
Green-Fuzz: Efficient Fuzzing for Network
Protocol Implementations

Seyed Behnam Andarzian(�), Cristian Daniele, and Erik Poll?

Radboud Universiteit, Nijmegen, Netherlands
seyedbehnam.andarzian@ru.nl

Abstract. Recent techniques have significantly improved fuzzing, dis-
covering many vulnerabilities in various software systems. However, cer-
tain types of systems, such as network protocols, are still challenging to
fuzz. This article presents two enhancements that allow efficient fuzzing
of network protocols. The first is Desock+, which simulates a network
socket and supports different POSIX options to make Desock+ suitable
for faster network protocol fuzzing. The second is Green-Fuzz, which
sends input messages in one go and reduces the system-call overhead
while fuzzing network protocols. We applied this modification to AFLNet,
but it could be applied to any fuzzer for stateful systems. This is the max-
imum overhead we can avoid, when doing out-process fuzzing on stateful
systems. Our evaluation shows that these enhancements make AFLNet
up to four times faster.

Keywords: Testing · Fuzzing · Software Security · Network Protocol
Fuzzing.

1 Introduction

Fuzzing (a.k.a. fuzz testing) is an effective technique for testing software sys-
tems, with popular fuzzers such as AFL++ [22] and LibFuzzer [1] having found
thousands of bugs in both open-source and commercial software. For instance,
Google has discovered over 25,000 bugs in their own software (e.g. Chrome) and
over 36,000 bugs in over 550 open source projects [3].

Unfortunately, not all software can benefit from such fuzzing campaigns. One
important class of software is network protocols which are challenging to fuzz [9]
[6]. One of the challenges in fuzzing network protocols is performance overheads
caused by the network stack, and context switching between the fuzzer and
Software Under Test (SUT).

There are two main approaches for testing such software. One approach is in-
process fuzzing [1] to exercise different parts or APIs of the SUT. Although this
method is fast and can yield positive results, it needs considerable manual effort
(including source code modification), and system-level testing still needs to be

? This research is funded by NWO as part of the INTERSCT project
(NWA.1160.18.301)



2 S.Andarzian et al.

performed. Another approach is out-process fuzzing [13], where the fuzzer runs
outside of SUT, generates random input messages, and sends them to the SUT.
While this approach requires less manual effort and no source code modification,
it is very slow and takes a lot of computation power.

We propose two enhancements to have an efficient fuzzer:

– We offer a new method that leverages a simulated socket library named
Desock+, a modified version of preeny. Unlike preeny [2], Desock+ works
with a wide range of SUTs, allowing for efficient fuzzing of network protocols.

– We present the Green-Fuzz fuzzer, which sends input message traces in
one go to the SUT. Therefore, it can avoid some system-call and context-
switching overhead between the fuzzer and SUT.

These enhancements are different: Desock+ is a simulated socket library that
can work with any fuzzer, and Green-Fuzz is a network protocol fuzzer that uses
a specific version of Desock+ named Fast-desock+.

Our evaluation of the execution speed on ProFuzzBench [12] shows that
Green-Fuzz is up to four times faster than AFLNet [13]. We also compared
our approach with related work, which shows that our solution has the advan-
tage of supporting more types of SUT for fuzzing, which use complex socket
functionalities.

This paper is structured as follows: section 2 presents the background and
our motivation for this research. In section 3, we talk about the issue of network
communication overhead and how we solve it with Desock+. Section 4 presents
our new approach used in Green-Fuzz and its architecture to reduce the overhead
in fuzzing. In section 5, we discuss the related work. In section 6, we discuss the
limitations and future work, and finally, in section 7, we provide the conclusion
of this paper.

2 Background and Motivation

In the realm of software security, one of the major challenges is ensuring the
robustness and safety of software against malicious inputs. Fuzzing, a dynamic
code testing technique, is a useful way of identifying vulnerabilities in software.
There are many factors considered for effective fuzzing of software. The main
ones are code-coverage, performance, and applicability. Each of these factors is
essential for effectively fuzzing and finding vulnerabilities. Performance, as one
of these factors, is critical in fuzzing because more fuzzing speed means we need
less computing resources and energy.

For example, Google is spending a lot of computing resources for OSS fuzz
[26] to find bugs. By having an efficient fuzzer, these companies can spend less
time and resources on fuzzing. Furthermore, time is critical when it comes to
integrating fuzzing in the CI/CD 1 pipelines for software. As mentioned in [27],
the reasonable amount of time that should be spent on fuzzing in the CI/CD
pipeline is around 10 minutes per day, which is very short.
1 Continuous Integration / Continuous Deployment



Green-Fuzz: Efficient Fuzzing for Network Protocol Implementations 3

The issues mentioned above get worse when it comes to fuzzing network
protocol implementations. When fuzzing regular command line software2, on
average, we are 100 times faster than fuzzing network protocol implementa-
tions. This observation led us to do more research and find different hurdles
in efficiently fuzzing network protocol implementations. After addressing these
hurdles, we believe this is the maximal amount of speed gain we can have when
doing out-process fuzzing (see section 4.3).

3 Removing Network Communication Overhead with
Desock+

In this section, we discuss our approach to avoid network communication over-
head. We provide Desock+ as a simulated socket library that works with any
fuzzer to avoid network communication overhead. Existing fuzzers for network
protocols, such as AFLNet [13], rely on network communication to send inputs
to the SUT. However, this approach has two drawbacks. The fuzzer sends an
input message to the SUT and gets a response. Each round of fuzzing 3 is done
by sending a sequence of input messages, which we call a trace of input messages.
For each trace of input message T =< m1,m2, ...,mn >, the fuzzer must create a
new connection, which adds overhead. Additionally, sending each input message
mn through the network also incurs overhead due to the time-consuming steps
in the network stack, which are unnecessary for the fuzzing.

To reduce this overhead, we propose using a simulated socket instead of
sending inputs through the network stack. By taking this approach, we do not
have to use emulation or modify the source code of the SUT, and it is faster. We
accomplish this by using a modified version of the simulated socket library called
preeny, which communicates with the SUT via the standard I/O. However,
we found that preeny does not work out of the box. We addressed this issue
by modifying preeny and introducing a new simulated socket library named
Desock+.

3.1 Network Protocol Fuzzing using Desock+

Desock+ can be used by the SUT instead of the standard POSIX library to
fuzz network protocols more efficiently. The overview of a fuzzer working with
Desock+ is shown in Figure 1. In this case, the fuzzer is the slightly modified
AFLNet which sends and receives input messages through standard I/O instead
of network sockets. As we can see, the SUT is intact, and the only thing that
is changed is the underlying socket library, which the SUT would load instead
of the real socket library. Figure 2 shows AFLNet fuzzing using Desock+ as a
simulated socket-library.
2 This is just an estimation based on our experience with out-process fuzzing using
AFL fuzzer

3 One round of fuzzing consists of sending one input to the SUT to test it, and re-
freshing the SUT for the next input



4 S.Andarzian et al.

(a) AFLNet (b) AFLNet using Desock+

Fig. 1: Removing network communication overhead using Desock+.

The difference between preeny and Desock+ is that preeny can not sup-
port specific socket-related system-calls and arguments. However, by modifying
preeny, we have provided Desock+, which can handle any types of SUT that
use POSIX network I/O. The arguments in socket-related system-calls that Des-
ock+ supports are listed in Table 1. The advantage of Desock+ over preeny is
that it can also support SUTs that:

– Contain socket system-calls using blocking or non-blocking network I/O.
– Receive the input messages as datagram, streams, sequenced, connection-

less, and raw.
– Use connect and accept4 system-calls.

The modifications made to preeny to make Desock+ are implemented in the
socket system-call, which is responsible for creating the socket file descriptor.
We have added a function named setup, which modifies the socket file descriptor
by considering different arguments provided to the socket system-call. Based
on the arguments passed to the socket system-call, Desock+ uses fcntl and
setsockopt to set different arguments on the socket file descriptor. This way,
other socket-related system-calls can use this socket file descriptor without re-
sulting in an error. In preeny, these arguments are ignored while creating the
socket file descriptor, resulting in an error when other socket-related system-calls
try to use different arguments inside the SUT.

Desock+ is only helpful for fuzzing network protocols, whereas preeny is also
intended to be used for SUT interaction with other services on the system or
using a loopback address4. To be able to set different arguments on the socket
file descriptor, Desock+ avoids assigning an IP address and port number to
the socket file descriptor (setting arguments on a simulated file descriptor with
assigned IP and port results in an EINVAL error). However, since preeny is
meant to be used for many other purposes, this can break its functionality.
Therefore, we made Desock+ a separate library for use by fuzzers.

4 A loopback address is a unique IP address, that is used to refer to the localhost.



Green-Fuzz: Efficient Fuzzing for Network Protocol Implementations 5

Table 1: Socket-related POSIX system-calls and their arguments supported by
Desock+.

System-Call Arguments System-Call Arguments
AF_LOCAL SOCK_NONBLOCK
AF_INET connect3() SOCK_CLOEXEC
AF_INET6 SOCK_SEQPACKET

SOCK_STREAM SOCK_DGRAM
socket() SOCK_DGRAM SOCK_STREAM

SOCK_SEQPACKET SOCK_NONBLOCK
SOCK_RAW dup3() SOCK_CLOEXEC
SOCK_RDM recv() MSG_CMSG_CLOEXEC

SOCK_PACKET recvfrom() SCM_RIGHTS
SOCK_NONBLOCK recvmsg() MSG_DONTWAIT

accept4() SOCK_CLOEXEC MSG_ERRQUEUE
SOCK_SEQPACKET send() SOCK_STREAM
SOCK_STREAM sendto() SOCK_SEQPACKET

bind() AF_INET sendmsg() MSG_CONFIRM
AF_INET6 MSG_DONTWAIT

Fig. 2: AFLNet fuzzing using Desock+, which is a simulated socket library.

3.2 Extending Desock+

Although Desock+ supports many SUTs for fuzzing network protocols, there are
corner-case SUTs that it does not support, because of system-calls that are not
simulated. To address this issue, we must identify which system-calls and their
input arguments are causing the errors (EAGAIN, EBADF, etc.) and simulate
them correctly. However, manually identifying these error-prone system-calls (for



6 S.Andarzian et al.

Table 2: Speed in message per second, of AFLNet with and without Desock+
on ProFuzzBench [12].

SUT AFLNet AFLNet with Desock+ Speed up
lightFTP 12 49 +308%
dnsmasq 15 19 +26%
live555 14 29 +107%
dcmqrscp 17 21 +23%
tinydtls 12 19 +58%

example, epoll or select) and their arguments among thousands of system-calls
is not possible.

To solve this problem, we have developed an automated system-call filter-
ing module. As shown in Figure 3, when the fuzzer starts fuzzing the SUT, the
system-call filtering module begins monitoring the SUT by using the Ptrace to
intercept system-calls between the operating system and the SUT. The mod-
ule then filters the socket-related system-calls and looks for the ones that have
returned -1 as an error. Then, it extracts the system-call arguments using GDB
debugger. The error-prone system-calls and their arguments are then saved as
the output of this module. Therefore, the user of Desock+ can simulate these
system-calls into Desock+ to support different SUTs.

3.3 Evaluation of the AFLNet Fuzzing Speed using Desock+ on
ProFuzzBench

We have used AFLNet with and without Desock+ to evaluate the fuzzing speed.
Both sets of fuzzing experiments have been done with an identical setup on the
five SUTs from ProFuzzBench[12]. ProFuzzBench is a benchmark that is used
for the evaluation of fuzzers for stateful systems.

We ran our experiment five times to ensure the speed is consistent. Each time
the fuzzing went on for an hour. Table 2 shows the execution speed of AFLNet
with and without Desock+. We see that the speed of fuzzing traces of input
messages per second is up to four times faster using Desock+.

Fig. 3: Extracting the error-prone POSIX system-calls and their arguments.



Green-Fuzz: Efficient Fuzzing for Network Protocol Implementations 7

4 Green-Fuzz Fuzzer

Monitoring the execution of AFLNet reveals that specific system-calls and context-
switches between the fuzzer and SUT impose much overhead in the fuzzing pro-
cess. In this section, we present Green-Fuzz, a new fuzzer to reduce the number
of sendto, setsockopt, recvfrom system-calls, and also the context-switches
between the fuzzer and SUT in the fuzzing process.

As seen in section 2, current fuzzers for network protocols consider a trace of
input messages T =< m1,m2, ...,mn >, and send the input message mn one by
one to fuzz the SUT. By using the Green-Fuzz, we do not send input messages
one by one but as a trace. We do this because when the fuzzer sends input
messages one by one, the fuzzer has to call two (or more) system-calls for each
input message and call the same number of system-calls to receive the respective
response from the SUT. However, by sending the entire trace of input messages
in one go, the number of system-calls is reduced: for a trace of input messages
T with n messages, we only have the overhead once, instead of n times. This
approach can be applied to any network protocol fuzzer, assuming the fuzzer
can decide on the input trace in advance. In our case, we applied it to AFLNet.
In Figure 4, we can see how Green-Fuzz has reduced this overhead compared to
AFLNet.

4.1 Design

To apply our approach to AFLNet, we had to make a slight change to it. We call
the new fuzzer Green-Fuzz, which sends a trace of the input messages to the SUT
in one go. For this purpose, we implemented another simulated socket library
named Fast-desock+. Fast-desock+ intercepts and buffers the trace of input
messages T sent by Green-Fuzz fuzzer. After that, it takes each message mn from
trace T and sends it to the SUT. Consequently, the SUT finishes processing and
sends back a response rj , which Fast-desock+ intercept and save into a response
buffer.

When Fast-desock+ has sent all input messages and saved all the respective
responses into the buffer, it sends the responses back to Green-Fuzz in one go.
These responses are a list of responses. Because an individual input message
mn can produce several responses or none. We send the list of responses as a
list of tuples to the Green-Fuzz. This list of tuples would be in the form of
{(n, r)|r ∈ R = {r1, ..., rj}}, where n is the index of the input message and r
is the respective response to input message mn. This way, the Green-Fuzz can
relate the input messages and their respective response (or responses).

The difference between Fast-desock+ and Desock+ is that Fast-desock+ also
hooks sendto, recvfrom, and setsockopt to intercept and buffer trace of input
messages and responses between the fuzzer and SUT.

Figure 5-a shows the AFLNet interaction with the SUT, where the fuzzer
sends each input message one by one. Figure 5-b shows the Green-Fuzz interac-
tion with the SUT, which sends a trace of the input messages to the SUT in one
go.



8 S.Andarzian et al.

Fig. 4: Comparison of fuzzing overheads in AFLNet (left) and Green-Fuzz (right).
Green-Fuzz avoids the overheads colored in red; as shown in Table 3, this can
be from 0% to 80%. C-S stands for a context-switch, shown in orange. The time
spent by SUT in processing input is shown in green and other system-calls are
shown in blue.



Green-Fuzz: Efficient Fuzzing for Network Protocol Implementations 9

(a) AFLNet (b) Green-Fuzz

Fig. 5: Sending a trace of input messages in AFLNet (a) vs Green-Fuzz (b). By
sending all messages/entire trace in one go, unlike one by one in AFLNet, we
save overhead from context switches and system-calls.

4.2 Evaluation of Green-Fuzz on ProFuzzBench

To show the benefits of Green-Fuzz, in this section, we evaluate it on Pro-
FuzzBench [12]. After that, we compare the absolute fuzzing overhead and its
difference between AFLNet using Desock+ and Green-Fuzz.

Table 3 shows the execution speed of Green-Fuzz compared to the AFLNet
using Desock+. Five of the ten SUTs included in ProFuzzBench use the socket
options our tool supports. We fuzzed the SUTs for an hour and repeated our
experiment to ensure the numbers are reliable. The results show that the trace of
input messages fuzzed per second is higher when using Green-Fuzz than AFLNet
using Desock+, but not that much.

We used ptrace to monitor different system-calls that are a source of the
overhead while fuzzing. Table 4 shows the absolute overhead difference, where
we can see Green-Fuzz decreases overhead in recvfrom, sendto, setsockopt,
and connect system-calls. There is no change in overhead regarding the kill
and clone system-calls because both AFLNet and Green-Fuzz are out-process
fuzzers and have to use these system-calls for each trace of input messages.

4.3 Comparison with In-Process Fuzzing

Fuzzers are broadly classified into out-process and in-process fuzzers. Like AFLNet
[13], out-process fuzzing involves forking, (i.e., duplicating a process by call-
ing clone system-call) and killing, (i.e., terminating a process by calling kill
system-call) the SUT for each input. Although this approach imposes overhead,
it does not require patching or modification of the SUT’s source code. More-
over, out-process fuzzing can be applied to closed-source programs, which is not
feasible using in-process fuzzing.



10 S.Andarzian et al.

Table 3: Speed in message per second, of AFLNet with Desock+ and Green-Fuzz
on ProFuzzBench.

SUT AFLNet with Desock+ Green-Fuzz Speed up
lightFTP 49 64 +30%
dnsmasq 19 19 0%
live555 29 31 +6%
dcmqrscp 21 25 +19%
tinyDTLS 19 34 +78%

Table 4: Comparison of absolute system-call overhead between AFLNet and
Green-Fuzz. The times are in milliseconds (from an example SUT) and shown
in the format of n × m × time where n is the number of traces and m is the
number of messages in one trace.

System-call AFLNet Green-Fuzz Overhead Difference
clone n× 6.5 n× 6.5 0%
kill n× 8.7 n× 8.7 0%
recvfrom n×m× 1.2 n× 1.2 −80%
sendto n×m× 1.3 n× 1.3 −80%
setsockopt n×m× 0.1 n× 0.1 −80%
connect n× 11 n× 4 −63%

In contrast, for in-process fuzzing [7][1], we manually modify the SUT so
that instead of processing a single input, it can process multiple. To do this, we
introduce a loop, where after processing one input message, we jump back to the
program point where it begins processing an input message. This method avoids
frequent forking, initialization, and killing of the SUT, resulting in a much faster
fuzzing speed. In-process fuzzing is also known as in-memory fuzzing in some
publications [15][8].

In this section, we compare the speed of sending input message traces per
second between Green-Fuzz (out-process fuzzer) and in-process fuzzers [7][1]. For
this purpose, we make a hypothetical comparison based on our experiment in
section 3.2 and the expected overheads that in-process fuzzing can save. First, we
discuss the overhead difference between the two types of fuzzers. After that, we
present our comparison based on previous experiments (see section 3.2) and our
expectations from the in-process fuzzing overheads. Figure 6 shows the fuzzing
overhead occurring while doing out-process and in-process fuzzing for a network
protocol.

Table 5 shows the comparison between the Green-Fuzz (out-process fuzzer)
and an in-process fuzzer. Since in-process fuzzing only fork and kills the SUT
once, it does not have overheads regarding clone and kill system-calls. Fur-
thermore, the input messages are mutated inside the SUT (in-memory) and
not sent through simulated sockets, so it does not have overhead regarding



Green-Fuzz: Efficient Fuzzing for Network Protocol Implementations 11

Table 5: comparison of Green-Fuzz and in-process fuzzing based on different
overheads for fuzzing n trace of m input messages. The times are in milliseconds
(from an example SUT) and shown in the format of n×m× time.
Source of Overhead Green-Fuzz In-process Fuzzer Overhead Difference
clone n× 6.5 6.5 ≈ −100%
kill n× 8.7 8.7 ≈ −100%
recvfrom n×m× 1.2 0 −100%
sendto n×m× 1.3 0 −100%
setsockopt n×m× 0.2 0 −100%
connect n× 11 0 −100%
Context-switching n×m× 0.8 2× 0.8 ≈ −100%
SUT initialization n× 5.1 5.1 ≈ −100%

recvfrom, sendto, setsockopt and connect system-calls. There is also the
context-switching overhead between the fuzzer and SUT, which the in-process
fuzzer saves. Finally, the overhead of SUT initialization differs between the two
types of fuzzing. Because in-process fuzzing patches the start of the fuzzing loop
right after the initialization of the SUT and right before the processing of a new
input. However, the out-process fuzzing has to go through the SUT initialization
each time it forks the SUT to send a new input.

Green-Fuzz, as an out-process fuzzer, does not require changing the program’s
source code and can also be applied to closed-source SUT. Overall, there is a
trade-off between the fuzzing speed and modifying the source code of the SUT.
For SUTs in which the time of SUT execution (the green part in Figure 6) is very
high, using in-process fuzzing does not save much overhead relatively. Using in-
process fuzzing also introduces the risk of missing some parts of the SUT behavior
because we have to introduce a loop inside the SUT, where only the code inside
that loop would be exercised. Finally, since Green-Fuzz avoids any out-process
fuzzing overhead in network protocol fuzzing possible, it is the most efficient
out-process fuzzer that we could have for network protocol implementations.

5 Related Work

Using grey-box fuzzing solutions to test network services has become a popu-
lar research topic. One example is Peach* [18], which combined code coverage
feedback with the original Peach [19] fuzzer to test Industrial Control Systems
(ICS) protocols. It collected code coverage information during fuzzing and used
Peach’s capabilities to generate more effective test cases.

IoTHunter [20] applied grey-box fuzzing for network services in IoT devices.
It used code coverage to guide the fuzzing process and implemented a multi-stage
testing approach based on protocol state feedback.

AFLNet [13] is a grey-box fuzzer for protocol implementations which uses
state feedback to guide fuzzing. It acts as a client and replayed different variations



12 S.Andarzian et al.

Fig. 6: In-process fuzzer (left) and out-process fuzzer (right) overheads while
fuzzing network protocols. The blue colors are system-call overhead, and the
green ones are the time spent by the SUT in processing input message. C-S
stands for context-switching between the fuzzer and the SUT, shown in orange.



Green-Fuzz: Efficient Fuzzing for Network Protocol Implementations 13

of the original message sequence sent to the server. It kept the variations that
increased code or state space coverage effectively.

StateAFL [21] is a variation of AFLnet that utilizes a memory state to repre-
sent the service state. It instrumented the target server during compilation and
determined the current protocol state at runtime. It gradually built a protocol
state machine to guide the fuzzing process.

5.1 Related work with Desock+

Zeng et al. [17] also made a simulated socket library, named Desockmulti, to
avoid network communication overhead when fuzzing network protocols. How-
ever, compared to Desock+, Desockmulti does not support connect and accept4
system-calls, which limits its applicability.

Maier et al. [11] introduced the Fuzzer in the Middle (FitM) for fuzzing net-
work protocols. Instead of using a simulated socket library, FitM intercepts the
emulated system-calls inside the QEMU emulator and sends the input messages
to the SUT without the network communication overhead. Because FitM has
emulation overhead, it is slower than our approach. Compared to our approach,
FitM has the capability to fuzz both the client and server of a network protocol
as the SUT.

There are also ad-hoc approaches [4][5] [25] where by manually modifying
the SUT, the fuzzer would send the input messages to the SUT without network
communication. These approaches change the source code of SUT to read the
inputs from a file or argument variables to avoid network communication. These
approaches require manual effort for each SUT, which is not ideal, but are more
stable because of SUT specific fuzzing harnesses that are built per SUT.

5.2 Related work with Green-Fuzz

Nyx-Net [14] utilizes hypervisor-based snapshot fuzzing incorporated with the
emulation of network functionality to handle network traffic. Nyx-Net uses a cus-
tomized kernel module, a modified version of QEMU and KVM, and a custom
VM configuration where the target applications are executed. Nyx-Net also con-
tains a custom networking layer miming certain POSIX network functionalities,
which currently needs more support for complicated network targets. In contrast,
Green-Fuzz adopts a user-mode approach that avoids complexity. Green-Fuzz is
also an orthogonal approach to be added on top of Nyx-Net, to speed up the
fuzzing.

In-process (a.k.a in-memory) fuzzing [1][7] is an approach where a fuzzer
does not restart or fork the SUT for each trace of input messages, and the
fuzzing is done within the same process. The input values are mutated inside the
memory. Therefore, it also avoids network communication overhead. However,
these methods involve manual work to modify a piece of code as the SUT and
specifying the exact position of variables inside the memory. Using a simulated
socket library, Green-Fuzz does not require these manual steps. However, in-
process fuzzing is faster (around 200 to 300 times in our experiments) than our



14 S.Andarzian et al.

approach because it has less fuzzing overhead. Another issue of in-process fuzzing
is that usually it can not test the whole system, because of the fuzzing loop that
is defined for the harness.

6 Limitations and Future Work

Currently, Desock+ only works with the SUTs using system-calls and their ar-
guments shown in in Table 1. Some SUTs use other socket options. For example,
input arguments for epoll system-call must be simulated in Desock+ to work
correctly if the SUT is using this system-call. Because part of Green-Fuzz is
based on Fast-desock+, these limitations also apply to Green-Fuzz. Since the
non-simulated options in Desock+ and Fast-desock+ can be complex. As our
future work, we would like to complete these engineering efforts and use Green-
Fuzz to fuzz network protocols such as OPC-UA [23] and Modbus [24] protocols.
To Fuzz protocols that require a handshake, the Green-Fuzz needs a minor mod-
ification to do the handshake before sending the whole trace in one go.

Desock+ and Green-Fuzz are general solutions to fuzzers for stateful systems,
so we plan to apply them to other fuzzers for stateful systems. In this paper,
we applied our improvements to AFLNet. However, any fuzzer that sends the
inputs to a network protocol via network sockets or sends the input messages
from a trace of messages can be upgraded by using our solutions, except if it needs
feedback after sending each input message, as [10] does. For example, SGPFuzzer
[16] and Nyx-net [14] are network protocol fuzzers that can be upgraded by
Green-Fuzz, to have an efficient fuzzer. The modification for applying Green-
Fuzz to other fuzzers is relatively simple. The user has to modify the harness to
send and receive the messages in a trace format to the SUT.

7 Conclusion

Fuzzing is an effective technique for identifying bugs and security vulnerabilities
in software systems. However, it’s application to network protocols has been
challenging because of low fuzzing throughput.

This work proposes a solution to improve the efficiency of network protocol
fuzzing by introducing a simulated socket library, Desock+, that enables efficient
fuzzing without modifying the source code of the SUT. The study also presents
Green-Fuzz, a novel approach that utilizes a trace-based input message-sending
method to increase efficiency further. Green-Fuzz can be easily applied to other
fuzzers for stateful systems to gain more performance.

Our evaluation shows that the proposed method outperforms AFLNet by
being up to four times faster and can be applied to a broader range of SUTs.
Green-Fuzz removes as much overhead as possible without resorting to in-process
fuzzing, which requires non-trivial manual changes to the SUT and introduces
the risk of missing parts of the SUT behavior (as discussed in section 3.3).



Green-Fuzz: Efficient Fuzzing for Network Protocol Implementations 15

Therefore, we can achieve this maximum performance gain with a generic solu-
tion that works for any network protocol. While it substantially improves out-
process fuzzing, we may still want to do the extra work to move to in-process
fuzzing.

References

1. Libfuzzer. 2023. A ibrary for coverage-guided fuzz testing. Retrieved Feb 2, 2023
from https://llvm.org/docs/LibFuzzer.html

2. Zardus. 2023. preeny. Retrieved Jan 6, 2023 from https://github.com/zardus/
preeny

3. Google. 2022. ClusterFuzz Trophies. Retrieved Feb 12, 2023 from https://google.
github.io/clusterfuzz/#trophies

4. Nicola Tuveri. 2021. Fuzzing open-SSL. Retrieved Feb 6, 2023 from https://
github.com/openssl/openssl/blob/master/fuzz/README.md

5. Wayne Chin Yick Low. 2022. Dissecting Microsoft IMAP Client Protocol. Re-
trieved Feb 6, 2023 from https://www.fortinet.com/blog/threat-research/
analyzing-microsoft-imap-client-protocol

6. Aschermann, Cornelius, Sergej Schumilo, Ali Abbasi, and Thorsten Holz. "Ijon:
Exploring deep state spaces via fuzzing." In 2020 IEEE Symposium on Security
and Privacy (SP), pp. 1597-1612. IEEE, 2020.

7. Ba, Jinsheng, Marcel Böhme, Zahra Mirzamomen, and Abhik Roychoudhury.
"Stateful greybox fuzzing." In 31st USENIX Security Symposium (USENIX Se-
curity 22), pp. 3255-3272. 2022.

8. Cui, Baojiang, Fuwei Wang, Yongle Hao, and Xiaofeng Chen. "WhirlingFuzzwork: a
taint-analysis-based API in-memory fuzzing framework." Soft Computing 21 (2017):
3401-3414.

9. Daniele, Cristian, Seyed Behnam Andarzian, and Erik Poll. "Fuzzers for stateful
systems: Survey and Research Directions." arXiv preprint arXiv:2301.02490 (2023).

10. Isberner, Malte, Falk Howar, and Bernhard Steffen. "The TTT algorithm: a
redundancy-free approach to active automata learning." In Runtime Verification:
5th International Conference, September 22-25, 2014. Proceedings 5, pp. 307-322.
Springer, 2014.

11. Maier, Dominik, Otto Bittner, Marc Munier, and Julian Beier. "FitM: Binary-Only
Coverage-Guided Fuzzing for Stateful Network Protocols." In Workshop on Binary
Analysis Research (BAR), vol. 2022.

12. Natella, Roberto, and Van-Thuan Pham. "Profuzzbench: A benchmark for stateful
protocol fuzzing." In Proceedings of the 30th ACM SIGSOFT international sympo-
sium on software testing and analysis, pp. 662-665. 2021.

13. Pham, Van-Thuan, Marcel Böhme, and Abhik Roychoudhury. "AFLNet: a grey-
box fuzzer for network protocols." In 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST), pp. 460-465. IEEE, 2020.

14. Schumilo, Sergej, Cornelius Aschermann, Andrea Jemmett, Ali Abbasi, and
Thorsten Holz. "Nyx-net: network fuzzing with incremental snapshots." In Proceed-
ings of the Seventeenth European Conference on Computer Systems, pp. 166-180.
2022.

15. Sutton, Michael, Adam Greene, and Pedram Amini. Fuzzing: brute force vulnera-
bility discovery. Pearson Education, 2007.

https://llvm.org/docs/LibFuzzer.html
https://github.com/zardus/preeny
https://github.com/zardus/preeny
https://google.github.io/clusterfuzz/#trophies
https://google.github.io/clusterfuzz/#trophies
https: //github.com/openssl/openssl/blob/master/fuzz/README.md
https: //github.com/openssl/openssl/blob/master/fuzz/README.md
https://www.fortinet.com/blog/threat-research/analyzing- microsoft- imap- client- protocol
https://www.fortinet.com/blog/threat-research/analyzing- microsoft- imap- client- protocol


16 S.Andarzian et al.

16. Yu, Yingchao, Zuoning Chen, Shuitao Gan, and Xiaofeng Wang. "SGPFuzzer: A
state-driven smart graybox protocol fuzzer for network protocol implementations."
IEEE Access 8 (2020): 198668-198678.

17. Zeng, Yingpei, Mingmin Lin, Shanqing Guo, Yanzhao Shen, Tingting Cui, Ting
Wu, Qiuhua Zheng, and Qiuhua Wang. "Multifuzz: A coverage-based multiparty-
protocol fuzzer for iot publish/subscribe protocols." Sensors 20, no. 18 (2020): 5194.

18. Luo, Zhengxiong, Feilong Zuo, Yuheng Shen, Xun Jiao, Wanli Chang, and Yu
Jiang. "ICS protocol fuzzing: Coverage guided packet crack and generation." In
2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1-6. IEEE, 2020.

19. Mozilla Security. 2021. Peach. Retrieved Feb 2, 2023 from https://github.com/
MozillaSecurity/peach

20. Yu, Bo, Pengfei Wang, Tai Yue, and Yong Tang. "Poster: Fuzzing IoT firmware
via multi-stage message generation." In Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security (CCS 2019), pp. 2525-2527.
2019.

21. Natella, Roberto. "StateAFL: Greybox fuzzing for stateful network servers." Em-
pirical Software Engineering 27, no. 7 (2022).

22. Fioraldi, Andrea, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. "AFL++: Com-
bining incremental steps of fuzzing research." In 14th USENIX Workshop on Offen-
sive Technologies (WOOT 20). 2020.

23. The OPC foundation 2023. The OPC Unified Architecture (UA). Retrieved April
2, 2023 from https://opcfoundation.org/about/opc-technologies/opc-ua/

24. Modbus organization. 2023. Modbus data communications protocol . Retrieved
April 2, 2023 from https://modbus.org/

25. Cheremushkin, Temnikov. OPC UA security analysis 2023. Technical report,
Kaspersky. Retrieved April 14, 2023 from https://ics-cert.kaspersky.com/
publications/reports/2018/05/10/opc-ua-security-analysis/

26. Serebryany, Kostya. "OSS-Fuzz-Google’s continuous fuzzing service for open source
software." (USENIX 2017).

27. Klooster, Thijs, Fatih Turkmen, Gerben Broenink, Ruben Ten Hove, and Mar-
cel Böhme. "Continuous Fuzzing: A Study of the Effectiveness and Scalability
of Fuzzing in CI/CD Pipelines." In 2023 IEEE/ACM International Workshop on
Search-Based and Fuzz Testing (SBFT), pp. 25-32. IEEE, 2023.

https://github.com/MozillaSecurity/peach
https://github.com/MozillaSecurity/peach
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://modbus.org/
https://ics-cert.kaspersky.com/publications/reports/2018/05/10/opc-ua-security-analysis/
https://ics-cert.kaspersky.com/publications/reports/2018/05/10/opc-ua-security-analysis/

	Green-Fuzz: Efficient Fuzzing for Network Protocol Implementations

