
pointers (continued),

arrays, and strings

hic 1

Last week

We have seen pointers, eg of type char *p

with the operations * and &

• These are tricky to understand, unless you draw pictures

hic 2

pointer arithmetic

You can use + and – with pointers.

The semantics depends on the type of the pointer:

adding 1 to a pointer will go to the “next” location,

given the size of the data type that it points to.

For example, if

int *ptr;

char *str;

then

ptr + 2 means ptr + 2 * sizeof(int)

str + 2 means str + 2

because sizeof(char) is 1

hic 3

using pointers as arrays

The way pointer arithmetic works means that

a pointer to the head of an array behaves like an array.

Suppose

int a[10] = {1,2,3,4,5,6,7,8,9,10};

int *p = (int*) &a; // the address of the head of a

// treated as pointer to an int

Now

p+3

points to

a[3]

so we use addition to pointer p to access the array

hic 4

pointer arithmetic for strings

What is the output of

char *msg = ”hello, world”;

char *t = msg + 6;

printf(”t points to the string %s.”, t);

This will print

t points to the string world.

hic 5

arrays vs pointers

Arrays and pointers behave similarly, but are very different in memory

Consider int a[]; int *p;

a

a[0] a[1] ...

p

*p *(p+1) ...

A difference: a will always refer to the same array,

whereas p can point to different arrays over time

hic 6

using pointers as arrays

Supposes

int a[10] = {1,2,3,4,5,6,7,8,9,10};

Then

int sum = 0;

for (int i=0; i!=10; i++) {

sum = sum + a[i];

}

can also be implemented using pointer arithmetic

int sum = 0;

for (int *p=(int*)&a; p!=&(a[10]); p++){

sum = sum + *p;

}

but nobody in their right mind would 

hic 7

This cast is needed

because a is an

integer array, so

&a is a pointer to

int[], not pointer

to an int.

An alternative

would be to write
*p = &(a[0])a

Instead of p!=&(a[10])

we could also write
p != ((int*)&a)+10a

A problem with pointers: ...

int i; int j; int* x;

...

// lots of code omitted

i = 5;

j++;

// what is the value of i here?

(*x)++;

// what is the value of i here?

hic 8

5

5 or 6, depending
on whether *x

points to i

A problem with pointers: aliasing

Two pointers are called aliases if they point to the same location

int i = 5;

int* x = &i;

int* y = &i;

// x and y are aliases now

(*x)++;

// now i and *y have also changed to 6

Keeping track of pointers, in the presence of potential aliasing, can be

really confusing, and really hard to debug...

hic 9

Recap – so far

We have seen pointers, eg of type char *p

with the operations * and &

• These are tricky to understand, unless you draw pictures

We can have aliasing, where two names, say *p and c, can refer to

the same variable (location in memory)

We can use pointer arithmetic, and eg write *(p+1),

and use this to access arrays

• Confusingly, the meaning of addition for pointers depends on their
type, as +1 for pointers of type int* really means

+sizeof(int)

hic 10

The potential of pointers: inspecting raw memory

To inspect a piece of raw memory, we can cast it to a

unsigned char*

and then inspect the bytes

float f = 3.14;

unsigned char *p = (unsigned char*) &f;

printf(“The representation of float %f is”, f);

for (int i; i <sizeof(float); p++;) {

printf(”%i”, *p); i++;

}

printf(”\n”);

hic 11

turning pointers into numbers

intptr_t defined in stdint.h is an integral type that is

guaranteed to be wide enough to hold pointers.

int *p; // p points to an int;

intptr_t i = (intptr_t)p; // the address as number

p++;

i++;

// Will i and p be the ’same’?

// No! i++ increases by 1, p++ with sizeof(int)!

There is also an unsiged version of intptr_t: uintptr_t

hic 12

strings

hic 13

strings

Having seen arrays and pointers, we can now understand C strings

char *s = "hello world\n";

C strings are char arrays, which are terminated by a special

null character aka null terminator, which is written as \0

There is a special notation for string literals, between double quotes,

where this null terminator is implicit.

As other arrays, we can use both the array type char[] and the

pointer type char* for them.

hic 14

string problems

Working with C strings is highly error prone!

There are two problems:

1. as for any array, there are no array bounds checks;
so it’s the programmers responsibility not to go outside the array bounds

2. it is also the programmer’s responsibility to make sure that the

string is properly terminated with a null character.
If a string lacks its null terminator, eg due to problem 1, then standard

functions to manipulate strings will go off the rails.

hic 15

safer strings and arrays?

There is no reason why programming language should not provide safe

versions of strings (or indeed arrays).

Other languages offer strings and arrays which are safer in that:

1. going outside the array bounds will be detected at runtime (eg Java)

2. which will be resized automatically if they do not fit (eg Python)

3. the language will ensure that all strings are null-terminated (eg C++,

Java, and python)

More precisely, the programmer does not even have to know how strings

are represented, and whether null-terminator exists and what they look like:

the representation of strings is completely transparant/invisible to the

programmer

Moral of the story: if you can, avoid using standard C strings.

Eg in C++, use C++ type strings; in C, use safer string libraries.

hic 16

a final string peculiarity

String literals, as in

char *msg = "hello, world";

are meant to be constant or read-only: you are not supposed to change

the characters that make up a string literal.

Unfortunately, this does not mean that C will prevent this. It only means

that the C standard defines changing a character in an string literal

as having undefined behaviour 

Eg

char *t = msg + 6; *t = ’;’;

has undefined behaviour, ie. anything may happen

Compilers can emit warnings if you change string literals, eg

gcc -Wwrite-strings

hic 17

Recap

We have seen

• the different C types

– primitive types

(unsigned) char, short, int, long, long, float ...

– implicit conversions and explicit conversions (casts) between them

– arrays int[]

– pointers int* with the operations * and &

– C strings, as special char arrays

• their representations

• how these representations can be `broken’, ie. how we can inspect and

manipulate the underlying representation (eg. with casts)

• some things that can go wrong

eg due to access outside array bounds or integer under/overflow

hic 18

