pointers (continued),
arrays, and strings

Last week

We have seen pointers, eg of type char *p
with the operations * and &
* These are tricky to understand, unless you draw pictures

hic

pointer arithmetic

You can use + and - with pointers.

The semantics depends on the type of the pointer:
adding 1 to a pointer will go to the “next” location,
given the size of the data type that it points to.

For example, if
int “*ptr;
char *str;
then
ptr + 2 means ptr + 2 * sizeof(int)
str + 2 means str + 2
because sizeof (char) is1l

using pointers as arrays

The way pointer arithmetic works means that
a pointer to the head of an array behaves like an array.

Suppose
int a[l1l0] = {1,2,3,4,5,6,7,8,9,10};
int *p = (int*) &a; // the address of the head of a
// treated as pointer to an int
Now
p+3
points to
al[3]
SO we use addition to pointer p to access the array

pointer arithmetic for strings

What is the output of
char *msg = "hello, world”;

char *t = msg + 6;
printf (”“t points to the string %s.”, t);

This will print
t points to the string world.

hic

arrays vs pointers

Arrays and pointers behave similarly, but are very different in memory

Consider int a[]; int *p;

af[0] a[l]

T~

*p ¥ (p+l)

A difference: a will always refer to the same array,
whereas p can point to different arrays over time

hic

using pointers as arrays

Supposes / This cast is needed "\
int a[l10] = {1,2,3,4,5,6,7,8,9,10}; because a is an
Then integer array, so
int sum = O0; &a is a pointer to
for (int i=0; i!=10; i++) { int[1, not pointer
to an int.

sum = sum + a[i]; An alternative

would be to write
*p = &(a[0])

}

can also be implemented using paqi
int sum = 0;
for (int *p=(int*) &a; p'=&(a[l1l0]); p++){

sum = sum + *p;)
Instead of p!'=&(a[10])
} we could also write
but nobody in their right mind would © p '= ((int*)é&a)+10

J

hic 7

A problem with pointers: ...
int i; int j; int* x;

// lots of code omitted

i=25;

j++;

// what is the value of i here? 5
(*x) ++;

// what is the value of i here? _
5 or 6, depending
on whether *x

points to i

hic

A problem with pointers: aliasing
Two pointers are called aliases if they point to the same location

int 1 = 5;

int* x = &i;

int* y = &i;

// x and y are aliases now

(*x) ++;

// now i and *y have also changed to 6

Keeping track of pointers, in the presence of potential aliasing, can be
really confusing, and really hard to debug...

hic

Recap — so far

We have seen pointers, eg of type char *p
with the operations * and &

* These are tricky to understand, unless you draw pictures

We can have aliasing, where two names, say *p and ¢, can refer to
the same variable (location in memory)

We can use pointer arithmetic, and eg write * (p+1) ,
and use this to access arrays

« Confusingly, the meaning of addition for pointers depends on their
type, as +1 for pointers of type int* really means
+sizeof (int)

The potential of pointers: inspecting raw memory

To inspect a piece of raw memory, we can cast it to a
unsigned char*

and then inspect the bytes

float £ = 3.14;
unsigned char *p = (unsigned char*) &f;
printf (“"The representation of float %f is”, f);
for (int i; 1 <sizeof(float); p++;) {
printf (”%1i”, *p); i++;
}
printf (”\n”) ;

hic 11

turning pointers into numbers

intptr t defined in stdint.h is an integral type that is
guaranteed to be wide enough to hold pointers.

int *p; // p points to an int;

intptr t i = (intptr t)p; // the address as number
p++;

i++;

// Will i and p be the ’'same’?

// No! i++ increases by 1, p++ with sizeof (int)!

There is also an unsiged version of intptr t: uintptr t

hic

strings

13

strings
Having seen arrays and pointers, we can now understand C strings

char *s = "hello world\n";

C strings are char arrays, which are terminated by a special
null character aka null terminator, which is written as \0

There is a special notation for string literals, between double quotes,
where this null terminator is implicit.

As other arrays, we can use both the array type char[] and the
pointer type char* for them.

string problems

Working with C strings is highly error prone!
There are two problems:

1. as for any array, there are no array bounds checks;
so it's the programmers responsibility not to go outside the array bounds

2. itis also the programmer’s responsibility to make sure that the

string is properly terminated with a null character.
If a string lacks its null terminator, eg due to problem 1, then standard
functions to manipulate strings will go off the rails.

hic 15

safer strings and arrays?

There is no reason why programming language should not provide safe
versions of strings (or indeed arrays).

Other languages offer strings and arrays which are safer in that:
1. going outside the array bounds will be detected at runtime (eg Java)
2. which will be resized automatically if they do not fit (eg Python)

3. the language will ensure that all strings are null-terminated (eg C++,
Java, and python)

More precisely, the programmer does not even have to know how strings
are represented, and whether null-terminator exists and what they look like:
the representation of strings is completely transparant/invisible to the
programmer

Moral of the story: if you can, avoid using standard C strings.
Eg in C++, use C++ type strings; in C, use safer string libraries.

hic 16

a final string peculiarity

String literals, as in
char *msg = "hello, world";

are meant to be constant or read-only: you are not supposed to change
the characters that make up a string literal.

Unfortunately, this does not mean that C will prevent this. It only means
that the C standard defines changing a character in an string literal
as having undefined behaviour ®

Eg
char *t = msg + 6; *t = ';’;
has undefined behaviour, ie. anything may happen

Compilers can emit warnings if you change string literals, eg
gcc -Wwrite-strings

hic 17

Recap

We have seen
the different C types

hic

primitive types

(unsigned) char, short, int, long, long, float
Implicit conversions and explicit conversions (casts) between them
arrays int[]

pointers int* with the operations * and &

C strings, as special char arrays

their representations

how these representations can be "broken’, ie. how we can inspect and
manipulate the underlying representation (eg. with casts)

some things that can go wrong
eg due to access outside array bounds or integer under/overflow

18

