Web Security

Encoding, validating & sanitizing

Sessions & Authentication

Güneş Acar & Erik Poll

Digital Security group
Radboud University Nijmegen

websec

Web Security

Encoding, validating & sanitizing

Sessions & Authentication

Gunes Acar & Erik Poll

Digital Security group
Radboud University Nijmegen

websec

Last week & today

Last week
« Web clients & servers interact using HTTP.

« The HTTP traffic contains URLs (for ‘addressing’) and HTML (for the
‘content’) which can contain JavaScript as code to be executed
client-side

« HTTP requests are usually GET or POST requests

— GET: parameters in URL
— POST: parameters in HTTP body

Today
1) The languages & encodings of data in HTTP traffic

2) Two notions of sessions for security:
— TLS/HTTPS at network level
— cookies at application level

websec

Exercises for this week

A. Check input sanitisation in Brightspace

How is input encoded & sanitised in Discussion Forums,
at the client side and/or at the server side?

B. Check security settings for some sites where you have a
login, incl. whether it support HTTP(S), HSTS and Certificate
Transparency(CT) and which cookies flags it uses.

C. One more WebGoat lesson
Authentication Flaws - Authentication Bypasses

A & B to be handed in (in pairs) via Brightspace
Deadline Monday Sept 15, 23:59

websec

Languages & encodings

(continued from last week)

websec

Web pages contain HTML, CSS, JavaScript and URLs

<html><title>The various languages and formats used inside web pages</title>
<body>
<h1 style="color:blue;">Sample exam question<h1> is 3 < 4?
<a href="https://duckduckgo.com/?gq=how+to+encode+<+in+HTML%3F">A link with special characters
And another one
<script> var x = 'a string with a single quote \' and double quote ".";
alert(x);
<Iscript>
</body>
</html>

« Special characters may need to be encoded aka escaped
to prevent unintended effects or preserve intended effect

* Which characters have to encoded, and how, depends on the context.
« Eg<is aspecial character in HTML, but notin a URL

* Within a single language there can be several contexts. Eg
« |is aspecial character in URLs, but not in the query string (i.e. after the ?)

 For aJavaScript strings inside JavaScript the outer quotes ('or ")
determine which quotes inside the string need to be escaped.

websec

URL encoding aka %-encoding

Replaces reserved characters that have a special meaning in URLs
[2V%';Q&=+S ,# () []

with their ASCII value in hex preceded with escape character %

/ # space = ? %
%27 %23 %$20 or +| %3D &3F %25

Try this out with eg https://duckduckgo.com/?g=%3F
Encoding space as + comes from older x-www-form-urlencoded format

Possible sources of confusion (and bugs or security issues?)

« The reserved characters are different for different parts of the URL.
Eg / in the path of a URL must be encoded, in the query it need not be

What happens if you URL-encode unreserved characters? eg A -> %41
« What happens if you double URL-encode? eg % -> %25 -> %2525

HTML encoding

Replaces HTML special characters with similar looking ones

< > & [7;

< > & ; "

« HTML encoding and URL encoding are needed in different contexts
— Things can get confusing: what about URLs inside HTML or vv?

« HTML also has the notion of character encoding: which character set is
used, eg ASCI or UTF-8 (default)

« Browser engines can be sloppy or forgiving, and let you get away with
not encoding e.g. & as & in webpages

— http:/Ivalidator.w3.org checks if a page is correct HTML

 On top of HTML-encoding, websites may apply additional input
sanitisation to remove or replace tags it wants to disallow in user input;

— eg<script> tags are commonly stripped from user input

base64 encoding

HTTP is text-based, so all data transmitted has to be text
— ie. printable, displayable characters

Base64 encoding turns ‘raw’ binary data - bytes - into text
so that it can be transferred via HTTP

* 6 bits coded up as one of the 64 standard characters
a-z A-Z 0-9 + /
« Groups of 3 bytes (ie 24 bits) represented as 4 characters

 Padding with = or == to make sure results is multiple of 4 characters
long

websec

base64 encoding

Bits 0(1/0(0({1/1/0(1({0(|1{1(0(0|0|0|1 o0
Sextets 19 22 4 Padding
Base64
Character T W E =
encoded
Octets 84 (0x54) 87 (0x57) 69 (0x45) 61 (0x3D)

« groups of 6 bits coded up as one of the standard characters
a-z A-Z 0-9 + /

 So 3 bytes represented as 4 characters

« Padding with zeroes to make the input a multiple of 6 bits

« Padding with = or == to make sure results is multiple of 4 characters
long

Details not that important for this course, but you may come
across base64-encoded data

Encoding user content for security

User-supplied content in webpages may need to be encoded or

sanitised to prevent malicious content from triggering unwanted effects.

<htmI><title>Mallory’s Radboud Student Homepage</title>
<body>
<h1 color ="color:red;">Welcome to Mallory’s homepage</h1>
Some text that Mallory provided.
My contact information
<img=https://bla.com/common/view/my_profile_image.jpg
My favourite course
My grades
<script> someJavaScriptFunction(someOtherString+'Mallory’); </script>
</body>
</html>

websec

11

Beware of confusion

encoding sanitisation and validation

changing the representation + removing or changing

of data ‘problematic’ data

no information is lost or « some information is lost;

changed possibly an entire request is
rejected as invalid

eg HTML or URL encoding * eg removing <script> tags or
rejecting incorrect date
31/2/2024

Encoding can also be called escaping or quoting, and

validation is sometimes called fi/tering

Common distinction: validation rejects entire inputs, whereas
sanitisation changes them or removes problematic parts of inputs
Beware: some people use alle these terms interchangeably

Exercise to hand in this week

* Figure out how Brightspace encodes and/or sanitises user
input in Discussion Forums

— client-side in the browser and/or server-side
— for header and body of forum posts

NB try to describe this as concise as

possible, eg in terms of URL or HTML
encoding.

websec

Web Security

Authentication &
Session Management

14

Security shortcomings of internet

“No security built into the internet”
But what does that mean?

« No way of knowing who you are communicating with, apart
from an IP address

— fe no authentication

* Any party along the way (wifi router, ISP, ...) can read or modify
the communication

— fe no integrity & confidentiality of communication

websec 15

Adding security: two security

Two security requirements we want to add

1. Authentication
a) of the web site by user
b) of the user by the web site
How?
For a) TLS certificates aka X509 certificates

For b) username/password or more secure solutions, eg MFA (Multi-
factor Authentication)

2. Integrity & confidentiality of communication
How?

TLS, which adds encryption and integrity protection with
— MACs (Message Authentication Codes)
— digital signatures

websec 16

Today: two notions of sessions

1. HTTPS at the network layer
— by TLS, on top of TCP or inside QUIC
— includes authentication of the server

2. Session management at the application layer
— by web application using sessions IDs and/or cookies
— includes authentication of the user

[server]

HTTP HTTPS DNS

TCP UDP
IP

websec

HTTPS

18

Attacker models for the internet & the web

w‘ | 3
i =& bank.com
a) Passive eavesdropper =] < >

[]

b) Active Man-in-the-Middle (MitM) attacker 'nl H o a

Eg a malicious or compromised ISP, router, or WiFi access point

WiFi security (eg WPA2) should prevent attackers eavesdropping on
Wifi traffic

c) Malicious or vulnerable end points (browser or server)

A malicious server (eg fakebank.com) can act as MitM by relaying traffic to
real website bank.com

websec 19

websec

(partial) security solution: TLS

20

TLS

1. Server sends X509 server certificate to client
— Signed by a Certificate Authority (CA) or self-signed
— Browsers come pre-configured with list of trusted CAs

2. Client checks that certificate has not been revoked
— by requesting Certificate Revocation List (CRL) from CA

3. Client authenticates the server, with a challenge-response protocol
4. Client and server then agree a session key 5

|
5. Subsequent HTTP traffic in a secure tunnel

Does a self-signed certificate provide any security guarantee?
Yes, because at least clients knows they keep talking to the same server

websec 21

TLS — crypto details; not important for this course

1. Server sends X509 server certificate to client
includes server’s public key PK

2. Client checks that certificate has not been revoked

3. Client authenticates the server, with a challenge-response protocol
Client sends nonce n encrypted with public key PK, and checks if server

response includes n which proves knowledge of corresponding private key

4. Client and server then agree a session key
Typically an AES key

5. Subsequent HTTP traffic in a secure tunnel

Traffic encrypted and MACed with session key
« encryption for confidentiality, MACing for integrity
Periodically the session key is refreshed

websec 22

HTTPS: HTTP over TLS HTTP

Security guarantees : TLS

« Confidentiality & integrity of the session

— Attacker on the network can still see that two IP addresses
communicate (an example of meta-data), but not what

« All HTTP content, incl. headers & URL parameters are protected
inside TLS tunnel

— Attacker cannot change any traffic or replay it
- Server authentication, using certificates
* Possibly, but uncommon: Client authentication with a client certificate

— Usually servers use another means to authenticate clients: often
passwords ®

The same holds if TLS is used as part of QUIC

HTTP

QUIC| TLS

websec 23

Aside: name confusion TLS vs SSL

TLS (Transport Layer Security) used to be called SSL (Secure Sockets Layer)

— TLS version 1.0 is SSL version 3.1
— Latest TLS versionis 1.3

This explains why X509 certificates are sometimes called SSL

certificates and a well-known TLS implementation is called
OpenSSL

We’ll come back to TLS later in this lecture to discuss its limitations.

websec 24

Mixing http & https
A web page can mix http & https content, but this is a bad idea!

« Why would you never want to have an frame loaded via http
inside a webpage loaded via https?

Web browsers nowadays warn about or block mixed http/https
content.

Demo: check out how this works in your browser, by visiting
http://www.cs.ru.nl/~erikpoll/websec/demo/mixed_content.html

https://lwww.cs.ru.nl/~erikpoll/websec/demo/mixed_content.html
This demo ne-longer still works in Firefox, but it does in Chrome

websec

Sessions
(at application level)

26

Functional shortcoming of HTTP

HTTP is stateless and has no notion of session, ie
 No state is recorded about history of previous requests

 (Hence) no notion of a sequence of requests belonging together
in one conversation between client and server

This is very clumsy for interaction between a client and server
 Has this user logged in?

» Did the user select English or Dutch as language for the site?

 Has the user put items in their online shopping basket?

» Did the user already agree to our privacy policy?

websec 27

Why can’t we use IP address for this?

» Different clients may share the same IP address
Eg different browsers & apps on the same device,
different users on lilo.science.ru.nl,
or different users on a local wifi network (esp for IPv4)

* Multiple web applications can share the same IP address
— especially web applications hosted in the cloud

* Clients and servers can change IP address

— eg. clients on mobile devices, when switching from mobile
network to WiFi or v.v.

— also: web applications hosted in the cloud, if they are migrated to
other server

websec 28

Session & session data

There is usually session data associated with a session that
needs to be remembered.

» Eg: content of online shopping basket o e
Ways to keep track of such data: T T —

1. send it back & forth between

server and browser
with each request and response
eg using hidden parameters

2. record it at the client side
using HTML local storage

3. record it at the server side and just send back & forth a unique
identifier

Pros & Cons ?

« Con 3: server has to record lots of info for many sessions

« Conof 1 & 2: client could mess with this data

websec 29

Things that can go wrong with session data

P Achilles 0.27

> moc|s|

~ Proxy Settings Intercept Modes

| Listen on Port 5000 W Intercept mode ON

| CertFile ==l [EATools}Achillesisa M Inercept Client Data

| Client Timeout (See) [I Intercept Server Data (text)
| Server Timeout (sec) [3 I” Logto File

I Ignore .jpgl.gif

Send | Find/Rep |

POST fpaynowfindex.php HTTP#1.0 =l
Acce pt: imagefgil, imagepx-xbitmap, imageljpeq. imagefpjpeg. applicationfvnd.ms-powerpoint,
applicationjvnd.ms-excel, applicationjmsword, applicationfx-shockwave-flagh, */*
Accept-Language: en-us

Content-Type: applicationfx-www-form-urlencoded

Connection: Keep-Alive

User-Agent: Mozillaf4.0 [compatible; MSIE 6.0; Windows NT 5.0)

Host: www.somesite.com

Content-Length: 464

Cache-Control: no-cache

Referer: http!};www.somesite.com/payonline/orders.php?order_id=99999999

redirect_url_payment_gw=hitp3e32 62262 Fwww.somesite.com¥2thankyou_gw.php&shop_code=merchant_coded
orders_ id=999999 9¤cy=Rs&amount=879. 002bill_cust_name=Mookhey&bill_cust_add= Mumbai%2C+&bill
_cust_country=India8Bilt—tust-tel=727277278bIT cust_email=7777 @hotmail.com&del_cust_name=K&del_cust_
add=M&del_cust_tel=777777777&redirect_url_payment_gw= hanJA%ZF%ZFwwwsomcsﬂe com%ZFlhanlcyou P
hp&x= 88&y-14

hd

Status: rRunnlng

Classic security flaw: the price is recorded in a hidden form field,
as shown in the proxy output above.

The client can change this...

websec 30

Misplaced trust in the client

For data for which integrity is important (eg prices)

the server should never trust the client
to provide this data or to return this data unaltered

Instead, the server should
« store such data server-side
or

« add a cryptographic integrity check

— eg using a MAC (Message Authentication Code) or Digital
Signature

— Such a check should also include a time stamp or some session id
that frequently changes, to avoid replay or roll-back attacks.

websec 31

Session data for authentication

Authentication often involves a notion of session, and then goes in two
steps

1. Actual authentication, say with a username/password plus the
response of an MFA token

2. Creating a session, with session identifier aka session token
for fast & easy (re)authentication without repeating step 1

v

- gb“aﬁzﬂ El”ff
e EUAL 00 ' L gINYY
\- %EE o ‘ fcglvlgﬂlrlﬁp

Most web applications use session cookies for this purpose

» Such cookies provide identity and proof that this identity has verified
(aka authenticated)

« These cookies are just as valuable for attacker as original credentials
used to authenticate, eg username/password p/us MFA response

websec 32

Sessions managed by the web application

Typical steps
1. Web application creates & manages sessions

— Session data is stored at server and associated with a
unique session ID

2. Clientis informed of session ID
— and client attaches session ID to subsequent requests
so server knows about previous requests

Web application frameworks usually provide built-in support for
session management, but web application developers can implement
their own

. NB it is better to use existing solutions than inventing your own
. Still, don’t underestimate the complexity of using these correctly

Solution 1: session ID in URL

Web page returned by the server contains links with session ID as
extra parameter

<html>

Example web page with session IDs in the URL.

The user can now click

here

or

here
passing on its session id back to the server

wherever he goes next.

</html>

Hence: every user gets their own unique copy of a web page.

websec 34

Solution 2: session ID in hidden parameter

<htm>

The form below uses a hidden field

<form method="POST" action= "http://ru.nl/register.php">
Email: <input type='"text" name="“"Your email address'">
<input type="hidden" name="sid" value="s1234">
<input type="submit" wvalue="Click here to submit">

</form>

Hidden means hidden from the user by browser,
not hidden from a proxy like ZAP.

A hidden form field could also be used to track user preferences, eg
<input type="hidden" name="Language'" value="Dutch">

websec 35

Session ID in URL vs hidden parameter
Can you think of a downside of a session ID in the URL?

If you give a link with your session ID to someone else,
then that person might continue with your session!

Also, bookmarking a URL incl. the session ID does not (or
should not) make sense, as the next time you use the
bookmark you should start a different session

Solution 3: sessionlD in a cookie

Standard solution builtinto HTTP and browser
« Cookie is piece of information that is set by the server and
stored by the browser

— namely when HTTP response includes Set-Cookie fieldin
header

— It belongs to some domain, eg www. test.com

— Itincludes expiry date, domain name, optional path, optional
flags

* eg secure, HTTPOnly, and SameSite flags
« Cookie is automaticallyincluded in any HTTP request by the
browser, for any request to that domain
— in the Cookie field of HTTP request

« Cookie can include any type of information
— sensitive information, such as session ID
— less sensitive information, such as language preferences

websec

37

Example cookie traffic

« Setting a cookie set with an HTTP response

HTTP/1.0 200 OK

Content-type text/html
Set-Cookie: language=Dutch

Set-Cookie: sessionID=123; Expires=Tue, 26 Apr 2021 11:30:00 GMT

« Sending a cookie in an HTTP request
GET someurl.html HTTP/1.0 200 OK

Host: example.com

Cookie: language=Dutch, sessionID=123

websec 38

Different types of cookies

* non-persistent cookies
— only stored while current browser session lasts

« persistent cookies
— preserved between browser sessions

— useful for maintaining login and user preferences across
sessions

— bad for privacy

websec

39

Domains, subdomain, and top level domains

The domain in a cookie can be a subdomain of a website (egcs.ru.nlisa
subdomain of ru.nl) which raises questions, such as

Are cookies for cs . ru.nl sent with requests to ru.nl1? Orv.v.?
Can ru.nl set a cookie for cs.ru.nl ?

Complex rules restrict cookie access across (sub)domains [RFC 6265]
Overall rationale: subdomains need not trust their superdomain

« Subdomains can access cookie for domain, but not vice versa

« Subdomains can set cookie for direct superdomain, but not vv
 With the HostOnly flag, cookies can further restrict access

For details, check [RFC6265] and hope browsers do not still implement
outdated parts of [RFC 2109] or [RFC 2965].

For top level domains, eg .nl1, there are additional rules,

to prevent say ru.nl from setting a cookie for .nl
But does this work as intended for countries using 3 level domain nhames?
Eg for somecompany.co.uk, where co.uk is not atop level domain

websec 40

Different ways to provide session ID

1. Encodingitin the URL
Downsides: 1) stored in logs (eg browser history), 2) can be
cached & bookmarked, 3) visible in the browser location bar.
2. Hidden form field

Better: won’t appear in URLs, so cannot be bookmarked, and
less likely to be logged

3. Cookies

Best choice: automatically handled by browser; easier &
more flexible.

But such automation has downsides, as we’ll see: CSRF

websec 41

Now: attacking this!

42

Session attacks

Aim of attacker: get the session ID
— This can be session cookie, or other form of session ID

— If the victim is logged in, this is just as good as stealing his
username and password!

How would you do this?

websec 43

Eavesdropping & MiTM attack
If traffic is not protected with TLS
(or Wifi protection on lower network layers)

then someone sniffing the network traffic can obtain session IDs.

Attacker can also set up a (fake) network access point to do this
 and then even do active Man-in-the-Middle attack.

There are some variants to by-pass TLS protection, as we will see later.

Session ID prediction attack

Suppose you can check your grades in blackboard on page
brightspace.ru.nl/grades.php?s=s776823

Is this a security problem?

If s776823 is your student number and also the session id
(in the URL in this case) then it is!

Attacker could try other student IDs or — better still — the
university employee number of a teacher.

Session ID prediction attack

Suppose you can check your grades in blackboard on page
brightspace.ru.nl/grades.php?s=s776823

Is this a security problem?

If s776823 is your student number and also the session id
(in the URL in this case) then it is!

Attacker could try other student IDs or — better still — the
university employee number of a teacher.

Session fixation attack (akaLogin CSRF)

If the sessionID is in the URL, an attacker can

1. start a session with bank.com and obtain a session ID;

2. craft a link with that session ID and gets victims to click it, by
a) emailing victims with that link in the email; or
b) luring victims to a webpage with that link

3. The victim now goes to the website using a known session ID;

4. If victimlogs in, and sessijon ID is not changed,
then attacker can join the session & abuse the user’s rights!

Therefore: web server should change session ID on login actions

If the session-ID is a hidden form field, it does not end up in URL,
attacker cannot email a link, but option 2b) is still possible, with a
POST request

Variant: attacker has already logged in, so victim joins the attacker’s
session and may enter confidential data (eg credit card number) for

attacker’s account

Making these attacks on sessions harder

Use long enough, random session IDs — ie with enough entropy
— prevents session prediction and brute forcing
Change session ID after any change in privilege level
eg after logging in
— prevents session fixations
Expire sessions
eg by setting expiration time on cookies
— reduces the attack surface in time
Use HTTPS

for all requests & responses that include session ID, not just
the login

— prevents networking sniffing of session ID
Let clients re-authenticate before important actions
— reduces the value of any stolen session ID

websec 48

CSREF: the downside of browser automatically adding cookies

S
https://bank.nl <interaction that sets cookie

pay | | —

—

pay request
. bank.nl

server
https://mafia.com /
pay request ‘

pay

Browser attaches cookie to cross-domain requests from any site

websec 49

Abusing cookies without stealing them (CSRF)

Suppose for a bank transfer a website bank.com contains the URL

<a href="transferMoney?amount=1000
&toAccount=52.12.57.762">

Suppose attacker sets up a malicious website mafia.com with

<a href="https://bank.com/transferMoney?amount=1000
&toAccount=52.12.57.762">

If attacker tricks users to click on second link while they are logged on at
bank.com, the browser automatically attaches the bank’s cookies to
both requests! And money will be transferred...

This is called a Cross-Site Request Forgery (CSRF)

Root cause of the problem: browser automatically attaches cookies to
all requests, regardless of which page the link is on.

websec 50

CSRF

CSREF is only possible if we use cookies for sessions, not if we have
session ID in URLs or in hidden forms fields

CSRF is an example of feature interaction, namely of the features that:
1) any web page can link to another other web page

2) browser automatically attaches the cookies of A.com to any
requests to A.com

The combinations of these features can be abused

by attackers creating a webpage or HTML email with links to bank.com, where
the browser will automatically attach the bank’s cookies with the correct
value to authenticate these requests (assuming victim is logged on)

websec 51

Countermeasure: (anti)CSRF token

S
https://bank.nl interaction that sets cookie ‘
<

l)age.html with fresh token

<a href="https://bank.nl/
pay?token=32451...”>pay

pay request —>
. plus fresh token bank.nl

server
https://mafia.com /

pay request

pay

websec

Standard solution to prevent CSRF

Use two special numbers to identify a session
1. afixed session ID stored in a cookie

2. achanging anti-CSRF token, as URL parameter or hidden
form field, that changes to a new random value for each
request

For any malicious cross-site requests, say from mafia.com to
bank.com, the browser will attach the right session ID cookie,
but these requests will not have the right CSRF token.

Confusingly, anti-CSRF tokens sometimes called CSRF tokens or
anti-XSRF token

websec

53

Other countermeasures against CSRF

1. Check Refer (r)er or Origin headers

Browser includes these in HTTP requests to indicate where a
request is made from (eg mafia.com or bank.com), so bank.com
can check which webpage made the request

Originis just the domain, Referer the domain plus the path

But these headers may be absent ® because

— Browsers can be configured not to include these headers,
for privacy reasons

— Websites can specify a Referrer Policy to tell browser not to

include them under certain conditions (eg when making HTTP request
from HTTPS context, only for requestions within the same site, ...)

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Origin
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy

websec 54

	Slide 1
	Slide 2
	Slide 3: Last week & today
	Slide 4: Exercises for this week
	Slide 5: Languages & encodings (continued from last week)
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Beware of confusion
	Slide 13: Exercise to hand in this week
	Slide 14: Web Security Authentication & Session Management
	Slide 15: Security shortcomings of internet
	Slide 16: Adding security: two security
	Slide 17: Today: two notions of sessions
	Slide 18: HTTPS
	Slide 19: Attacker models for the internet & the web
	Slide 20: (partial) security solution: TLS
	Slide 21: TLS
	Slide 22: TLS – crypto details; not important for this course
	Slide 23: HTTPS: HTTP over TLS
	Slide 24: Aside: name confusion TLS vs SSL
	Slide 25: Mixing http & https
	Slide 26: Sessions (at application level)
	Slide 27: Functional shortcoming of HTTP
	Slide 28: Why can’t we use IP address for this?
	Slide 29: Session & session data
	Slide 30: Things that can go wrong with session data
	Slide 31: Misplaced trust in the client
	Slide 32: Session data for authentication
	Slide 33: Sessions managed by the web application
	Slide 34: Solution 1: session ID in URL
	Slide 35: Solution 2: session ID in hidden parameter
	Slide 36: Session ID in URL vs hidden parameter
	Slide 37: Solution 3: sessionID in a cookie
	Slide 38: Example cookie traffic
	Slide 39: Different types of cookies
	Slide 40: Domains, subdomain, and top level domains
	Slide 41: Different ways to provide session ID
	Slide 42: Now: attacking this!
	Slide 43: Session attacks
	Slide 44: Eavesdropping & MiTM attack
	Slide 45: Session ID prediction attack
	Slide 46: Session ID prediction attack
	Slide 47: Session fixation attack (aka Login CSRF)
	Slide 48: Making these attacks on sessions harder
	Slide 49: CSRF: the downside of browser automatically adding cookies
	Slide 50: Abusing cookies without stealing them (CSRF)
	Slide 51: CSRF
	Slide 52: Countermeasure: (anti)CSRF token
	Slide 53: Standard solution to prevent CSRF
	Slide 54: Other countermeasures against CSRF

