Software Security

Introduction

Erik Poll

Digital Security
Radboud University Nijmegen

A brief history of software security: January 2002

Htew + & D] X OoReply CNReply oAl (OForward iSendReceve [BpFnd| g @ nd v |(5),
x Look for: v SearchIn~ Inbox Find Now Options > X
= @ Outlook Today - [Personz - 2
i PEg@microsoft [aifRe@microsoft. ol
(@ @ Fron: Ba Gates com) To: Mcrosoft Corp and Subsidianies Al FTE com] :
© Contacts Subjec Trustworthy computing e a
Outlook Today (3 Deleted Itams - <
& Deafts Every few years [have sent out 3 memo talking about the highest priority for Microsoft. Two years ago, it was the &
Inbox (1) kickoff of our .NET strategy. Before that, it was several memos about the importance of the Internet to our future
Journal and the ways we could make the Internet truly useful for people. Over the last year it has become dear that
Calendar {2 Notes ensuring .NET is a platform for Trustworthy Computing is more important than any other part of our work. If we
N @ Outbox don’t do this, people simply won't be willing - or able - to take advantage of all the other great work we do.
'.§ 2 Sent Items Trustworthy Computing is the highest priority for all the work we are doing. We must lead the Industry to 3 whole
el % I’*’ new level of Trustworthiness in computing.

® e we s v o oo F{1QNEST Priority for Microsoft:

articulated a new way to think about our sof

Tasks od. " d 1 =
s o aniarse s oy 2. LTUSTWOItNINESS ...

Windows the best client and server for this r . .

fos There is a lot of excitement about what this o Aval I a.b I I I ty

@ that have been hyped over the last few year

bt including how they read, communicate, shar g S e Cu r I ty

However, even more important than any of { .

to deliver Trustworthy Computing. What I m @ P Il Vacy
systems to be avallable and to secure their i

reliable and secure as electricity, water Servivcs uim swreprmuniy.

Today, in the developed world, we do not worry about electricity and water services being avallable, With
telephony, we rely both on its availability and its security for conducting highly confidential business transactions
without worrying that information about who we call or what we say will be compromised. Computing falis well
short of this, ranging from the individual user who isn‘t willing to add a new application because it might

"Vs"""m destabllize their system, to a corporation that moves slowly to embrace e-business because today’s platforms don't o
Other Shectauts | ¢ > zies tho =
50 Items, 46 Urvead

)AL M 002

https://Inews.microsoft.com/2012/01/11/memo-from-bill-gates/ 2

Twenty years later (Sept 2022 & May 2023)

EU Cyber Resilience Act

Q.

NATIONAL
CYBERSECURITY
STRATEGY

For safer & more secure
digital products

MARCH 2023

#Migitalt) #¥CyberSecEl

STRATEGIC OBJECTIVE 3.3: SHIFT LIABILITY FOR
proposed regulation INSECURE SOFTWARE PRODUCTS AND SERVICES
to complement
NIS2 framework

EU & US announce regulation for software security

https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act

https://lwww.whitehouse.gov/briefing-room/statements-releases/2023/03/02/fact-sheet-biden-harris-administration-announces-national-cybersecurity-strategy

So: problem solved?

https://www.cisa.gov/news-events/bulletins

https://cve.mitre.org/cve/search_cve_list.html

Homework for the coming: check out
a) the latest US-CERT bulletin

b) recent CVEs for the browser, PDF viewer, and other
software you

c) some of their CVSS scores

Goals of this course

How does security typically fail in software?

Why does software often fail?
What are the underlying root causes?

What are ways to make software more secure?

incl. principles, methods, tools & technologies
- incl. practical experience with some of these

Focus more on defence than on offense

Practicalities: prerequisites

Basic security knowledge

TCB (Trusted Computing Base),
CIA (Confidentiality, Integrity, Availability),
Authentication, ...

Basic knowledge of programming, in particular
- C(++) or assembly/machine code
- €g. malloc(), free(), *(pt+), &x
strings in C using char¥*
- Java or some other typed OO language

- eg. public, final, private, protected,
Exceptions

- bits of PHP and JavaScript

The kind of C(++) code you’ll see next week

char* copy and print(char* string) ({
char* b = malloc(strlen(string)) ;
strcpy(b,string); // copy string to b
printf ("The string is %s.”, b);
free (b) ;
return (b) ;
}
int sum using pointer arithmetic(int a[]) ({
int sum = 0;
int *pointer = a;
for (int 1i=0; i<4; i++){
sum = sum + *pointer;
pointer++; }

return sum;

The kind of Java code you’ll see next month

public int sumOfArray(int[] pin)
throws NullPointerException,
ArrayIndexOutOfBoundsException {
int sum = 0;
for (int i=0; i<4; i++){
sum = sum + a[i];
}

return sum;

The kind of object-oriented code you’ll see next month

final class A implements Serializable ({
public final static int SOME_ CONSTANT = 2;
private B bl;
public B b2;

protected A ShallowClone (Object o)
throws ClassCastException {
a = new(a);
x.bl = ((A) o0).bl; // cast o to class A
x.b2 = ((A) o0).b2;

return a;

Exam material & mandatory reading

slides
my written lecture notes
(parts of) some articles

I’ll be updating this in Brightspace as we go along

10

Not exam material

« Join the student CTF group if you’re interested in the
practical side of security

% CTF-RU

— in Discord https:/idiscord.gg/bD8D7S5euv [RNANETITECEITEEES
— Tuesdays at 17:30 in Mercator fishbowl

| recommend the Risky.Biz podcast
to keep up with weekly security news

RISKY.BIZ

It's a jungle out there

11

Not exam material

&) OLUASP

Open Web Application
Security Project

OWASP Netherlands meet-up (i.e. free pizza!!)

Oct 17 in Nijmegen
See https:/lowasp.org/www-chapter-netherlands/#div-upcoming

Register for the (low-traffic) OWASP-NL mailing list to be informed
of further OWASP-NL events

12

Practicalities: form & examination

2-hrs lecture every week
- read associated papers & ask questions!

project work

- PREfast for C++ (individual or in pairs)

- group project (with 4 people) on fuzzing

- project on static analysis with Semmle/CodeQL
written exam

Bonus point for group project, computed as (grade-6) /4

13

Today

- Whatis "software security”?

- Some root causes of the problems

- The solution to the problems

14

Motivation

15

How do computer systems get ‘hacked’?

By attacking

Blaming 'stupid users' is victim blaming:
* humans if users do not use a system securely,
\?

this is an IT design flaw

L

) — Ll

Or: interaction between software & humans

crypto

hardware

16

What is software security?

Intersection of security & software engineering:

« prevent design-level & implementation-level security

vulnerabilities and pro-actively design & build systems that
resist attacks

« prevent users from harming themselves & others by bad
security choices

— the same for programmers, sys admins, .

« detect vulnerabilities that arise - acc:/denta//y or
intentionally - and react to them |

* mitigate risks
before and after detecting problems

17

Fairy tales

Many discussions about security begin with Alice and Bob

How can Alice communicate securely with Bob,
when Eve can modify or eavesdrop on the communication?

18

This is an interesting
problem,
but it is not the biggest
problem

19

The big problem

Alice & her computer are communicating with another computer

possibly malicious

INPUT

How to prevent Alice or her computer from getting hacked ?
Or how to detect this? And then react ?

Solving the earlier problem, of securing communication, does not help!

20

Changing nature of attackers

Traditionally, hackers were amateurs motivated by ‘fun’
by script kiddies & more skilled hobbyists
NB if you like that, join the RU-CTF team!

Nowadays hackers are professional:
cyber criminals
with lots of money & (hired) expertise
Important game changers: ransomware & bitcoin
state actors
with even more money & in-house expertise

hackers for hire
e.g. NSO group, Zerodium, ...

21

Prices for Odays
ZERODIUM Payouts for Desktops/Servers’

Up to Win RCE
sl mEm Windows RCE: Remote Code Execution :

e macOs LPE: Local Privilege Escalation
I Linux/BSD SBX: Sandbox Escape or Bypass
m Any OS VME:Virtual Machine Escape
Up to Chrome

$500,000 RCE+LPE

Up to
$250,000
&001 "M 5.002 | 4002
Up to VMware ESXi [l Thunderbird Sendmail
$200,000 VME RCE RCE
Win/Linux
002 ~
Up to Safari Edge WordPross
100,000 RCE+LPE RCE+LPE RCE
Mac Win
5004 |
Up to Adobe PDF WinRAR T-Zi Window
$80,000 RCE+ ; LPES/SBX
EOO7 5.008
Up to WinZip macOs
$50,000 RCE LPE/SBX
TOOE |
Up to Antiy vBullatin Roundcube
$10,000 RCE
* All payouts are subject to change or cancellation without notice. All trademarks are the property of their respective owners. 2019/ @ zerodium.com

22

Up to
$2,500,000

Up to

Up to
$1500,000

Up to
$500,000

Up to
$200,000

Up to
$100,000

* All payouts are subject to change or cancellation without notice. Al trademarks are the property of their respective owners.

Prices for Odays

ZERODIUM Payouts for Mobiles’

3001 N[2005

WeChat
RCE+LPE

Persistonce
105 JArdrolkd
5001 |

Baseband
RCE+LPE

122 Androld

WiFi
RCE

105/ ARdrold 10S JAndrokd

FCP: Full Chain with Persistence
RCE: Remote Code Execution
LPE: Local Privilege Escalation

SBX: Sandbox Escape or Bypass

2007 b |

FB Messenger
RCE+LPE

10/ Androld
2am N

Meadia Files

Kernal /Root RCE+LPE

105 /Androld 12 fAndrold

RCE
via Mith

105 /Androld

. (05

I Android

 Any OS5

2,008 2,008 b |

Signal Telegram

RCE+LPE RCE+LPE

KIS SARdrokd 1S /Andrald
2,012 h |

Documents
RCE+LPE

K25 fARdrokd
B0 A

Informaticn [k]ASLR
Disclosura Bypass

0% JAndrokd 105 /Androld

100 |

Android FCP
Zero Click

Androkl
1002 b
i0S FCP
Zero Click
108
2.001 ™ b

WhatsApp
RCE+LPE
Zero Click

10 Androkd

iMessage
RCE+LPE
Zero Click

2004 N

SMS/MMS
RCE+LPE

WhatsApp
RCE+LPE

10 fAndrakd 105/ Andrakd

Safari RCE
wio SBX

2019/ 09 @ Zerodium.com

23

Apple & Google payouts

Google Offers $1.5M Bug Bounty for
Android 13 Beta

The security vulnerability payout set bug hunters rejoicing, but claiming the reward is much,

much easier said than done.

Tara Seals
Managing Editor, News, Dark Reading May 02, 2022

Apple will pay you $2 million if you can
break its new 'Lockdown Mode'

By Joe Wituschek published July 07, 2022

24

Sandbox escape /
Memory corruption / RCE
in a non-sandboxed
process [1], [2]

Memory Corruption / RCE
in a highly privileged
process (e.g. GPU or
network processes) [2]

Renderer RCE / memory
corruptionina
sandboxed process

Google Chrome rewards
for memory corruption bugs [Sept 2024]

High-quality report
with demonstration
of RCE

Up to $250,000

Up to $85,000

Up to $55,000

High-quality report
demonstrating of demonstrated
controlled write memory corruption

e

High-quality report

e
Up to

https://bughunters.google.com/blog/5302044291629056/chrome-vrp-reward-updates-to-incentivize-deeper-research

Up to $50,000

25

Software security: crucial facts

e There are no silver bullets!’

Firewalls, anti-virus, crypto, or special security features do
not magically solve all problems

“if you think your problem can be solved by cryptography, you
do not understand cryptography and you do not understand
your problem” [Bruce Schneier]

o Security is emergent property of entire system
— like quality
— or maybe: property of the ongoing process?

o Security should be - but hardly ever is - integral
part of the design, right from the start

26

security software # software security

Adding security software can make a system more secure

i.e. software specifically for security, such as

— access control,with authentication & authorisation

— TLS, IPSEC, VPN, ...

— AV (AntiVirus), firewall, WAF (Web Application Firewall)
— access control

— NIDS (Network Intrusion Detection System)

— EDR (Endpoint Detection & Response, eg CrowdStrike)

But a//software must be secure, not just the security software
« That buffer overflow in your PDF viewer can still be exploited...

« Adding security software may add software bugs and make things
less secure:

Check out https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=firewall
https:/Icve.mitre.org/cgi-bin/cvekey.cgi?keyword=VPN

27

Root causes

28

Quick audience polls

« Did you ever take a course on C(++) programming ?
Were you taught C(++) as a first programming language?
Did this these courses
warn about buffer overflows?
warn about format string attacks?
explain how to avoid them?

Major causes of problems are
lack of awareness
lack of knowledge

irresponsible teaching of dangerous programming
languages

29

Quick audience poll

« Did you ever build a web-application?
- I/n which programming languages?

« Do you know the secure way of doing a SQL query in this
language (to prevent SQL injection)?

Major causes of problems are
lack of awareness
lack of knowledge

30

Root cause: security vs functionality

Primary goal of software is providing functionality & services
Managing associated risks is a secondary concern

When there is often a trade-off/conflict between
- security

- functionality, convenience, speed, ...

then security typically looses out

« Users complain about missing features or broken
functionality, but not about insecurity

 Developers like adding features, not thinking about
security

31

Root causes: FQMNHﬁXWY

« Have anyone here read the HTML specification?

O A 1 | of 1,476 — | + Automatic Zoom e ﬁ T £ & G ¥

R
HTML ©)

Living Standard — Last Updated 5 September 2024

« Has anyone here read the URL specification?
Which one? There are two!

Updated by: 6874, 7328, 8828 Errata Exist

Network Working Group T. Berners-Lee U RL

Request for Comments: 3986 W3C/MIT

STD: 66 R. Fielding -

Updates: 1738 Day Software Living Standard — Last Updated 19 August 2024
Obsoletes: 2732, 2396, 1808 L. Masinter

« Even security features we add to prevent problems are
hopelessly complex

— Has anyone read the TLS specification?

32

FUNCTIONALITY & COMPLEXITY VS security
Lost battles?

Programming languages & APls

we want these to be easy to use, powerful and efficient,
but they can be insecure, dangerous and error-prone

Operating systems (OSs)
with huge OS, with huge attack surface

Web browsers

with ever fancier features, JavaScript, Web APIs to access
microphone, web cam, location, ...

Email clients
- which handle with all sorts of formats & attachments

33

Recap

Problems are due to
- lack of awareness
- of threats, but also of what should be protected

lack of knowledge
- of potential security problems, but also of solutions

people choosing functionality over security

compounded by complexity

- software written in complex languages, using large complex
APls, and running on complex platforms

34

Types of software security problems

35

Typical software security flaws
(== N

v MS: “No new code for 5 month”

02.06.2002 - 8:01A
1 7% M EDT

0 buffer overflow
37%
[input validation
B code defect

@ design defect

[crypto

20%

Flaws found in Microsoft's first security bug fix month (2002)

36

‘Levels’ at which security flaws can arise

1. Design flaws
introduced before coding
2. Implementation flaws aka bugs aka code-level defects

introduced during coding

As a rule of thumb, coding & design flaws equally common

Vulnerabilities can also arise on other levels
3. Configuration flaws
4. Unforeseen consequences of the /ntended functionality

* eg. spam: not enabled by flaws, but by features!

37

The dismal state of software security

The bad news
people keep making the same mistakes

The good news
people keep making the same mistakes

...... so we can do something about it!

“Every upside has its downside” [Johan Cruijff]

38

Security in the
Software Development Life Cycle

(SDLC)

[Material cover in CyBok chapter on Secure Software Lifecycle
by Laurie Williams, see course web page]

39

How can we make software secure?

We do not know how to do this!

We will always

have vulnerabilities that have not been found (yet)
overlook attack vectors

make implicit assumptions that are — or become - invalid
overlook ways in which functionality can be abused

miss security properties that are important

40

How can we make software more secure?

We do know how to do this!

« Knowledge about standard mistakes is crucial

— These depends on programming language, “platform”,
APls/technologies used, type of application

— There is LOTS of info available on this nowadays

« But this is not enough: security to be taken into account
from the start, throughout the software development life
cycle

— Several ideas, best practices, methodologies to do this

41

Security in Software Development Lifecycle

Security-by-Design
Privacy-by-Design SR ——
Evolution of Security Measures
Threat .y Bug bount
: Training ug bounty
Modelling N\ gysk Coding program
Analysis guidelines Patch
Management
Security System
Requirements Patch
Abuse Static Security Pen Security
Cases Analysis tests testing /ncidents
I | I I —>
Requirements Design Coding Testing Deployment

and use cases

42

Shifting \eft

Organisations always begin tackling security at the end of
the SDLC, and then slowly evolve to tackle it earlier

1. First, do nothing

2. Some security issue is discovered:
a) Still do nothing, if there’s no (economic) incentive
b) sue the people who reported it
c) or: patch

3. If this happens often: update mechanism for regular patching
4. Do security testing: eg. hire pen-testers or bug bounty program
5. Use static analysis tools when coding
6. Give security training to programmers
7. Think of abuse cases, and develop security tests for them
8. Think about security before you start coding, eg with
security architecture review
9.

43

Ever more acronyms for tools

DAST (Dynamic Application Security Testing)
ie. security testing

SAST (Static Application Security Testing)
ie. static analysis

SCA (Software Composition Analysis)
looking for known flawed software components
Secret Scanners
for leaked credentials (eg API keys) in cloud infra or code repos

IAST (Interactive Application Security Testing)
— tools to help in manual pen-testing

RASP (Run-time Application Security Protection)
— instrumentation to do runtime monitoring

44

Security in software development process

Microsoft

THE SECURITY

DEVELOPMENT

Methodologies LIFECYCLE
+ Microsoft SDL [2004] U
with extension for secure DevOps (DevSecOps) e s

 Touchpoints by Gary McGraw [2004] |
* NIST SSDF (Secure Software Development Framework) [2022]

* Grip op SSD (Secure Software Development) by Dutch government
organisations https://www.cip-overheid.nl/en/category/products/secure-software

- ¥

Maturity models
« SAMM (Software Assurance Maturity Model) by OWASP
« BSIMM by Synopsys

These security guidelines for the process are then complemented
with security guidelines for the product : Top N lists of common
security flaws, coding guidelines, security design pattern, ...

45

Security in the software development life cycle

McGraw’s Touchpoints

Security External Static Penetration
requirements review analysis testing
(tools)
Abuse Risk Risk-based Risk |
cases analysis security tests analysis Security
\ / \ l \ breaks
Requirements Design Test Code Test Field
and use cases plans results feedback

[Source: Gary McGraw, Software security, Security & Privacy Magazine,
IEEE, Vol 2, No. 2, pp. 80-83, 2004.]

46

Microsoft’s SDL Optimisation Model

The four security maturity levels of the SDL Optimization Model

Advanced

Security is
integrated
Customer risk is

@)

47

OpenSAMM OPENSAMM

12 security practices grouped in 4 business functions

SAMM Overview
Software
Development

Business Functions
(Construction [Verification Deployment

Security Practices

Strategy & Education & Security Design Security Environment
Metrics Guidance Requirements Review Testing Hardening
Policy & Threat Secure Code Vulnerability Operational
Compliance Assessment Architecture Review Management Enablement

48

BSIMM (Building Security In Maturity Model)

126 activities in 12 practices across 4 domains

Governance Intelligence SSDL Touchpoints | Deployment

Strategy and Metrics Attack Models Architecture Analysis Penetration Testing

Compliance and Policy Security Features Code Review Software Environment
and Design

Training Standards and Security Testing Configuration Management
Requirements and Vulnerability Manage-

ment

Unfortunately, info about this has largely disappeared behind
paywall of the corporate website of Synopsys ©®

49

BSIMM: comparing your security maturity

Strategy & Melrics

30—
Configuration Mgmt. & Vuinerabllity Mgmt. ~ Compliance & Policy
) 25 '

Software Environment | . Training

Penetration Testing Attack Models

Security Testing ° * Security Features & Design

Code Review ~ - -Sunduds & Requirements

Architecture Analysis

50

But first...

Discussing security is meaningless without answering

1. What are your security requirements?
What does it mean for the system to be secure?

2. Whatis your attacker model?
Against what does the system have to be secure?
— Attack surface / attack vectors
— Attacker’s motivations & capabilities
— Also: what are your security assumptions ?

* Including: what are the TCBs (Trusted Computing Bases)
for specific security properties or controls?

Aka threat modelling

52

Security requirements

a) ‘This application cannot be hacked’
« Generic default requirement ©
« Vague & not actionable ®
« ‘Negative’ security model

b) More specific security requirements
* In terms of Confidentiality, Integrity Availability (CIA)
* Or, usually better, in terms of Access Control
* i.e. Authentication & Authorisation

« also Monitoring & Response, so not just prevention
« mnemonic: AAAA for Authentication, Authorisation, Auditing, Action

« ‘Positive’ security model

53

Threat modelling

Draw diagram of the system and then brainstorm about
attacks & defenses using e.g. STRIDE or attack trees

« Spoofing

« Tampering

* Repudiation

* Information Disclosure
« Denial of Service

« Elevation of privilege

Read

Remote access
meter

g ey

Insert SW upgrade

wibackdoor

Use remote
control function

Back-end
compromise
(HES, ..}

Get
security
key

Communication

Access to

channel

GPRS

RF/Mesh
network

Use exploit

Injection Buffer
attack overflow
A
Get security

key

https:/llearn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
if these STRIDE notions are not clear

MITRE ATT&CK is probably too detailed for threat modelling

54

orevention Vs detection & reaction

orevention Vs detection & reaction

Prevention seems to be the way to ensure security, but
detection & response often more important and effective

— Eg. breaking into a house with large windows is trivial;
despite this absence of prevention, detection & reaction still
provides security against burglars

— Most effective security requirement for most persons and
organisations: make good back-ups, so that you can recover
after an attack

NB don't ever be tempted into thinking that good
prevention makes detection & reaction superfluous.
Hence important security requirements to include are

— doing monitoring

— having logs for auditing and forensics

— having someone actually inspecting the logs

56

For you to read & do

1. Toread: CyBok chapter on Secure Software Lifecycle

2. To do: check out
a) the latest US-CERT bulletin

b) recent CVEs for the browser, PDF viewer and other software
you use on a regular basis

c) some of their CVSS scores

3. Todo: brush up on you C(++) knowledge

59

The kind of C(++) code you will see next week

char* copy and print(char* string) ({
char* b = malloc(strlen(string)) ;
strcpy(b,string); // copy string to b
printf ("The string is %s.”, b);
free (b) ;
return (b) ;
}
int sum using pointer arithmetic(int a[]) ({
int sum = 0;
int *pointer = a;
for (int 1i=0; i<4; i++){
sum = sum + *pointer;
pointer++; }

return sum;

60

	Slide 1: Software Security Introduction
	Slide 2: A brief history of software security: January 2002
	Slide 3: Twenty years later (Sept 2022 & May 2023)
	Slide 4: So: problem solved?
	Slide 5: Goals of this course
	Slide 6: Practicalities: prerequisites
	Slide 7: The kind of C(++) code you’ll see next week
	Slide 8: The kind of Java code you’ll see next month
	Slide 9: The kind of object-oriented code you’ll see next month
	Slide 10: Exam material & mandatory reading
	Slide 11: Not exam material
	Slide 12: Not exam material
	Slide 13: Practicalities: form & examination
	Slide 14: Today
	Slide 15: Motivation
	Slide 16: How do computer systems get ‘hacked’?
	Slide 17: What is software security?
	Slide 18: Fairy tales
	Slide 19
	Slide 20: The big problem
	Slide 21: Changing nature of attackers
	Slide 22: Prices for 0days
	Slide 23: Prices for 0days
	Slide 24: Apple & Google payouts
	Slide 25: Google Chrome rewards for memory corruption bugs [Sept 2024]
	Slide 26: Software security: crucial facts
	Slide 27: security software ≠ software security
	Slide 28: Root causes
	Slide 29: Quick audience polls
	Slide 30: Quick audience poll
	Slide 31: Root cause: security vs functionality
	Slide 32: Root causes: complexity
	Slide 33: Functionality & complexity vs security Lost battles?
	Slide 34: Recap
	Slide 35: Types of software security problems
	Slide 36: Typical software security flaws
	Slide 37: ‘Levels’ at which security flaws can arise
	Slide 38: The dismal state of software security
	Slide 39: Security in the Software Development Life Cycle (SDLC) [Material cover in CyBok chapter on Secure Software Lifecycle by Laurie Williams, see course web page]
	Slide 40: How can we make software secure?
	Slide 41: How can we make software more secure?
	Slide 42: Security in Software Development Lifecycle
	Slide 43: Shifting
	Slide 44: Ever more acronyms for tools
	Slide 45: Security in software development process
	Slide 46: Security in the software development life cycle
	Slide 47: Microsoft’s SDL Optimisation Model
	Slide 48: OpenSAMM
	Slide 49: BSIMM (Building Security In Maturity Model)
	Slide 50: BSIMM: comparing your security maturity
	Slide 51: But first…
	Slide 52: Discussing security is meaningless without answering
	Slide 53: Security requirements
	Slide 54: Threat modelling
	Slide 55: prevention vs detection & reaction
	Slide 56: prevention vs detection & reaction
	Slide 59: For you to read & do
	Slide 60: The kind of C(++) code you will see next week

