
Software & Hardware Security 

Erik Poll

Digital Security group

Radboud University 

Nijmegen

The Netherlands



Nijmegen
2



Digital Security group

Rigorous & formal methods to design & analyse secure ICT systems

Incl. societal impact, esp. on privacy

Also looking at concrete applications



software  security           hardware security

attacks

• buffer overflows in C(++)

• web problems:

SQL inj, XSS, CSRF,..

defenses

• security testing

• static analysis

for Java & C

• smartcards & RFID

• attacks

• bank cards

• e-passport

4

online privacy & 

cybercrime 



The problem



pre-history of hacking

In 1950s, Joe Engressia showed the telephone network 

could be hacked by phone phreaking:

ie. whistling at right frequencies 

http://www.youtube.com/watch?v=vVZm7I1CTBs

In 1970s, before founding Apple together with Steve Jobs, 

Steve Wozniak sold Blue Boxes for phone phreaking at university  

sw

s16



Slammer Worm (2003)

Pictures taken from The Spread of the Sapphire/Slammer Worm, by David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, 

Nicholas Weaver 

7



Slammer Worm (2003)

Pictures taken from The Spread of the Sapphire/Slammer Worm, by David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, 

Nicholas Weaver 

8



9



Top secret NSA slides leaked by Edward Snowden
More info at http:// leaksource.info and

http:// www.theguardian.com/us-news/the-nsa-files 

10



11



12



Security problems of past days…

To get an impression of the scale of the problem,

have a look at

http://www.securityfocus.com/vulnerabilities

http://www.us-cert.gov/ncas/alerts  

http://www.us-cert.gov/ncas/bulletins

http://www.securitytracker.com/

13



Quiz

What do laptops, tablets, mobile phones, wifi access 

points, network routers, bank cards, e-passports, eID

cards, smartphone apps, web sites, web browsers, 

web servers, operating systems, firewalls, intrusion 

detection systems, cars, and airplanes have in 

common?

Why can all these things be hacked, if we are not     

very careful?

There is SOFTWARE inside them!

14



Software (in)security

• Software is the main source of security problems.

– Software is the weakest link in the security chain, with the 

possible exception of “the human factor” 

• Software security does (did?) not get much attention

– in other security courses, or 

– in programming courses, 

or indeed, in much of the security literature!

Computer security courses traditionally focus on cryptography…f be 

solve by cryptography, you do not understand cryptography and you do not 

understand your problem”  [Bruce Schneier]

15



“if you think your problem can be solved by cryptography, 

then you do not understand cryptography 

and you do not understand your problem” 

[Bruce Schneier]

16



Superficial analysis of the problem

17



Observation 1

All these problems are due to (bad) software 

Namely software in

• the Linux/Windows/Mac operating system (OS)

• web servers

• web browsers

• the router software

• ...

Because of these software bugs constant patching of 

system is needed to keep them secure

18



Observation 2

All these problems are due to bad software that 

• can be executed/addressed over the network

– eg. in case of Slammer worm

• executes on (untrusted) input obtained over the 

network

or both

With ever more network connectivity,   

ever more software can be attacked.

19



Changing target of attacks 

• Traditionally, focus of attacks was on operating system and network

“Solutions”

– regular patching of OS

– firewalls

– virus scanners

• Increasingly, focus on 

• web applications

• web browser

• mobile devices 

• smartphones, tablet, that pass through firewalls

• embedded software

• software in cars, factories, infrastructure...

and targetted attacks on specific organisation or person

(known as ATP = Advanced Persistent Threat)

20



Changing nature of attackers

Traditionally, hackers were amateurs motivated by fun

• publishing attacks for fame & glory

• attacks creating lots of publicity

Increasingly, hackers are professional

• attackers go underground

• zero-day exploits are worth a lot of money

Attackers increasingly include 

• organized crime                                                               
with lots of money and (hired) expertise

• government agencies:                                                      
with even more money & in-house expertise

21



stuxnet attack  

Malware (by US and Israel?) attacking nuclear enrichment facility in Iran

http://www.ted.com/talks/ralph_langner_cracking_stuxnet_a_21st_century_cyberweapon.html

22



Software (in)security: crucial facts

• No silver bullets!

crypto or special security features do not magically solve all 

problems

• Security is emergent property of entire system 

– just like quality

• (Non-functional) security aspects should be integral part of the 

design, right from the start

23



We focus on software security now, but don’t forget

that security is about

people (users, employees, sys-admins, programmers,...), and

their laziness, mistakes, stupidity, incompetence, confusion, 

software, bugs, verification, hackers, viruses, testing,

operating systems, networks, databases, hardware,

access control, passwords, smartcards,  biometrics, cryptology,

security protocols, security policies & their enforcement, 

monitoring, auditing, risk management, complexity, 

legislation, persecution, liability, public relations                

public perception, conventions, standards, …..

24



The causes of the problem

25



Quick audience poll

• How many of you learned to program in C or C++?

• How many had it as a first programming language?

• How many of your C(++) courses 

• warned you about buffer overflows?

• explained how to avoid them?

Major causes of problems are

• lack of awareness

• lack of knowledge

• irresponsible teaching of dangerous programming 

languages

26



Quick audience poll

• How many of you have built a web-application?

– in which programming languages?

• What is the secure way of doing a SQL query in this 

language? (to avoid SQL injection flaws)

Major causes of problems are

• lack of awareness

• lack of knowledge

27



1. Security is always a secondary concern

• Security is always a secondary concern

– primary goal of software is to provide some

functionality or services; 

– managing associated risks is a derived/secondary 

concern

• There is often a trade-off/conflict between 

– security

– functionality & convenience

where security typically looses out

• more examples of this later...

28



29



Functionality vs security

• Functionality is about what software should do,

security is (also) about what it should not do

Unless you think like an attacker, 

you will be unaware of any potential threats

30



Functionality vs security: Lost battles?

• operating systems (OSs)

– with huge OS, with huge attack surface

• programming languages

– with easy to use, efficient, but very insecure and error-prone 

mechanisms

• web browsers

– with plug-ins for various formats, javascript, ActiveX, Ajax ...

• email clients

– which automatically cope with all sorts of formats & 

attachments..

31



Functionality vs security : PHP

"After writing PHP forum software for three years now, 

I've come to the conclusion that it is basically 

impossible for normal programmers to write secure 

PHP code. It takes far too much effort. .... PHP's 

raison d'etre is that it is simple to pick up and make it 

do something useful. There needs to be a major push 

... to make it safe for the likely level of programmers -

newbies. Newbies have zero chance of writing 

secure software unless their language is safe. ...   "

[Source  http://www.greebo.cnet/?p=320]

32



2. Weakness in depth

programming   languages

hardware (incl network card & peripherals)

application

operating system

webbrowser
with plugins platform

eg Java or .NET

system APIs

middleware

libraries

interpretable or executable input
eg paths, filenames, .doc, .xls, .pdf, .js,...

sql
data
base

33



2. Weakness in depth

Software 

• runs on a huge, complicated infrastructure

– OS, platforms, webbrowser, lots of libraries & APIs, ...

• is built using complicated languages & formats

– programming languages, but also SQL, HTML, XML, ...

• using various tools

– compilers, IDEs, preprocessors, dynamic code downloads

These may have security holes, or may make the 

introduction of security holes very easy & likely

34



Recap

Problems are due to

• lack of awareness

– of threats, but also of what should be protected

• lack of knowledge

– of potential security problems, but also of solutions

• compounded by complexity

– software written in complicated languages, using large APIs , 

and running on huge infrastructure

• people choosing functionality over security

35



Security concepts & goals



Security

• Security is about regulating access to assets

– assets can be information, functionality, or physical assets

–

• Software provides functionality

– eg on-line exam results

• This functionality comes with certain risks

– eg what are risks of on-line exam results?

• (Software) security is about managing these risks

37



Starting point for ensuring security

• Any discussion of security should start with an inventory of

– the stakeholders – ie. who is involved

– their assets, and 

– the threats to these assets

by possible attackers

– employees, clients, script kiddies, criminals

Any discussion of security without understanding these 

issues is meaningless:

You have to know what you want to secure, 

against what type of attacks, and against who 

38



Security concepts

Goal of security is to reduce risks to acceptable levels,

• Security is never 100%

So you have to know what you want to secure, 

against what type of attacks, against who, 

and at what cost

39



Security Objectives: CIA

• Confidentiality 

– unauthorised users cannot read information

• Integrity

– unauthorised users cannot alter information

• Availability

– authorised users can access information 

– ie. preventing DoS (Denial of Service) attacks

• Non-repudiation or accountability

– authorised users cannot deny actions

40



Security objectives

• Integrity nearly always more important than 

confidentiality

Eg think of

– your bank account information

– your medical records 

– all the software you use, incl. the entire OS

41



How to realise security objectives? AAAA

• Authentication

– who are you?

• Access control/Authorisation

– control who is allowed to do what

– this requires a specification of who is allowed to do 

what

• Auditing

– check if anything went wrong

• Action

– if so, take action

42



How to realise security objectives?

Other names for the last three A's

• Prevention

– measures to stop breaches of security goals

• Detection

– measures to detect breaches of security goals

• Reaction

– measures to recover assets, repair damage, and persecute 

(and deter) offenders

43



Try to prevent, but also detect and react

Never think that good prevention 

makes detection & reaction superfluous.

Eg. breaking into house or office is often easy;

only detection & reaction seriously deters burglars.

Detection of digital break-in is harder

who noticed a break-in on his computer recently?

Reaction (incl. prosecution) is even harder

how to find the person responsible, 

somewhere on the internet?



Software security



warning: confusing terminology

Common use of terminology can be very confused & confusing: 

(security) weakness, flaw, vulnerability, bug, error, coding defect...

We can make a distinction between

• a security weakness/flaw: 

something that is wrong or could be better 

• a security vulnerability

a weakness/flaw that  can actually be exploited by an attacker,

which requires the flaw to be

- accessible: attacker has to be able to get at it

- exploitable: attacker has to be able to do some damage with it

Eg by unplugging your network connection,

some (many?) vulnerabilities become flaws.

46



software vulnerabilities

Software vulnerabilities can be introduced at two “levels”

• design flaws                                                                               

vulnerability in the design

• bugs aka implementation flaws or code-level defects             

vulnerability in the software introduced when implementing a 

system

Rough consensus: bugs and design flaws are equally common

Vulnerabilities also arise on other levels (out of scope for now)

• configuration flaw when installing software on a machine

• the user

• unforeseen consequence of the intended functionality (eg. spam)

47



Typical software security vulnerabilities 

Security bugs found in Microsoft bug fix month (2002)

37%

20%

26%

17%
0%

buffer overflow

input validation

code defect

design defect

crypto

48



bugs aka implementation flaws aka code-level defects             

There are roughly two kinds of implementation flaws

1. bugs that can be understood looking at the program itself                    

(and understanding what it is meant to do!)

– eg. , simple typos, confusing two program variables, off-by-one error in 

array access, ...

– sometimes called logic errors, as opposed to syntax errors,   

or an errors in the program logic

2. lower-level problems that can only be spotted if you understand

the underlying platform of the program in execution, eg

– buffer overflow,integer overflow,... in binaries compiled from C(++)

– SQL injection, XSS, CSRF,.... in web-applications

49



The big problem of software security

The bad news

people keep making the same (types of) mistakes

The good news

people keep making the same (types of) mistakes 

…… so we can do something about it!

“Every advantage has its disadvantage ” -- Johan Cruijff

50



security in the

software development life cycle



Tackling Software Insecurity

• Knowledge about standard mistakes is crucial in preventing 

them

– these depends on the programming language,  the “platform”

(OS, database systems, web-application framework,…), and 

the type of application

– lots of info available on this now

• But this is not enough: security to be taken into account from the 

start, throughout software development life cycle

– several ideas & methodologies to do this

52



Security in Software Development Life Cycle

[Gary McGraw, Software security, Security & Privacy Magazine, 

IEEE, Vol 2, No. 2, pp. 80-83, 2004. ]

McGraw’s Touchpoints

53



Methodologies  for security in development life cycle

Common/best  practices, with methods for assessments, and 

roadmaps for improvement

• McGraw’s Touchpoints

BSIMM Building Security In – Maturity Model              

http://bsimm.com

• Microsoft SDL Security Development Lifecycle

• OpenSAMM Software Assurance Maturity Model 

http://opensamm.org

54



Microsoft’s SDL Optimisation Model

55



BSIMM

Based on data collected from large enterprises

56



Spot the (security) flaws in electronic_purse.c

int balance;

void decrease(int amount)

{ if (balance <= amount)

{ balance = balance – amount; }

else { printf(“Insufficient funds\n”); }

}

void increase(int amount)

{ balance = balance + amount;  

}

<= should be >=

what if this sum is 
too large for an int?

what if amount

is negative?

57



Different kinds of implementation flaws

• lack of input validation of (untrusted) user 
input

– could be a design flaw rather than an 
implementation flaw?

– more “fundamental” than the flaws 
below

• simple mistake in the program logic

• potential problem depending on how the 
underlying platform work,  eg. in case of 
an integer overflow;

– “lower level” than the flaws above

<= should be >=

what if amount

is negative?

what if this sum is 
too large for an int?

58



More info

• Gary McGraw, 

Software security, 

Security & Privacy Magazine, IEEE, Vol 2, No. 2, pp. 80-83, 
2004. 

• Check out websites

http://www.us-cert.gov/ncas/alerts/

http://www.us-cert.gov/ncas/bulletins/

http://www.securitytracker.com/

http://www.securityfocus.com/vulnerabilities

for security alerts in the past week

59


