

Polymorphic Pseudonymization

programma eID

SAP working group

Version: 0.91

Date: 07 July 2014

Status: Draft

Copyright © 2014 Ministry of the Interior and Kingdom Relations, The Hague

The Kingdom of the Netherlands (Ministry of the Interior and Kingdom Relations)

makes a reservation as meant in article 15b of the Authors Law 1912 (Dutch:

Auteurswet 1912) with relation to the provided information in this publication. In

case a third party in whatever way without permission violates the authors right,

the Kingdom of the Netherlands can undertake steps.

Date Version Change

20-05-2014 0.88 Initial version

22-05-2014 0.89 Inversion added in second part of proposition 2.1 (and related one on p.16).
Remark added after proposition 2.1 regarding other ElGamal representations.

02-06-2014 0.90 Typo’s fixed in third part of proposition 2.1 and in equation (9) on p.15.

07-07-2014 0.91  Improvements added based on work group discussions
 Some further typos in formulas fixed.
 Added affine PPCA and proofs for both basic PPCA as for affine PPCA in

appendices A and B

Polymorphic Pseudonymization

(DRAFT)

Dutch e-ID programme
SAP Working group

07 July 2014

Abstract In this paper we introduce polymorphic pseudonymization
based on the homomorphic properties of ElGamal encryption. We use
this to develop an e-ID infrastructure with special security and privacy
properties. We also describe an anonymous card application (PPCA).
This allows for pseudonymous identification through a central identity
provider with the paradoxical property that the provider cannot establish
which card is actually used or link it with earlier usage of the card. This
provides for anonymity in the scheme without losing computability with
other means of authentication.

1 Introduction

In this paper we introduce polymorphic pseudonymization. This enables an elec-
tronic identity (e-ID) infrastructure based on existing electronic identity mech-
anisms where users are provided with consistent pseudonyms throughout the
whole infrastructure. The scheme involves several redirections of the user and
secure exchange of information between the e-ID parties. This part of the scheme
could be based on SAML, cf. [18], but this is outside the scope of this paper. Be-
low we introduce the parties that exist within the envisioned e-ID infrastructure
and the main (security) requirements we require. Compare Figure 1 below.

• Users
Users want to make use of an electronic service provided by a service pro-
vider. The cases relevant for this paper are those where the user needs to
authenticate himself to the service provider. This can for instance be re-
quired if the electronic service rendered represents a monetary value as in
video/audio streaming services. It can also be required when the service gives
access to personal data of the user. The role of user authentication within
the e-ID infrastructure takes place at identity providers.
In many cases it is not required that the service provider needs to know the
actual identity of the user or indeed other personal information (attributes)
of the user. To this end, in the designed e-ID infrastructure the service pro-
vider is only provided with a pseudonym of the user by an identity provider
after successful authentication. The e-ID infrastructure also supports that

DRAFT — Polymorphic Pseudonymization — 07 July 2014

Figure 1. The e-ID infrastructure envisioned

pseudonyms - with user consent - are supplemented with attributes or (legal)
authorisations to perform certain acts for someone else, see below. A func-
tional requirement is that the user pseudonym the service provider is given,
is independent of the identity provider that is used. That is, login on to a
service provider by the user through different identity providers results in
the same pseudonym. The number of users will typically be very large, e.g.
several millions.

• Service Providers (SPs)
Service providers identify their clients using pseudonyms from the e-ID infra-
structure. Service providers receive pseudonyms in an encrypted form from
the e-ID infrastructure possibly supplemented with attributes and authoriz-
ations related to the pseudonym, i.e. the user. As part of their registration
process service providers are given cryptographic keys from the e-ID KMA
allowing them to decrypt the messages from the identity providers holding
the user pseudonyms. The number of service providers will typically be large,
e.g. ≥ 100.000.

• e-ID Brokers, Attribute Providers, Authorization Providers
Several parties can assist service providers to supplement its information. A
service provider can - with user consent - request encrypted pseudonyms for
the user from identity providers. It will typically ask one for itself but, with
consent of the user, it can also ask encrypted pseudonyms under which the
user is known by other parties such as attribute and authorization providers.
By using these the service provider is able to retrieve user attributes and
authorizations. An e-ID broker sits between the various e-ID parties and the

2

DRAFT — Polymorphic Pseudonymization — 07 July 2014

service provider and facilitates the latter. Typically an e-ID broker works for
many service providers.

• Identity Providers (IPs)
Identity providers have means to electronically identify their clients and fa-
cilitate their clients to identify themselves to the service providers by pseud-
onyms. Only parties that deploy suitable reliable client registration processes
and have suitable strong authentication mechanisms can participate in the
e-ID infrastructure we envision. Compare the STORK requirements in [21].
Other than that we want to impose as little as possible technical limitations
on organisations to participate as identity providers in the e-ID infrastruc-
ture. Technically we only require that as a part of the user registration pro-
cess the participating organisation records sufficient information and is able
to uniquely identify the user in the e-ID infrastructure. That is, we require
participating identity providers to be able to compile an e-ID wide U-id of a
user. A naive e-ID scheme could be formed by letting these identity providers
send this U-id to the service providers. However, this would not be very pri-
vacy friendly as the service providers would then get the identity of the users
and the service providers would also be able to link their client databases.
Our scheme effectively adds a privacy enhancing layer to this simple setup
by encrypting the U-ID in such away that many of the functional benefits
of the naive scheme remain but the privacy issues are removed.
To further explain, after successful authentication the identity provider com-
piles the U-id, sends this to the pseudonym provider (see below) and requests
a polymorphic pseudonym related to the U-id. The identity provider typically
records a polymorphic pseudonym for the user provided by the pseudonym
provider so that it does not need to contact the pseudonym provider in
future identifications. In other words, the identity providers receive a poly-
morphic pseudonym for the user as part of registering the user into the e-ID
infrastructure and update that information periodically.
We mention that it might be very helpful to let a social security number be
part of the U-id as this will ensure uniqueness of the U-id and thus of the
e-ID pseudonyms. However, not all potential Identification Providers have
registered - or in fact are legally allowed to register - that number. Alternat-
ively, as part of the e-ID infrastructure registration at an identity provider,
the user could be requested to subsequently “login” to the governmental in-
frastructure so that the user U-id can be augmented with its social security
number before it is sent to the pseudonym provider.
Each identity provider is provided with cryptographic keys in protected form
through an Hardware Security Module (HSM) facilitated by the e-ID KMA.
With these keys and the identifier of the service provider, the identity pro-
vider performs two operations. One particular key and the identifier are
used to implicitly form a pseudonym for the service provider inside the poly-
morphic pseudonym. Another key and the identifier is next used to transform
this result to an encrypted pseudonym that can only be used by the service
provider.That is, before the transformation the polymorphic pseudonym is
related to the user but not related to and decryptable for any service provider

3

DRAFT — Polymorphic Pseudonymization — 07 July 2014

(or identity provider). After the transformation an encrypted pseudonym is
generated that holds the pseudonym of the user in the domain of the service
provider in an encrypted form. That is, only the service provider is able to
decrypt this. The number of identity providers in the e-ID infrastructure will
be small, e.g. less than a hundred.

• Pseudonym Provider (PP)
The pseudonym provider receives the unique user identification U-id from an
identity provider after successful user identification. The pseudonym provider
is provided by the KMA with a specific public key for each participating
identity provider. The pseudonym provider is also provided cryptographic
keys in its HSM by the KMA and in fact generates some keys on its own. The
pseudonym provider then uses its HSM to form a polymorphic pseudonym for
the identity provider. This is both specific for the identity provider and the
user. We envision only one pseudonym provider in the e-ID infrastructure,
although in principle there could be several.

• Key Management Authority (KMA)
The KMA generates and manages the cryptographic keys used by all parties
within the scheme. We envision only one KMA in the e-ID infrastructure,
although in principle there could be several. Specifically, we envision the
situation that there are sector specific KMAs and KMAs for HSM based
service providers and non-HSM based service providers.

• Central Information Point e-ID Investigations(CIPEI)
It needs to be possible that law enforcement agencies can efficiently investig-
ate criminal abuse of the e-ID infrastructure pseudonymity features. We en-
vision that this implies that functionality related to (re-)pseudonymization
needs to be available for law enforcement agencies. In our scheme this is
facilitated by the CIPEI. The operations of the CIPEI need to be legally
controlled, e.g. by using court orders, and independently audited and super-
vised. Although we technically facilitate control, the further setup is outside
the scope of this paper. One might argue that the existence of law enforce-
ment access introduces the risk of misuse itself and is therefore harming
the privacy properties of the e-ID scheme. On the other hand one might
also argue that a service provider that knows that law enforcement access
is possible, e.g. in case of fraud, will be less inclined to ask personal data of
its users. That is, one can argue that the CIPEI can also contribute to the
privacy of the e-ID scheme.
The CIPEI we envision can handle two kinds of requests. In the basic request
(“de-pseudonymization”) a law enforcement agency presents a pseudonym
and the service provider domain it comes from to the CIPEI and requests
the identity of the user behind the pseudonym. A use case here could be
a criminal complaint from a service provider accusing a user of fraud. The
law enforcement agency would then be able to determine the identity of the
user, e.g., to question him. In the second type of request (“pseudonymization
on request”) the law enforcement agency presents a U-id of a user and a
reference to a service provider and requests the pseudonym of that user in
the given domain. A use case here could be a criminal investigation against a

4

DRAFT — Polymorphic Pseudonymization — 07 July 2014

user of child grooming and the law enforcement agency wants to investigate if
the user has been active on certain other websites as well. Cryptographically,
both request types require different cryptographic information and can be
handled independently. This implies that the CIPEI could be split into two
parts.

Based on the above description we formulate the main pseudonymization
security requirements in an informal manner:

1. A pseudonym does not allow the identification of the user through crypto-
graphic means.

2. Pseudonym domains of the service provider are not cryptographically link-
able. That is, at different service providers the user gets different pseudonyms
which are not inter-linkable through cryptographic means.

3. Possession of many pseudonyms and the corresponding user identities does
not allow the creation of an additional user pseudonym.

4. Encrypted pseudonyms are indistinguishable for the e-ID parties, most not-
ably for the brokers. That is, the encrypted pseudonyms for the same user
at the same service provider should not be linkable by other parties than the
intended service provider and possibly the KMA and CIPEI.

5. Although the identity provider is performing the transformation from poly-
morphic pseudonym to encrypted pseudonym he is not able to access the
pseudonym it helps to form.

6. An identity provider cannot use the polymorphic pseudonyms of another
identity provider to extract encrypted pseudonyms from.

Outline of the paper
In Section 2 we introduce the cryptographic building blocks for the scheme based
on the ElGamal encryption scheme. Section 3 describes the cryptographic key
setup of our scheme and Section 4 describes the scheme itself. Section 5 contains
the arguments that the scheme is meeting the security requirements mentioned
above. In Section 6 we sketch various extensions of our scheme. Section 7 contains
the conclusions of this paper. Finally, in Appendices A and B we have further
formalized the security properties related to a card application (PPCA) which
can provide anonymity in the scheme without losing computability with other
means of authentication.

2 Notation and preliminaries

Throughout this paper we let G = ⟨g⟩ be a multiplicative group of prime order
q generated by a generator element g. By GF(q) we denote the Galois field
of the integers modulo q. The cryptographic security of G can be formulated
in four problems in the context of the Diffie-Hellman key agreement protocol
with respect to g. The first one is the Diffie-Hellman problem, which consists of
computing the values of the function DHg(g

x, gy) = gxy. Two other problems

5

DRAFT — Polymorphic Pseudonymization — 07 July 2014

are related to the Diffie-Hellman problem. The first one is the Decision Diffie-
Hellman (DDH) problem with respect to g: given α, β, δ ∈ G decide whether
δ = DHg(α, β) or not. The DH problem with respect to g is at least as difficult
as the DDH problem with respect to g. The second related problem is the discrete
logarithm (DL) problem in G with respect to g: given α = gx ∈ G, with x ∈
GF(q) then find x = DLg(α). The DL problem with respect to g is at least as
difficult as the DH problem with respect to g.

One can easily show that if one can solve the discrete logarithms with respect
to one generator, one can solve it with to any generator of G. That is, the
hardness of the discrete logarithm problem is independent of the generator of
the group. In [22] a similar property is shown for the Diffie-Hellman problem. It
seems very unlikely that the hardness of the Decision Diffie-Hellman is dependent
of the generator of the group. However, as far as we know such a result is not
known to be provable. To this end, we say that one can solve the Decision Diffie-
Hellman problem with respect to the group G if one can solve the Decision
Diffie-Hellman problem with respect to any generator of the group. We assume
that all four introduced problems in G are intractable.

For practical implementations one can think of G being a group of points on
an elliptic curve such as brainpoolP320r1, including the standard generator from
[12]. Here the size of q is 320 bits. Throughout this paper we will letM(K, string)
represent a key derivation function (KDF) that maps a string into secret key in
GF(q)∗. One can think of the KDF functions from [13] but also of a HMAC
based function modulo q where HMAC is specified in [1]. For easy reference we
simply refer to such keys as KDF keys.

We will also distinguish a secure hash function I(string) that maps a string
into the group G. In the context of an elliptic curve group E(GF(p)) over a fi-
nite field GF(p) two approaches exist for such an embedding. A straightforward
approach, cf. [14], is probabilistic. Here one uses a standard secure hash function
to map the string to an element x ∈ GF(p) and verifies there exists a curve point
with this x-coordinate. If this is not the case one varies the string in a determ-
inistic fashion, e.g. by concatenating a string corresponding to an incrementing
counter that starts with 1 and tries again. Each try has a fifty percent of success
so eventually one will find a point on the curve. A deterministic polynomial-time
algorithm to embed strings in elliptic curves can be found in [20].

For S ∈ G, x, k ∈ GF(q) and y = gx we let EG(S, y, k) denote the ElGamal
encryption [6] of plaintext S ∈ G with respect to the public key y and private
key x. Technically, an ElGamal encryption consists of a pair of points in G of
the form (gk, S · yk). The number k is called the randomization exponent. As
can be easily verified, the decryption of an ElGamal encryption (A,B) is given
by B/Ax. Throughout the paper we consider the generator g as the basis for all
ElGamal encryptions which is why we do not explicitly include g as a parameter
in EG(.). We consider g and in fact the specifications of the group G to be
implicitly defined in the scheme specifications.

We remark that strictly speaking the public key y does not need to be in-
cluded in the ElGamal encryption EG specification. Indeed, the party for which

6

DRAFT — Polymorphic Pseudonymization — 07 July 2014

the encryption is intended does not require it as he already possesses it (or can
calculate it from the private key x). There are two reasons why we let the public
key be part of the ElGamal encryption. The first, and most important, reason is
that it allows for easy randomization of ElGamal encryptions (see the third part
of Proposition 2.1 below) which is a convenient tool to avoid linkability based
on cryptograms in the e-ID infrastructure. The second reason is that including
the public key facilitates easy look up of the required private key of the intended
party. For these reasons we let the ElGamal encryption EG(S, y, k) have the form
of the triple (gk, S · yk, y).

Below we have outlined the homomorphic properties of ElGamal encryption
that are the building blocks of our scheme.

Proposition 2.1 Let EG(S, y, k) = (A,B;C) be an ElGamal encryption of
plaintext S under public key y = gx and let z be an element of GF(q)∗. Then
the following equalities hold:

1. (Az, Bz, C) = EG(Sz, y, k·z),
2. (Az, B, C(z−1)) = EG(S, y(z−1), k·z),
3. (A · gz, B · Cz, C) = EG(S, y, k + z).

Proof: Easy verification. �
From the first part of Proposition 2.1 it follows that anyone can perform an

exponentiation on the plaintext S without knowing the value itself. Moreover,
from the second part of Proposition 2.1 it follows that anyone can transform
an ElGamal encryption under a public key y to another one of the form y =
yz with related private key x·z. Finally, the transformation in the last part of
Proposition 2.1 is called the randomization of an ElGamal encryption. With this
transformation anyone can transform an existing ElGamal encryption, only using
the public information g and y, into a fresh one holding the same plaintext S
but which is not linkable to the original one. This is due to the assumption that
the Decision Diffie-Hellman problem is hard in G. See Appendices A and B. We
note that one actually does not require the public key y for randomization but
that any pair (gr, yr) for a non-zero r suffices. That is, to support randomization
one could also define an ElGamal encryption as a quadruple (gk, S · yk, gr, yr)
for some (random) k, r. Although this representation of an ElGamal encryption
requires more storage (it consists of four points instead of three) it can have
computational benefits. Most notably, it can be deployed to avoid the usage
of an inverted exponent in the second part of Proposition 2.1 which can be
beneficial, e.g. in HSM implementations.

3 Basic Scheme Key management

3.1 The role of HSMs

In this section we describe the cryptographic keys for the e-ID parties required for
the envisioned polymorphic pseudonymization scheme. The e-ID parties possess

7

DRAFT — Polymorphic Pseudonymization — 07 July 2014

secret keys that are security critical to the scheme. Although we have arranged
that no party on its own can generate, transform or re-identify pseudonyms
(cf. Section 5) we envision that these secret keys are generated and kept in
secure environments, i.e. Hardware Security Modules or HSMs. These HSMs are
regulated by the e-ID scheme and provided with the required cryptographic keys
by the KMA. In such HSMs cryptographic keys are managed in non-exportable
fashion. The cryptographic keys can be generated inside the secure environment
or they can be transported (in encrypted form) from other secure environments,
e.g. from the KMA. The software applications of the party can place calls to the
HSM to use these keys to perform pre-defined cryptographic operations and to
return the result.

Different with a regular HSM setup is that such calls will typically not con-
sist of only one core cryptographic operation, e.g. as defined in the PKCS #11
standard [19], but of several of them. Only the end result is then returned to the
requesting software applications. Compare Figure 2. Practically speaking this
means that the HSMs need to have a secure execution environment in which a
(web)service and an internal application can be implemented. The (web)service
is the interface to the software application on the one hand and to the internal ap-
plication to the other. The internal application places (e.g., PKCS #11 based)
calls to the core HSM performing the atomic cryptographic calls. The HMS
(web)services can only be executed after the software application has authentic-
ated itself to the HSM, e.g. by proving possession of a certain (TLS client) key.
We mention that this architecture is supported by most modern HSMs.

Figure 2. HSM setup

The HSMs we envision do not only provide preventive security but also de-
tective security. The latter will also facilitate auditing and supervision of these

8

DRAFT — Polymorphic Pseudonymization — 07 July 2014

parties. With respect to detective security we further envision that at HSM ini-
tialization a dedicated private response signing key is generated. Moreover, each
HSM maintains an internal transaction counter similar to the EMV Application
Transaction Counter in debit cards, cf. [7]. Any call to the HSM that uses secret
information triggers an increment of an internal counter which is supplemented
to the resulting cryptogram and the whole result is signed.

As we envision that the parties involved are required to maintain an admin-
istration of the signed cryptograms this facilitates easy control of the operations.
Perhaps even more importantly, when one of the parties involved has a security
breach this setup conveniently and reliably allows analysis of any rogue trans-
actions by inspection of transaction counters. This HSM setup is currently not
common practice or even specified in relevant (PKI) HSM standards such as
FIPS 140-2 [15]. To further illustrate, in 2011 the security of the Dutch certi-
fication service provider DigiNotar was breached eventually leading to its bank-
ruptcy [9]. One of the main issues in the forensic investigation was assessing if all
rogue certificates could be accounted for. This was difficult to assess as the integ-
rity of the logs was heavily based on software based systems. If the transaction
counter setup had been used this investigation could have been simplified and its
outcome might even have been different. We remark that a certification service
provider cannot simply add such counters inside its HSM setup as this typic-
ally has impact on the HSMs FIPS 140-2 certification. However in our scheme
we introduce functionality that is non-standard anyway, so adding transaction
counters does probably not add for much additional complexity with respect to
certification.

The above discussion leads to a private signing key and transaction counter
for the KMA (KSK and KTC), for the CIPEI (CSK and CTC), for the pseud-
onym provider (PSK and PTC) and for the identity providers (ISK and ITC).
See also Figure 3. To avoid creating obstacles in participation of the e-ID infra-
structure we envision it is not mandatory for service providers to use an HSM.
However as the usage of HSMs enhances the security of the service provider’s
operation we envision two types of service providers (and pseudonyms) corres-
ponding to mandatory HSM usage or not.

3.2 KMA

At the start of its operation, the KMA sets up a Public Key Infrastructure
to sign all public keys of the parties in the e-ID infrastructure including the
operational keys of the KMA itself. Next, the KMA initialises its HSM with the
generation of a private KMA signing key (KSK) inside the HSM and provides
a signed copy of the public key to the e-ID parties. The HSM of the KMA also
initialises a KMA Transaction Counter (KTC) and sets it to zero. See Section
3.1. The KMA then generates the following scheme wide parameters and secret
keys which are managed in its HSM:

• Secret Pseudonymization logarithmA ∈R GF(q)∗. This logarithm only resides
in plaintext form in the HSM of the KMA and is implicitly used by the
pseudonym provider in the user specific part of the pseudonyms.

9

DRAFT — Polymorphic Pseudonymization — 07 July 2014

Figure 3. The e-ID cryptographic key infrastructure

10

DRAFT — Polymorphic Pseudonymization — 07 July 2014

• Secret encryption logarithm B ∈R GF(q)∗. This logarithm only resides in
plaintext form in the HSM of the KMA and is implicitly used by the identity
providers to allow the service provider to decrypt the encrypted pseudonyms.

• Domain Transformation key K2. This is a KDF key that is securely trans-
ported from the HSM of the KMA to the HSMs of the identity providers.
This key is used by the identity providers to transform their polymorphic
pseudonyms into the domain of the service providers.

• Encryption Transformation key K3. This is also a KDF key that is securely
transported from the HSM of the KMA to the HSMs of the identity providers.
This key is used by the identity providers to transform the encryption of the
polymorphic pseudonyms into an encryption that the service provider has a
private decryption key for.

We remark that KDF keys K0,K1 also exist in the scheme; these are generated
by the pseudonym provider and not shared with the KMA. See Section 3.3.

For the i-th identity provider IPi (1 ≤ i ≤ m) the KMA generates the follow-
ing factors which are managed in secure environments, i.e. Hardware Security
Modules:

• Pseudonimization factors γi ∈R GF(q)∗ and δi = A/γi or in other words
A = γi·δi. The factor γi is securely transported to the HSM of the pseudonym
provider, the factor δi is securely transported to the HSM of the i-th identity
provider.

• Encryption factors µi ∈R GF(q)∗ and νi = µi/B or in other words B =
µi/νi. The factor νi is securely transported to the HSM of the i-th identity
provider.

These factors ensure that polymorphic pseudonyms are non-interoperable among
identity providers (see Section 5). The form of the factors is also chosen to
facilitate easy software implementation. For the i-th identity provider the KMA
then forms the public key fi = gµi , signs it and sends a signed copy to both
the i-th identity provider and the pseudonym provider. Note that the identity
provider (and in fact no e-ID party) is not provided with the corresponding
private key µi.

For the j-th service provider the KMA generates a private pseudonymization
key SKj ∈R GF(q) and a private ElGamal decryption key DKj that takes the
form:

DKj =
B

M(K3,SP-idj | DI)
. (1)

Here DI represents distinguishing information, e.g. a serial number, allowing to
periodically change the service provider decryption key DKj . Both SKj and DKj
are securely transported from the KMA HSM to the service provider or its HSM
if the service provider is required to have one. Finally, each service provider is
given its public key hj = gDKj by the KMA in a signed version.

Finally, to facilitate legal access, the KMA generates in its HSM a LEAF
randomization factor ψ ∈R GF(q) this is also securely transported to the HSM
of the pseudonym provider.

11

DRAFT — Polymorphic Pseudonymization — 07 July 2014

3.3 Pseudonym Provider (PP)

At the start of its operation, the KMA initialises its HSM with the generation
of a private PP signing (PSK) key inside the HSM and the reliable transport
of the corresponding (signed) public key to the e-ID parties. The HSM of the
PP also initialises a PP Transaction Counter (PTC) and sets it to zero. See the
beginning of Section 3.

The PP then securely generates a User Pseudonymization KDF key K1 in
its HSM on which the user specific part of the pseudonym is based. As user
pseudonymization is not required by the KMA the key K1 is not shared with
the KMA or in fact any other party. That is, the PP is the only party in the e-ID
infrastructure that is able to fill in the user specific part of the pseudonyms.

To facilitate legal access, the PP securely generates a LEAF access key KDF
key K0 and a LEAF randomization factor χ ∈R GF(q) at the start of its op-
eration. The LEAF access key and the LEAF randomization factor is securely
exchanged to the HSM of the CIPEI.

Next the PP is provided with the public key fi of the i-th identity provider
(1 ≤ i ≤ m) signed by the KMA. Also the pseudonimization factor γi and the
LEAF randomization factor ψ are securely transported from the HSM of the
KMA to the HSM of the PP.

3.4 Identity Provider (IP)

At the start of its operation, each IP initialises its HSM with the generation
of a private IP signing (ISK) key inside the HSM and the reliable transport of
the corresponding (signed) public key to the e-ID parties. The HSM of the i-th
identity provider also initialises an IP Transaction Counter (ITC) and sets it to
zero. See the beginning of Section 3.

The HSM of each identity provider IPi (1 ≤ i ≤ m) is securely provided by
the HSM of the KMA:

• The Domain Transformation KDF key K2.

• The Encryption Transformation KDF key K3.

• The pseudonymization factor δi,

• The encryption factor νi.

3.5 Service Provider (SP)

Each j-th service provider with identifier SP-idj (1 ≤ j ≤ n) is provided by
the KMA with a private pseudonymization key SKj ∈R GF(q) and a private
decryption key DKj . See Equation (1). These private keys need to be protected
by the service provider, depending on the service provider type these keys are
protected in an HSM.

12

DRAFT — Polymorphic Pseudonymization — 07 July 2014

3.6 Central Information Point e-ID Investigations(CIPEI)

At the start of its operation, the CIPEI initialises its HSM with the generation
of a private CIPEI response signing (CRS) key inside the HSM and the reliable
transport of the corresponding (signed) public key to the e-ID parties. The HSM
of the CIPEI also initialises a CIPEI Transaction Counter (CTC) and sets it to
zero.

As we explained at the beginning of Section 3 any request to the HSM that
uses secret information in the HSM triggers an increment of the CTC which
is supplemented to the resulting cryptogram and the whole result is signed.
The KMA is only allowed to respond to signed (and numbered) messages and
a similar setup is applicable to the KMA (cf. Section 3.2). The CIPEI is also
required to maintain an administration of the signed cryptograms allowing an
auditor to easily validate if all such requests meet the legal requirements, e.g. if
corresponding court orders exist. Finally the CIPEI securely imports the LEAF
access key K0 and the LEAF randomization factor χ in its HSM which are
securely transported from the HSM of the PP.

4 Scheme Description

The pseudonym of user U-id at the j-th service provider with identifier SP-idj
takes the form:

PU,SP-idj = I(U-id)A·M(K1,U-id)·M(K2,SP-idj)·SKj . (2)

The pseudonym is an exponentiation of I(U-id), the identity of the user
embedded in the group G, to a secret power which is the product of four parts
applied in the following order:

• a user specific part, M(K1,U-id)) provided by the pseudonym provider,
• factor A provided in concert by the pseudonym provider and the identity
provider,

• a service provider specific part, M(K2,SP-idj)) provided by the identity
provider,

• another service provider specific part, SKj , provided by the j-th service
provider itself.

For later reference we remark that the following intermediate pseudonym forms
PU and PU∗ appear in the pseudonymization process

PU− = I(U-id)M(K1,U-id)

PU = I(U-id)A·M(K1,U-id) (3)

PU∗ = I(U-id)A·M(K1,U-id)·M(K2,SP-idj)

The pseudonym PU,SP-idj is provided by an identity provider in ElGamal
encrypted form under the public key of the service provider which takes the
form

gDKj = g
B

M(K3,SP-idj | DI) .

13

DRAFT — Polymorphic Pseudonymization — 07 July 2014

Here DI represents distinguishing information, e.g. a serial number, allowing to
periodically change the service provider decryption key DKj .

In the steps below we describe how the scheme provides the user pseudonym
to the service provider in a series of computations and exchanges between the
parties involved. To this end we first describe the scheme in a high level fashion
and then we refer to cryptographic building blocks we describe in subsections
below. The scheme involves several redirections of the user; we assume that the
scheme has some kind of secure session concept which allows the secure linkage
of these redirections and secure exchange of information. More specifically, the
redirections and information exchanges between the parties involved could be
based on SAML, cf. [18].

The scheme starts with a user with an e-ID wide unique identifier U-id that
wants to authenticate himself to the j-th service provider identified by SP-idj .
The user is shown several identity providers that can facilitate this. The user
has an existing relation with at least one of these identity providers. That is,
the user already possesses an authentication token for this identity provider.
Such a token could for instance be a smartcard, a hardware token, a One-Time-
Password mechanism based on SMS, or even something as prosaic as a user-
id/password. The technical token quality, the process of registration, cf. [21],
and the communication thereof to the service provider is outside the scope of
this paper. As stated in the introduction, we only assume that the registration
process is such that all identity providers in the scheme are able to identify a
user with a unique string U-id.

The user selects an identity provider and is redirected to that by the service
provider. Next the user authenticates himself to the identity provider. The rules
and regulations of the scheme will provide for guidelines when authentication
is not successful, e.g. by informing the service provider or blocking the token
used. This is outside the scope of this paper. If authentication is successful we
assume that the identity provider is able to deduce the unique U-id of the user
from its administration. The identity provider then connects to the pseudonym
provider and requests the Polymorphic Pseudonym corresponding with U-id.
This effectively is the registration of the user to the e-ID infrastructure. Some
kind of user consent is requested here, but this is outside the scope of this paper.

We also note that the identity provider could already possess the Polymorphic
Pseudonym corresponding with the U-id if this registration was done on an
earlier occasion. If this is not the case then the pseudonym provider registers
the user into the e-ID infrastructure using the building block Polymorphic Pseud-
onym and LEAF Provisioning by PP, see Section 4.1. With this building block
the pseudonym provider uses the identity provider specific parameters to trans-
form the U-id of the user to a Polymorphic Pseudonym and a Law Enforcement
Access Field (LEAF). The Polymorphic Pseudonym is provided to the identity
provider and is specific for both the user and the identity provider. The LEAF
is provided to the Central Information Point e-ID Investigations(CIPEI) to fa-
cilitate requests from law enforcement agencies. See Section 4.4.

14

DRAFT — Polymorphic Pseudonymization — 07 July 2014

On receipt of the Polymorphic Pseudonym the identity provider transforms
this to an Encrypted Pseudonym for the requesting service provider using the
building block Encrypted Pseudonym Provisioning by IP (Section 4.2). This holds
the pseudonym of the user encrypted under a public key of which the service
provider has the corresponding private key.

The Encrypted Pseudonym is then sent by the identity provider to the service
provider which then decrypts this using the building block Encrypted Pseudonym
Provisioning by IP (Section 4.3).

4.1 Polymorphic Pseudonym and LEAF Provisioning by PP

The starting point of this building block is that the pseudonym provider has re-
ceived the U-id from the i-th identity provider. For this the pseudonym provider
application calculates the corresponding embedding I(U-id) ∈ G. We remark
that we let this embedding be calculated by the pseudonym provider application
instead of its HSM for practical reasons; this kind of calculation is not common in
HSMs. Next the pseudonym provider looks up the public key fi of the i-th iden-
tity provider. The pseudonym provider software application then sends I(U-id),
U-id and fi to its HSM together with a reference to the i-th identity provider
and requests a Polymorphic Pseudonym and corresponding Law Enforcement
Access Field (LEAF).

To this end, the HSM first increments its counter PTC and forms the Poly-
morphic Pseudonym and corresponding LEAF which takes the form:

{E1, E2, E3, PTC}SIG; {L1, L2}SIG, {L3, L4}SIG. (4)

This consists of three signed structures the first one is the Polymorphic Pseud-
onym and the second and the third the LEAF each corresponding to the two
CIPEI requests introduced in the introduction.

The Polymorphic Pseudonym consists of four elements the last of which is the
PP Transaction Counter. The first three elements form an ElGamal encryption
that is constructed as follows. The HSM first calculates the value γi·M(K1,U-id)
based on the provided U-id and the factor γi and KDF key K1 inside its secure
memory. This value is used to form:

I(U-id)γi·M(K1,U-id) = P
(δ−1

i)
U ,

where the equality follows from equation (3) and the fact that A = γi·δi. The
HSM then generates k ∈R GF(q) and forms the ElGamal encryption

EG(P (δ−1
i)

U , fi, k) = (E1, E2, E3). (5)

This concludes the construction of the Polymorphic Pseudonym.

15

DRAFT — Polymorphic Pseudonymization — 07 July 2014

A LEAF consists of two signed structures. The HSM of the PP first calculates
three intermediate values O1, O2, O3:

O1 = I(U-id)M(K1,U-id)·ψ·χ = P ·ψ·χ
U−

O2 = H(O1),

O3 = M(K0,U-id).

(6)

Compare formula (3). Here H(M) represents a secure hash of a message M , e.g.
[17]. Next, the LEAF elements are calculated as:

L1 = H(O2),

L2 = E(O2,U-id),

L3 = H(O3)),

L4 = E(O3, O1).

(7)

Here E(K,M) represents a symmetric encryption of a messageM under a keyK,
e.g. [16]. The elements L1, L2 and L3, L4 are each combined and signed resulting
in the two LEAF structures. Then the HSM returns the polymorphic pseudonym
and the LEAF in response to the request of the pseudonym provider. Finally,
the pseudonym provider returns the polymorphic pseudonym to the requesting
identity provider and the corresponding LEAF to the CIPEI.

4.2 Encrypted Pseudonym Provisioning by IP

The identity provider wants to provide the j-th service provider (with reference
SP-idj) an encrypted pseudonym of the user that has just successfully authen-
ticated itself and wants to authenticate himself to the service provider. The
identity provider first looks up the user’s Polymorphic Pseudonym of the form
{E1, E2, E3, PTC}SIG from the pseudonym provider as part of an earlier e-ID
registration. Next the identity provider software application sends this Poly-
morphic Pseudonym and reference SP-idj to its HSM and requests an encrypted
pseudonym.

The HSM of the identity provider first checks the signature on the Poly-
morphic Pseudonym. Recall from Expression (5) that E1, E2, E3 takes the form

(E1, E2, E3) = EG(P (δ−1
i)

U , fi, k), (8)

for some random k ∈ GF(q) placed by the HSM of the pseudonym provider.
Then the HSM uses its KDF keys K2, K3 and its encryption factors δi, νi

to calculate H1 = δi·M(K2,SP-idj) and H2 = νi·M(K3,SP-idj | DI). Here DI
represents distinguishing information, e.g. a serial number, allowing to period-
ically change the service provider decryption keys. Typically, the identifier of
the service provider and the distinguishing information will be retrieved by the
identity provider from a digital certificate belonging to the service provider.

16

DRAFT — Polymorphic Pseudonymization — 07 July 2014

Next the HSM generates a l ∈R GF(q) and calculates the encrypted pseud-
onym as:

{EH1·H2
1 · gl, EH1+l·H−1

2
2 , E

(H−1
2)

3 , ITC}SIG
= {EG(PU∗, hj , k̃), ITC}SIG (9)

where k̃ = k·H1·H2 + l
To explain the working of this we will calculate this expression in three steps.

In the first step the HSM incorporates the identifier SP-idj of the j-th service
provider into the intermediate pseudonym as follows. To this end, the HSM
transforms (E1, E2, E3) into

(F1, F2, F3) = (EH1
1 , EH1

2 , E3)

= EG(P (δ−1
i ·H1)

U , fi, k·H1),

= EG(P (δ−1
i ·δi·M(K2,SP-idj))

U , fi, k·H1),

= EG(PM(K2,SP-idj)
U , fi, k·H1),

= EG(PU∗, fi, k·H1)

The second equality follows from the first part of Proposition 2.1, the third one
from the definition of H1 above and the fourth one from the definition of γi, δi in
Section 3.2. The last equality follows from the definition of PU∗ in the beginning
of Section 3. This concludes the first step: we have ended up at an ElGamal
encrypted pseudonym under the public key fi of which no e-ID party has the
private part.

In the second step the HSM transforms this ElGamal encryption to one re-
lated to the private key of the service provider. To this end, the HSM transforms
(F1, F2, F3) into

(G1, G2, G3) = (FH2
1 , F2, F

(H−1
2)

3)

= EG(PU∗, f
H−1

2
i , k·H1·H2)

= EG(PU∗, f
1

νi·M(K3,SP-idj | DI)

i , k·H1·H2)

= EG(PU∗, g
µi

νi·M(K3,SP-idj | DI) , k·H1·H2)

= EG(PU∗, g
B

M(K3,SP-idj | DI) , k·H1·H2)

= EG(PU∗, hj , k·H1·H2)

The second equality follows from the second part of Proposition 2.1, the third
one from the definition of H2 above and the fourth one from the definition of fi
in Section 3.2. The fifth equality follows from the definition of µi, νi in Section
3.2 and the last one from the definition of hj in Section 3.2. This concludes the
second step: we have ended up at an ElGamal encrypted pseudonym under the
public key hj of the j-th service provider.

17

DRAFT — Polymorphic Pseudonymization — 07 July 2014

In the third and final step the HSM randomizes the ElGamal encryption from
the second step, cf. the third part of Proposition 2.1. This will make various en-
crypted pseudonyms for the user at the same service provider indistinguishable.
To this end, the HSM generates a l ∈R GF(q) and transforms (H1,H2,H3) into

(H1,H2,H3) = (G1·gl, G2·Gl3, G3).

One can easily verify that the three steps explained above lead to the expression
in Equation (9).

4.3 Pseudonym Provisioning by SP

The starting point of this building block is that the j-th service provider has
received an encrypted pseudonym from an identity provider. According to Equa-
tion (9) this takes the form

(I1, I2, I3) = EG(PU∗, hj , k̃)

for some k̃ ∈ GF(q). The service provider then first uses its private ElGamal
decryption key DKj to extract PU∗ as

PU∗ = I2/I
DKj

1 .

Then service provider uses its private pseudonymization key SKj to form the
user pseudonym in its final form (cf. formula (3)):

PU,SP-idj = P
SKj

U∗ .

4.4 CIPEI handling of law enforcement agency request

The starting point of this building block is that the CIPEI receives a lawful
request of a law enforcement agency. Two kinds of request can be handled.

Request Type 1 (“de-pseudonimization”) A pseudonym and a reference
to the related service provider domain is given by the law enforcement
agency; the identity of the person behind the pseudonym is requested.

Request Type 2 (“pseudonimization on request”) The U-id of a user is
given by the law enforcement agency together with a reference to a service
provider domain; the pseudonym of the person in the service provider domain
is requested.

Request Type 1 is handled as follows. The CIPEI instructs its HSM to gener-
ate a KMA request and feeds it the received pseudonym and the reference SP-idj
for the j-th service provider. The HSM then uses its LEAF randomization factor
χ ∈ GF(q) and forms (after increasing its counter CTC):

{PχU,SP-idj
,SP-idj , CTC}SIG = {M1,M2,M3}SIG. (10)

18

DRAFT — Polymorphic Pseudonymization — 07 July 2014

This expression is sent to the KMA, requesting the LEAF opening value (O2 in
Formula (6)) related to the pseudonym. The HSM of the KMA then uses the
LEAF factor ψ, pseudonymization logarithm A, the KDF key K2 and the key
SKj , to transform expression (10) into

O1 =M
ψ·(A·M(K2,SP-idj)·SKj)

−1

1 = P
χ·ψ·(A·M(K2,SP-idj)·SKj)

−1

U,SP-idj
= Pψ·χU−

O2 = H(O1).
(11)

Compare formula (3). The KMA now returns O2 to the CIPEI in a signed and
numbered form. The CIPEI then determines the corresponding LEAF identifier
L1 = H(O2) and looks up the corresponding LEAF structure {L1, L2}SIG in its
administration. Next the CIPIE uses O2 to decrypt the L2 part of the leaf to
determine U-id. See Formula (7). This is then returned to the requesting law
enforcement agency. In case of disputes, the CIPEI can also provide all related
information.

Request type 2 is handled as follows. The CIPEI first sends U-id to its HSM
and requests the value O3 in formula (6) of the user. The HSM then uses the
KDF key K0 to calculate O3 = M(K0,U-id) and returns this as a signed and
numbered message. The CIPEI then determines the corresponding LEAF identi-
fier L3 = H(O3) and looks up the corresponding LEAF structure {L3, L4}SIG in
its administration. The CIPEI then decrypts value L4 using O3 and determines
the group element O1 = I(U-id) corresponding to the user. The CIPEI then
sends this group element to its HSM together with the reference to the service
provider SP-idj domain the pseudonym of the user is requested for. The HSM
then returns a signed numbered request including O1 that is sent to the KMA by
the CIPEI. Additionally one could let O3 and the LEAF structure {L3, L4}SIG
be part of the request enabling the KMA to validate the request. The HSM of
the KMA exponentiates the value O1 to the power

A·M(K2,SP-idj)·SKj · ψ−1

which leads to PχU,SP-idj
. This is then numbered and signed by the KMA HSM

and sent to CIPEI by the KMA. The CIPEI then sends this to its HSM which
removes the factor χ (arriving at PU,SP-idj as desired) and returns this as part
of a signed numbered message. The message is then sent to the requesting law
enforcement agency.

5 Security arguments

Below we informally compare the proposed scheme against the main pseudonym-
ization security requirements from the introduction. Further formalizations of the
PPCA security properties are placed in Appendices A and B.

1. A pseudonym does not allow the identification of the user through crypto-
graphic means. In this mis-use case an adversary has a pseudonym PU,SP-idj

for a service provider with identifier SP-idj and wants to find out to which

19

DRAFT — Polymorphic Pseudonymization — 07 July 2014

user U-id it belongs. As follows from formula (2) a user pseudonym is a
function based on secret one way values (HMACs) from three e-ID parties,
the PP, an IP and the service provider the pseudonym is meant for. This
means that the only attack possible is based on brute-forcing the U-id for
which the cooperation is required of all three parties involved. Regardless
of the cryptographic techniques, a colluding identity provider and service
provider could perform a brute-force on the U-id of the user, i.e. by asking
polymorphic pseudonyms for all users at the pseudonym provider, transform
them to encrypted pseudonyms and letting the service provider validate if
it matches PU,SP-idj . This will be detectable by the HSM counters, how-
ever. It is an implicit assumption for the scheme that this risk can be made
acceptable.

2. Pseudonym domains of the service provider are not cryptographically link-
able. That is, at different service providers the user gets different pseudonyms
which are not inter-linkable through cryptographic means. In this mis-use case
an adversary has two pseudonyms at two different service provider domains
and wants to decide whether these correspond to the same person. It fol-
lows from formula (2) that for this one needs access to the secret keys of an
identity provider and the two service providers. That is, these three parties
would need to collude. Note: even if this is the case, the HSM of the identity
provider will not support the requested operation. Regardless of the crypto-
graphic techniques, a colluding identity provider and two service providers
could perform a brute-force on the U-id of the users involved and assess if
the two pseudonyms correspond to the same user. This will be detectable by
the HSM counters. It is an implicit assumption for the scheme that this risk
can be made acceptable.

3. Possession of many pseudonyms and the corresponding user identities does
not allow the creation of an additional user pseudonym. In this mis-use case
we assume that an adversary can acquire all pseudonyms and corresponding
identities at will and his task is to create an extra user pseudonym, i.e. one
not yet asked. This effectively reduces to the task of leaving out one of the
pseudonyms in

{PU1,SP-id1 , PU1,SP-id2 , PU2,SP-id1 , PU2,SP-id2},

for certain user ids U1, U2 and service provider ids SP-id1,SP-id2 and con-
struct the missing pseudonym from the other three. As the base of the pseud-
onym is formed by the embedding I(.) of the user identity U-id this amounts
to a Decision Diffie-Hellman problem in G. Unless an identity provider and
the two service providers SP-id1,SP-id2 collude and use their secret keys this
problem is assumed to be intractable. In this case the colluding parties can
transform pseudonyms between the two service provider domains. However,
this is a risk we have encountered already. It is an implicit assumption for
the scheme that this risk can be made acceptable.

4. Encrypted pseudonyms are indistinguishable for the e-ID parties, most not-
ably for the brokers. That is, the encrypted pseudonyms for the same user

20

DRAFT — Polymorphic Pseudonymization — 07 July 2014

at the same service provider should not be linkable by other parties than the
intended service provider and possibly the KMA and CIPEI. This property is
due to the randomization property of ElGamal encryption and the assumed
hardness of the Decision Diffie-Hellman problem in G. See the remarks fol-
lowing Proposition 2.1.

5. Although the identity provider is performing the transformation from poly-
morphic pseudonym to encrypted pseudonym he is not able to access the
pseudonym it helps to form. Regardless of the security provided by the HSM,
it follows from formula (2) that a user pseudonym also includes the usage
of the key SKj of the j-the service provider which the service provider does
not possess.

6. An identity provider cannot use the polymorphic pseudonyms of another
identity provider to extract encrypted pseudonyms from. The intermediate
pseudonym for another identity provider is encrypted with a (different)
pseudonym factor δ, the identity provider does not possess. Moreover, it is
encrypted with a public key that the identity provider cannot transform to
a service provider public key as it does not have the appropriate encryption
factor ν.

6 Extensions

In this section we sketch some extensions to the basic polymorphic pseudonym
system:

• Diversified Pseudonyms
• Polymorphic Pseudonym Card Application (PPCA)
• e-ID Token Status Services
• Polymorphic Attributes

6.1 Diversified Pseudonyms

By using additional information (e.g. sequence numbers) in the identifiers U-id
and SP-idj one can create several pseudonym domains at one service provider.
This also allows for all kinds of pseudonyms, including temporary pseudonyms.

6.2 Polymorphic Pseudonym Card Application (PPCA)

In the basic setup of our scheme, the identity provider knows the identity of the
user and it knows to which service provider the user is going. There might be
service providers where the sole fact of being a client is privacy sensitive. Our
scheme also simply supports the notion of a polymorphic pseudonymity card
application (PPCA). The idea is that an identity provider places polymorphic
pseudonyms for a user in a simple smartcard application. These polymorphic
pseudonyms are a separate class (with their own randomization and encryption
factors) to prevent replay attacks, see below.

21

DRAFT — Polymorphic Pseudonymization — 07 July 2014

The fundamental security property of the PPCA application is that it allows
the user to present a polymorphic pseudonym without the identity provider
knowing which card is used or even to be able to distinguish the various PPCA
cards used. The basis for this property is that the PPCA application randomizes
the polymorphic pseudonym before sending it out of the card (cf. the remarks
following Proposition 2.1). In Proposition A.1 in Appendix A we show that the
ability to distinguish issued PPCA cards is as hard as breaking the Decision
Diffie-Hellman problem with respect to g, which is considered to be intractable
in our setting.

To prevent likability the PPCA outputted polymorphic pseudonyms are not
provided with a counter and signature. That is, they only consist of the triple
{E1, E2, E3} as indicated in Formula (5). To further reduce communicational
overhead, the public key of the identity provider, i.e. E3, can be omitted in the
output. The identity provider processes the polymorphic pseudonym as before
but wipes them after use to prevent possible replay attacks, see below. In fact, the
handling of the PPCA application could take directly take place in the HSM that
generates the encrypted pseudonyms. The PPCA application could be placed on
the chip next to other applications such as a regular eID application, a Qualified
Electronic Signature (QES) application, an ISO compliant driving licence (IDL)
([8]), an ICAO compliant electronic passport ([10]). In fact, see below, the PPCA
application resembles an electronic passport: the polymorphic pseudonyms can
be read in a similar way as fingerprints are read from an European electronic
passport.

Two important potential risk types exist in the context of PPCA.

Replay of PPCA polymorphic pseudonyms: an adversary is able to send
a polymorphic pseudonym of an existing user to the identity provider and
takes over the e-ID identity of that user.

Forging of PPCA polymorphic pseudonyms: an adversary is able to send
a random polymorphic pseudonym, i.e. not relating to an existing user, and
thus creates a fake e-ID identity.

To address the first risk, access to the randomized polymorphic pseudonym
in PPCA should be restricted to the identity provider. This can for instance be
arranged by using the technique of Card Verifiable Certificates (CVC) in PPCA.
In this way, access to the randomized polymorphic pseudonym is only possible
for a party having a certificate from a certain public key infrastructure and the
related private key. This is the technique (extended access control, [2]) used to
protect fingerprint templates in European electronic passports. See also [10]. The
second risk can be addressed inside the e-ID infrastructure by introducing an
token status service inside the e-ID infrastructure, see Section 6.3. Additionally,
one could also use the setup of the German e-ID scheme [2] to authenticate the
card of the user without making it linkable. Currently the German e-ID scheme
supports two such mechanisms called Chip Authentication version 2/Restricted
Identification [2], [3] and Chip Authentication version 3/Pseudonymous Signa-
tures [4]. The latter is still in draft status at the writing of this document.

22

DRAFT — Polymorphic Pseudonymization — 07 July 2014

In the German e-ID setup, pseudonyms are read by the service provider dir-
ectly from the e-ID card. The service provider needs a specific CVC certificate
(and accompanying private key) for that also know as a terminal certificate.
With Restricted Identification batches of cards share a private authentication
key (Chip Authentication key) allowing the identity provider to validate the au-
thenticity of the card and to setup a secure channel to the identity provider. The
batch size is chosen such that the card is not linkable by its Chip Authentication
key. A pseudonym is generated by the card as as secure hash value based on a
secret key on the card and a public key of the service provider inside its terminal
certificate. It is sent by the card over the secure channel. This setup is susceptible
to both risk types mentioned above. Indeed, these pseudonyms are stored at the
service providers and in principle can be stolen from there by an adversary. This
implies that if the adversary also extracts the shared Chip Authentication key
from a card he will be able to impose as any of the users corresponding to the
stolen pseudonyms. With the Chip Authentication key the adversary will also
be able to send fake pseudonyms to service providers.

With Pseudonymous Signatures pseudonyms are no longer sent to the ser-
vice provider in hashed form. This allows the card to “prove” possession of the
pseudonym through a Pseudonymous Signature effectively over a public key in
the terminal certificate. This will mitigate the first risk. However the secret key
used for the Pseudonymous Signature is still shared among cards, albeit in in
pairs of cards. That is, compromise of the keys on two cards will allow extraction
of the pseudonym signature key. If this is the case then the second risk type men-
tioned above might become manifest. We note that [5] indicates that in this case
white lists will be published indicating the real pseudonyms and differentiating
them from the fake ones. We finally note that the fact that pseudonyms are no
longer sent to the service provider in a hashed form (as is the case in Restricted
Identification) also introduces a new type of potential risk. Indeed, this setup
makes it at least cryptographically possible for the party issuing the terminal
certificates (“DVCA”, see [4]) to perform pseudonym conversions on its own.
This places extra weight at the cryptographic key protection at the DVCA.

One can use either techniques from the German e-ID to prove to the identity
provider it is connected to an authentic card without providing linking inform-
ation. To this end, in the context of Chip Authentication version 2 this would
mean having a shared chip authentication key in a batch of cards and sending
a randomized polymorphic pseudonym instead of the German pseudonym. In
the context of Chip Authentication version 2 one would sign the randomized
polymorphic pseudonym with a pseudonymous signature over the polymorphic
pseudonym instead of over the service provider public key.

One can argue that the drawbacks of Chip Authentication version 2 are less
relevant in the context of PPCA than in the German e-ID context. In the PPCA
context compromise of the Chip Authentication key will allow the adversary to
establish a secure tunnel with the identity provider. However, there will be no
place where the adversary can harvest user polymorphic pseudonyms as we as-
sumed they are wiped after use at the identity provider. In the context of PPCA

23

DRAFT — Polymorphic Pseudonymization — 07 July 2014

it seems that both Geman e-ID chip authentication techniques are more or less
equivalently secure. And as already stated both chip authentication techniques
can be considered as only additional as the risk of fake identities can be mitigated
in the e-ID infrastructure itself as well.

PPCA facilitates that a user can harvest attributes and authorizations in
the “named world”, i.e. under his formal identity, have them placed under a
pseudonym at an attribute or authorization provider and then use them in the
“pseudonymous world” through PPCA. This allows for a setup combining the
best of both worlds. In the next bullet we decribe how we can also support
revocation for PPCA.

We end this section with some results on practical PPCA implementation.
The randomization operation takes as input an ElGamal encryption (A,B,C) =
(gk, S · yk, y), generates an r ∈R GF(q) and then produces (A · gr, B · yr). This
takes two exponentiations and two multiplications. When implementing this in
a (Java)card environment using elliptic curve arithmetic, then exponentiation
(point multiplications on a curve) is easier available then multiplications (point
additions on a curve). The reason for this is that exponentiation resembles the
basic Diffie-Hellman operation available from a cryptographic processor in the
card. In other words, the ability to perform the randomization operations with
only exponentiations would be convenient from an implementation perspective.

The following construction, affine PPCA, provides this. In the affine PPCA
application one places two randomizations of the same polymorphic pseudonym,
e.g. (A1, B1) = (gr, S · yr) and (A2, B2) = (gs, S · ys) with r, s ∈R GF(q) differ-
ent. Here we have simply denoted the intermediate pseudonym by S ̸= 1. When
the application is requested a randomized polymorphic pseudonym, it first gen-
erates k ∈R GF(q) \ {0, 1} and then returns two random affine representatives,
i.e. the two pairs of (a1, b1) = (Ak1 , B

k
1) and (a2, b2) = (A1−k

2 , B1−k
2) based on

(A1, B1) and (A2, B2) to the identity provider. Note that this only requires expo-
nentiations. After receipt, the identity provider pairwise multiplies the output,
i.e.:

(a1 · a2, b1 · b2) = (gr·k+s·(1−k), Sk+1−k · yr·k+s·(1−k))
= (gr·k+s·(1−k), S · yr·k+s·(1−k)).

Clearly this result is a randomization of the original ElGamal encryption. In
essence it constitutes to a random ‘point’ on the ‘line’ through the exponents of
the original randomized polymorphic pseudonyms, hence the name ‘affine’. This
end result will not allow the identity provider to identity or link the card by
Proposition A.1 in Appendix A. However, the identity provider also gets access
to the individual results (a1, b1) and (a2, b2) and the question arises if these
will allow the identity provider to identity or link a card. In Proposition B.2 in
Appendix B we sketch a proof that this is not the case either. Here we show that
the ability to distinguish issued affine PPCA based cards is as hard as breaking
the Decision Diffie-Hellman problem with respect to the whole group G, which
is considered to be intractable in our setting.

24

DRAFT — Polymorphic Pseudonymization — 07 July 2014

6.3 e-ID Token Status Services

The setup of polymorphic pseudonyms also introduces a convenient setup for
e-ID wide token status services. A token status service provider is just an e-ID
service provider and as part of registration the user registers there as well. Re-
corded are the reference to the identity provider and an identification of the
authentication token used. A token identification only needs to be unique in the
context of the user. That is, it is not indirectly identifying the user. It could
for instance simply be a sequence number. The user can inspect and maintain
the records there through the e-ID infrastructure. When the user authenticates
with an identity provider an encrypted pseudonym of the user is sent to the
token status service and asks for the status. This could be done by the identity
provider, the service provider or a broker.

This resembles the setup of the Online Certificate Status Protocol (OCSP)
setup, cf. [11]. Of course the authentication tokens are administered by the iden-
tity provider so typically it knows the token status itself. However with this
setup the identity provider could outsource its status services. Also, there could
be other reasons - not known to the identity provider - why the token could be
revoked.

To illustrate, if the identity provider is a bank that has deployed authentic-
ation based on debit cards (e.g., EMV CAP) then the record will contain the
name of the bank, a reference to the use of debit card authentication and the
sequence number of the user card. The sequence number is used to deal with
replacement of cards: the old number is invalid but the new number is valid. As
an illustrative use case, suppose a user has lost his wallet with several banking
cards in it but has not lost its e-ID card. The user could authenticate itself with
its e-ID card and then could be redirected to the token status service and revoke
all the bank cards in one move. All service providers where the user is registered
could periodically query the revocation service and update the revocation status
of the authentication tokens and act accordingly, e.g. by physically sending out
a new authentication token and letting it being activated with the e-ID.

The described e-ID revocation services also allow revocation of the PPCA
application introduced above. Each such card application gets a user specific
sequence number which is registered at the e-ID revocation service. Each time
the user uses PPCA at the identity provider it asks for the status of the card.
When the card needs to be revoked the user logs in to the revocation service
(with PPCA or with a regular e-ID token) and revokes it. If one deploys a
shared chip authentication key in PPCA, see above, this key could be used as
an identification of the card (provided a user never gets the same authentication
key twice). Other variants of this idea can be devised.

6.4 Polymorphic Attributes

Imagine an attribute provider that possess attributes of the user that enables
indirect identification of the user, e.g. a full postal code, a full date of birth or a
social security number. In a regular (SAML) setup, [18], the attribute provider

25

DRAFT — Polymorphic Pseudonymization — 07 July 2014

would encrypt the attributes under a public key of the service provider it is meant
for. But particulary with attributes that allow indirect identification this would
enable the attribute provider to follow the movements of its users. Particularly
in the context of PPCA this is not satisfactory.

One of the elements in our scheme is that one can encrypt information (an
intermediate pseudonym) under a public key of which the private part is not
known by the parties (e.g., identity providers, brokers) that use the encrypted
information. Instead these parties have cryptographic keys to transform the cryp-
tograms to other cryptograms for other parties (service providers) that do have
access to the required private keys. One can easily use the same idea to devise
‘polymorphic attributes’ that are particularly interesting to use in combination
with PPCA.

The idea is that a party that knows attributes of the user, encrypts those
with such a transformable public key and sends these to an attribute provider
using the pseudonym of the user in the attribute provider domain. If the user
authenticates at an identity provider, particularly through PPCA, it can ask the
attribute provider to transform its encrypted attribute to a form decryptable
by the service provider and have them sent to it. In this way, only the service
provider gets access to the attribute.

Provided strings are not too long, they can be efficiently bijectively embedded
in elliptic curves by using a standard encoding of a string as a number. For
instance, one can reserve some room, say one byte, in the string supporting that
the whole encoded string has an x-coordinate has a matching y-coordinate on the
curve. By proceeding in this way, one could in fact perform ElGamal encryptions
directly on the encoded attributes. In this way the encrypted attributes could
be randomized (cf. the remarks following Proposition 2.1) further improving the
privacy properties. We finally remark that ElGamal encryption has very efficient
properties with respect to encrypting the same plaintext under different public
keys. In [23] is shown that the same randomization exponent can be used without
security implications.

26

DRAFT — Polymorphic Pseudonymization — 07 July 2014

7 Conclusion

In this paper we have described polymorphic pseudonymization based on the
homomorphic properties of ElGamal encryption. We have used this to design
an e-ID infrastructure with special security and privacy properties. Pseudonyms
for service providers are consistent throughout the infrastructure even if they
were formed by different identity providers. The scheme limits the need of a
centrally used pseudonym provider through the concept of polymorphic pseud-
onyms. These are centrally generated once during registration and allow the
identity provider to let the user be identified at service providers through pseud-
onyms. While supporting e-ID parties can process (encrypted) pseudonyms and
can associate pseudonyms with attributes and authorisations they are not known
to them, nor is their use linkable. Only at the service provider pseudonyms and
attributes are known.

This setup also conveniently supports token status services based on pseud-
onyms. The polymorphic pseudonyms can also be placed in a simple card ap-
plication (PPCA) and randomized before sent out of the card over a secured
channel similar to how fingerprints are read from European electronic passports.
This allows for pseudonymous identification through a central identity provider
with the paradoxical property that the provider cannot establish which card
is actually used or link it with earlier usage of the card. PPCA provides for
anonymity in the scheme without losing computability with other means of au-
thentication. Also, PPCA cards can be conveniently revoked through the token
status services. PPCA also allows for a setup where users can conveniently place
attributes and authorizations from the “named world” under a pseudonym at
an attribute provider and then use them in the “pseudonymous world” through
PPCA. In this way PPCA combines the best of both worlds.

To further enhance societal acceptance of the scheme (and trust from the
service providers in the scheme) we have incorporated access for law enforce-
ment agencies in the scheme through a Central Information Point e-ID Investig-
ations(CIPEI). We have also designed cryptographic controls around this access
providing preventive security and which will also facilitate independent auditing
and supervision of the CIPEI.

27

DRAFT — Polymorphic Pseudonymization — 07 July 2014

References

1. M. Bellare, R. Canetti, and H. Krawczyk, Keyed Hash Functions and Message Au-
thentication, Proceedings of Crypto’96, LNCS 1109, pp. 1-15.

2. Bundesamt für Sicherheit in der Informationstechnik (BSI), Technical Guideline TR-
03110-2 Advanced Security Mechanisms for Machine Readable Travel Documents
Part 2 Extended Access Control Version 2 (EACv2), Password Authenticated Con-
nection Establishment (PACE), and Restricted Identification (RI) Version 2.10, 20.
March 2012. See
https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.html.

3. Bundesamt für Sicherheit in der Informationstechnik (BSI), Technische Richt-
linie TR-03127 Architektur elektronischer Personalausweis und elektronischer
Aufenthaltstitel Version 1.15, 1. August 2012. See
https://www.bsi.bund.de/DE/Publikationen/TechnischeRichtlinien/tr03127/tr-03127.html

4. Bundesamt für Sicherheit in der Informationstechnik (BSI), Technical Guideline TR-
03110-2 Advanced Security Mechanisms for Machine Readable Travel Documents
and eIDAS Token Part 2 Protocols for electronic IDentification, Authentication
and trust Services (eIDAS) Version 2.20 beta2 11. March 2014 See
https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.html.

5. Bundesamt für Sicherheit in der Informationstechnik (BSI), Technical Guideline TR-
03110-3 Advanced Security Mechanisms forMachine Readable Travel Documents
and eIDAS Token Part 3 Common Specifications Version 2.20 beta2 11. March
2014

6. T. ElGamal, A Public Key Cryptosystem and a Signature scheme Based on Discrete
Logarithms, IEEE Transactions on Information Theory 31(4), 1985, pp. 469-472.

7. EMVCO, EMV Integrated Circuit Card Specifications for Payment Systems,
Book 2, Security and Key Management,Version 4.3 November 2011. See ht-
tps://www.emvco.com/.

8. European Commission, Laying down technical requirements with regard to driving
licences which include a storage medium (microchip), COMMISSION REGULA-
TION (EU) No 383/2012, 4 May 2012.

9. Fox-IT, Black Tulip Report of the investigation into the DigiNotar Certificate Au-
thority breach, 13 August 2012.

10. ICAO, Machine Readable Travel Documents Part 3: Machine Read-
able Official Travel Documents, Doc 9303, Sixth Edition 2006. See
http://www.icao.int/publications/pages/publication.aspx?docnum=9303

11. IETF, Online Certificate Status Protocol - OCSP, Network Working Group Re-
quest for Comments: 2560, June 1999. See http://www.ietf.org.

12. IETF, Request for Comments 5639, Elliptic Curve Cryptography (ECC) Brainpool
Standard, Curves and Curve Generation, March 2010, see http://www.ietf.org.

13. ISO, ISO/IEC 18033-2:2006 Information technology - Security techniques - En-
cryption algorithms – Part 2: Asymmetric ciphers, 2006.

14. N. Koblitz. Elliptic curve cryptosystems. in Mathematics of Computation 48, 1987,
pp. 203209

15. National Institute of Standards and Technology (NIST), Security Requirements
for Cryptographic Modules, FIPS 140-2, May 25, 2001. See http://csrc.nist.gov.

16. National Institute of Standards and Technology (NIST), Advanced Encryption
Standard (AES), FIPS 140-2, November 26, 2001. See http://csrc.nist.gov.

17. National Institute of Standards and Technology (NIST), Secure Hash Standard
(SHS), FIPS 180-4, March 2012. See http://csrc.nist.gov.

28

DRAFT — Polymorphic Pseudonymization — 07 July 2014

18. OASIS, Security Assertion Markup Language, version 2.0. See https://wiki.oasis-
open.org.

19. RSA Laboratories, PKCS #11: Cryptographic Token Interface Standard, 16 April
2009. See http://www.emc.com.

20. A. Shallue, A., C. van de Woestijne, Construction of rational points on elliptic
curves over finite fields, ANTS , Lecture Notes in Computer Science, Volume 4076,
Springer, 2006, pp. 510-524.

21. Project Stork, Quality authenticator scheme, 3 March 2009. Available from
http://www.eid-stork.eu.

22. Eric Verheul, Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems, Journal of Cryptology (JOC) 17(4), pp. 277-296, 2004.

23. Eric Verheul, Binding ElGamal: A Fraud-Detectable Alternative to Key-Escrow
Proposals, Proceedings of Eurocrypt 1996, LNCS 1233, pp. 119-133.

A Appendix: sketch of security proof for basic PPCA

The following is a sketch of the security proof that the identity provider is not
able to distinguish issued PPCA cards through the randomized polymorphic
pseudonyms they generate. The takes the form of a game in which two parties
are involved. A party P and an adversary A. Party P has two arbitrary ElGamal
encryptions EG1 = EG(S1, y, k) and EG2 = EG(S2, y, k) of plaintexts S1 ̸= S2

under the same public key y of which neither party A or P has the private part.
Two phases exist in the game: a learning phase and a final phase. During the
learning phase, the adversary A is allowed to refer to either ElGamal encryptions,
by either 1 or 2, and to get a randomized version of the corresponding ElGamal
encryption EG1 or EG2. In the final phase, P flips a coin. If it is tails, P sends
random affine representations based on EG0. Heads corresponds to Scenario 1: P
sends two randomizations of either EG1 or EG2, he flips the coin again to decide
which of the two. Tails correspond to Scenario 2: P sends randomizations of both
EG1 and EG2 in fashion, he flips the coin again to decide the order. After sending
the adversary A then has to state which of the scenarios P chose, i.e. Scenario 1
or Scenario 2.

This game corresponds to the context where an identity provider tries to
link a user through its PPCA output. Indeed, the learning phase might in theory
occur during PPCA card production and the final phase is a representation of the
identity provider trying to distinguish PPCA cards during usage. The following
result states that if the identity provider is able to distinghuish PPCA cards, he
can break the Decision Diffie-Hellman problem with respect to the generator g
which we assumed to be hard.

Proposition A.1 If the adversary has a probability of winning the game sub-
stantially better than guessing he can break the Decision Diffie-Hellman problem
with respect to the generator g

Proof: Suppose that the adversary has an algorithm A() to win the game with a
probability of winning substantially better than guessing. Let g, h,K = gk, L =
hl ∈ G be an arbitrary Decision Diffie-Hellman instance with respect to g. We

29

DRAFT — Polymorphic Pseudonymization — 07 July 2014

will show that the adversary can decide whether k = l or not with non-negligible
advantage. To this end, the adversary introduces an ElGamal public key y = h
with private key x = DLg(h) unknown to all participants. Next the adversary
chooses 1 ̸= S ∈R G and forms the following two ElGamal encryptions under
public key y:

EG1 = (g, S · y, y)
EG2 = (K,S · L, y).

It follows that the decryption of the second pair is S · L · K−x = S · gx(l−k).
This is equal to S if and only if k = l. In the latter case EG1 is a randomized
version of EG2. As the adversary can randomize ElGamal encryptions himself
he can simulate the learning phase himself. The adversary’s algorithm A() will
then output Scenario 1 substantially more often Scenario 2 if and only if k = l.
The adversary can also repeat this game by choosing another random S and by
randomization of the K and L, i.e. by replacing them with K ′ = Kr1 · gr2 =
gk·r1+r2 and L′ = Lr1 ·hr2 = gk·r1+r2 By repeating the game the adversary is able
to solve the given Decision Diffie-Hellman problem with a probability arbitrarily
close to one. �

B Appendix: sketch of security proof for affine PPCA

In this appendix we sketch a proof that an identity provider is not able to link or
identify a user based on affine PPCA, i.e. the variant that uses no multiplications
but only exponentiations. This proof is similar to the one given in Appendix A
but more complex.

We introduce a game between a party P and an adversary A similar to the one
in Appendix A. Party P has a random ElGamal encryption EG0 = EG(S0, y, k0)
of a plaintext S0 ̸= 1 under a public key y of which neither party A or P
has the private part. P has also generated two randomizations EG0,1, EG0,2 of
the encryption EG0. This corresponds to a specific affine PPCA card instance.
Moreover, P also has a collection of many other ElGamal encryptions, EGi =
EG(Si, y, ki) for i = 1, 2, 3 . . . of other distinct plaintexts Si ̸= 1 but under the
same public key y. For each of those P has also generated two randomizations.
During the learning phase, the adversary is allowed to ask for random affine
representations based on EG0,1 and EG0,2. In the final phase, P flips a coin.
If it is heads, P randomly selects any of the other ElGamal encryptions and
sends random affine representations based on that (Scenario 2). P then asks the
adversary which of the scenarios he followed. In Appendix A we only assumed
that the adversary can win the game for ElGamal encryptions related to a fixed
generator g. In the result below we assume he can win the game for any generator,
i.e. for any element not one. This is a reasonable assumption as the choice of the
generator g should play no security role. Before coming to the main result, we
need a lemma.

30

DRAFT — Polymorphic Pseudonymization — 07 July 2014

Lemma B.1 Let G be a cyclic group generated by j and let y be an ElGamal
public key with respect to j with private key x, i.e. x = DLj(h). Let (U, V) and
(X,Y) be two pairs randomly chosen in GF(q)∗×GF(q)∗. Then with overwhelm-
ing probability (1− 3/q) these pairs can be constructed as affine representatives
based on two unique randomized versions R1 and R2 of an Elgamal encryption
of a unique plaintext S ̸= 1 under y.

Proof: We are looking for k, r, s, S ∈ GF(q) such that

(U, V) = (jr·k, Sk · yr·k)
(X,Y) = (js·(1−k), S1−k · ys·(1−k))

(12)

Then Sk = V · U−x and S1−k = X · Y −x. This will uniquely determine S. We
assume that S ̸= 1; which is the case with probability 1 − 1/q. The number k
will also be uniquely determined from Sk = V ·U−x, we automatically have that
S1−k = X · Y −x. With probability 1 − 2/q we will have that k = 0, 1. So the
probability that S is not one and that k is not zero or one is 1− 3/q. Next, r is
determined by DLj(U)/k and s is determined by DLj(X)/(1−k). It is a simple
verification that the k, r, s, S determined this way satisfy the two equalities in
Formula (12). �

Proposition B.2 If, for any generator j of group G, the adversary has a prob-
ability of winning the game, substantially better than guessing, he can break the
Decision Diffie-Hellman problem in the group G.

Proof: Let j, h,A = jk, B = hl ∈ G be an arbitrary Decision Diffie-Hellman
instance in the group G. Suppose that the adversary has an algorithm Aj() with
which he can win the game with respect to a generator j substantially better
than guessing. The adversary then chooses r, s, a, b ∈R GF(q) and forms the
following two randomized ElGmamal encryptions of the plaintext ja · hb in the
scheme with generator j and the public key h with private key x = DLj(h)
unknown to all participants:

(jr, ja · hb · hr)
(js, ja · hb · hs)

(13)

Note that the adversary can simulate the learning phase with respect to these
randomizations. Next, the adversary forms the pairs

(Ar, Aa ·Bb ·Br)
((A−1 · j)s, (A−1 · j)a · (B−1 · h)b · (B−1 · h)s)

(14)

Note that expressed in k, l the first pair in Formula (14) is equal to

(jr·k, ja·k · hb·l · hr·l) = (jr·k, ja·k · hb·k · hb·l−b·k+r·l−r·k · hr·k)
= (jr·k, ja·k · hb·k · h(b+r)·(l−k) · hr·k) = (U, V).

31

DRAFT — Polymorphic Pseudonymization — 07 July 2014

The second expression in Formula (14) is equal to

(js(1−k) , ja(1−k) · hb·(1−l) · hs·(1−l))
= (js(1−k), ja(1−k) · jb(1−k) · hb·(1−l)−b·(1−k)+s·(1−l)−s·(1−k) · hs·(1−k))
= (js(1−k), ja(1−k) · hb(1−k) · h−(b+s)·(l−k) · hs·(1−k)) = (X,Y).

We conclude that the pairs in Formula (14) are affine representatives of the
randomizations in Formula (13) if and only if k = l. The idea is now that Formula
(14) produces random affine representatives if k ̸= l, allowing the adversary to
use its algorithm Aj() to distinguish which case applies.

To further elaborate on this, note that by running through all r, s, T and a, b
with the property that a+ x · b = T Formula (13) will run through all ElGamal
encryptions of the element ja · hb under public key y using generator g. In fact,
we will run through all ElGamal encryptions of the element ja · hb under public
key hf using generator jf for any non-zero f .

By replacing r, s by f·r, f·s in Formula (14) we can transform this into the
setting of using generator jf and public key hf . We can also replace A and B
by anything of the form A′ = At1 · jt2 = jk·t1+t2 and B′ = Br1 · hr2 = jk·r1+r2

with random t1, t2. If k = l then the corresponding k′, l′ will also be equal and
will run through all elements in GF(q). If k ̸= l then the corresponding k′, l′

are such that k′ and l − k ̸= 0 will run through all possibilities. By respecting
the earlier chosen formula a+ x · b = T we still have freedom to choose b. Now
by appropriately choosing k′ and f we can let U and X be any element in G.
By subsequently choosing l′ − k′ and b we can let V and Y be any element in
G. It follows that if k = l then Formula (14) corresponds to all random affine
representatives based on Formula (13). Furthermore, if k ̸= l then Formula (14)
corresponds to two arbitrary pairs of elements in G.

From Lemma B.1 it follows that, with overwhelmingly probability, the pairs
in Formula (14) correspond to affine representatives based on a unique pair of
ElGamal randomizations under a public key with respect to jf . That is, the
pairs in Formula (14) are either affine points based on Formula (14) or can be
considered as affine representatives arising from another ElGamal encryption.

We conclude that if the adversary can win the game using his algorithm Ajf ()
with successive randomizations of r, s, a, b, A,B, f . That is, he will successively
play the game with randomized versions of the ElGamal encryption in Formula
(13) in the learning phase and then will use his algorithm to decide if the pairs
in Formula (14) are affine representatives based on those or not. Doing so the
adversary can establish if k = l or not with probability arbitrarily close to 1 , i.e.
to solve the instance of the Decision Diffie Hellman problem we started with. �

32

