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Abstract. Fuzzing is a great technique to find software bugs. However,
certain types of systems, notably network protocols, are still challenging
to fuzz because of in-efficiency. As an extended version of our previous
article, we identify the root causes for overhead in fuzzing network proto-
cols. After that, we categorize and discuss strategies for fuzzing network
protocols. As a result, this article presents a comprehensive analysis of
all the root causes behind the inefficiency of fuzzing network protocols
and all the strategies to avoid them.
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1 Introduction

Fuzzing (a.k.a. fuzz testing) is an effective technique for testing software systems.
Popular fuzzers such as AFL++ [22] and LibFuzzer [1] have found thousands
of bugs in both open-source and commercial software. For instance, Google has
discovered over 25,000 bugs in their software (e.g., Chrome) and over 36,000
bugs in over 550 open-source projects [3]. Fuzzing involves sending many – tens
or hundreds of thousands – (semi)automatically generated input to the System-
Under-Test (SUT), so the speed of generating and processing many inputs is
important. Fuzzers go to extreme lengths to increase the speed [28].

Unfortunately, not all software can benefit from such fuzzing campaigns. For
network protocols, achieving high speeds in fuzzing is tricky. Whereas a typical
fuzzing campaign with a modern fuzzer like AFL++ [22] on, say, a graphics
library will produce thousands of inputs per second [31], a fuzzer like AFLNet [13]
for fuzzing network protocols produces a few dozens of inputs per second. One
important reason is the overhead of network stacks. However, network protocols
are often stateful protocols, and this statefulness is then another reason that
slows down the fuzzing [9] as it means that each test case is a sequence of input
messages – is then another reason that slows down the fuzzing. Another reason
is context switching between the fuzzer and the SUT that further slows down
the fuzzing speed.
? This research is funded by NWO as part of the INTERSCT project
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Often in a campaign to fuzz some network protocol implementation, the code
of the SUT will be modified in an ad-hoc way to remove performance overheads,
for instance, by removing the network stack or letting the fuzzer by-passing the
network stack when interacting with the SUT (for example, see [25]). We are
primarily interested in generic techniques that can implemented in a fuzzer (or
some library used by the fuzzer) that will speed fuzzing up for any network
protocol implementation. Still, our analysis sheds light on what can be achieved
by ad-hoc modification of the SUT.

In an earlier article [30], we reported results of two strategies to improve the
efficiency of fuzzing network protocols that we implemented, namely Desock+ to
reduce communication overheads (root cause network stack in section 3.1) and
Green-Fuzz to reduce the context switches between fuzzer and SUT (root cause
context switching in section 3.2). As an extended version of the earlier article
[30], this article provides a more comprehensive analysis of the root causes of
performance overhead in fuzzing network protocols and strategies to tackle them.
Some of the results of this analysis are also relevant for fuzzing other stateful
protocols and even fuzzing in general. Our contributions are as follows:

– We present all root causes of overheads in network protocol fuzzing.
– We provide all strategies to avoid or eliminate root causes of overhead in

fuzzing network protocols, including the two presented in the earlier article.
– We provide a comprehensive analysis of the strategies and their impact on

the root causes of overhead in fuzzing network protocols.

Section 2 explains why fuzzing performance is important. Section 3 delves
into the types of overheads encountered while fuzzing network protocols. Moving
on to Section 4, we discuss strategies to overcome the communication overheads
that slow down the fuzzing network protocols. Section 5 is focused on strategies
to reduce the overhead caused by context switching between the fuzzer and the
SUT. Section 6 explores strategies to address the challenges of initialization and
termination overheads. Section 7 is dedicated to analyzing and comparing these
strategies to determine which works best. We then shift our focus in Section
8 to review related work in this field. Section 9 looks ahead, discussing future
research directions and acknowledging the limitations of our current article. Fi-
nally, in Section 10, we conclude our article by summarizing our findings and
their implications for improving fuzzing performance in network protocol testing.

2 Background

In the realm of software security, one of the major challenges is ensuring the
robustness and safety of software against malicious inputs. Fuzzing, a dynamic
code testing technique, is a useful way of identifying vulnerabilities in software.
There are many factors considered for effective fuzzing of software. The main
ones are code-coverage, performance, and applicability. Each of these factors is
essential for effectively fuzzing and finding vulnerabilities. Performance, as one
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of these factors, is critical in fuzzing because more fuzzing speed means we need
less computing resources and energy.

For example, Google is spending a lot of computing resources for OSS fuzz
[26] to find bugs. By having an efficient fuzzer, these companies can spend less
time and resources on fuzzing. Furthermore, time is critical when it comes to
integrating fuzzing in the CI/CD 1 pipelines for software. As mentioned in [27],
the reasonable amount of time that should be spent on fuzzing in the CI/CD
pipeline is around 10 minutes per day, which is very short.

The issues mentioned above get worse when it comes to fuzzing network
protocol implementations. When fuzzing regular command line software2, on
average, we are 100 times faster than fuzzing network protocol implementations.
This observation led us to do more research and find hurdles in efficiently fuzzing
network protocol implementations. After addressing these hurdles, we believe
this is the maximal amount of speed gain we can have when doing out-process
fuzzing.

3 Types of Overhead in Network Protocol Fuzzing

There are types of overheads for fuzzing network protocols. There are three kinds
of overhead, which we will refer to as O1-O3:

– Network stack overhead (O1) happens when the fuzzer sends the input
to the SUT or the SUT sends back a response using the network stack.

– There is also context switching overhead (O2), which happens when
there is a context switch between the fuzzer and the SUT.

– There is also SUT initialization and termination overhead (O3), which
happens every time the SUT is initialized and terminated.

In the remainder of this section, we will take a deeper look into these over-
heads. Figure 1 shows the overheads while fuzzing a network protocols.

3.1 Root cause 1: network stack(O1)

When testing applications on a single machine using fuzzing, the network stack
includes functions that are not needed. These include calculating checksums,
adding headers, and routing. These tasks are important for network communi-
cation but are unnecessary for fuzzing on one machine. They use extra computer
resources without any benefit and make the fuzzing process slower and less ef-
fective. This shows the need for a more suitable strategy for fuzzing on a single
machine, which would use resources better and improve the process of finding
vulnerabilities.

On top of previously mentioned overheads in the paragraph above, our exper-
iments show that when using network stack for fuzzing, network related system
1 Continuous Integration / Continuous Deployment
2 This is just an estimation based on our experience with out-process fuzzing using
AFL fuzzer
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Fig. 1: Overheads of fuzzing a network protocol for a trace with one input mes-
sage. The green color refers to overhead root cause one, blue is for root cause
two and red is for root cause three.
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calls also add overheads. Network stack overhead (O1) is composed of sending
and receiving overheads. For example, in order to send an input to the SUT, the
fuzzer would call setsockopt and sendto system-calls and when SUT want to
recieve the input, it has to call the recvfrom system-call.

3.2 Context Switching between Fuzzer and SUT - root cause 2

In fuzzing network protocols, the context switching overhead(O2) in operat-
ing systems becomes important. Fuzzing involves rapidly sending and receiving
many inputs and outputs to/from the SUT, which requires frequent context
switches as the operating system switches the execution between the fuzzer and
the SUT. Each context switch entails the operating system saving the state of
the currently active process (the fuzzer or the SUT) and loading the state of
the other. This process consumes significant system resources. This is especially
resource-intensive due to the high frequency of switches, as the state informa-
tion (including register data, program counters, and memory allocations) must
be continuously stored and restored.

Furthermore, the cache invalidation caused by these switches, where pre-
viously loaded cache data becomes irrelevant after a context-switch, leads to
additional memory reads, thereby more overhead. This substantial overhead can
significantly affect the efficiency of fuzzing processes, slowing down the fuzzing
and potentially impacting the detection of vulnerabilities.

3.3 SUT Initialization and Termination - root cause 3

In fuzzing network protocols, a new SUT process must be created for each input
trace. This involves repeatedly invoking fork system-call, leading to overhead.
On top of that, the SUT needs to be initialized for each input, which includes
running constructors and initialization functions specific to that SUT. These
initializations, which set up the execution environment for the SUT, need to be
executed for every input trace, which leads to SUT initialization overhead (O3).

After processing each input trace, the SUT must be terminated. The termi-
nation process involves the kill system call, which needs to be called multiple
times to ensure the process is completely terminated and this leads to SUT
termination overhead (O3). This is particularly expensive in terms of system
resources, as the operating system needs to ensure all resources allocated to the
process are properly released and the process state is fully cleared. The cumu-
lative effect of repeatedly initializing and terminating the SUT for each input
trace significantly slows down the fuzzing process and increase overhead.

4 Communication strategies (tackling root cause 1)

An essential part of a network protocol fuzzer is sending the inputs to the SUT
and receiving the respective outputs for each input. Using real network commu-
nication to test network protocols through fuzzing introduces significant over-
head, making it less efficient. Despite this drawback, it remains a popular choice
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among many fuzzers like AFLNet [13], AFLNwe [22], and StateAFL [21], mainly
because of its simplicity. These tools work by sending inputs and receiving re-
sponses through actual network sockets. This process, while straightforward,
involves the network stack, which adds overhead. Essentially, while real network
communication is the path of least resistance for many developers, the associ-
ated overheads suggest exploring alternative strategies that could offer improved
efficiency and performance. There are strategies for this purpose as follows:

1. S1A: Using simulated network stack.
2. S1B: Using shared-memory.
3. S1C: Using In-memory communication.

The strategies listed above, reduce overhead O1, for every input message. We
discussed these strategies in more detail below.

4.1 Simulated network stack

In our previous article we presented Desock+ as a simulated socket library
that works with any fuzzer to avoid network communication overhead. Existing
fuzzers for network protocols, such as AFLNet [13], rely on network communica-
tion to send inputs to the SUT. However, this strategy has two drawbacks. The
fuzzer sends an input message to the SUT and gets a response. Each round of
fuzzing 3 is done by sending a sequence of input messages, which we call a trace
of input messages. For each trace of input message T =< m1,m2, ...,mn >, the
fuzzer must create a new connection, which adds overhead. Additionally, send-
ing each input message mn through the network also incurs overhead due to
the time-consuming steps in the network stack, which are unnecessary for the
fuzzing.

To reduce this overhead, we propose using a simulated socket instead of
sending inputs through the network stack. By taking this strategy, we do not
have to use emulation or modify the source code of the SUT, and it is faster. We
accomplish this by using a modified version of the simulated socket library called
preeny, which communicates with the SUT via the standard I/O. However,
we found that preeny does not work out of the box. We addressed this issue
by modifying preeny and introducing a new simulated socket library named
Desock+.

Network Protocol Fuzzing using Desock+: Desock+ can be used by
the SUT instead of the standard POSIX library to fuzz network protocols more
efficiently. The overview of a fuzzer working with Desock+ is shown in Figure 2.
In this case, the fuzzer is the slightly modified AFLNet which sends and receives
input messages through standard I/O instead of network sockets. As we can see,
the SUT is intact, and the only thing that is changed is the underlying socket
library, which the SUT would load instead of the real socket library.

3 One round of fuzzing consists of sending one input to the SUT to test it, and re-
freshing the SUT for the next input



On the (in)Efficiency of Fuzzing Network Protocols 7

(a) AFLNet (b) AFLNet using Desock+

Fig. 2: Removing network communication overhead using Desock+.

The difference between preeny and Desock+ is that preeny can not sup-
port specific socket-related system-calls and arguments. However, by modifying
preeny, we have provided Desock+, which can handle any types of SUT that
use POSIX network I/O. The arguments in socket-related system-calls that Des-
ock+ supports are listed in Table 1. The advantage of Desock+ over preeny is
that it can also support SUTs that:

– Contain socket system-calls using blocking or non-blocking network I/O.
– Receive the input messages as datagram, streams, sequenced, connection-

less, and raw.
– Use connect and accept4 system-calls.

The modifications made to preeny to make Desock+ are implemented in the
socket system-call, which is responsible for creating the socket file descriptor.
We have added a function named setup, which modifies the socket file descriptor
by considering different arguments provided to the socket system-call. Based
on the arguments passed to the socket system-call, Desock+ uses fcntl and
setsockopt to set different arguments on the socket file descriptor. This way,
other socket-related system-calls can use this socket file descriptor without re-
sulting in an error. In preeny, these arguments are ignored while creating the
socket file descriptor, resulting in an error when other socket-related system-calls
try to use different arguments inside the SUT.

Desock+ is only helpful for fuzzing network protocols, whereas preeny is also
intended to be used for SUT interaction with other services on the system or
using a loopback address4. To be able to set different arguments on the socket
file descriptor, Desock+ avoids assigning an IP address and port number to
the socket file descriptor (setting arguments on a simulated file descriptor with
assigned IP and port results in an EINVAL error). However, since preeny is
meant to be used for many other purposes, this can break its functionality.
Therefore, we made Desock+ a separate library for use by fuzzers.

4 A loopback address is a unique IP address, that is used to refer to the localhost.
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Table 1: Socket-related POSIX system-calls and their arguments supported by
Desock+.

System-Call Arguments System-Call Arguments
AF_LOCAL SOCK_NONBLOCK
AF_INET connect3() SOCK_CLOEXEC
AF_INET6 SOCK_SEQPACKET

SOCK_STREAM SOCK_DGRAM
socket() SOCK_DGRAM SOCK_STREAM

SOCK_SEQPACKET SOCK_NONBLOCK
SOCK_RAW dup3() SOCK_CLOEXEC
SOCK_RDM recv() MSG_CMSG_CLOEXEC

SOCK_PACKET recvfrom() SCM_RIGHTS
SOCK_NONBLOCK recvmsg() MSG_DONTWAIT

accept4() SOCK_CLOEXEC MSG_ERRQUEUE
SOCK_SEQPACKET send() SOCK_STREAM
SOCK_STREAM sendto() SOCK_SEQPACKET

bind() AF_INET sendmsg() MSG_CONFIRM
AF_INET6 MSG_DONTWAIT

4.2 Shared-memory

Using shared memory [33] for fuzzing network protocols increases fuzzing net-
work protocols performance because communication occurs directly through
memory rather than actual or simulated network sockets. Unlike Desock+, which
relies on files to mimic network communication, shared memory offers a more di-
rect and faster strategy. This speed improvement is attributed to eliminating the
overheads associated with network stack or file-based communication strategies.
Moreover, there is potential to further enhance tools like Desock+ by adapting
them to use shared memory instead of files.

4.3 In-memory (requires in-process fuzzing strategy S3C)

In-process fuzzers usually mutate a variable within the program in each fuzzing
round, called in-memory fuzzing. This differs from shared-memory, where the
inputs are sent from the fuzzer process to the SUT process via a shared-memory
(pipes in Linux). In-memory communication is the fastest strategy for fuzzing
network protocols, primarily due to its direct interaction with the SUT memory.
This strategy is significantly faster because it eliminates the overhead of pro-
cessing inputs from real networks, files, or shared memory. This strategy only
works with in-process fuzzing (see section 6.3). The process involves compiling
the SUT code with a compiler like LLVM [1] and embedding the fuzzer directly
within the SUT, sidestepping the need for external data transmission. Notably,
LibFuzzer [1] employs this strategy, leveraging in-process fuzzing to optimize the
efficiency and speed of the fuzzing operation. This strategy not only simplifies the
communication mechanism but also significantly boosts the performance of the
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fuzzing process, demonstrating the effectiveness of in-memory communication in
conjunction with in-process fuzzing.

5 Trace sending strategies (tackling root cause 2)

There are strategies to send input traces to the SUT that can affect the overheads
associated with context switching. These strategies are:

1. S2A: Sending input messages one by one.
2. S2B: Sending input messages in one go (reduces overhead O2, for every input

trace).

In this section, first, we introduce the strategy used by many fuzzers for
network protocols. After that, we discuss the strategy we introduced in our
previous article.

5.1 Sending input messages one by one

The baseline for the network protocol fuzzers (e.g., AFLNet, AFLNwe, StateAFL)
sends input messages one by one to the SUT and receives the respective re-
sponses. However, this strategy adds overhead for context switching between
the fuzzer and the SUT. This overhead can be avoided by applying more sophis-
ticated strategies like the one in section 5.2.

5.2 Sending input messages in one go

In our previous article [30], we have presented Green-Fuzz, a new fuzzer to reduce
the context-switches between the fuzzer and SUT in the fuzzing process.

Current fuzzers for network protocols consider a trace of input messages
T =< m1,m2, ...,mn >, and send the input message mn one by one to fuzz the
SUT. By using the Green-Fuzz, we do not send input messages one by one but as
a trace. We do this because when the fuzzer sends input messages one by one, the
fuzzer has to call two (or more) system-calls for each input message and call the
same number of system-calls to receive the respective response from the SUT.
However, by sending the entire trace of input messages in one go, the number
of system-calls is reduced: for a trace of input messages T with n messages, we
only have the overhead once, instead of n times. This strategy can be applied
to any network protocol fuzzer. However, because Green-Fuzz sends the whole
trace in one go, there is a limitation where we assume that the fuzzer can decide
on the input trace in advance. We applied this strategy on AFLNet [13].

Design: To apply our strategy to AFLNet, we implemented another simu-
lated socket library named Fast-desock+. Fast-desock+ intercepts and buffers
the trace of input messages T sent by Green-Fuzz fuzzer. After that, it takes
each message mn from trace T and sends it to the SUT. Consequently, the SUT
finishes processing and sends back a response rj , which Fast-desock+ intercept
and save into a response buffer.
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(a) AFLNet (b) Green-Fuzz

Fig. 3: Sending a trace of input messages in AFLNet (a) vs Green-Fuzz (b). By
sending all messages/entire trace in one go, unlike one by one in AFLNet, we
save overhead from context switches and system-calls.

When Fast-desock+ has sent all input messages and saved all the respective
responses into the buffer, it sends the responses back to Green-Fuzz in one go.
These responses are a list of responses. Because an individual input message mn

can produce several responses or none. Therefore, we must associate each input
message with its responses, and so we need a list of pairs, including input and its
respective response in each pair. We send the list of responses as a list of pairs
to the Green-Fuzz. This list of tuples would be in the form of {(n, r)|r ∈ R =
{r1, ..., rj}}, where n is the index of the input message and r is the respective
response to input message mn. This way, the Green-Fuzz can relate the input
messages and their respective response (or responses).

The difference between Fast-desock+ and Desock+ is that Fast-desock+ also
hooks sendto, recvfrom, and setsockopt to intercept and buffer trace of input
messages and responses between the fuzzer and SUT.

Figure 3-a shows the AFLNet interaction with the SUT, where the fuzzer
sends each input message one by one. Figure 3-b shows the Green-Fuzz interac-
tion with the SUT, which sends a trace of the input messages to the SUT in one
go.

6 Process integration strategies (tackling root cause 3)

This section delves into strategies by which fuzzers can integrate with the oper-
ating system, which are as follows:

1. S3A: Out-process fuzzing.
2. S3B: Persistent mode fuzzing (reduces overhead O3, for every input trace).
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3. S3C: In-process fuzzing (reduces overhead O1 and O3, for every input mes-
sage and trace).

The strategy S3C, tackles root cause 3, but can also tackle root cause 2,
because in-process fuzzing usually comes with in-memory fuzzing. Each strategy
has its advantage and disadvantages, which we discuss in detail in this section.

6.1 Out-process fuzzing

One strategy used in fuzzing is out-process fuzzing, which involves the fuzzer
working outside the SUT as a separate process. This strategy is more straight-
forward because it does not need SUT modification and can be done without
much manual work. However, it’s not very fast and uses much computational
power. Tools like AFLNet [13] and StateAFL [21] use out-process fuzzing strat-
egy, which includes creating a copy of the SUT process (process forking) for every
new input trace and then stopping the process when needed with termination
(killing process). This strategy is beneficial for fuzzing SUTs where the source
code is unavailable, or SUT modification is complex, which cannot be done with
in-process fuzzing.

6.2 Persistent mode fuzzing

AFL++ persistent mode offers a take on out-process fuzzing by embedding a
large while loop within SUT. This loop begins after the SUT is initialized and
finishes just before the SUT terminates, effectively avoiding the overhead caused
by initialization and termination of the SUT. This strategy speeds up the fuzzing
process by getting rid of the overhead linked to initialization and termination.
However, making this work requires modification of the SUT, which is a draw-
back.

AFL* [32] is a fuzzer based on AFL++ [22] persistent mode. By leveraging
AFL++ persistent mode, AFL* effectively bypasses the overheads associated
with initialization and termination. However, this strategy introduces the need to
reset the SUT after sending each trace. Resets can be soft or hard, depending on
the nature of the SUT options. For example, a soft reset can be used if the SUT
supports a "quit" command, eliminating reset-related overhead. A hard reset
becomes mandatory for fuzzing stateful systems in scenarios lacking a soft reset,
reintroducing significant overhead. This variance underscores the importance of
understanding the specific requirements and capabilities of the protocol being
fuzzed to optimize the efficiency of the AFL* strategy.

6.3 In-process fuzzing

For the in-process fuzzing strategy [7][1], users must modify the SUT manually
as it incorporates a loop within the SUT similar to persistent mode (see section
6.2). After the SUT processes each input message, it jumps back to the start
point for processing another input, thus avoiding the overhead of initialization
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and termination. This results in a significantly faster fuzzing process. A criti-
cal distinction between AFL++ persistent mode and in-process fuzzing lies in
integrating the fuzzer within the SUT, enabling it to mutate inputs directly.
This integration ensures that the fuzzing and the SUT operate as a single pro-
cess, avoiding context switches. While in-process fuzzing often uses in-memory
communication to achieve efficiency, it is not always the case. However, it is im-
portant to note that employing an in-memory fuzzing strategy depends on using
an in-process strategy, highlighting the intertwined nature of these strategies for
enhancing fuzzing effectiveness.

.

7 Analysing and comparing all Strategies

This section analyzes all strategies employed for fuzzing network protocols listed
in sections 4-6 to understand their performance gain. We have two sets of data:

– We measured overheads of individual system-calls, context-switching, and
time spent on the processes while using each fuzzing strategy.

– We implemented strategy S1A (desock+) and S1A+S2B (Green-Fuzz) and
have data from experiments using this implementation.

7.1 Comparing all strategies

We evaluate and compare all strategies discussed in sections 4-6, using data from
our experiments to measure the potential reduction in overhead by each strategy.
The data is gathered using the following approach:

– We considered the time taken by network-related system calls from fuzzer
and SUT.

– We considered the context switching between the SUT and compared the
time taken for Green-Fuzz with its baseline.

– We added break points after initialization and termination to see how long
it takes for the SUT to process the input messages.

– We monitored the system-calls and execution time for both in-process and
out-process fuzzers.

The percentages shown in Table 2 represent the reduction in overhead for
processing a single input trace (for each specific overhead root cause) rather
than an entire fuzzing campaign comprised of many traces. Consequently, the
performance gain differences are expected to amplify as the number of traces
increases. In front of each performance gain percentage, we have also shown the
time gained by each strategy. We have also shown the impact of each strategy
on the performance gain (more + means more performance gain), which relates
to the percentage of the performance gain for each overhead root cause. Strategy
S1B and S2B have almost the same impact but in different overheads. These two
strategies are orthogonal and can be used together.
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According to the information in Table 2, the in-memory and in-process strat-
egy demonstrates the highest overhead reduction among all strategies evaluated.
However, as outlined in section 6.3, this significant performance gain requires
modifications to the SUT, which might not always be feasible. It is important
to note that we have omitted any strategies that failed to show a performance
improvement.

Table 2: Comparing all strategies and their performance gain. The performance
gain percentage is per overhead root cause. For example simulated network stack
reduces the network stack overhead by 50%. We also show the absolute gained
time is in milliseconds. The dash (-) means no performance gain.
Strategy Reduction in O1 Reduction in O2 Reduction in O3 Impact
S1A: simulated network stack 50% 15 ms - - - - +
S1B: shared-memory 70% 21 ms - - - - ++
S2B: All-in-one-go - - 78% 8 ms - - ++
S3B: persistent mode - - - - 96% 45 ms +++
S1C+S3C: in-memory + in-process 92% 28 ms 100% 10 ms 96% 45 ms ++++

7.2 Evaluation of the strategy S1A on ProFuzzBench

We have used AFLNet with and without Desock+ to evaluate the fuzzing speed.
Both sets of fuzzing experiments have been done with an identical setup on the
five SUTs from ProFuzzBench[12]. ProFuzzBench is a benchmark that is used
for the evaluation of fuzzers for stateful systems.

We ran our experiment five times to ensure the speed is consistent. Each time
the fuzzing went on for an hour. Table 3 shows the execution speed of AFLNet
with and without Desock+. We see that the speed of fuzzing traces of input
messages per second is up to four times faster using Desock+.

Table 3: Speed in message per second, of AFLNet with and without Desock+
on ProFuzzBench [12].

SUT AFLNet AFLNet with Desock+ Speed up
lightFTP 12 49 +308%
dnsmasq 15 19 +26%
live555 14 29 +107%
dcmqrscp 17 21 +23%
tinydtls 12 19 +58%
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7.3 Evaluation of the strategy S1A+S2B (Green-Fuzz) on
ProFuzzBench

To show the benefits of Green-Fuzz, we evaluate it on ProFuzzBench [12]. Af-
ter that, we compare the absolute fuzzing overhead and its difference between
AFLNet using Desock+ and Green-Fuzz.

Table 4 shows the execution speed of Green-Fuzz compared to the AFLNet
using Desock+. Five of the ten SUTs included in ProFuzzBench use the socket
options our tool supports. We fuzzed the SUTs for an hour and repeated our
experiment to ensure the numbers are reliable. The results show that the trace of
input messages fuzzed per second is higher when using Green-Fuzz than AFLNet
using Desock+, but not that much.

We used ptrace to monitor system-calls that are a source of the overhead
while fuzzing. Table 5 shows the absolute overhead difference, where we can see
Green-Fuzz decreases overhead in recvfrom, sendto, setsockopt, and connect
system-calls. There is no change in overhead regarding the kill and clone
system-calls because both AFLNet and Green-Fuzz are out-process fuzzers and
have to use these system-calls for each trace of input messages.

Table 4: Speed in message per second, of AFLNet with Desock+ and Green-Fuzz
on ProFuzzBench.

SUT AFLNet with Desock+ Green-Fuzz Speed up
lightFTP 49 64 +30%
dnsmasq 19 19 0%
live555 29 31 +6%
dcmqrscp 21 25 +19%
tinyDTLS 19 34 +78%

Table 5: Comparison of absolute system-call overhead between AFLNet and
Green-Fuzz. The times are in milliseconds (from an example SUT) and shown
in the format of n × m × time where n is the number of traces and m is the
number of messages in one trace.

System-call AFLNet Green-Fuzz Overhead Difference
clone n× 6.5 n× 6.5 0%
kill n× 8.7 n× 8.7 0%
recvfrom n×m× 1.2 n× 1.2 −80%
sendto n×m× 1.3 n× 1.3 −80%
setsockopt n×m× 0.1 n× 0.1 −80%
connect n× 11 n× 4 −63%
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8 Related Work

Using grey-box fuzzing solutions to test network services has become a popu-
lar research topic. One example is Peach* [18], which combined code coverage
feedback with the original Peach [19] fuzzer to test Industrial Control Systems
(ICS) protocols. It collected code coverage information during fuzzing and used
Peach’s capabilities to generate more effective test cases.

IoTHunter [20] applied grey-box fuzzing for network services in IoT devices.
It used code coverage to guide the fuzzing process and implemented a multi-stage
testing approach based on protocol state feedback.

AFLNet [13] is a grey-box fuzzer for protocol implementations which uses
state feedback to guide fuzzing. It acts as a client and replayed different variations
of the original message sequence sent to the server. It kept the variations that
increased code or state space coverage effectively.

StateAFL [21] is a variation of AFLnet that utilizes a memory state to repre-
sent the service state. It instrumented the target server during compilation and
determined the current protocol state at runtime. It gradually built a protocol
state machine to guide the fuzzing process.

8.1 Related work with Desock+

Zeng et al. [17] also made a simulated socket library, named Desockmulti, to
avoid network communication overhead when fuzzing network protocols. How-
ever, compared to Desock+, Desockmulti does not support connect and accept4
system-calls, which limits its applicability.

Maier et al. [11] introduced the Fuzzer in the Middle (FitM) for fuzzing net-
work protocols. Instead of using a simulated socket library, FitM intercepts the
emulated system-calls inside the QEMU emulator and sends the input messages
to the SUT without the network communication overhead. Because FitM has
emulation overhead, it is slower than our approach. Compared to our approach,
FitM has the capability to fuzz both the client and server of a network protocol
as the SUT.

There are also ad-hoc approaches [4][5] [25] where by manually modifying
the SUT, the fuzzer would send the input messages to the SUT without network
communication. These approaches change the source code of SUT to read the
inputs from a file or argument variables to avoid network communication. These
approaches require manual effort for each SUT, which is not ideal, but are more
stable because of SUT specific fuzzing harnesses that are built per SUT.

8.2 Related work with Green-Fuzz

Nyx-Net [14] utilizes hypervisor-based snapshot fuzzing incorporated with the
emulation of network functionality to handle network traffic. Nyx-Net uses a cus-
tomized kernel module, a modified version of QEMU and KVM, and a custom
VM configuration where the target applications are executed. Nyx-Net also con-
tains a custom networking layer miming certain POSIX network functionalities,
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which currently needs more support for complicated network targets. In contrast,
Green-Fuzz adopts a user-mode approach that avoids complexity. Green-Fuzz is
also an orthogonal approach to be added on top of Nyx-Net, to speed up the
fuzzing.

In-process (a.k.a in-memory) fuzzing [1][7] is an approach where a fuzzer
does not restart or fork the SUT for each trace of input messages, and the
fuzzing is done within the same process. The input values are mutated inside the
memory. Therefore, it also avoids network communication overhead. However,
these methods involve manual work to modify a piece of code as the SUT and
specifying the exact position of variables inside the memory. Using a simulated
socket library, Green-Fuzz does not require these manual steps. However, in-
process fuzzing is faster (around 200 to 300 times in our experiments) than our
approach because it has less fuzzing overhead. Another issue of in-process fuzzing
is that usually it can not test the whole system, because of the fuzzing loop that
is defined for the harness.

9 Limitations and Future Work

Currently, Desock+ only works with the SUTs using system-calls and their ar-
guments shown in in Table 1. Some SUTs use other socket options. For example,
input arguments for epoll system-call must be simulated in Desock+ to work
correctly if the SUT is using this system-call. Because part of Green-Fuzz is
based on Fast-desock+, these limitations also apply to Green-Fuzz. Since the
non-simulated options in Desock+ and Fast-desock+ can be complex. As our
future work, we would like to complete these engineering efforts and use Green-
Fuzz to fuzz network protocols such as OPC-UA [23] and Modbus [24] protocols.
To Fuzz protocols that require a handshake, the Green-Fuzz needs a minor mod-
ification to do the handshake before sending the whole trace in one go.

Desock+ and Green-Fuzz are general solutions to fuzzers for stateful systems,
so we plan to apply them to other fuzzers for stateful systems. In this article,
we applied our improvements to AFLNet. However, any fuzzer that sends the
inputs to a network protocol via network sockets or sends the input messages
from a trace of messages can be upgraded by using our solutions, except if it needs
feedback after sending each input message, as [10] does. For example, SGPFuzzer
[16] and Nyx-net [14] are network protocol fuzzers that can be upgraded by
Green-Fuzz, to have an efficient fuzzer. The modification for applying Green-
Fuzz to other fuzzers is relatively simple. The user has to modify the harness to
send and receive the messages in a trace format to the SUT.

9.1 Recommendations for software developers to make fuzzer
friendly network protocol implementations

We propose that software developers implementing network protocols consider
reducing the overhead and complexities typically associated with the SUT when
the tester wants to fuzz the SUT. By adopting these strategies, implementers
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can enhance the efficiency and effectiveness of fuzzing, leading to quicker and
more thorough vulnerability detection.

– Incorporate a Restart Message: Implement a ’restart’ message within
the protocol. This feature allows the fuzzer to send a specific command to
reset the state of the protocol and refresh all variables. It is beneficial in
stateful fuzzing, as it permits quick resetting without requiring complete
process reinitialization, saving time and resources.

– Disable Encryption Mechanisms: Develop a mechanism to turn off all
encryption during fuzzing temporarily. This enables fuzzers to avoid the
complexities of handling encrypted messages, managing encryption keys, or
performing cryptographic handshakes, thus simplifying the fuzzing process
and focusing on fuzz testing.

– Support for Alternate Input/Output Mechanisms: Provide support
for receiving and sending inputs/outputs through operating system pipes
or standard input/output instead of the network interface. This alternative
startegy can significantly reduce the overhead involved in the network stack,
allowing for faster and more direct data transmission between the fuzzer and
the SUT.

10 Conclusion

In conclusion, fuzzing emerges as a powerful method for uncovering bugs and
security flaws within software systems. Yet, its application to network proto-
cols has faced limitations, primarily due to reduced throughput. This article
delves into the root causes of overhead in fuzzing network protocols, thoroughly
examining all strategies to reduce or avoid these strategies. We explored and
categorized all strategies, assessing the advantages and disadvantages of each
to offer a comprehensive view. Our analysis, including insights from our prior
article and additional research, indicates that in-memory and in-process fuzzing
strategies are the fastest fuzzing strategy. However, this efficiency often requires
modifications to the SUT, which may not always be desirable or feasible. For
scenarios where modifying the SUT is not an option, employing an out-process
fuzzer, particularly one that utilizes sending a whole trace in one go and using
shared memory, presents the next best strategy for enhancing fuzzing speed.
Our overview provides better insight into choosing the appropriate strategies for
fuzzing network protocols. This paves the way for more effective and efficient
identification of vulnerabilities in network protocols.
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