
Software Security

Introduction

Erik Poll
Digital Security

Radboud University Nijmegen

1

Goals of this course

• How does security typically fail in software?

• Why does software often fail?

 What are the underlying root causes?

• What are ways to make software more secure?

 incl. principles, methods, tools & technologies

– incl. practical experience with some of these

 Focus more on defence than on offense

2

Practicalities: form & examination

• 2-hrs lecture every week

– read associated papers & ask questions!

• mandatory project work

– group project (with 4 people) on fuzzing

– smaller exercises (individual or in pairs)

– static analysis with PREfast for C/C++

– static analysis with semgrep

• written exam

Group project grade counts toward final grade:

exam is 70%, project is 30%

3

Practicalities: prerequisites

• Basic security knowledge

• TCB (Trusted Computing Base),

CIA (Confidentiality, Integrity, Availability),

Authentication, ...

• Basic knowledge of programming, in particular

– C(++) or assembly/machine code

– eg. malloc(), free(), *(p++), &x

 strings in C using char*

– Java or some other typed OO language

– eg. public, final, private, protected,

Exceptions

– bits of PHP, Python, and JavaScript

4

The kind of C(++) code you’ll see next week

char* copy_and_print(char* string) {

 char* b = malloc(strlen(string));

 strcpy(b,string); // copy string to b

 printf(”The string is %s.”, b);

 free(b);

 return(b);

}

int sum_using_pointer_arithmetic(int a[]) {

 int sum = 0;

 int *pointer = a;

 for (int i=0; i<4; i++){

 sum = sum + *pointer;

 pointer++; }

 return sum;

}

5

Exam material & mandatory reading

• slides

• my written lecture notes

• (parts of) some articles

I’ll be updating this in Brightspace as we go along

6

Not exam material

• Join the student CTF group if you’re interested in the

practical side of security

– in Discord https://discord.gg/bD8D7S5euv

– Tuesdays at 17:30 in Mercator fishbowl

And then maybe participate in HALON or NymaCon

• I recommend the Risky.Biz podcast

to keep up with weekly security news

7

Motivation & Background

8

A brief history of software security: January 2002

https://news.microsoft.com/2012/01/11/memo-from-bill-gates/ 9

Highest priority for Microsoft:

... trustworthiness ...

• Availability

• Security

• Privacy

Twenty years later (Sept 2022 & May 2023)

EU & US announce regulation for software security

https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act

https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/02/fact-sheet-biden-harris-administration-announces-national-cybersecurity-strategy

10

“Products with digital elements shall

 be made available on the market

without known exploitable vulnerabilities “

So: problem solved?

https://www.cisa.gov/news-events/bulletins

https://cve.mitre.org/cve/search_cve_list.html

Homework for the coming: check out

a) the latest US-CERT bulletin

b) recent CVEs for the browser, PDF viewer, and other
software you

11

How do computer systems get ‘hacked’?

By attacking

• software

• humans

Or: interaction between software & humans

• crypto

• hardware

12

Blaming 'stupid users' is victim blaming:

 if users do not use a system securely,

 this is an IT design flaw

What is software security?

Intersection of security engineering & software engineering:

• prevent design-level & implementation-level security

vulnerabilities and pro-actively design & build systems that

resist attacks

• reduce the chance of users harming themselves & others

by bad security choices

– NB programmers and sys admins are also users

• detect vulnerabilities that arise - accidentally or

intentionally - and react to them

• mitigate risks

before and after detecting problems

13

Changing nature of attackers

Originally, hackers were amateurs motivated by ‘fun’

• by script kiddies & more skilled hobbyists

Nowadays, hackers are professional:

• cyber criminals

 with lots of money & (hired) expertise

 Important game changers: ransomware & bitcoin

• state actors

 with even more money & in-house expertise

• hackers for hire

 e.g. NSO group, Zerodium, …

14

15

Prices for 0days

16

Prices for 0days

17

Google Chrome bug bounty payouts

18
https://bughunters.google.com/blog/5302044291629056/chrome-vrp-reward-updates-to-incentivize-deeper-research

https://news.risky.biz/risky-bulletin-researcher-scores-250-000-for-chrome-bug/

Software security: crucial facts

• There are no silver bullets!

 Firewalls, anti-virus, crypto, or special security features do

not magically solve all problems

“if you think your problem can be solved by cryptography, you

do not understand cryptography and you do not understand

your problem” [Bruce Schneier]

• Security is emergent property of entire system

– like quality

– or maybe: property of the ongoing process?

• Security by Design: security should be considered right
from the start & throughout the development lifecycle

19

Security software ≠ Software security

Adding security software can make a system more secure

 i.e. software specifically for security, such as

– access control,with authentication & authorisation

– TLS, IPSEC, VPN, …

– AV (AntiVirus), firewall, WAF (Web Application Firewall)

– access control

– NIDS (Network Intrusion Detection System)

– EDR (Endpoint Detection & Response, eg CrowdStrike)

– …

But all software must be secure, not just the security software

• That buffer overflow in your PDF viewer can still be exploited…

• Adding security software may add software bugs and make things

less secure:

 Check out https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=firewall

 https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=VPN

20

Root causes

21

Quick audience polls

• Did you ever take a course on C(++) programming ?

• Were you taught C(++) as a first programming language?

• Did this these courses

• warn about buffer overflows?

• warn about format string attacks?

• explain how to avoid them?

Major causes of problems are

• lack of awareness

• lack of knowledge

• irresponsible teaching of dangerous programming

languages

22

Quick audience poll

• Did you ever build a web-application?

– in which programming languages?

• Do you know the secure way of doing a SQL query in this
language (to prevent SQL injection)?

Major causes of problems are

• lack of awareness

• lack of knowledge

23

Root cause: security vs functionality

Primary goal of software is providing functionality & services

Managing associated risks is a secondary concern

When there is often a trade-off/conflict between

– security

– functionality, convenience, speed, …

then security typically looses out

• Users complain about missing features or broken

functionality, but not about insecurity

• Developers like adding features, not thinking about

security

24

• Have anyone here read the HTML specification?

• Has anyone here read the URL specification?

 Which one? There are two!

• Even security features we add to prevent problems are

hopelessly complex

– Has anyone read the TLS specification?

Root causes: complexity

25

Functionality & complexity vs security

Lost battles?

• Programming languages & APIs

we want these to be easy to use, powerful and efficient,

but they can be insecure, dangerous and error-prone

• Operating systems (OSs)

 with huge OS, with huge attack surface

• Web browsers

with ever fancier features, JavaScript, Web APIs to access

microphone, web cam, location, …

• Email clients

– which handle with all sorts of formats & attachments

26

Recap

Problems are due to

• lack of awareness

– of threats, but also of what should be protected

• lack of knowledge

– of potential security problems, but also of solutions

• people choosing functionality over security

• compounded by complexity

– software written in complex languages, using large complex

APIs, and running on complex platforms

27

Types of software security problems

28

Typical software security flaws

Flaws found in Microsoft's first security bug fix month (2002)

37%

20%

26%

17%

0%

buffer overflow

input validation

code defect

design defect

crypto

29

‘Levels’ at which security flaws can arise

1. Design flaws

 introduced before coding

2. Implementation flaws aka bugs aka code-level defects

 introduced during coding

As a rule of thumb, coding & design flaws equally common

Vulnerabilities can also arise on other levels

3. Configuration flaws

4. Unforeseen consequences of the intended functionality

• eg. spam: not enabled by flaws, but by features!

30

The bad news

 people keep making the same mistakes

The good news

 people keep making the same mistakes

 …… so we can do something about it!

 “Every upside has its downside” [Johan Cruijff]

31

Security in the

 Software Development Life Cycle

(SDLC)

[Material covered in CyBok chapter on Secure Software Lifecycle

by Laurie Williams, see course web page]

32

How can we make software secure?

We do not know how to do this!

We will always

• have vulnerabilities that have not been found (yet)

• overlook attack vectors

• make implicit assumptions that are – or become – invalid

• overlook ways in which functionality can be abused

• miss security properties that are important

• …

33

How can we make software more secure?

We do know how to do this!

• Knowledge about standard mistakes is crucial

– These depends on programming language, “platform”,

APIs/technologies used, type of application

– There is LOTS of info available on this nowadays

• But this is not enough: security to be taken into account

from the start, throughout the software development life

cycle

– Several ideas, best practices, methodologies to do this

34

Security in Software Development Lifecycle

Requirements

and use cases

Design Coding Testing

Security

Requirements

Threat

Modelling

Abuse

Cases

Risk
Analysis

Security

tests

Static

Analysis

Pen

testing

Security
incidents

Deployment

Training

Evolution of Security Measures

Security-by-Design

Privacy-by-Design

Patch

Management

System

Coding

guidelines

35

Bug bounty

program

Patch

Vulnerability management

Secure code

design

Choosing or designing secure

programming languages & APIs

Shifting

Organisations always begin tackling security at the end of the

SDLC, and then slowly evolve to tackle it earlier

1. First, do nothing

2. If security issue is discovered, then a) still do nothing, if there’s no

(economic) incentive; b) sue the people who reported; or c) patch

3. If this happens often: make update mechanism for regular patching

4. Do security testing, maybe hire pen-testers or have bug bounty program

5. Use static analysis tools when coding

6. Give security training to programmers

7. Think of security in software design

8. Think of security when choosing programming language & APIs

9. Think of security when designing programming languages & APIs

10. Think of abuse cases, and develop security tests for them

11. Think about security before you start coding, eg with security

architecture review

12. ...

36

Ever more acronyms for tools

• DAST (Dynamic Application Security Testing)

 ie. security testing

• SAST (Static Application Security Testing)

 ie. static analysis

• SCA (Software Composition Analysis)

 looking for known flawed software components

• Secret Scanners

 for leaked credentials (eg API keys) in cloud infra or code repos

• IAST (Interactive Application Security Testing)

– tools to help in manual pen-testing

• RASP (Run-time Application Security Protection)

– instrumentation to do runtime monitoring

37

Secure software development lifecycles

Methodologies

• Microsoft SDL [2004]

with extension for secure DevOps (DevSecOps)

• Touchpoints by Gary McGraw [2004]

• NIST SSDF (Secure Software Development Framework) [2022]

• Grip op SSD (Secure Software Development) by Dutch government

organisations https://www.cip-overheid.nl/en/category/products/secure-software

Maturity models

• SAMM (Software Assurance Maturity Model) by OWASP

• BSIMM by Synopsys

These security guidelines for the process are then complemented

with security guidelines for the product : Top N lists of common

security flaws, coding guidelines, security design patterns, …

38

Security in the software development life cycle

[Source: Gary McGraw, Software security, Security & Privacy Magazine,

IEEE, Vol 2, No. 2, pp. 80-83, 2004.]

McGraw’s Touchpoints

39

OpenSAMM

12 security practices grouped in 4 business functions

40

BSIMM (Building Security In Maturity Model)

Unfortunately, info about this has largely disappeared behind

paywall of the corporate website of Synopsys 

126 activities in 12 practices across 4 domains

41

BSIMM: comparing your security maturity

42

But first…

43

Discussing security is meaningless without answering

1. What are your security requirements?

What does it mean for the system to be secure?

2. What is your attacker model?

Against what does the system have to be secure?

– Attack surface / attack vectors

– Attacker’s motivations & capabilities

– Also: what are your security assumptions ?

• Including: what are the TCBs (Trusted Computing Bases)

for specific security properties or controls?

Aka threat modelling

44

Security requirements

a) ‘This application cannot be hacked’

• Generic default requirement ☺

• Vague & not actionable 

• ‘Negative’ security model

b) More specific security requirements

• In terms of Confidentiality, Integrity Availability (CIA)

• Or, usually better, in terms of Access Control

• i.e. Authentication & Authorisation

• also Monitoring & Response, so not just prevention

• mnemonic: AAAA for Authentication, Authorisation, Auditing, Action

• ‘Positive’ security model

45

Threat modelling

Draw diagram of the system and then brainstorm about

attacks & defenses using e.g. STRIDE or attack trees

• Spoofing

• Tampering

• Repudiation

• Information Disclosure

• Denial of Service

• Elevation of privilege

Read
 https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats

if these STRIDE notions are not clear

MITRE ATT&CK is probably too detailed for threat modelling

46

prevention vs detection & reaction

47

prevention vs detection & reaction

• Prevention seems to be the way to ensure security, but

detection & response often more important and effective

– Eg. breaking into a house with large windows is trivial;

despite this absence of prevention, detection & reaction still

provides security against burglars

– Most effective security requirement for most persons and

organisations: make good back-ups, so that you can recover

after an attack

• NB don't ever be tempted into thinking that good
prevention makes detection & reaction superfluous.

• Hence important security requirements to include are

– doing monitoring

– having logs for auditing and forensics

– having someone actually inspecting the logs

– ...

48

For you to read & do

1. To read:

• Section 2 & 4.1 of Secure Software Lifecycle by
Laurie Williams

• Sections 1-3 of Twenty Years of Secure Software
Development

2. To do: check out

• the latest US-CERT bulletin

• recent CVEs for the browser, PDF viewer and other
software you use on a regular basis

3. To do: brush up on you C(++) knowledge

51

The kind of C(++) code you will see next week

char* copy_and_print(char* string) {

 char* b = malloc(strlen(string));

 strcpy(b,string); // copy string to b

 printf(”The string is %s.”, b);

 free(b);

 return(b);

}

int sum_using_pointer_arithmetic(int a[]) {

 int sum = 0;

 int *pointer = a;

 for (int i=0; i<4; i++){

 sum = sum + *pointer;

 pointer++; }

 return sum;

}

52

	Slide 1: Software Security Introduction
	Slide 2: Goals of this course
	Slide 3: Practicalities: form & examination
	Slide 4: Practicalities: prerequisites
	Slide 5: The kind of C(++) code you’ll see next week
	Slide 6: Exam material & mandatory reading
	Slide 7: Not exam material
	Slide 8: Motivation & Background
	Slide 9: A brief history of software security: January 2002
	Slide 10: Twenty years later (Sept 2022 & May 2023)
	Slide 11: So: problem solved?
	Slide 12: How do computer systems get ‘hacked’?
	Slide 13: What is software security?
	Slide 14: Changing nature of attackers
	Slide 15
	Slide 16: Prices for 0days
	Slide 17: Prices for 0days
	Slide 18: Google Chrome bug bounty payouts
	Slide 19: Software security: crucial facts
	Slide 20: Security software ≠ Software security
	Slide 21: Root causes
	Slide 22: Quick audience polls
	Slide 23: Quick audience poll
	Slide 24: Root cause: security vs functionality
	Slide 25: Root causes: complexity
	Slide 26: Functionality & complexity vs security Lost battles?
	Slide 27: Recap
	Slide 28: Types of software security problems
	Slide 29: Typical software security flaws
	Slide 30: ‘Levels’ at which security flaws can arise
	Slide 31
	Slide 32: Security in the Software Development Life Cycle (SDLC) [Material covered in CyBok chapter on Secure Software Lifecycle by Laurie Williams, see course web page]
	Slide 33: How can we make software secure?
	Slide 34: How can we make software more secure?
	Slide 35: Security in Software Development Lifecycle
	Slide 36: Shifting
	Slide 37: Ever more acronyms for tools
	Slide 38: Secure software development lifecycles
	Slide 39: Security in the software development life cycle
	Slide 40: OpenSAMM
	Slide 41: BSIMM (Building Security In Maturity Model)
	Slide 42: BSIMM: comparing your security maturity
	Slide 43: But first…
	Slide 44: Discussing security is meaningless without answering
	Slide 45: Security requirements
	Slide 46: Threat modelling
	Slide 47: prevention vs detection & reaction
	Slide 48: prevention vs detection & reaction
	Slide 51: For you to read & do
	Slide 52: The kind of C(++) code you will see next week

