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Abstract

Let H : k
n → k

n be a polynomial map. It is shown that the Jacobian matrix JH

is strongly nilpotent (definition 1.1) if and only if JH is linearly triangularizable if
and only if the polynomial map F = X+H is linearly triangularizable. Furthermore
it is shown that for such maps F sF is linearizable for almost all s ∈ k (except a
finite number of roots of unity).

Introduction

In [1] Bass, Connell and Wright and in [7] Yagzhev showed that it suffices to prove
the Jacobian Conjecture for polynomial maps F : C

n → C
n of the form F = X+H,

where H = (H1, . . . , Hn) is a cubic homogeneous polynomial map i.e. each Hi is
either zero or homogeneous of degree three. Since det(JF ) ∈ C

∗ is equivalent to
JH is nilpotent (cf [1, Lemma 4.1]) it follows that the Jacobian Conjecture is
equivalent to: if F = X + H with JH nilpotent, then F is invertible. Hence it is
clear that understanding nilpotent Jacobian matrices is crucial for the study of the
Jacobian Conjecture.

In [6], in an attempt to understand quadratic homogeneous polynomial maps,
Meisters and Olech introduced the strongly nilpotent Jacobian matrices: a Jaco-
bian matrix JH is strongly nilpotent if JH(x1) . . . JH(xn) = 0 for all vectors
x1, . . . , xn ∈ C

n. They showed in [6] that for quadratic homogeneous polynomial
maps JH is strongly nilpotent if and only if JH is nilpotent, if n ≤ 4. However for
n ≥ 5 there are counterexamples (cf [4] and [6]).

On the other hand the obvious question: is the Jacobian Conjecture true for
arbitrary polynomial maps F = X + H with JH is strongly nilpotent, remained
open.

In this paper we give an affirmative answer to this question. In fact we obtain
a much stronger result; in theorem 1.6 we show that the Jacobian matrix JH is
strongly nilpotent if and only if JH is linearly triangularizable if and only if the
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polynomial map F = X +H is linearly triangularizable. Furthermore we show that
for such maps F the map sF is linearizable for almost all s ∈ C (except a finite
number of roots of unity). So for such F the linearization conjecture of Meisters is
true (it turned out to be false in general as was shown in [3]).

1. Definitions and formulation of the first main result

Throughout this paper k denotes an arbitrary field and k[X] := k[X1, . . . , Xn]
denotes the polynomial ring in n variables over k. Let H = (H1, . . . , Hn) : kn → kn

be a polynomial map i.e. Hi ∈ k[X] for all i. By JH or JH(X) we denote its
Jacobian matrix. So JH(X) ∈ Mn(k[X]).

Now let Y(1) = (Y(1)1, . . . , Y(1)n), . . . , Y(n) = (Y(n)1, . . . , Y(n)n) be n sets of n new
variables. So for each i JH(Y(i)) belongs to the ring of n× n matrices with entries
in the n2 variable polynomial ring k[Y(i)j ; 1 ≤ i, j ≤ n].

Definition 1.1. The Jacobian matrix JH is called strongly nilpotent if and only
if the matrix JH(Y(1)) . . . JH(Y(n)) is the zero matrix.

Example 1.2. If JH is upper triangular with zeros on the main diagonal, then
one readily verifies that JH is strongly nilpotent. In fact the main result of this
paper (theorem 1.6 below) asserts that a matrix JH is strongly nilpotent if and
only if it is uppertriangular with zeros on the main diagonal after a suitable linear
change of coordinates!

Remark 1.3. One easily verifies that if k is an infinite field, then definition 1.1
is equivalent to JH(x1) . . . JH(xn) = 0 for all x1, . . . , xn ∈ kn. So for k = R and
H homogeneous of degree two we obtain the strong nilpotence property introduced
by Meisters and Olech in [6]. See also [4].

To formulate the first main result of this paper we need one more definition.

Definition 1.4. i) Let F = X + H be a polynomial map. We say that F is in
(upper) triangular form if Hi ∈ k[Xi+1, . . . , Xn] for all 1 ≤ i ≤ n − 1 and
Hn ∈ k.

ii) We say that F is linearly triangularizable if there exists T ∈ GLn(k) such that
T−1FT is in upper triangular form.

One easily verifies the following lemma:

Lemma 1.5. Let F = X +H be a polynomial map. Then F is in upper triangular
form if and only if JH is upper triangular with zeros on the main diagonal.

Now we are ready to formulate the first main result of this paper:
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Theorem 1.6. Let H = (H1, . . . , Hn) : kn → kn be a polynomial map. Then there
is equivalence between

i) JH is strongly nilpotent.
ii) There exists T ∈ GLn(k) such that J(T−1HT ) is upper triangular with zeros

on the main diagonal.
iii) F := X + H is linearly triangularizable.

From this theorem it immediately follows that:

Corollary 1.7. If F = X + H with JH strongly nilpotent, then F is invertible.

2. The proof of theorem 1.6

The proof of theorem 1.6 is based on the following two results.

Lemma 2.1. Let JH =
∑

|α|≤d AαXα, where d = maxi(deg(Hi)) − 1 and Aα ∈
Mn(k) for all α. Then JH is strongly nilpotent if and only if Aα(1)

. . . Aα(n)
= 0,

for all multi-indices α(i) with |α(i)| ≤ d.

Proof. By definition 1.1 we obtain




∑

|α(1)|≤d

Aα(1)
Y

α(1)

(1)



 . . .





∑

|α(n)|≤d

Aα(n)
Y

α(n)

(n)



 = 0.

The result then follows by looking at the coefficients of Y
α(1)

(1) . . . Y
α(n)

(n) . 2

Proposition 2.2. Let V be a finite dimensional k-vectorspace and `1, . . . , `p k-
linear maps from V to V . Let r ∈ N, r ≥ 1. If `i1 ◦ . . . ◦ `ir = 0 for each r-tuple
`i1 , . . . , `ir with 1 ≤ i1, . . . , ir ≤ p, then there exists a basis (v) of V such that
Mat(`i, (v)) = Di where Di is an upper triangular matrix with zeros on the main
diagonal.

Proof. Let d := dim(V ). We use induction on d. First let d = 1. Then the hypoth-
esis implies that `r

i = 0 for each i. So `i = 0 for each i and we are done. So let d > 1
and assume that the assertion is proved for all d−1 dimensional vectorspaces. Now
we (also) use induction on r. If r = 1 then each `i = 0. So let r ≥ 2. Then for each
(r − 1)-tuple `i2 . . . `ir with 1 ≤ i2, . . . , ir ≤ p we have

`1`i2 . . . `ir = 0, . . . , `p`i2 . . . `ir = 0. (2.1)

If `i2 . . . `ir = 0 for each such (r−1)-tuple we are done by the induction hypothesis
on r. So we may assume that for some (r−1)-tuple `i2 . . . `ir the map `i2 . . . `ir 6= 0.
So there exists v 6= 0, v ∈ V with v1 := `i2 . . . `irv 6= 0. From (2.1) we deduce that
`iv1 = 0 for all i. Then consider V̄ := V/kv1. Since liv1 = 0 for all i we get
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induced k-linear maps ¯̀
i : V̄ → V̄ . Since dim(V̄ ) = d− 1 the induction hypothesis

implies that there exist v2, . . . , vr in V such that (v̄2, . . . , v̄r) is a k-basis of V̄ and
Mat(¯̀i, (v̄2, . . . , v̄r)) is on upper triangular form. Then (v) = (v1, v2, . . . , vr) is as
desired. 2

Corollary 2.3. Let A1, . . . , Ap ∈ Mn(k). Let r ∈ N, r ≥ 1. If Ai1 . . . Air = 0 for
each r-tuple Ai1 , . . . , Air with 1 ≤ i1, . . . , ir ≤ p, then there exists T ∈ GLn(k) such
that T−1AiT = Di, where each Di is an upper triangular matrix with zeros on the
main diagonal.

Now we are able to present the proof of theorem 1.6.

Proof. ii) → iii) follows from lemma 1.5. So let’s prove iii) → i). If F = X + H
is linearly triangularizable, then by lemma 1.5 J(T−1HT ) is an upper triangu-
lar matrix with zeros on the main diagonal. So as remarked in example 1.2 this
implies that J(T−1HT ) is strongly nilpotent. Finally observe that J(T−1HT ) =
T−1JH(TX)T . So the strong nilpotency of J(T−1HT ) implies that JH(TY(1)) . . . JH(TY(n)) =
0, which implies in turn that JH is strongly nilpotent.

Finally we prove i) → ii). So let JH be strongly nilpotent. Now if we write
JH =

∑

|α|≤d AαXα, then by lemma 2.1 Aα(1)
. . . Aα(n)

= 0 for all n-tuples with

|α(i)| ≤ d. So by corollary 2.3 there exists T ∈ GLn(k) such that T−1AαT = Dα

for all α with |α| ≤ d, where Dα is an upper triangular matrix with zeros on
the main diagonal. Consequently so is T−1JH(X)T (=

∑

T−1AαTXα) and hence
so is J(T−1HT ) = T−1JH(TX)T , which is obtained by replacing X by TX in
T−1JH(X)T . 2

3. Strongly nilpotent Jacobian matrices and Meisters linearization
conjecture

In [2] Deng, Meisters and Zampieri studied dilations of polynomial maps with
det(JF ) ∈ C

∗. They were able to prove that for large enough s ∈ C the map sF
is locally linearizable to sJF (0)X by means of an analytic map ϕs, the so-called
Schröder map, which inverse is an entire function and satisfies some nice properties.

Their original aim was to show that ϕs is entire analytic, which would imply
that sF and hence F is injective, which in turn would imply the Jacobian Con-
jecture. Although they were not able to prove the ‘entireness’ of ϕs, calculations
of many examples of polynomial maps of the form X + H with H cubic homoge-
neous showed that in all these cases the Schröder map was even much better than
expected, namely it was a polynomial automorphism! (cf [5]) This lead Meisters to
the following conjecture:

Conjecture 3.1. (Linearization Conjecture, Meisters [5])
Let F = X + H be a cubic homogeneous polynomial map with JH nilpotent. Then
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for almost all s ∈ C (except a finite number of roots of unity) there exists a poly-
nomial automorphism ϕs such that ϕ−1

s sFϕ = sX.

Recently in [3] it was shown by the first author that the conjecture is false if
n ≥ 5 and true if n ≤ 4.

In this section we show that Meisters linearization conjecture is true for all n ≥ 1
if we replace ‘JH is nilpotent’ by ‘JH is strongly nilpotent’. In fact we even don’t
need the assumption that this H is cubic homogeneous. More precisely we have:

Theorem 3.2. Let k be a field, k(s) the field of rational functions in one variable
and F : kn → kn a polynomial map of the form F = X +H with F (0) = 0 and JH
strongly nilpotent. Then there exists an over k linearly triangularizable polynomial
automorphism ϕs ∈ Autk(s)(k(s)[X]) such that

ϕ−1
s sFϕs = sJF (0)X.

Furthermore, the zeros of the denominators of the coefficients of the X-monomials
appearing in ϕs are roots of unity.

Before we can prove this result we need one definition and some lemmas.

Definition 3.3. We say that X i1
1 . . .X in

n > X
i′1
1 . . .X i′n

n if and only if
∑n

j=1 ij >
∑n

j=1 i′j or if
∑n

j=1 ij =
∑n

j=1 i′j and there exists some l ∈ {1, 2, . . . , n} such that
ij = i′j for all j < l and il > i′l.

Furthermore we say that the rank of the monomial M := X i1
1 . . .X in

n is the index
of this monomial in the ascending ordered list of all monomials M ′ in X1, . . . , Xn

with deg(M ′) ≤ deg(M) (total degree).

Example 3.4. The rank of X1X2X3 is 15, since the ascending ordered list of all
monomials in X1, X2 and X3 of total degree at most three is:

X3, X2, X1,

X2
3 , X2X3, X

2
2 , X1X3, X1X2, X

2
1 ,

X3
3 , X2X

2
3 , X

2
2X3, X

3
2 , X1X

2
3 , X1X2X3, X1X

2
2 , X

2
1X3, X

2
1X2, X

3
1

Lemma 3.5. For each 2 ≤ j ≤ n − 1 let `j(Xj+1, . . . , Xn) be a linear form in
Xj+1, . . . , Xn and let µ ∈ k. Then the leading monomial with respect to the order
of definition 3.3 in the expansion of

µ
n
∏

j=2

(sXj + s`j(Xj+1, . . . , Xn))ij (3.1)

is

µsi2+...+inxi2
2 . . .X in

n .
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Proof. It is obvious that the monomial µsi2+...+inX i2
2 . . .X in

n appears in the ex-
pansion of (3.1). Now we have to show that this is really the leading monomial.
Note that all monomials in the expansion have the same (total) degree: i2 + . . .+in.
For each j = 2, . . . , n we get a contribution of (sXj + s`j(Xj+1, . . . , Xn))ij that is
of the form

ij
∑

k=0

(

ij
k

)

Xk
j (`j(Xj+1, . . . , Xn))

ij−k

and since `j is a linear term that does not contain Xj it is obvious that we get the
highest order monomial if we take k = ij. So if we start with j = 2, we see that
the highest X2 power is i2. And if we apply this result to j = 3 we see that the
leading power product must begin with X i2

2 X i3
3 . If we do this for all j we see that

it is obvious that the leading monomial is µsi2+...+inX i2
2 . . .X in

n . 2

Lemma 3.6. Let F be a polynomial map of the form:

F =

















X1 + a(X2, . . . , Xn) + `1(X2, . . . , Xn)
X2 + `2(X3, . . . , Xn)

...
Xn−1 + `n−1(Xn)

Xn

















where a(X2, . . . , Xn) is a polynomial with leading monomial (with respect to the or-
der of definition 3.3) λX i2

2 . . .X in
n and i2+. . .+in ≥ 2. Furthermore `i(Xi+1, . . . , Xn)

are some linear forms. Then there exists a polynomial map ϕ on triangular form
such that

ϕ−1sFϕ = s

















X1 + ã(X2, . . . , Xn) + `1(X2, . . . , Xn)
X2 + `2(X3, . . . , Xn)

...
Xn−1 + `n−1(Xn)

Xn

















(3.2)

where the leading monomial of ã(X2, . . . , Xn), say λ̃Xj2
2 . . .Xjn

n , is of strict lower
order than the leading monomial of a(X2, . . . , Xn), i.e.:

Xj2
2 . . .Xjn

n < X i2
2 . . .X in

n .

Proof. Let

ϕ =













X1 + µX i2
2 . . .X in

n

X2
...

Xn













for some µ ∈ k. It is obvious that ϕ is on triangular form. Proving that the equation
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(3.2) is valid is equivalent with showing that

sFϕ = ϕ(s

















X1 + ã(X2, . . . , Xn) + `1(X2, . . . , Xn)
X2 + `2(X3, . . . , Xn)

...
Xn−1 + `n−1(Xn)

Xn

















) (3.3)

is valid. We do this by looking at the n components. For i ≥ 2 it is easy to see that
the i-th component of the lefthandside of (3.3) equals that of the righthandside
of (3.3). Hence our only concern is the first component. Put â(X2, . . . , Xn) :=
a(X2, . . . , Xn) − λX i2

2 . . .X in
n . On the lefthandside we have:

sFϕ|1 = sX1 + sµX i2
2 . . .X in

n + sλX i2
2 . . .X in

n + sâ(X2, . . . , Xn) + s`1(X2, . . . , Xn)
(3.4)

and on the righthandside:

ϕ(s

















X1 + ã(X2, . . . , Xn) + `1(X2, . . . , Xn)
X2 + `2(X3, . . . , Xn)

...
Xn−1 + `n−1(Xn)

Xn

















)|1 (3.5)

= sX1 + sã(X2, . . . , Xn) + s`1(X2, . . . , Xn) + µ
n
∏

j=2

(sXj + s`j(Xj+1, . . . , Xn))ij

By subtracting equation (3.5) from equation (3.4) under the assumption that equa-
tion (3.3) holds, we get:

s(µ + λ)X i2
2 . . .X in

n + sˆ̃a(X2, . . . , Xn) = µ
n
∏

j=2

(sXj + s`j(Xj+1, . . . , Xn))ij (3.6)

where ˆ̃a = â − ã. Now we have to derive a relation for µ to achieve that equation
(3.3) indeed holds. We can do this by restricting equation (3.6) to the coefficients
of X i2

2 . . .X in
n . With lemma 3.5 we see that the restriction of the righthandside of

(3.6) to X i2
2 . . .X in

n gives µsi2+...+in, so we get:

sµ + sλ = si2+...+inµ

and from this equation we can compute µ:

µ =
λ

si2+...+in−1 − 1

Note that we have assumed that i2 + . . . + in ≥ 2 so si2+...+in−1 − 1 6= 0, hence µ
is well defined. 2

Now we are able to give the proof of theorem 3.2.
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Proof. By theorem 1.6 we may assume that F = (F1, . . . , Fn) is on triangular
form. We use induction on n. If n = 1 F degenerates to the identical map X1 and
the theorem follows immediately.

If n = 2 we can write

F =

(

X1 + a(X2) + `1(X2)
X2

)

where a =
∑m

i=2 aiX
i
2 and `1 = aX2, the linear part. In particular we have that the

leading monomial of a is amXm
2 . So with lemma 3.6 we know that there exists a

map ϕm on triangular form such that

ϕ−1
m sFϕm =

(

sX1 + ã(X2) + s`1(X2)
sX2

)

.

where deg(ã) < m. By applying the same lemma m times (if necessary we can use
ϕj is the identity) we find a sequence ϕ1, . . . , ϕm such that

ϕ−1
1 . . . ϕ−1

m sFϕm . . . ϕ1 = s

(

X1 + `1(X2)
X2

)

So ϕs := ϕm ◦ . . . ◦ ϕ1 is as desired. Now consider F = (F1, F2, . . . , Fn). Put
F̃ := (F2, . . . , Fn) and X̃ := (X2, . . . , Xn). Then by the induction hypothesis we
know that there exists an invertible polynomial map ϕ̃s such that

ϕ̃−1
s sF̃ ϕ̃s = sJX̃ F̃ (0).

So with χ = (X1, ϕ̃s) and with the notation

F = (X1 + a(X2, . . . , Xn) + `1(X2, . . . , Xn), F̃ )

we get

χ−1sFχ = s

















X1 + ã(X2, . . . , Xn) + `1(X2, . . . , Xn)
X2 + `2(X3, . . . , Xn)

...
Xn−1 + `n−1(Xn)

Xn

















Now we only have to make the first component linear. Let r be the rank of the
leading monomial in ã(X2, . . . , Xn). With lemma 3.6 we know that there exists a
ϕr such that

ϕ−1
r χ−1sFχϕr = s

















X1 + ãr(X2, . . . , Xn) + `1(X2, . . . , Xn)
X2 + `2(X3, . . . , Xn)

...
Xn−1 + `n−1(Xn)

Xn

















where the rank of the leading monomial of ãr(X2, . . . , Xn) < r. So after r applica-
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tions of lemma 3.6 we have obtained a sequence ϕ1, . . . , ϕr such that

ϕ−1
1 . . . ϕ−1

r χsFχϕr . . . ϕ1 = s

















X1 + `1(X2, . . . , Xn)
X2 + `2(X3, . . . , Xn)

...
Xn−1 + `n−1(Xn)

Xn

















which proves the theorem. 2
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