
Web Security

Encoding, validating & sanitizing

Sessions & Authentication

Güneş Acar & Erik Poll

Digital Security group

Radboud University Nijmegen

websec 1

Web Security

Encoding, validating & sanitizing

Sessions & Authentication

Güneş Acar & Erik Poll

Digital Security group

Radboud University Nijmegen

websec 2

Last week & today

Last week

• Web clients & servers interact using HTTP.

• The HTTP traffic contains URLs (for ‘addressing’) and HTML (for the

‘content’) which can contain JavaScript as code to be executed

client-side

• HTTP requests are usually GET or POST requests

– GET: parameters in URL

– POST: parameters in HTTP body

Today

1) The languages & encodings of data in HTTP traffic

2) Two notions of sessions for security:

– TLS / HTTPS at network level

– cookies at application level

websec 3

Exercises for this week

A. Check input sanitisation in Brightspace

How is input encoded & sanitised in Discussion Forums,

at the client side and/or at the server side?

B. Check security settings for some sites where you have a

login, incl. whether it support HTTP(S), HSTS and Certificate

Transparency(CT) and which cookies flags it uses.

C. One more WebGoat lesson

 Authentication Flaws - Authentication Bypasses

A & B to be handed in (in pairs) via Brightspace

Deadline Monday Sept 15, 23:59

websec 4

Languages & encodings
(continued from last week)

websec 5

Web pages contain HTML, CSS, JavaScript and URLs

<html><title>The various languages and formats used inside web pages</title>

 <body>

 <h1 style="color:blue;">Sample exam question<h1> is 3 < 4?

 <a href="https://duckduckgo.com/?q=how+to+encode+<+in+HTML%3F">A link with special characters

 And another one

 <script> var x = 'a string with a single quote \' and double quote ".';

 alert(x);

 </script>

 </body>

</html>

• Special characters may need to be encoded aka escaped

to prevent unintended effects or preserve intended effect

• Which characters have to encoded, and how, depends on the context.

• Eg < is a special character in HTML, but not in a URL

• Within a single language there can be several contexts. Eg

• / is a special character in URLs, but not in the query string (i.e. after the ?)

• For a JavaScript strings inside JavaScript the outer quotes (' or ")

determine which quotes inside the string need to be escaped.

websec 6

Replaces reserved characters that have a special meaning in URLs

 /?!*';:@&=+$,#()[]

with their ASCII value in hex preceded with escape character %

Try this out with eg https://duckduckgo.com/?q=%3F

Encoding space as + comes from older x-www-form-urlencoded format

Possible sources of confusion (and bugs or security issues?)

• The reserved characters are different for different parts of the URL.

 Eg / in the path of a URL must be encoded, in the query it need not be

• What happens if you URL-encode unreserved characters? eg A -> %41

• What happens if you double URL-encode? eg % -> %25 -> %2525

URL encoding aka %-encoding

websec 7

/ # space = ? % …

%27 %23 %20 or + %3D %3F %25 …

HTML encoding

Replaces HTML special characters with similar looking ones

• HTML encoding and URL encoding are needed in different contexts

– Things can get confusing: what about URLs inside HTML or vv?

• HTML also has the notion of character encoding: which character set is

used, eg ASCI or UTF-8 (default)

• Browser engines can be sloppy or forgiving, and let you get away with
not encoding e.g. & as & in webpages

– http://validator.w3.org checks if a page is correct HTML

• On top of HTML-encoding, websites may apply additional input

sanitisation to remove or replace tags it wants to disallow in user input;

– eg <script> tags are commonly stripped from user input

websec 8

< > & “

< > & "

base64 encoding

HTTP is text-based, so all data transmitted has to be text

 – ie. printable, displayable characters

Base64 encoding turns ‘raw’ binary data - bytes - into text

so that it can be transferred via HTTP

• 6 bits coded up as one of the 64 standard characters

 a-z A-Z 0-9 + /

• Groups of 3 bytes (ie 24 bits) represented as 4 characters

• Padding with = or == to make sure results is multiple of 4 characters

long

websec 9

base64 encoding

• groups of 6 bits coded up as one of the standard characters

 a-z A-Z 0-9 + /

• So 3 bytes represented as 4 characters

• Padding with zeroes to make the input a multiple of 6 bits

• Padding with = or == to make sure results is multiple of 4 characters

long

Details not that important for this course, but you may come

across base64-encoded data

websec 10

Encoding user content for security

User-supplied content in webpages may need to be encoded or

sanitised to prevent malicious content from triggering unwanted effects.

<html><title>Mallory’s Radboud Student Homepage</title>

 <body>

 <h1 color ="color:red;">Welcome to Mallory’s homepage</h1>

 Some text that Mallory provided.

 My contact information

 <img=https://bla.com/common/view/my_profile_image.jpg

 My favourite course

 My grades

 <script> someJavaScriptFunction(someOtherString+'Mallory’); </script>

 </body>

</html>

websec 11

Beware of confusion

encoding

• changing the representation

of data

• no information is lost or

changed

• eg HTML or URL encoding

sanitisation and validation

• removing or changing

‘problematic’ data

• some information is lost;

possibly an entire request is

rejected as invalid

• eg removing <script> tags or

rejecting incorrect date

31/2/2024

• Encoding can also be called escaping or quoting, and

validation is sometimes called filtering
• Common distinction: validation rejects entire inputs, whereas

sanitisation changes them or removes problematic parts of inputs
• Beware: some people use alle these terms interchangeably

Exercise to hand in this week

• Figure out how Brightspace encodes and/or sanitises user

input in Discussion Forums

– client-side in the browser and/or server-side

– for header and body of forum posts

NB try to describe this as concise as

possible, eg in terms of URL or HTML

encoding.

Web Security

Authentication &

Session Management

websec 14

“No security built into the internet”

But what does that mean?

• No way of knowing who you are communicating with, apart
from an IP address

– ie no authentication

• Any party along the way (wifi router, ISP, ...) can read or modify
the communication

– ie no integrity & confidentiality of communication

Security shortcomings of internet

websec 15

Adding security: two security

Two security requirements we want to add

1. Authentication

a) of the web site by user

b) of the user by the web site

How?

For a) TLS certificates aka X509 certificates

For b) username/password or more secure solutions, eg MFA (Multi-
factor Authentication)

2. Integrity & confidentiality of communication

How?

TLS, which adds encryption and integrity protection with

– MACs (Message Authentication Codes)

– digital signatures

websec 16

Today: two notions of sessions

1. HTTPS at the network layer

– by TLS, on top of TCP or inside QUIC

– includes authentication of the server

2. Session management at the application layer

– by web application using sessions IDs and/or cookies

– includes authentication of the user

websec 17

...

IP

HTTP

TCP UDP

DNSHTTPS

server

HTTPS

websec 18

a) Passive eavesdropper

b) Active Man-in-the-Middle (MitM) attacker

Eg a malicious or compromised ISP, router, or WiFi access point

WiFi security (eg WPA2) should prevent attackers eavesdropping on

Wifi traffic

c) Malicious or vulnerable end points (browser or server)

A malicious server (eg fakebank.com) can act as MitM by relaying traffic to

real website bank.com

Attacker models for the internet & the web

websec 19

bank.com

(partial) security solution: TLS

websec 20

bank.com
HTTPS

TLS

1. Server sends X509 server certificate to client

– Signed by a Certificate Authority (CA) or self-signed

– Browsers come pre-configured with list of trusted CAs a
– server’s public key PK list of trusted CAs

2. Client checks that certificate has not been revoked

– by requesting Certificate Revocation List (CRL) from CA

3. Client authenticates the server, with a challenge-response protocol
–

4. Client and server then agree a session key
–

5. Subsequent HTTP traffic in a secure tunnel

Does a self-signed certificate provide any security guarantee?

Yes, because at least clients knows they keep talking to the same server

websec 21

TLS – crypto details; not important for this course

1. Server sends X509 server certificate to client

includes server’s public key PK

2. Client checks that certificate has not been revoked

3. Client authenticates the server, with a challenge-response protocol
Client sends nonce n encrypted with public key PK, and checks if server
response includes n which proves knowledge of corresponding private key

4. Client and server then agree a session key
 Typically an AES key

5. Subsequent HTTP traffic in a secure tunnel
 Traffic encrypted and MACed with session key

• encryption for confidentiality, MACing for integrity

 Periodically the session key is refreshed

websec 22

HTTPS: HTTP over TLS

Security guarantees :

• Confidentiality & integrity of the session

– Attacker on the network can still see that two IP addresses

communicate (an example of meta-data), but not what

• All HTTP content, incl. headers & URL parameters are protected

inside TLS tunnel

– Attacker cannot change any traffic or replay it

• Server authentication, using certificates

• Possibly, but uncommon: Client authentication with a client certificate

– Usually servers use another means to authenticate clients: often

passwords 

The same holds if TLS is used as part of QUIC

websec 23

HTTP

TLS

HTTP

QUIC TLS

Aside: name confusion TLS vs SSL

TLS (Transport Layer Security) used to be called SSL (Secure Sockets Layer)

– TLS version 1.0 is SSL version 3.1

– Latest TLS version is 1.3

This explains why X509 certificates are sometimes called SSL

certificates and a well-known TLS implementation is called

OpenSSL

We’ll come back to TLS later in this lecture to discuss its limitations.

websec 24

Mixing http & https

A web page can mix http & https content, but this is a bad idea!

• Why would you never want to have an frame loaded via http
inside a webpage loaded via https?

Web browsers nowadays warn about or block mixed http/https

content.

Demo: check out how this works in your browser, by visiting
http://www.cs.ru.nl/~erikpoll/websec/demo/mixed_content.html

https://www.cs.ru.nl/~erikpoll/websec/demo/mixed_content.html

This demo no longer still works in Firefox, but it does in Chrome

websec 25

Sessions

(at application level)

websec 26

Functional shortcoming of HTTP

HTTP is stateless and has no notion of session, ie

• No state is recorded about history of previous requests

• (Hence) no notion of a sequence of requests belonging together

in one conversation between client and server

This is very clumsy for interaction between a client and server

• Has this user logged in?

• Did the user select English or Dutch as language for the site?

• Has the user put items in their online shopping basket?

• Did the user already agree to our privacy policy?

websec 27

Why can’t we use IP address for this?

• Different clients may share the same IP address

 Eg different browsers & apps on the same device,

 different users on lilo.science.ru.nl,

 or different users on a local wifi network (esp for IPv4)

• Multiple web applications can share the same IP address

– especially web applications hosted in the cloud

• Clients and servers can change IP address

– eg. clients on mobile devices, when switching from mobile

network to WiFi or v.v.

– also: web applications hosted in the cloud, if they are migrated to

other server

websec 28

Session & session data

There is usually session data associated with a session that

needs to be remembered.

• Eg: content of online shopping basket

Ways to keep track of such data:

1. send it back & forth between

server and browser
with each request and response

eg using hidden parameters

2. record it at the client side
using HTML local storage

3. record it at the server side and just send back & forth a unique

identifier

Pros & Cons ?

• Con 3: server has to record lots of info for many sessions

• Con of 1 & 2: client could mess with this data

websec 29

Things that can go wrong with session data

Classic security flaw: the price is recorded in a hidden form field,
as shown in the proxy output above.

The client can change this...

websec 30

Misplaced trust in the client

For data for which integrity is important (eg prices)

the server should never trust the client

to provide this data or to return this data unaltered

Instead, the server should

• store such data server-side

or

• add a cryptographic integrity check

– eg using a MAC (Message Authentication Code) or Digital

Signature

– Such a check should also include a time stamp or some session id

that frequently changes, to avoid replay or roll-back attacks.

websec 31

Session data for authentication

Authentication often involves a notion of session, and then goes in two

steps

1. Actual authentication, say with a username/password plus the

response of an MFA token

2. Creating a session, with session identifier aka session token

 for fast & easy (re)authentication without repeating step 1

Most web applications use session cookies for this purpose

• Such cookies provide identity and proof that this identity has verified

(aka authenticated)

• These cookies are just as valuable for attacker as original credentials

used to authenticate, eg username/password plus MFA response

websec 32

Sessions managed by the web application

Typical steps

1. Web application creates & manages sessions

– Session data is stored at server and associated with a

unique session ID

2. Client is informed of session ID

– and client attaches session ID to subsequent requests

 so server knows about previous requests

Web application frameworks usually provide built-in support for

session management, but web application developers can implement

their own

• NB it is better to use existing solutions than inventing your own

• Still, don’t underestimate the complexity of using these correctly

websec 33

Solution 1: session ID in URL

Web page returned by the server contains links with session ID as

extra parameter

<html>

Example web page with session IDs in the URL.

The user can now click

here

or

here

passing on its session id back to the server

wherever he goes next.

</html>

Hence: every user gets their own unique copy of a web page.

websec 34

Solution 2: session ID in hidden parameter

<htm>

The form below uses a hidden field

<form method="POST" action= "http://ru.nl/register.php">

 Email: <input type="text" name=“Your email address">

 <input type="hidden" name="sid" value=“s1234">

 <input type="submit" value="Click here to submit">

</form>

Hidden means hidden from the user by browser,

not hidden from a proxy like ZAP.

A hidden form field could also be used to track user preferences, eg
 <input type="hidden" name="Language" value="Dutch">

websec 35

Session ID in URL vs hidden parameter

Can you think of a downside of a session ID in the URL?

If you give a link with your session ID to someone else,
then that person might continue with your session!

Also, bookmarking a URL incl. the session ID does not (or
should not) make sense, as the next time you use the
bookmark you should start a different session

websec 36

Solution 3: sessionID in a cookie

Standard solution built into HTTP and browser

• Cookie is piece of information that is set by the server and
stored by the browser

– namely when HTTP response includes Set-Cookie field in
header

– It belongs to some domain, eg www.test.com

– It includes expiry date, domain name, optional path, optional
flags

• eg secure , HTTPOnly , and SameSite flags

• Cookie is automatically included in any HTTP request by the
browser, for any request to that domain

– in the Cookie field of HTTP request

• Cookie can include any type of information

– sensitive information, such as session ID

– less sensitive information, such as language preferences

websec 37

Example cookie traffic

• Setting a cookie set with an HTTP response

HTTP/1.0 200 OK

Content-type text/html

Set-Cookie: language=Dutch

Set-Cookie: sessionID=123; Expires=Tue, 26 Apr 2021 11:30:00 GMT

...

• Sending a cookie in an HTTP request

GET someurl.html HTTP/1.0 200 OK

Host: example.com

Cookie: language=Dutch, sessionID=123

websec 38

Different types of cookies

• non-persistent cookies

– only stored while current browser session lasts

• persistent cookies

– preserved between browser sessions

– useful for maintaining login and user preferences across

sessions

– bad for privacy

websec 39

Domains, subdomain, and top level domains

The domain in a cookie can be a subdomain of a website (eg cs.ru.nl is a

subdomain of ru.nl) which raises questions, such as

Are cookies for cs.ru.nl sent with requests to ru.nl? Or v.v.?

Can ru.nl set a cookie for cs.ru.nl ?

Complex rules restrict cookie access across (sub)domains [RFC 6265]

Overall rationale: subdomains need not trust their superdomain

• Subdomains can access cookie for domain, but not vice versa

• Subdomains can set cookie for direct superdomain, but not vv

• With the HostOnly flag, cookies can further restrict access

 For details, check [RFC6265] and hope browsers do not still implement

outdated parts of [RFC 2109] or [RFC 2965].

For top level domains, eg .nl, there are additional rules,

to prevent say ru.nl from setting a cookie for .nl

 But does this work as intended for countries using 3 level domain names?
Eg for somecompany.co.uk, where co.uk is not a top level domain

websec 40

Different ways to provide session ID

1. Encoding it in the URL

 Downsides: 1) stored in logs (eg browser history), 2) can be

 cached & bookmarked, 3) visible in the browser location bar.

2. Hidden form field

Better: won’t appear in URLs, so cannot be bookmarked, and

less likely to be logged

3. Cookies

 Best choice: automatically handled by browser; easier &

more flexible.

 But such automation has downsides, as we’ll see: CSRF

websec 41

Now: attacking this!

websec 42

Session attacks

Aim of attacker: get the session ID

– This can be session cookie, or other form of session ID

– If the victim is logged in, this is just as good as stealing his

username and password!

How would you do this?

websec 43

Eavesdropping & MiTM attack

If traffic is not protected with TLS

 (or Wifi protection on lower network layers)

then someone sniffing the network traffic can obtain session IDs.

Attacker can also set up a (fake) network access point to do this

• and then even do active Man-in-the-Middle attack.

There are some variants to by-pass TLS protection, as we will see later.

websec 44

Session ID prediction attack

Suppose you can check your grades in blackboard on page

 brightspace.ru.nl/grades.php?s=s776823

Is this a security problem?

If s776823 is your student number and also the session id

(in the URL in this case) then it is!

Attacker could try other student IDs or – better still – the

university employee number of a teacher.

websec 45

Session ID prediction attack

Suppose you can check your grades in blackboard on page

 brightspace.ru.nl/grades.php?s=s776823

Is this a security problem?

If s776823 is your student number and also the session id

(in the URL in this case) then it is!

Attacker could try other student IDs or – better still – the

university employee number of a teacher.

websec 46

Session fixation attack (aka Login CSRF)

If the sessionID is in the URL, an attacker can

1. start a session with bank.com and obtain a session ID;

2. craft a link with that session ID and gets victims to click it, by

a) emailing victims with that link in the email; or

b) luring victims to a webpage with that link

3. The victim now goes to the website using a known session ID;

4. If victim logs in, and session ID is not changed,

then attacker can join the session & abuse the user’s rights!

Therefore: web server should change session ID on login actions

If the session-ID is a hidden form field, it does not end up in URL,

attacker cannot email a link, but option 2b) is still possible, with a

POST request

Variant: attacker has already logged in, so victim joins the attacker’s

session and may enter confidential data (eg credit card number) for

attacker’s account

websec 47

Making these attacks on sessions harder

• Use long enough, random session IDs – ie with enough entropy

– prevents session prediction and brute forcing

• Change session ID after any change in privilege level

eg after logging in

– prevents session fixations

• Expire sessions

 eg by setting expiration time on cookies

– reduces the attack surface in time

• Use HTTPS

 for all requests & responses that include session ID, not just
the login

– prevents networking sniffing of session ID

• Let clients re-authenticate before important actions

– reduces the value of any stolen session ID

websec 48

CSRF: the downside of browser automatically adding cookies

websec 49

pay

bank.nl

server

https://bank.nl

pay request

pay

https://mafia.com

pay request

Browser attaches cookie to cross-domain requests from any site

interaction that sets cookie

Abusing cookies without stealing them (CSRF)

Suppose for a bank transfer a website bank.com contains the URL

 <a href=”transferMoney?amount=1000

 &toAccount=52.12.57.762”>

Suppose attacker sets up a malicious website mafia.com with

 <a href=”https://bank.com/transferMoney?amount=1000

 &toAccount=52.12.57.762”>

If attacker tricks users to click on second link while they are logged on at
bank.com, the browser automatically attaches the bank’s cookies to

both requests! And money will be transferred...

This is called a Cross-Site Request Forgery (CSRF)

Root cause of the problem: browser automatically attaches cookies to

all requests, regardless of which page the link is on.

websec 50

CSRF

CSRF is only possible if we use cookies for sessions, not if we have

session ID in URLs or in hidden forms fields

CSRF is an example of feature interaction, namely of the features that:

1) any web page can link to another other web page

2) browser automatically attaches the cookies of A.com to any

requests to A.com

The combinations of these features can be abused

by attackers creating a webpage or HTML email with links to bank.com, where

the browser will automatically attach the bank’s cookies with the correct

value to authenticate these requests (assuming victim is logged on)

websec 51

Countermeasure: (anti)CSRF token

websec 52

<a href=“https://bank.nl/

 pay?token=32451...”>pay

bank.nl

server

https://bank.nl

pay request

 plus fresh token

pay

https://mafia.com

pay request

page.html with fresh token

interaction that sets cookie

Standard solution to prevent CSRF

Use two special numbers to identify a session

1. a fixed session ID stored in a cookie

2. a changing anti-CSRF token, as URL parameter or hidden

form field, that changes to a new random value for each

request

For any malicious cross-site requests, say from mafia.com to

bank.com, the browser will attach the right session ID cookie,

but these requests will not have the right CSRF token.

Confusingly, anti-CSRF tokens sometimes called CSRF tokens or

anti-XSRF token

websec 53

Other countermeasures against CSRF

1. Check Refer(r)er or Origin headers

Browser includes these in HTTP requests to indicate where a

request is made from (eg mafia.com or bank.com), so bank.com

can check which webpage made the request

Origin is just the domain, Referer the domain plus the path

But these headers may be absent  because

– Browsers can be configured not to include these headers,

for privacy reasons

– Websites can specify a Referrer Policy to tell browser not to

include them under certain conditions (eg when making HTTP request

from HTTPS context, only for requestions within the same site, ...)

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Origin

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy

websec 54

	Slide 1
	Slide 2
	Slide 3: Last week & today
	Slide 4: Exercises for this week
	Slide 5: Languages & encodings (continued from last week)
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Beware of confusion
	Slide 13: Exercise to hand in this week
	Slide 14: Web Security Authentication & Session Management
	Slide 15: Security shortcomings of internet
	Slide 16: Adding security: two security
	Slide 17: Today: two notions of sessions
	Slide 18: HTTPS
	Slide 19: Attacker models for the internet & the web
	Slide 20: (partial) security solution: TLS
	Slide 21: TLS
	Slide 22: TLS – crypto details; not important for this course
	Slide 23: HTTPS: HTTP over TLS
	Slide 24: Aside: name confusion TLS vs SSL
	Slide 25: Mixing http & https
	Slide 26: Sessions (at application level)
	Slide 27: Functional shortcoming of HTTP
	Slide 28: Why can’t we use IP address for this?
	Slide 29: Session & session data
	Slide 30: Things that can go wrong with session data
	Slide 31: Misplaced trust in the client
	Slide 32: Session data for authentication
	Slide 33: Sessions managed by the web application
	Slide 34: Solution 1: session ID in URL
	Slide 35: Solution 2: session ID in hidden parameter
	Slide 36: Session ID in URL vs hidden parameter
	Slide 37: Solution 3: sessionID in a cookie
	Slide 38: Example cookie traffic
	Slide 39: Different types of cookies
	Slide 40: Domains, subdomain, and top level domains
	Slide 41: Different ways to provide session ID
	Slide 42: Now: attacking this!
	Slide 43: Session attacks
	Slide 44: Eavesdropping & MiTM attack
	Slide 45: Session ID prediction attack
	Slide 46: Session ID prediction attack
	Slide 47: Session fixation attack (aka Login CSRF)
	Slide 48: Making these attacks on sessions harder
	Slide 49: CSRF: the downside of browser automatically adding cookies
	Slide 50: Abusing cookies without stealing them (CSRF)
	Slide 51: CSRF
	Slide 52: Countermeasure: (anti)CSRF token
	Slide 53: Standard solution to prevent CSRF
	Slide 54: Other countermeasures against CSRF

