 by 25 n
b35 C45 ’ b32 645 ’ b32 C42
1/3
(632 Cq V %1) (b4 Cs — bS 64) Ty \/WQM
bs? ¢, ds " by cy?
) 1/3 ) 1/3
Cy (bg CqV %1) Ts (bg CqV %1) xS)

bs c4? d5 ’ b3 Cq ds

261

P(3,4a2)

%] = b3 b4 Cq

a9 s bs® + asds>cq) x
27& (a33c49d527331,653x3— ( 2h " 4) ! — -](3,4)

3
a9 d5 Cq

a2 T C5 T
e 379 245 3 5 L4
Ts, a0 ds” xo + yds” xs — ;g
a3 Cq
3719 727 379 T4 azcs bs a5 Tg
27b a9 b4 d5 .fl,b4 d5 9 — — - -](3,4)

a9 b4 d53 a9

a3 sy 3 Iy 3 b5 Ty
——— 5 - =0:C5 I3 + —= d5 Ty — —, T4
9 9 9
24l412 1539 23 E412 1539 E4

VB2 %1 2, bs® %1 %3
as? cs® dstt ds® c4? (%1 a32)2/3
(—cqas + cs5 aq) \/%%32/3 Ty
Cls3 ca® azay (%1 a32)2/3
as® ¢, ds x5 %1% %3/ To
(%1 032)2/3 %167 d55 s’ az (%1 032)2/3 !
D) 6134 048 d521 Ts \/%303 %31/3 Cs5 Ty %31/3 Ta
(%1 a,32)2/3 %167 az c4? ds® C azcads? T ases d52)
%1 := as bs® + as ds®
%2 := %1 ascq ds
%3 1= as? ca ds V%2

27c N(3,4a)




46 Transformations

| T [ TFT |
V%2 %1* 12 %33 2
27d M2 _ %2 H3 e 75— N(3,4a)
az?ds " bs” " ds° by? ay (%1 ay?)

(—bs ady + b4 CLS) \/%%32/3 Ty _
ds® by’ as? (%1 a22)2/3
as 6124 b48 d521 Ts 053 %1 %31/3 T3
(%1 a52)°" %1% b,2 ds® (%1 ap?)*"?
ar® b ds? x5 V%2 x %3'/? bs x4 %3/ T4
(%1 az2)? %1% asds®b® s ds®bs®  ap ds” by
%1 := ¢5° as + aq ds”
%2 := %1 ayds by
%3 = as® ds bs V%2

3 b
27e as® -7047543 dsg T+ $5,d59 ¢’y + w#sg T2 — 5—:63’-7”3 J(373>
a- b4 b4
27t ( Cl23 b49 d527$17 543 d59 Ty — o w47043 d59 Ty — Ts, d53 T3 — J(374)
G2
C5 T4 )
y La
C4
27 3 3\ 379 5 T4 379
27g (dl; ((12 b4 + aszcy ) $1,b4 d5 €Tg — a — T, C4q d5 T9 + J(3,4>
2
a2$5’d53 y— b5$4’x4
as b4
P91 V%2 1 V%2
27h e BV AUV AR P(3,4i)
by ds ” ca'3 by ds” cq4?
as %2$5 %14 V %Q.Tg _ %1 V %2$4 . V %265 s V %2 Ty
d5 a9 ’ b44 d54 C4 ’ b4 Cq d5 d5 Cy ’ d5
%1 = b4 Cy — b5 Cy
%1
2:=—
% b4 d5 Cyq
4 1 V7l
27i aa VL a0 vl os P(3,452)
by’ ay? bs” ay?
2 1/3
<b4 az %]> (—caas 4+ csaq) 5 au /Rl e x5 VAT 24
CLQ2 b4 d5 Cy ’ b45 (122 ’ b42 a9
1/3 1/3
(b4a22 \/%1) / Cy Ty <b4022 \/%1) / Iy
a9 b4 Cq d5 ’ a9 b4 d5

%1 = a4 Gy b4
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47

T

[ TFT ]

28a

28b

28¢

28e

37.9 . 27 3.9 (as +aq) T4  aszs
az b3 Cs Il,bg Cs" Lo — B + . ,C5° T3 —
2 2

bs + by) s b
(5+ 4) 1”4_}_ 4555’:64_1.5’:54
b3 b3
(\/ %1 as* 1 V%1 as xs N

CL22 635 ’ CL22 632
(a?’ bs %2 + by c5 a ag by — by? ay cs az — a5 %2'° 63) T4
az* 532 Cs

(bgaz — asbs) x5 V%1 x5 (bS %2/ 4 by 5 az bg) T4 N by x5

’ 9
ay bs® ay by es b4

%21/3 $4)

’ [23) b3 Cy

ag bs
g — Ty

%1 := asaybs
%2 = CLQ2 b'g \Y %1

80,90 b3 azws  (bsas — asbs) x5
a3 03 1,03 T —

3
,$3—}-C5 Ty —

as bz ay
b5 Ty d 3
b y 5 T4,T5

3

(bs az — ds bB) T4 a3 I

(CLQB %1° 1, %1° x5 + _ 3 14 —

12 ; 37
s b3 a24%1 d5
bs 4 by x5 3, b3 x5 N
13> %5 43T T 1304
bs  a® %1 as® %1

%1 = b'g C53 + b4 d53

319 3
(602 bs” x1,b3" v9 —

as T4

+

az

1/3
(bs as — as bs) (GQ %12) 5 aqybs® es® xg 4
6/12 %1 ’ %1 /$4
1/3 1/3
bs (OLQ %12) Ts a9 b3° ds® 24 bs (OLQ %12) Ts
%1 ’ %1 ’ %1
%1 := c5az + as ds®

7(3,4)

N(3,4a)

J(3,3)

J(3,4)

N(3,3b)
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Transformations

T

[ TTFT |

29a

29b

%2 VT2 Tl az v1 %2 VT2 %ol as .
Cl22 %15 ’ a22 %12
1/3
(%1@22 V %2 %1 az) / (bs a3 — as b3> Ty
bg (122%1
V %2 %1 as Cl53 (b4 a3 — Uy bg) Iy 053 vV %2 %1 ag T3
b3 Cl22 %12 ’ %12 a9
1/3
b5 (%1 CL22 \Y4 %2 %1@2) / T4
+
b3 %1&2
vV %2 %1 a9 b4 d53 Iy d53 \ %2 %] ag T3
bg %12 as ’ %12 as
d53 \V/ %2 %] a9 Ty (%1 a22 \Y %2 %1 CL2> Xy
%12 a9 ’ %1 ag
%1 := bs cs5® + by ds”
%2 = C53 a3 + G4 d53

1/3

as T —C405 + C5a4) T

371 9 27 3 9 444 ( 4 U5 5 4) 5 3

ay” by ¢y 1, b37 " g — + ;€4” T3 —
az Cq A2

b4 Ty <b4 Cy — b5 C4> Iy Cy Ty
b b T
3 3 C4 Cq

)
CL22 635 CL22 b32 CL22 b32 Cq

1/3
(\/%1@34 1 V%1 asxy N (G22 bz\/%l) (byas — aqgbs) x4 B

(—=bsagcs + byascy + bycsaz — bs cqaz) x5

a2 Cq 53

1/3
V%1 x3 N (bycs — bscq) x5 by (6022 bs v %1> T4

b

M)
a9 632 b'g Cyq a9 b32 Cq

1/3
— 7~f5

(D) ba Cq Cq

%1 = a3 a9 b3

N(3,4a)

J(3,4)

N(3,4a)

Rank four

30a

J(4,5)
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| | T | T7'FT |
30b b413 a23 %1 1 V %1644 ) _ as %21/3 Ty \/%164 I3 N(4 5[))

635 C414 ’ b32 C45 b3 Cq U9 d5 ’ bg2 C42 ’
%21/3 (b4 Cy — b5 C4) Ty vV %] Ty Cy %21/3 Ty %21/3 Iy
b32 C42 d5 ’ b'g C42 bg C42 d5 ’ bg Cq d5
%1 = bg b4 C4q
%2 = b32 Cq V %1
3 3/4 1/4
as” %17 2y as %1 2y
30 P(4,5
‘ ( az? by T an?ca? by (4, 5¢)
%2'/? (—caas + csaq) x5 %1%/* 4 n
as? c4? by ds ’ as’ c4® 533
%2'/3 (bscs — bscq) xs %1/ T4 Cs %2'/? Ts Gt/ Ts
a9 C42 bg2 d5 ’ a9 (142 b3 a9 642 b3 d5 ’ a9 Cy4 b3 d5
%] = b32 CI,23 C43 \ ag dg b3 Cyq
%2 = CL22 Cq b32 %11/4
V%1 az*z1 V%1 az x,
30d ( e ey R P(4,5¢2)
%21/9 (—53 ay s+ bz ascy + bycsaz — bscy as) rs V%I 3 n
6122 b32 642 d5 ’ a9 632
1/3
%21/9 (b4 Cy — b5 C4> Ty (CL22 b3 \% %1) T4
a9 b32 C42 d5 ’ a9 bg Cy
Cs %21/9 Iy %21/9 Iy
a9 b'g C42 d5 ’ a9 bg Cy d5
%1 :=as a, by
%2 = CLQS 637 V %1 646
Table 1: Actual transformations
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