HSM-assisted EUDI-wallet
&

Qualified Remote Sighing
based on Split-ECDSA (SECDA)

Eric Verheul

Agenda

SECDSA features

The foundation: Split-ECDSA (SECDSA)

HSM assisted EUDI-wallet based on standard mobile hardware
Proof-of-Associations on standard mobile hardware

Qualified Remote Signing (sketch)

SECDSA features

Allows HSM assisted EUDI-wallet based on standard mobile hardware (*) with the following features:
— Optimal security (no information stored in wallet or stored/processed at WP allowing for PIN brute-force)
— Support for publicly verifiable, non-reputable signatures on wallet instructions providing:
— provable “sole control” and transaction transparency,
— expedient dispute resolution for users,
— liability reduction for wallet provider and (PID) issuers.
— Can be based on HSM PKCS#11 standard.
— Efficient as requires only one HSM PKCS#11 call (DH) overhead per wallet authentication.
Allows Proof-of-Association for standalone EUDI-wallet using standard mobile cryptographic hardware (*).
Same approach can be used in the context of remote signing conform EN 419241-2 (SAM) and EN 419221-5
(Cryptographic Module for Trust Services) providing qualified remote signing with provable “sole control”.

(*) iOS/Secure Enclave, Android/Hardware Backed Keystore or StrongBox, Windows/TPM.

The foundation: Split-ECDSA (SECDSA)

Algorithm 6 Split-ECDSA (SECDSA) signature generation
Input: message M, PIN-key o € F_, SCE-key u € I}
Output: ECDSA signature (r, s) corresponding to public key o-u-G.

Compute H (M) and convert this to an integer e.
Compute ¢ = o ' mod g

Select random k € {1,...,q— 1}

Compute kG = (x,y) and convert x to integer T
Compute r = mod g. If =0 go to Line 1

If r mod ¢ =0 then go to Line 1

Compute so = k™ '(e/ +ur) modq. If sop=0 go to Line 1
Compute s = o-s9p mod g

Return (r,s)

Call to SCE _|
(=hardware)

1:
2:
3:
4:
5:
6:
T
8:
9:

The mobile cryptographic hardware is called Secure Cryptographic Environment (SCE) in the SECDSA paper.

The PIN-key o is derived from the user PIN and another key in the SCE: each PIN results in a different PIN-key.
The publickey Y = ¢ - u - G and signature (r, s) are called the raw SECDCA public key and raw signature.

That (7, s) is a correct ECDSA signature for private key o - |t is a simple verification.

Raw SECDSA public key/signature allow for PIN brute-force: may not be stored or leave wallet unencrypted.

By repetitive SCE use (output = input) the generation time of the PIN-key can be controlled, e.g. set to 1 second.
This allows controlling the expected PIN-brute-force time and thus the effectiveness of PIN-brute-force.

The key o can also be protected by biometric (finger, face) access control of the platform; this could be the base
for an elDAS substantial stand-alone EUDI-wallet.

https://eprint.iacr.org/2021/910

HSM assisted EUDI-wallet

based on standard mobile hardware

NON TECH OVERVIEW

1
Attribute . Internal Cert
]

Provider i PIN Counter

| PKCS#11 |
' Instruction | ' Enc keys :

. T

v erver HSM

(PZ”Y() Application : Sig keys
website . ;

RSA
* Hardware e

Security « EdDSA
Publicly Module * Idemix
Verifiable * AES
Logs

During wallet initialisation, an Internal Certificate (IC) is agreed between wallet and wallet provider.

Internal certificate holds unique Wallet Identifier (WIld) and homomorphically encrypted raw SECDSA public key
with a DH key managed by the WP HSM to prevent PIN brute-forcing. Raw SECDSA Public is not revealed to WP,

The IC is stored in the Wallet User DB together with a PIN counter.

SECDSA signatures on Key Management (KM) instructions are also homomorphically encrypted allowing WP
verification against encrypted raw SECDSA public key without information appearing allowing PIN brute-force.

When correct, the SECDSA signatures on the KM instructions are made publicly verifiable by the WP HSM
allowing for non-repudiation of the KM instruction.

All homomorphic encryption techniques are very simple (see next slides).

Attribute
Provider

| PKCS#11 |
' Instruction |

Server HSM
Application - ’ a

(website)

" Hardware
Security §
Publicly Module * Idemix
Verifiable s
Logs

* Homomorphically encrypted raw public key Y takes form (a - G, a - Y)) with secret scalar a managed in HSM.

* By using standard blinding techniques, the WP gets hold of the encrypted raw public key without seeing it.
* In practical implementations, each wallet/user gets its own secret scalar a (Diffie-Hellman key).

TECH DETAILS

1 !
Attribute Internal Cert -> (G) Y)
Provider A

PIN Counter .=
Internal Cert (@ Ga-v

| PKCS#11 |
' Instruction |

Server HSM
Application : _ a

(website)

* Hardware
Security
Publicly Module
Verifiable
Logs

Instruction signature of form
U,v,W):= (R,s™1-G',s71-Y') plus ZK1

Raw SECDSA signature (7, s) on a Wallet Key Management (KM) instruction is e'ﬁcryptéd by the wallet in two steps:
1. Itis first transferred into an equivalent form (R,s) withR € < G >. Compare AIgorlthm 3 of SECDSA paper.

2. Signature is homomorphically encrypted as (U, V, W) := (R,S L. G’, -1 Y) plus a Zero-Knowledge proof
ZK1, e.g. Schnorr, proving this (3 x: (V,W) = (x-G',x-Y")).

https://eprint.iacr.org/2021/910

Attribute Internal Cert

Provider PIN Counter

| PKCS#11 |
' Instruction |

0 Enckeys
11 ll 'l

‘ " Server HSM
Application i i i i Sig keys
(website) a °e ’ = a

RSA

" Hardware Ak
Security « EdDSA
Publicly Module * Idemix
Verifiable * AES
Logs

Instruction signature of form
U,V,W):= (R,s71-G',s71-Y') plus ZK1
The encrypted signature is validated by the Wallet provider as follows:
The original r is reformed from U (i.e. the originally named R).
Homomorphic verification: a - U =) Hash(M) - V + r - W // Left side is DH operation
If Step is not successful PIN counter is increased/account blocked etc....
If Step 2 is successful:

I
an extra Schnorr ZK2 is formed making (*) publicly verifiable; final SECDSA signature is (U, V,), ZK1, ZK

e The instruction is performed and the result is returned including the final SECDSA signature.

TECH DETAILS TECH DETAILS

iy b 1yt
Internal Cert i DSA Public Key (ENCJ > (GY")
: e o e i
3 =
i Internal Cert
‘ 5 (a-Ga-Y)
| PKCS#11
! Instruction | '-|l'-|"—|.‘-|' Enckeys |
e T
bsi) Application ‘ ; a Sig keys i
(website) . ' Result | i H

2 Hardv_vare L EEnei
Security « EdDSA

< :
Non- Publicly Module + Idemix ! . .
N : ; r is equal to the x-coordinate of
S) Logs i
: —” A modulo q the group order.

If Step is not successfyl PIN counter is increased/account blocked etc....

9tep 215 success . _l’_\‘ d x: (G’ Hash(M) -L4+r- M) = (x -G, x - R)
* an extra Schnofr ZK2 is formed making (*) publicly verifiabley final SECDSA signature is u,v,w), ZKlé\ZK_Z.‘ o ’ . - _ ’
+ The instructigh is performed and the result is returned including the final SECDSA signature. - (it follows x=a so (*) of previous slide holds)

7

ZK2 is not time critical, hence can be generated in quiet hours.

Or better: SHA256(a - K) =) SHA256(Hash(M)-L+r-M)

Notes:

« K — SHA256(a - K) is DH operation supported by PKCS#11.

* We thus only need one PKCS#11 call to the HSM for the SECDSA signature verification.
* The generation of ZK2 can be done in quiet hours.

09:32 nro

< SECDSAPOC

Code written by Eric Verheul, all rights reserved.
See https://eprint.iacr.org/2021/910 for SECDSA specification.

ECDSA private key (SCE) hardware backed: true
RSA private key (PIN-Binder) hardware backed: true

Time for 10 PIN-key RSA decryption input iterations is 283 milliseconds,
so we use 36 iterations for a 1 second SECDSA signature generation.

**DATA SENT BY APP TO WALLET PROVIDER (WP) FOR ISSUANCE OF
**SECDSA CERT + QUALIFIED PUB KEY
Raw SECDSA key: 020892a36b5e0e5...

**SECDSA CERT QUALIFIED PUB KEY ISSUED BY WP FOR APP/USER
SECDSA based certificate (SF internal)

- Common Name: Eric Verheul

- Encrypted_Pub_Key-G part: 03e8328573ab5d3... >
- Encrypted_Pub_Key-Y part: 03e51f4ce244422...

- Certificate Signature: 68dd21935500e38... \
Qualified public key (managed in SF HSM):
0212fa15fc7eed82c729efd637bb9ab113fd9e26...

Message to be signed: "Hello World!"

**DATA GENERATED/SENT BY APP TO WP

Message hash value: 86933b0b147ac4c...
User provided SECDSA signatu%'
- R-part: 03b2c47283d3e42...

- Encrypted s-part1: 03b8e2f3b2b059a= >
- Encrypted s-part2: 0246ff21d4f5408...
- Schnorr SF PoK r: 282af3442c2¢120...

I
- Schnorr SF PoK s: 560b7f1e399ae9b... \

WP: User provided SECDSA signature is correct!

**DATA GENERATED/SENT BY WP TO APP FOR RP

Qualified signature on message (HSM based private key):
30450220304a309be803e44f0f695e7c...
SECDSA evidence:

- R-part: 03b2c47283d3e42...

- Encrypted s-part1: 03b8e2f3b2b059a...
- Encrypted s-part2: 0246ff21d4f5408...
- Schnorr SF PoK r: 282af3442c2¢120...
- Schnorr SF PoK s: 560b7f1e399ae9b...
- Schnorr RP PoK r: 1e8f3a02370edas3...
- Schnorr RP PoK s: 404¢1¢c71€690978...

B
»

Qualified signature provided by User/WP to RP correct? true —— 3
SECDSA evidence signature provided by User/WP to RP correct? true

1] @] <

Android Studio project available.

G’ Internal Certificate

YI

R
s7i.G'

ZK?2
Result of instruction

Note: these operations are performed by Wallet
Provider, i.e. not in the APP. POC only.

Proof-of-Associations on standard mobile hardware

The Wallet Trust Attestation (WTA) is a privacy friendly ISO 23220-3 Secure Area Attestation Object (SAAO)
The WTA is an attestation bound to a ECDSA public key U = u - G whereby the Wallet Provider guarantees:
a) the wallet/user has possession of u,

b) u is managed in the wallet SCE (mobile cryptographic hardware).

Note: a WTA is typically issued by the Wallet Provider based on mobile platform (key) attestation capabilities.

The wallet/user can generate a public key V associated with the WTA public key U by generating a random scalar k and letting V =
k - U.The scalar k could be static, derived from a SCE master key or from a user PIN.

Note: this fits the SECDSA setup allowing the wallet to ECDSA sign with the private key v = k - u.

The wallet/user can prove that two public keys U;, U, are associated by proving possession of a private key y:y - U; = U,.
Notes:

See also this LinkedIn post.
If the public keys are U, = k, - U, U, = k, - U are associated then y = k, ki ',

The Proof-of-Association (PoA) can be given for instance using a Schnorr Zero-Knowledge Proof (‘signature’) or alternatively by
an ECDSA signature.

PoAs are verified during issuance by (PID) issuers against the WTA public key, or against another public key that is known to be
associated to this WTA key, e.g. a ‘WTA copy’.

If the issuer association verification is registered in the attestations, then relying parties can infer from a PoA that attestations
are associated to one WTA (and thus one wallet) and one person.

PoAs always needs to be accompanied by a proof of possession of the keys involved; efficient combination is possible.

https://www.linkedin.com/pulse/cryptographically-linking-edi-wallet-attribute-mobile-verheul-/

Relying
Party
(website)

Qualified Remote Signing (sketch)

SECDSA Public Key (ENC) .
Internal Cert

PIN Counter

'
'
[

| PKCSH11 |
' Instruction |

I

Wallet Module
(SIC) (SAM)

| : ~ Hardware

' Security
Publicly Module
Verifiable

SO00

ERES
a4 s
a 9 Y9 5
1}

’ Enc keys

Sig keys

RSA

ECDSA
EdDSA
Idemix

	Dia 1: HSM-assisted EUDI-wallet & Qualified Remote Signing based on Split-ECDSA (SECDA)
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13

