Software Security

Introduction

Erik Poll

Digital Security
Radboud University Nijmegen



Goals of this course

How does security typically fail in software?

Why does software often fail?
What are the underlying root causes?

What are ways to make software more secure?

incl. principles, methods, tools & technologies
- incl. practical experience with some of these

Focus more on defence than on offense



Practicalities: form & examination

2-hrs lecture every week
- read associated papers & ask questions!

mandatory project work
- group project (with 4 people) on fuzzing
- smaller exercises (individual or in pairs)
- static analysis with PREfast for C/C++
- static analysis with semgrep
written exam

Group project grade counts toward final grade:
exam is 70%, projectis 30%



Practicalities: prerequisites

Basic security knowledge

TCB (Trusted Computing Base),
CIA (Confidentiality, Integrity, Availability),
Authentication, ...

Basic knowledge of programming, in particular
- C(++) or assembly/machine code
- €g. malloc(), free(), *(pt+), &x
strings in C using char¥*
- Java or some other typed OO language

- eg. public, final, private, protected,
Exceptions

- bits of PHP, Python, and JavaScript



The kind of C(++) code you’ll see next week

char* copy and print(char* string) ({
char* b = malloc(strlen(string)) ;
strcpy(b,string); // copy string to b
printf ("The string is %s.”, b);
free (b) ;
return (b) ;
}
int sum using pointer arithmetic(int a[]) ({
int sum = 0;
int *pointer = a;
for (int 1i=0; i<4; i++ ){
sum = sum + *pointer;
pointer++; }

return sum;



Exam material & mandatory reading

slides
my written lecture notes
(parts of) some articles

I’ll be updating this in Brightspace as we go along



Not exam material

« Join the student CTF group if you’re interested in the
practical side of security

%  CTF-RU

— in Discord https://discord.gg/bD8D7S5euv W77 essonline @411 Members
— Tuesdays at 17:30 in Mercator fishbowl

And then maybe participate in HALON or NymaCon

| recommend the Risky.Biz podcast
to keep up with weekly security news

RISKY.BIZ

It's a jungle out there



Motivation & Background



A brief history of software security: January 2002

Htew + @& D7 X OyRedly TRedly oAl WOFormard  isendRecene [BoFnd| s @ ind | (3) <
Outiook Shortcuts  Folder List Look for: - Searchin~ Inbox Find Now Optons > X
(.v_‘«g g From: Ba Gates bEg@microsoft com) To: M R Corp and Subsidi Al FTE [aiftle@microsoft com)] -
-
Subjec Trustworthy computing e
Outiook Today x
Every few years [ have sent out a memo talking about the highest priority for Microsoft. Two years ago, it was the &
kickoff of our .NET strategy. Before that, it was several memos about the importance of the Internet to our future
@ and the ways we could make the Internet truly useful for people. Over the last year it has become dear that
Calendar ensuring .NET is a platform for Trustworthy Computing is more important than any other part of our work. If we
N don’t do this, people simply won't be willing - or able - to take advantage of all the other great work we do.
W Trustworthy Computing is the highest priority for all the work we are doing. We must lead the Industry to 3 whole
Cockarts new level of Trustworthiness in computing. . . . .
L]
wnen we sanea worc oo oo e e [11@€NESE priority for Microsoft:
articulated a new way to think about our sof
Tasks today we're moving towards smart clients w

oo lepatnaien T T

Windows the best client and server for this r

e There is a lot of excitement about what this ¢ Availability

@ that have been hyped over the last few year

including how they read, icate, sh <
P n ng how they read, communicate, shar g Securlty

However, even more important than any of { .

to deliver Trustworthy Computing. Whatim @ P

systems to be avallable and to secure their i rlvacy
reliable and secure as electricity, water Servivcs uim swreprmuniy.

Today, in the developed world, we do not worry about electricity and water services being available, With

telephony, we rely both on its availability and its security for conducting highly confidential business transactions
without worrying that information about who we call or what we say will be compromised. Computing falis well

short of this, ranging from the individual user who isn‘t willing to add a new application because it might

My Shorteuts destabilize their system, to a corporation that moves slowly to embrace e-business because today’s platforms don't 3

Otershortas | ¢ pistaant:

R )AL | o0z

https://Inews.microsoft.com/2012/01/11/memo-from-bill-gates/ 9



Twenty years later (Sept 2022 & May 2023)

EU & US announce regulation for software security

EU Cyber Resilience Act

Q.

NATIONAL
CYBERSECURITY
STRATEGY

For safer & more secure
digital products

MARCH 2023

STRATEGIC OBJECTIVE 3.3: SHIFT LIABILITY FOR
INSECURE SOFTWARE PRODUCTS AND SERVICES

#DigitalEl) #CyberSecEl

“Products with digital elements shall
be made available on the market
without known exploitable vulnerabilities “

https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act

https://lwww.whitehouse.gov/briefing-room/statements-releases/2023/03/02/fact-sheet-biden-harris-administration-announces-national-cybersecurity-strategy

10



So: problem solved?

https://www.cisa.gov/news-events/bulletins

https://cve.mitre.org/cve/search_cve_list.html

Homework for the coming: check out
a) the latest US-CERT bulletin

b) recent CVEs for the browser, PDF viewer, and other
software you

11



How do computer systems get ‘hacked’?

By attacking

. software B e

“ i Blaming 'stupid users' is victim blaming:
' if users do not use a system securely,

L | § \? this is an IT design flaw
b 7 “‘l“»

Or: interaction between software & humans

« humans

crypto

hardware

12



What is software security?

Intersection of security engineering & software engineering:

prevent design-level & implementation-level security

vulnerabilities and pro-actively design & build systems that
resist attacks

reduce the chance of users harming themselves & others
by bad security choices

— NB programmers and sys admins are also users

detect vulnerabilities that arise - accidentally or
intentionally - and react to them

mitigate risks
before and after detecting problems

13



Changing nature of attackers

Originally, hackers were amateurs motivated by ‘fun’
by script kiddies & more skilled hobbyists

Nowadays, hackers are professional:
cyber criminals
with lots of money & (hired) expertise
Important game changers: ransomware & bitcoin
state actors
with even more money & in-house expertise

hackers for hire
e.g. NSO group, Zerodium, ...

14



Dutch providers target of Salt Typhoon

News | 08/28-2025 | 11:00

The Netherlands has also been the target of the global cyber
espionage campaign of the Chinese hacking organization Salt
Typhoon. This is reported by the Dutch intelligence and security
services MIVD and AIVD today.

‘ 9 Algemene Inlichtingen- en

3 Veiligheidsdienst

Ministerie van Binnenlandse Zaken en
Koninkrijksrelaties

CYBERSECURITY ADVISORY

Countering Chinese State-Sponsored Actors
Compromise of Networks Worldwide to Feed
Global Espionage System

Last Revised: September 03,2025 Alert Code: AA25-239A

15



Prices for Odays
ZERODIUM Payouts for Desktops/Servers’

Up to Win RCE
sl H ‘Windows RCE: Remote Code Execution :
e macOs LPE: Local Privilege Escalation
N Linux/BSD SBX: Sandbox Escape or Bypass
m Any OS VME:Virtual Machine Escape
Up to Chrome
$500,000 RCE+LPE
Up to OpenSsL
$250,000
001 | [ ~ 4002
Up to VMware ESXi [l Thunderbird Sandmail
$200,000 VME RCE RCE
Win,/Linux
2002 |
Up to Safari ge Firefox 0c WordPrass
$100,000 RCE+LPE RCE+LPE RCE
Mac Win
5004 |
Up to Adobe PDF WinRAR T-Zi Window
80,000 RCE+ ; ; LPE/SBX
EO07 5008
Up to WinZip macOS
$50,000 RCE LPE/SBX
006 |
Up to vBulletin Roundcube
$10,000 RCE
* All payouts are subject to change or cancellation without notice. All trademarks are the property of their respactive ownars. 2019/ @ zerodium.com

16



Up to
$2,500,000

Up to

Up to
$1,500,000

Up to
$500,000

Up to
$200,000

Up to
100,000

* All payouts are subject to change or cancallation without notice. All trademarks are the proparty of thair respactive owners.

Prices for Odays

ZERODIUM Payouts for Mobiles’

FCP: Full Chain with Persistence
RCE: Remote Code Execution

LPE: Local Privilege Escalation

SBX: Sandbox Escape or Bypass

3001 N[ 2005 |

WeChat
RCE+LPE

Persistence
105 /Androkl
5001 ~

Baseband

RCE+LPE Kernel fRoot

10S/ Androld 105 /Andrald
700 -

WiFi
RCE

RCE
via Mithi

Code Signing
Bypass

105/ Androld 105 MAndrokd 105 fAndrald

2007 b |

FB Massaengear
RCE+LPE

105/ Androld
2aom |

Media Files
RCE+LPE

123 fAndrold

2,008

Signal
RCE+LPE

K35 JARdrokd
202 b

Drocuments
RCE+LPE

K25 MAndrold
B0 |

Information
Disclosura

KDE JAndrokd

. OS5
I Android
E Any OS5

2,001 |
WhatsApp
RCE+LPE
Zero Click

10 Androkd
2.00% A |

WhatsApp
RCE+LPE
125 Ardrakd
2008 M 200 A |

Talagram
RCE+LPE

Email App
RCE+LPE

105 /Andrald 105 /Android
4004 A |

Chrome RCE
w/fo SBX

[k]ASLR
Bypass

105 /Andrald

1001 |

Android FCP

Zero Click

Androkd

1002

i0s FCP
Zero Click

ge
RCE+LPE
Zero Click

SMS/MMS
RCE+LPE

103 /Andrakd

Safari RCE
wio SBX

2019/ 09 @ Zerodium.com

17



Google Chrome bug bounty payouts

Risky Bulletin: Researcher scores
$250,000 for Chrome bug

In other news: WinRAR patches zero-day; new TETRA comms protocol
vulnerabilities; researcher gains access to Microsoft's internal network for fun and
no profit.

i Catalin Cimpanu https://news.risky.biz/risky-bulletin-researcher-scores-250-000-for-chrome-bug/

11 Aug 2025 — 12 min read

High-quality report High-quality report High-quality report
with demonstration demonstrating of demonstrated Baseline
of RCE controlled write memory corruption

Sandbox escape /

Memory corruption / RCE Upto

in a non-sandboxed Up to $250,000 Up to $90,000 Up to $35,000 $25,000
process [1], [2]

Memory Corruption / RCE

in a highly privileged Upto

process (e.g. GPU or Up to $85,000 Up to $70,000 Up to $15,000 $10,000

network processes) [2]

Renderer RCE / memory Ub to

corruptionin a Up to $55,000 Up to $50,000 Up to $10,000 P
$7,000[3]

sandboxed process

https://bughunters.google.com/blog/5302044291629056/chrome-vrp-reward-updates-to-incentivize-deeper-research

18



Software security: crucial facts

« There are no silver bullets!

Firewalls, anti-virus, crypto, or special security features do
not magically solve all problems

“if you think your problem can be solved by cryptography, you
do not understand cryptography and you do not understand
your problem” [Bruce Schneier]

« Security is emergent property of entire system
— like quality
— or maybe: property of the ongoing process?

« Security by Design: security should be considered right
from the start & throughout the development lifecycle

19



Security software # Software security

Adding security software can make a system more secure

i.e. software specifically for security, such as

— access control,with authentication & authorisation

— TLS, IPSEC, VPN, ...

— AV (AntiVirus), firewall, WAF (Web Application Firewall)
— access control

— NIDS (Network Intrusion Detection System)

— EDR (Endpoint Detection & Response, eg CrowdStrike)

But a//software must be secure, not just the security software
« That buffer overflow in your PDF viewer can still be exploited...

« Adding security software may add software bugs and make things
less secure:

Check out https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=firewall
https:/Icve.mitre.org/cgi-bin/cvekey.cgi?keyword=VPN

20



Root causes

21



Quick audience polls

« Did you ever take a course on C(++) programming ?
Were you taught C(++) as a first programming language?
Did this these courses
warn about buffer overflows?
warn about format string attacks?
explain how to avoid them?

Major causes of problems are
lack of awareness
lack of knowledge

irresponsible teaching of dangerous programming
languages

22



Quick audience poll

« Did you ever build a web-application?
- I/n which programming languages?

« Do you know the secure way of doing a SQL query in this
language (to prevent SQL injection)?

Major causes of problems are
lack of awareness
lack of knowledge

23



Root cause: security vs functionality

Primary goal of software is providing functionality & services
Managing associated risks is a secondary concern

When there is often a trade-off/conflict between
- security

- functionality, convenience, speed, ...

then security typically looses out

« Users complain about missing features or broken
functionality, but not about insecurity

 Developers like adding features, not thinking about
security

24



Root causes: FQMNHﬁXW’f

Have anyone here read the HTML specification?

HTML

Living Standard — Last Updated 2 September 2025

Has anyone here read the URL specification?

Which one? There are two!

Errata Exist
T. Berners-Lee
W3C/MIT

R. Fielding
Day Software
L. Masinter

Updated by: 6874, 7328, 8828
Network Working Group
Request for Comments: 3986
STD: 66

Updates: 1738

Obsoletes: 2732, 2396, 1808

URL

Living Standard — Last Updated 18 August 2025

Even security features we add to prevent problems are

hopelessly complex

— Has anyone read the TLS specification?

25



FUNCTIONALITY & COMPLEXITY VS security
Lost battles?

Programming languages & APls

we want these to be easy to use, powerful and efficient,
but they can be insecure, dangerous and error-prone

Operating systems (OSs)
with huge OS, with huge attack surface

Web browsers

with ever fancier features, JavaScript, Web APIs to access
microphone, web cam, location, ...

Email clients
- which handle with all sorts of formats & attachments

26



Recap

Problems are due to
- lack of awareness
- of threats, but also of what should be protected

lack of knowledge
- of potential security problems, but also of solutions

people choosing functionality over security

compounded by complexity

- software written in complex languages, using large complex
APls, and running on complex platforms

27



Types of software security problems

28



Typical software security flaws
(== N

v MS: “No new code for 5 month”

02.06.2002 - 8:01A
1 7% M EDT

0 buffer overflow,
37%
[ input validation
B code defect

@ design defect

[ crypto

20%

Flaws found in Microsoft's first security bug fix month (2002)

29



‘Levels’ at which security flaws can arise

1. Design flaws
introduced before coding
2. Implementation flaws aka bugs aka code-level defects

introduced during coding

As a rule of thumb, coding & design flaws equally common

Vulnerabilities can also arise on other levels
3. Configuration flaws
4. Unforeseen consequences of the /ntended functionality

* eg. spam: not enabled by flaws, but by features!

30



The bad news
people keep making the same mistakes

The good news
people keep making the same mistakes

...... so we can do something about it!

“Every upside has its downside” [Johan Cruijff]

31



Security in the
Software Development Life Cycle

(SDLC)

[Material covered in CyBok chapter on Secure Software Lifecycle
by Laurie Williams, see course web page]

32



How can we make software secure?

We do not know how to do this!

We will always

have vulnerabilities that have not been found (yet)
overlook attack vectors

make implicit assumptions that are — or become - invalid
overlook ways in which functionality can be abused

miss security properties that are important

33



How can we make software more secure?

We do know how to do this!

« Knowledge about standard mistakes is crucial

— These depends on programming language, “platform”,
APls/technologies used, type of application

— There is LOTS of info available on this nowadays

« But this is not enough: security to be taken into account
from the start, throughout the software development life
cycle

— Several ideas, best practices, methodologies to do this

34



Security in Software Development Lifecycle

Security-by-Design
Privacy-by-Design D ——
Evolution of Security Measures
Threat Training
Modelling™~, Wulnerability management
Risk _ Coding
Analysis guidelines Bug bounty Patch
program Management
Security System
Requirements Patch
Abuse Secure code  Static Security Pen Security
Cases design Analysis tests testing incidents
I I | I —>
Requirements Design Coding Testing Deployment

and use cases

Choosing or designhing secure
programming languages & APIs

35



Shifting \eft

Organisations always begin tackling security at the end of the
SDLC, and then slowly evolve to tackle it earlier

1.
2.

= a2 O 0N O O b~ W
Ao.......

-
N

First, do nothing

If security issue is discovered, then a) still do nothing, if there’s no
(economic) incentive; b) sue the people who reported; or c) patch

If this happens often: make update mechanism for regular patching

Do security testing, maybe hire pen-testers or have bug bounty program
Use static analysis tools when coding

Give security training to programmers

Think of security in software design

Think of security when choosing programming language & APls

Think of security when designing programming languages & APls

Think of abuse cases, and develop security tests for them

Think about security before you start coding, eg with security
architecture review

36



Ever more acronyms for tools

DAST (Dynamic Application Security Testing)
ie. security testing

SAST (Static Application Security Testing)
ie. static analysis

SCA (Software Composition Analysis)
looking for known flawed software components
Secret Scanners
for leaked credentials (eg API keys) in cloud infra or code repos

IAST (Interactive Application Security Testing)
— tools to help in manual pen-testing

RASP (Run-time Application Security Protection)
— instrumentation to do runtime monitoring

37



Secure software development lifecycles

Microsoft

bt

THE SECURITY
DEVELOPMENT

Methodologies LIFECYCLE
. Microsoft SDL [2004] i
with extension for secure DevOps (DevSecOps) e s

 Touchpoints by Gary McGraw [2004] |
* NIST SSDF (Secure Software Development Framework) [2022]

* Grip op SSD (Secure Software Development) by Dutch government
organisations https://www.cip-overheid.nl/en/category/products/secure-software

Maturity models
« SAMM (Software Assurance Maturity Model) by OWASP
« BSIMM by Synopsys

These security guidelines for the process are then complemented
with security guidelines for the product : Top N lists of common
security flaws, coding guidelines, security design patterns, ...

38



Security in the software development life cycle

McGraw’s Touchpoints

Security External Static Penetration
requirements review analysis testing
(tools)
Abuse Risk Risk-based Risk A
cases analysis security tests analysis Security
\ l \ breaks
i\ +

Requirements Design Test Code Test Field
and use cases plans results feedback

[Source: Gary McGraw, Software security, Security & Privacy Magazine,
IEEE, Vol 2, No. 2, pp. 80-83, 2004. ]

39



OpenSAMM OPENSAMM

12 security practices grouped in 4 business functions

SAMM Overview
Software
Development

Business Functions

( Construction ( Verification Deployment

Security Practices

Strategy & Education & Security Design Security Environment
Metrics Guidance Requirements Review Testing Hardening
Policy & Threat Secure Code Vulnerability Operational
Compliance Assessment Architecture Review Management Enablement

40



BSIMM (Building Security In Maturity Model)

126 activities in 12 practices across 4 domains

Governance Intelligence SSDL Touchpoints = Deployment

Strategy and Metrics Attack Models Architecture Analysis Penetration Testing

Compliance and Policy Security Features Code Review Software Environment
and Design

Training Standards and Security Testing Configuration Management
Requirements and Vulnerability Manage-

ment

Unfortunately, info about this has largely disappeared behind
paywall of the corporate website of Synopsys ©®

41



BSIMM: comparing your security maturity

Stratlegy & Melrics
30—
Configuration Mgmt. & Vuinerabllity Mgmt. ~ Compliance & Policy

Software Environment | . Training

Penetration Testing \ Attack Models

Security Testing * ' Security Features & Design

Code Review ~ — 'Sunduds & Requirements

Architecture Analysis

42



But first...



Discussing security is meaningless without answering

1. What are your security requirements?
What does it mean for the system to be secure?

2. Whatis your attacker model?
Against what does the system have to be secure?
— Attack surface / attack vectors
— Attacker’s motivations & capabilities
— Also: what are your security assumptions ?

* Including: what are the TCBs (Trusted Computing Bases)
for specific security properties or controls?

Aka threat modelling

44



Security requirements

a) ‘This application cannot be hacked’
« Generic default requirement ©
« Vague & not actionable ®
« ‘Negative’ security model

b) More specific security requirements
* In terms of Confidentiality, Integrity Availability (CIA)
* Or, usually better, in terms of Access Control
* i.e. Authentication & Authorisation

« also Monitoring & Response, so not just prevention
« mnemonic: AAAA for Authentication, Authorisation, Auditing, Action

« ‘Positive’ security model

45



Threat modelling

Draw diagram of the system and then brainstorm about
attacks & defenses using e.g. STRIDE or attack trees

« Spoofing

« Tampering

* Repudiation

* Information Disclosure
« Denial of Service

« Elevation of privilege

Read

meter

Remote access

. Ui, WY

Insert SW upgrade

wibackdoor

Use remote
control function

Back-end
compromise
(HES, ..}

Get
security
key

Communication

Access to

channel

GPRS

RF/Mesh

Use exploit

Injection Buffer
attack overflow

h

Get security
key

network

https:/llearn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
if these STRIDE notions are not clear

MITRE ATT&CK is probably too detailed for threat modelling

46




orevention Vs detection & reaction




orevention Vs detection & reaction

Prevention seems to be the way to ensure security, but
detection & response often more important and effective

— Eg. breaking into a house with large windows is trivial;
despite this absence of prevention, detection & reaction still
provides security against burglars

— Most effective security requirement for most persons and
organisations: make good back-ups, so that you can recover
after an attack

NB don't ever be tempted into thinking that good
prevention makes detection & reaction superfluous.
Hence important security requirements to include are

— doing monitoring

— having logs for auditing and forensics

— having someone actually inspecting the logs

48



For you to read & do

1. Toread:

« Section 2 & 4.1 of Secure Software Lifecycle by
Laurie Williams

« Sections 1-3 of Twenty Years of Secure Software
Development

2. Todo: check out
* the latest US-CERT bulletin

 recent CVEs for the browser, PDF viewer and other
software you use on a regular basis

3. Todo: brush up on you C(++) knowledge

51



The kind of C(++) code you will see next week

char* copy and print(char* string) ({
char* b = malloc(strlen(string)) ;
strcpy(b,string); // copy string to b
printf ("The string is %s.”, b);
free (b) ;
return (b) ;
}
int sum using pointer arithmetic(int a[]) ({
int sum = 0;
int *pointer = a;
for (int 1i=0; i<4; i++ ){
sum = sum + *pointer;
pointer++; }

return sum;

52



	Slide 1: Software Security  Introduction  
	Slide 2: Goals of this course
	Slide 3: Practicalities: form & examination
	Slide 4: Practicalities: prerequisites
	Slide 5: The kind of C(++) code you’ll see next week
	Slide 6: Exam material & mandatory reading
	Slide 7: Not exam material  
	Slide 8: Motivation  & Background
	Slide 9: A brief history of software security:  January 2002
	Slide 10: Twenty years later (Sept 2022 & May 2023)
	Slide 11: So: problem solved?
	Slide 12: How do computer systems get ‘hacked’?
	Slide 13: What is software security?
	Slide 14: Changing nature of attackers
	Slide 15
	Slide 16: Prices for 0days
	Slide 17: Prices for 0days
	Slide 18: Google Chrome bug bounty payouts
	Slide 19: Software security: crucial facts
	Slide 20: Security software ≠ Software security
	Slide 21: Root causes
	Slide 22: Quick audience polls
	Slide 23: Quick audience poll
	Slide 24: Root cause: security vs functionality
	Slide 25: Root causes: complexity
	Slide 26: Functionality & complexity   vs   security  Lost battles?   
	Slide 27: Recap
	Slide 28: Types of software security problems
	Slide 29: Typical software security flaws
	Slide 30: ‘Levels’ at which security flaws can arise
	Slide 31
	Slide 32: Security in the   Software Development Life Cycle  (SDLC)   [Material covered in CyBok chapter on Secure Software Lifecycle by Laurie Williams, see course web page] 
	Slide 33: How can we make software secure?
	Slide 34: How can we make software more  secure?
	Slide 35: Security in Software Development Lifecycle
	Slide 36: Shifting
	Slide 37: Ever more acronyms for tools
	Slide 38: Secure software development lifecycles
	Slide 39: Security in the software development life cycle
	Slide 40: OpenSAMM
	Slide 41: BSIMM (Building Security In Maturity Model)
	Slide 42: BSIMM: comparing your security maturity
	Slide 43: But first…  
	Slide 44: Discussing security is meaningless without answering 
	Slide 45: Security requirements
	Slide 46: Threat modelling  
	Slide 47: prevention vs detection & reaction
	Slide 48: prevention vs detection & reaction
	Slide 51: For you to read & do
	Slide 52: The kind of C(++) code you will see next week

