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Abstract

The increasing complexity of integrated circuits drives the research of new on-chip interconnection
architectures. A network on chip draws on concepts inherited from distributed systems and computer
networks subject areas to interconnect IP cores in a structured and scalable way. The main goal pursued is
to achieve superior bandwidth when compared to conventional on-chip bus architectures. This paper
reviews the state of the art in networks on chip. Then, it describes an infrastructure called Hermes, targeted
to implement packet-switching mesh and related interconnection architectures and topologies. The basic
element of Hermes is a switch with five bi-directional ports, connecting to four other switches and to a local
IP core. The switch employs an XY routing algorithm, and uses input queuing. The main design objective
was to develop a small size switch, enabling its immediate practical use. The paper also presents the design
validation of the Hermes switch and of a network on chip based on it. A Hermes NoC case study has been
successfully prototyped in hardware as described in the paper, demonstrating the functionality of the
approach. Quantitative data for the Hermes infrastructure is advanced.
r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Increasing transistor density, higher operating frequencies, short time-to-market and reduced
product life cycle characterize today’s semiconductor industry scenery [1]. Under these conditions,
designers are developing ICs that integrate complex heterogeneous functional elements into
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a single chip, known as a system on a chip (SoC). As described by Gupta et al. [2] and
Bergamaschi et al. [3], SoC design is based on intellectual property (IP) cores reuse. Gupta et al.
[2] define core as a pre-designed, pre-verified hardware piece that can be used as a building block
for large and complex applications on an IC. Examples of cores are memory controllers,
processors, or peripheral devices such as MAC Ethernet or PCI bus controllers. Cores may be
either analog or digital, or even be composed by blocks using technologies such as
microelectromechanical or optoelectronic systems [1,4]. Cores do not make up SoCs alone; they
must include an interconnection architecture and interfaces to peripheral devices [4]. The
interconnection architecture includes physical interfaces and communication mechanisms, which
allow the communication between SoC components to take place.

Usually, the interconnection architecture is based on dedicated wires or shared busses.
Dedicated wires are effective for systems with a small number of cores, but the number of wires
around the core increases as the system complexity grows. Therefore, dedicated wires have poor
reusability and flexibility. A shared bus is a set of wires common to multiple cores. This approach
is more scalable and reusable, when compared to dedicated wires. However, busses allow only one
communication transaction at a time, thus all cores share the same communication bandwidth in
the system and scalability is limited to few dozens IP cores [5]. Using separate busses
interconnected by bridges or hierarchical bus architectures may reduce some of these constraints,
since different busses may account for different bandwidth needs, protocols and also increase
communication parallelism. Nonetheless, scalability remains a problem for hierarchical bus
architectures.

According to several authors, e.g. [5–9], the interconnection architecture based on shared busses
will not provide support for the communication requirements of future ICs. According to ITRS,
ICs will be able to contain billions of transistors, with feature sizes around 50 nm and clock
frequencies around 10GHz in 2012 [1]. In this context, a network on chip (NoC) appears as a
probably better solution to implement future on-chip interconnects. An NoC is an on-chip
network [8] composed by cores connected to switches, which are in turn connected among
themselves by communication channels.

The rest of this paper is organized as follows. Section 2 presents basic concepts and features
associated to NoCs. Section 3 presents an overview of current state of the art in NoCs, with
emphasis on implemented approaches. A minimal NoC communication protocol stack is
discussed in Section 4. Section 5 details the main contribution of this work, the proposal of an
NoC infrastructure centered on a switch designed for packet-switching mesh and related
interconnection architectures. An example NoC implementation and its functional validation are
described in Section 6. In Section 7, some quantitative data regarding the Hermes1 infrastructure
are depicted, while Section 8 presents some conclusions and directions for future work.

2. NoC basic concepts and features

As described in [10,11], NoCs are emerging as a solution to the existing interconnection
architecture constraints, due to the following characteristics: (i) energy efficiency and reliability

ARTICLE IN PRESS

1 In Greek mythology, Hermes is the messenger of Gods.

F. Moraes et al. / INTEGRATION, the VLSI journal ] (]]]]) ]]]–]]]2



[7]; (ii) scalability of bandwidth when compared to traditional bus architectures; (iii) reusability;
(iv) distributed routing decisions [8,9].

End to end communication in a system is accomplished by the exchange of messages among IP
cores. Often, the structure of particular messages is not adequate for communication purposes.
This leads to the concept of packet [12]. A packet is a standard form for representing information
in a form adequate for communication. One packet may correspond to a fraction, one or even
several messages. In the context of NoCs, packets are frequently a fraction of a message. Packets
are often composed by a header, a payload, and a trailer. To ensure correct functionality during
message transfers, an NoC must avoid deadlock, livelock and starvation [12]. Deadlock may be
defined as a cyclic dependency among nodes requiring access to a set of resources so that no
forward progress can be made, no matter what sequence of events happens. Livelock refers to
packets circulating the network without ever making any progress towards their destination. It
may be avoided with adaptive routing strategies. Starvation happens when a packet in a buffer
requests an output channel, being blocked because the output channel is always allocated to
another packet.

Two parts compose an interconnection network: the services and the communication system.
Rijpkema et al. [10] define several services considered essential for SoC design, such as data
integrity, throughput and latency guarantees. The implementation of these services is often based
on protocol stacks such as the one proposed in the ISO OSI reference model. As mentioned in
[5,8], when applied to NoCs the lower three layers (physical, link, and network) are technology
dependent. The communication system, on the other hand, is what supports the information
transfer from source to target. The communication system allows that every core send packets to
every other core in the NoC structure. The NoC structure is a set of switches interconnected by
communication channels. The way switches are connected defines the network topology. According
to the topology, networks can be classified in one of two main classes: static and dynamic [13,14].
In static networks, each node has fixed point-to-point connections to some number of other
nodes. Hypercube, ring, mesh, torus and fat-tree are examples of networks used to implement
static networks. Dynamic networks employ communication channels that can be (re)configured at
application runtime. Busses and crossbar switches are examples of dynamic networks.

The communication mechanism, switching mode, and routing algorithm are functions of the
network topology and are used to compose the services provided by the NoC.

The communication mechanism specifies how messages pass through the network. Two methods
for transferring messages are circuit switching and packet switching [14]. In circuit switching, a path
is established before packets can be sent by the allocation of a sequence of channels between
source and target. This path is called a connection. After establishing a connection, packets can be
sent, and any other communication using the allocated channels is denied, until a disconnection
procedure is executed. In packet switching, packets are transmitted without any need for
connection establishment procedures.

Packet switching requires the use of a switching mode, which defines how packets move through
the switches. The most important modes are store-and-forward, virtual cut-through and wormhole
[15]. In store-and-forward mode, a switch cannot forward a packet until it has been completely
received. Each time a switch receives a packet, its contents are examined to decide what to do,
implying per-switch latency. In virtual cut-through mode, a switch can forward a packet as soon as
the next switch gives a guarantee that a packet will be accepted completely [11]. Thus, it is
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necessary for a buffer to store a complete packet, like in store-and-forward, but in this case with
lower latency communication. The wormhole switching mode is a variant of the virtual cut-
through mode that avoids the need for large buffer spaces. A packet is transmitted between
switches in units called flits (flow control digits—the smallest unit of flow control). Only the
header flit has the routing information. Thus, the rest of the flits that compose a packet must
follow the same path reserved for the header.

The routing algorithm defines the path taken by a packet between the source and the target.
According to where routing decisions are taken, it is possible to classify the routing in source and
distributed routing [12]. In source routing, the whole path is decided at the source switch, while in
distributed routing each switch receives a packet and decides the direction to send it. According to
how a path is defined to transmit packets, routing can be classified as deterministic or adaptive. In
deterministic routing, the path is uniquely defined by the source and target addresses. In adaptive
routing, the path is a function of the network traffic [12,15]. This last routing classification can be
further divided into partially or fully adaptive. Partially adaptive routing uses only a subset of the
available physical paths between source and target.

3. State of the art in NoCs

This Section is intended to provide a big picture of the state of the art in network-on-chip
propositions, as currently found in the available literature. The results of the review are
summarized in Table 1. The last row of Table 1 corresponds to the NoC infrastructure proposed
here. In the Table, each row corresponds to an NoC proposition that could be found about which
significant qualitative and quantitative implementation data were made available. The NoC
implementation data considered relevant can be divided in three groups: (i) network and switch
structural data, presented in the four first columns; (ii) performance data, in the following three
columns; (iii) prototyping and/or silicon implementation data, in the last column. Although the
authors do not pose claims about the completeness of this review, they consider it rather
comprehensive.

Benini et al. made important contributions to the NoC subject area in their conceptual papers
[7,8,16]. However, none of these documents contains any NoC implementation details.

A basic choice common to most reviewed NoCs is the use of packet switching, and this is not
explicitly stated in the table. The exception is the aSOC NoC [19], where the definition of the route
each message follows is fixed at the time of hardware synthesis. Two connected concepts, network
topology and routing strategy are the subject of the first column in Table 1. The predominant
network topology in the literature is the 2D Mesh. The reason for this choice derives from its three
advantages: facilitated implementation using current IC planar technologies, simplicity of the XY
routing strategy and network scalability. Another approach is to use the 2D torus topology, to
reduce the network diameter [24]. The folded 2D torus [20] is an option to reduce the increased
cost in wiring when compared to a standard 2D torus. One problem of mesh and torus topologies
is the associated network latency. Three revised NoCs propose alternatives to overcome the
problem. The SPIN [9,17,18] and the T-SoC [34,35] NoCs employ a fat-tree topology, while the
Octagon NoC [22,23] proposes the use of a chordal ring topology. Both approaches lead to a
smaller network diameter, with a consequent latency reduction. Concerning routing strategies,
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Table 1

State of the art in NoCs

NoC Topology/routing Flit size Buffering IP-switch

interface

Switch area Estimated peak

performance

QoS support Implementation

SPIN—2000 [9,17,18] Fat-tree/deterministic

and adaptive

32 bits data + 4

bits control

Input queue+2

shared output

queue

VCI 0.24mm2 CMOS

0.13 mm
2 Gbits/s per

switch

NA ASIC layout 4.6mm2

CMOS 0.13 mm

aSOC—2000 [19] 2D mesh (scalable)/

determined by

application

32 bits None NA 50,000 transistors NA Circuit-switching

(no wormhole)

ASIC layout CMOS

0.35mm

Dally—2001 [20] Folded 2D torus/XY

source

256 bits data +

38 bits control

Input queue NA 0.59mm2 CMOS

0.1 mm (6.6% of a

tile)

4 Gbits/s per wire GT-virtual

channels

No

Nostrum—2001 [5,6] 2D mesh (scalable)/hot

potato

128 bits data+10

bits control

Input and output

queues

NA 0.01mm2 CMOS

65 nm

NA NA NA

Sgroi—2001 [21] 2D mesh/NA 18 bits data+2

bits control

NA OCP NA NA NA NA

Octagon—2001 [22,23] Chordal ring/

distributed and adaptive

Variable data+3

bits control

NA NA NA 40Gbits/s Circuit-switching No

Marescaux—2002

[24,25]

2D torus (scalable)/XY

blocking, hop-based,

deterministic

16 bits data+3

bits control

Input queue Custom 611 slices VirtexII

(6.58% area

overhead

XC2V6000)

320Mbits/s per

virtual channel at

40MHz

2 virtual channels

(to avoid

deadlock)

FPGA VirtexII/

VirtexII Pro

Bartic—2003 [26] Arbitrary

(parameterizable links)/

deterministic, virtual-

cut-through

Variable data+2

bits control/link

Output queue Custom 552 slices+5

BRAMs VirtexII

Pro for 5

bidirectional links

router

800Mbits/s per

channel for 16-bit

flits at 50MHz

Injection rate

control,

congestion

control

FPGA VirtexII Pro

Æthereal—2002 [10,11] 2D mesh/source 32 bits Input queue DTL

(Philips

proprietary

standard)

0.26mm2 CMOS

0.12 mm
80Gbits/s per

switch

Circuit-switching ASIC layout
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Eclipse—2002 [27] 2D sparse hierarchical

mesh/NA

68 bits Output queue NA NA NA NA No

Proteo—2002 [28–30] Bi-directional ring/NA Variable control

and data sizes

Input and output

queues

VCI NA NA NA ASIC layout CMOS

0.18mm
SOCIN—2002 [31] 2D mesh (scalable)/XY

source

n bits data+4 bits

control

(parameterizable)

Input queue

(parameteriza-

ble)

VCI 420 LCs APEX

FPGAs

(Estimated, for

n=8, bufferless)

1Gbits/s per

switch at 25MHz

No No

SoCBus—2002 [32] 2D mesh/XY adaptive 16 bits data+3

bits control

Single position

input and output

buffers

Custom NA 2.4Gbits/s per

link

Circuit-switching No

QNOC—2003 [33] 2D mesh regular or

irregular/XY

16 bits data+10

bits control

(parameterizable)

Input queue

(parameterize-

ble)+Output

queue (single

position)

Custom 0.02mm2 CMOS

90 nm (Estimated)

80Gbits/s per

switch for 16-bit

flits at 1GHz

GT-virtual

channels, (4

different traffic)

No

T-SoC—2003 [34,35] Fat-tree/Adaptive 38 bits maximum Input and output

queues

Custom/

OCP

27000 to 36000

two input NAND

gates

NA GT-4 virtual

channels

NA

Xpipes—2002 [36] Arbitrary (design time)/

source static (street sign)

32, 64 or 128 bits Virtual output

queue

OCP 0.33mm2 CMOS

100 nm

(Estimated)

64Gbits/s per

switch for 32-bit

flits at 500MHz

No No

Hermes—2003 [37] 2D mesh (scalable)/XY 8 bits data+2 bits

control

(parameterizable)

Input queue

(parameterizable)

OCP 555 LUTs 278

slices VirtexII

500Mbits/s per

switch at 25MHz

No FPGA VirtexII

NA=data not available, GT=guaranteed throughput.
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there is a clear lack of published information on specific algorithms. This indicates that further
research is needed in this area. For instance, it is widely known that XY adaptive algorithms are
prone to deadlock, but solutions exist to improve XY routing while avoiding deadlock risk [38].

The second important quantitative parameter of NoC switches is the flit size. From Table 1, it is
possible to classify approaches in two groups, those focusing on future SoC technologies and
those adapted to existing limitations. The first group includes the proposals of Dally [20] and
Kumar [5,6], where wide switching channels are used (150–300 wires), without significantly
affecting the overall SoC area. This can be achieved e.g. by using a future 60 nm technology for
building 22mm� 22mm chip with a 10� 10 NoC to connect 100 2mm� 2mm IPs [5]. However,
this is clearly not yet feasible today. The second group comprises works with flit size ranging
mostly from 8 to 64 bits, a data width similar to current processor architectures. The works
providing a NoC prototype, Marescaux [24], Bartic [26] and Hermes [37], have the smallest flit
sizes, 16, 16 and 8 bits, respectively.

The next parameter in Table 1 is the switch buffering strategy. Most NoCs employ input queue
buffers. Since input queuing implies a single queue per input, this leads to lower area overhead,
justifying the choice. However, input queuing presents the well-known head-of-line (HOL)
blocking problem [10]. To overcome this problem, output queuing can be used [27], at a greater
buffering cost, since this increases the total number of queues in the switch. An intermediate
solution is to use virtual output queuing associated with time-multiplexed virtual channels, as
proposed in the Xpipes NoC [36]. Another important parameter is the queue size, which implies
the need to solve the compromise among the amount of network contention,2 packet latency and
switch area overhead. Bigger queues lead to small network contention, higher packet latency, and
bigger switches. Smaller queues lead to the opposite situation. Section 7 exploits quantitative data
regarding this compromise for the Hermes NoC.

The last structural parameter is the characteristic of the IP-switch interface. The use of standard
communication interfaces for the on-chip environment is an evolving trend in industry and
academia. They are devised to increase design reuse, and are accordingly seen as a needed feature
to enable future SoC designs. NoCs with custom IP-switch interfaces, such as the ones proposed
in [24,26,32,33], are less apt to aggregate third party IPs to the design in a timely manner. The two
most prominent interface standards, VCI and OCP are each used by several of the NoC proposals
presented in Table 1.

The fifth column collects results concerning the size of the switch. It is interesting to observe
that two approaches targeted to ASICs [10,18], both with a 32-bit flit size, have similar
dimensions, around 0.25mm2 for similar technologies. In addition, FPGA prototyped systems
produced results ranging from 555 LUTs [37] to 1222 LUTS (611 slices) [25]. The observed
difference comes from the fact that [25] employs virtual channels, while [37] does not, leading to a
smaller switch area. These data seem to indicate the need to establish a relationship between
switch size and SoC communication area overhead. It is reasonable to expect that the adoption of
NoCs by SoC designers be tied to gains in on-chip communication performance. On the other
hand, low area overhead when compared with e.g. standard bus architectures is another
important issue. An SoC design specification will normally determine a maximum area overhead
allowed for on-chip communication, as well as minimum expected communication performance,
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possibly in an IP by IP basis. Switch size, flit size (i.e. communication channel width) and switch
port cardinality are fundamental values to allow estimating the area overhead and the expected
peak performance for on-chip communication. Adoption of NoCs is then tied to these
quantitative assessments and to the ease with which designers are provided to evaluate the NoC
approach in real designs.

Estimated peak performance, presented in the sixth column of Table 1, is a parameter that
needs further analysis to provide a meaningful comparison among different NoCs. This column
displays different units for different NoCs, which must accordingly be considered as merely
illustrative of possible performance values. Most of the estimates are derived from the product of
three values: number of switch ports, flit size, and estimated operating frequency. The wide
variation of numbers is due mostly to the last two values. No measured performance data could
be found in any reviewed publication. A first approach to measure the Hermes NoC performance
is provided in Section 6.2. The value associated to the NoC proposed in [20] should be regarded
with care. The reason for this is that the data reflects a technology limit that can be achieved
by sending multiple bits through a wire at each clock cycle (e.g. 20 bits at each 200MHz clock
cycle [20]).

The next column concerns the quality of service (QoS) support parameter. The most commonly
found form of guaranteeing QoS in NoCs is through the use of circuit switching. This is a way of
ascertain throughput and thus QoS for a given communication path. The disadvantage of the
approach is that bandwidth can be wasted if the communication path is not used at every moment
during the period the connection is established. In addition, since most approaches combine
circuit switching with best effort techniques, this brings as consequence the increase of the switch
area overhead. This is the case for NoC proposals presented in [11,20,23]. Virtual channels are one
way to achieve QoS without compromising bandwidth, especially when combined with time
division multiplexing (TDM) techniques. This last technique, exemplified in [25,33,35], avoids that
packets remain blocked for long periods, since flits from different inputs of a switch are
transmitted according to a predefined time slot allocation associated with each switch output. It is
expected that current and future SoC utilization will be dominated by streaming applications.
Consequently, QoS support is a fundamental feature of NoCs.

Finally, it is possible to state that NoC implementation results are still very scarce. None of the
four ASIC implementations found in the literature gives hints if the design corresponds to
working silicon. On the other hand, only three NoCs have been reported to be prototyped in
FPGAs, those proposed in [24,26,37].

4. NOCs protocol stack

The OSI reference model is a hierarchical structure of seven layers that define the requirements
for communication among processing elements [39]. Each layer offers a set of services to the upper
layer, using functions available in the same layer and in the lower ones. NoCs usually implement a
subset of the lower layers, such as Physical, Data Link, Network, and Transport. These layers are
described below for the NoC context.

The physical layer is responsible to provide mechanical and electrical media definitions
to connect different entities at bit level [39]. In the present work, this layer corresponds to the
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communication between switches, as exemplified in Fig. 1 for the implementation proposed here.
The physical data bus width must be chosen as a function of the available routing resources and
available memory to implement buffering schemes. The output port in the example is composed
by the following signals: (1) Tx: control signal indicating data availability; (2) Data out: data to be
sent; (3) Ack tx: control signal indicating successful data reception. The input port in the example
is composed by the following signals: (1) Rx: control signal indicating data availability;
(2) Data in: data to be received; (3) Ack rx: control signal indicating successful data reception.

The data link layer has the objective of establishing a logical connection between entities and
converting an unreliable medium into a reliable one. To fulfill these requirements, techniques of
flow control and error detection are commonly used [12]. This work implements in the data link
layer a simple handshake protocol built on top of the physical layer, to deal with flow control and
correctly sending and receiving data. In this protocol, when the switch needs to send data to a
neighbor switch, it puts the data in the data out signal and asserts the tx signal. Once the neighbor
switch stores the data from the data in signal, it asserts the ack rx signal, and the transmission is
complete. Forward flow control can be used to reduce NoC latency, as proposed in Q-NoC [33];
however this requires employing synchronous communication between switches. One point
favoring the use of explicit handshake protocols is the possibility to implement asynchronous
interconnection between synchronous modules, enabling a Globally Asynchronous Locally
Synchronous (GALS) approach. This alternative may also reduce clock skew requirements and
provide lower power consumption [40].

The network layer is concerned with the exchange of packets. This layer is responsible for the
segmentation and reassembly of flits, point-to-point routing between switches, and contention
management. The network layer in this work implements the packet switching technique.

The transport layer is responsible to establish end-to-end communication from source to target.
Services like segmentation and reassembly of packets are essential to provide a reliable
communication [12]. Here, end-to-end communication is implemented in the local IPs cores.

5. Hermes switch

The main objective of an on-chip switch is to provide correct transfer of messages between IP
cores. Switches usually have routing logic, arbitration logic and communication ports directed to
other switches or cores. The communication ports include input and output channels, which can
have buffers for temporary storage of information.
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The Hermes switch has routing control logic and five bi-directional ports: East, West, North,
South, and Local. Each port has an input buffer for temporary storage of information. The Local
port establishes a communication between the switch and its local core. The other ports of the
switch are connected to neighbor switches, as presented in Fig. 2. The routing control logic
implements the arbitration logic and a packet-switching algorithm.

Among the switching modes presented in Section 2, wormhole was chosen because it requires
less memory, provides low latency, and can multiplex a physical channel into more than one
logical channel. Although the multiplexing of physical channels may increase the wormhole
switching performance [41], this has not been implemented. The reason is to lower complexity and
cost of the switch by using only one logical channel for each physical channel.

As previously described, the wormhole mode implies the division of packets into flits. The flit
size for the Hermes infrastructure is parameterizable, and the number of flits in a packet is fixed at
2(flit size, in bits). An 8-bit flit size was chosen here for prototyping and evaluation purpose. The first
and the second flit of a packet are header information, being respectively the address of the target
switch, named header flit, and the number of flits in the packet payload. Each switch must have a
unique address in the network. To simplify routing on the network this address is expressed in XY

coordinates, where X represents the horizontal position and Y the vertical position.

5.1. Control logic

Two modules implement the control logic: routing and arbitration, as presented in Fig. 4. When
a switch receives a header flit, the arbitration is executed and if the incoming packet request is
granted, an XY routing algorithm is executed to connect the input port data to the correct output
port. The algorithm compares the actual switch address (xLyL) to the target switch address
(xTyT) of the packet, stored in the header flit. Flits must be routed to the local port of the switch
when the xLyL address of the actual switch is equal to the xTyT packet address. If this is not the
case, the xT address is first compared to the xL (horizontal) address. Flits will be routed to the
East port when xLoxT ; to West when xL>xT and if xL=xT the header flit is already
horizontally aligned. If this last condition is true, the yT (vertical) address is compared to the yL
address. Flits will be routed to South when yLoyT ; to North when yL>yT : If the chosen port is
busy, the header flit as well as all subsequent flits of this packet will be blocked. The routing
request for this packet will remain active until a connection is established in some future execution
of the procedure in this switch.
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When the XY routing algorithm finds a free output port to use, the connection between the
input port and the output port is established and the in, out and free switching vectors at the
switching table are updated. The in vector connects an input port to an output port. The out

vector connects an output port to an input port. The free vector is responsible to modify the
output port state from free (1) to busy (0). Consider the North port in Fig. 3(a). The output North
port is busy (free=0) and is being driven by the West port (out=1). The input North port is
driving the South port (in=3). The switching table structure contains redundant information
about connections, but this organization is useful to enhance the routing algorithm efficiency.

After all flits composing the packet have been routed, the connection must be closed. This could
be done in two different ways: by a trailer, as described in Section 2, or using flit counters. A
trailer would require one or more flits to be used as packet trailer and additional logic to detect the
trailer would be needed. To simplify the design, the switch has five counters, one for each output
port. The counter of a specific port is initialized when the second flit of a packet arrives, indicating
the number of flits composing the payload. The counter is decremented for each flit successfully
sent. When the counter value reaches zero, the connection is closed and the free vector
corresponding position of the output port goes to one (free=1), thus closing the connection.

A switch can simultaneously be requested to establish up to five connections. Arbitration logic
is used to grant access to an output port when one or more input ports simultaneously require a
connection. A dynamic arbitration scheme is used. The priority of a port is a function of the last
port having a routing request granted. For example, if the local input port (index 4) was the last to
have a routing request granted, the East port (index 0) will have greater priority, being followed
by the ports West, North, South and Local. This method guarantees that all input requests will be
eventually granted, preventing starvation to occur. The arbitration logic waits four clock cycles to
treat a new routing request. This time is required for the switch to execute the routing algorithm.
If a granted port fails to route the flit, the next input port requesting routing have its request
granted, and the port having the routing request denied receives the lowest priority in the arbiter.

5.2. Message buffering

When a flit is blocked in a given switch, the performance of the network is affected, since the
flits belonging to the same packet are blocked in other switches. To lessen the performance loss, a
buffer is added to each input switch port, reducing the number of switches affected by the blocked
flits. The inserted buffers work as circular FIFOs. In Hermes, the FIFO size is parameterizable,
and a size eight has been used for prototyping purposes.
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Fig. 3. Three simultaneous connections in the switch (a), and the respective switching table (b).
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5.3. Switch functional validation

The Hermes switch was described in VHDL and validated by functional simulation. Fig. 4
presents some internal blocks of the switch and the signals of two ports (Local and East). Fig. 5
presents a functional simulation for the most important signals of Fig. 4. The simulation steps are
described below, where numbering have correspondences in Figs. 4 and 5.

1. The switch (xLyL=00) receives a flit by the local port (index 4), signal rx is asserted and the
data in signal has the flit contents.

2. The flit is stored in the buffer and the ack rx signal is asserted indicating that the flit was
received.

3. The local port requests routing to the arbitration logic by asserting the h signal.
4. After selecting a port, the arbitration logic makes a request to the routing logic. This is

accomplished by sending the header flit that is the switch target address (value 11) and the
source of the input request (signal incoming, value 4, representing the local port) together with
the request itself.

5. The XY routing algorithm is executed, the switching table is written, and the ack rot signal is
asserted indicating that the connection is established.

6. The arbitration logic informs the buffer that the connection was established and the flit can
now be transmitted.

7. The switch asserts the tx signal of the selected output port and puts the flit in the data out signal
of this same port.

8. Once the ack tx signal is asserted the flit is removed from the buffer and the next flit stored can
be treated.

9. This second flit starts the counter indicating after how many clock cycles the connection must
be closed.

ARTICLE IN PRESS

Fig. 4. Partial block diagram of the switch, showing two of the five ports. Numbers have correspondence to the

sequence of events in Fig. 5.
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6. Hermes network on chip

NoC topologies are defined by the connection structure of the switches. The Hermes NoC
assumes that each switch has a set of bi-directional ports linked to other switches and to an IP
core. In the mesh topology used in this work, each switch has a different number of ports,
depending on its position with regard to the limits of the network, as shown in Fig. 6. For
example, the central switch has all five ports defined in Section 5. However, each corner switch has
only three ports.

The use of mesh topologies is justified to facilitate placement and routing tasks as stated before.
The Hermes switch can also be used to build torus, hypercube or similar NoC topologies.
However, building such topologies implies changes in switch connections and, more importantly,
in the routing algorithm.
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Fig. 5. Simulation of a connection between the local port and the east port.
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6.1. NoC functional validation

Packet transmission in the Hermes NoC was validated first by functional simulation. Fig. 7
illustrates the transmission of a packet from switch 00 to switch 11 in the topology of Fig. 6. The
simulation shows the switch 10 input and output interface behaviors.

The simulation works as follows:

1. Switch 00 sends the first flit of the packet (address of the target switch) to the data out signal at
its East port and asserts the tx signal in this port.

2. Switch 10 detects the rx signal asserted in its West port and gets the flit in the data in signal. It
takes 10 clock cycles to route this packet (2 clock cycles to store it into the buffer, 2 for
arbitration, 6 for routing). The flits that follow the header pass through the switch with a
latency of 2 clock cycles each.

3. Switch 10 output South port indicates its busy state in the free(3) signal. Signals free(i) are
elements of the free vector defined in Section 5.1.

4. Switch 10 puts the flit in data out signal and asserts the tx signal of its South port. Next, Switch
11 detects asserted the rx signal of its North port. The flit is captured in the data in signal and
the source to target connection is now established.

5. The second flit of the packet contains the number of flits composing the payload.
6. After all flits are sent, the connection is closed and the free vector entries of each switch

involved in the connection return to their free state.

The minimal latency in clock cycles to transfer a packet from source to target is given by:

latency ¼
Xn

i¼1

Ri

 !
þ P � 2;

where n is the number of switches in the communication path (source and target included), Ri is
the time required by the routing algorithm at each switch (at least 10 clock cycles), and P is the
packet size. This number is multiplied by 2 because each flit requires 2 clock cycles to be sent.
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Fig. 7. Simulation of a packet transmission from switch 00 to switch 11 in topology of Fig. 6.
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The latency to route the header and subsequent flits is due in part to the assumption that switch
modules communicate always by explicit handshake signals, making the design highly modular
and adaptable. Latency can be reduced using one of two alternatives. The first consists in
combining the arbiter and the router into a single module, ignoring the modular design
assumption. The second is by using alternative switch architectures, with distributed arbiters. See
the proposal of Bartic et al. [26] for an example of such architecture. The first alternative leads to
higher performance at the cost of the modularity and adaptability. The second alternative obtains
performance from a significant increase in switch area.

6.2. Switch peak performance

The developed switch can establish only one connection at a time. However, a single switch can
simultaneously handle up to five connections. The operating frequency was initially determined to
be 25MHz, for prototyping purposes. Each switch has five ports and each port transmits 8-bit
flits. Since each flit takes two clock cycles to be sent, a switch presents a theoretical peak
performance of 500Mbits/s ((25MHz/2)� 5 ports� 8 bits). This peak performance is indeed
achieved in some moments as illustrated by the simulation results in Fig. 8, and explained below.

1. Address of the switch being simulated.
2. Target address of each incoming packet in the simulated switch, five headers arriving

simultaneously.
3. Signal incoming indicates which port was selected to have its switching request granted, while

the signal header indicates which is the target switch address of the selected packet.
4. First connection is established after 2.5 clock signals after the request: flits incoming from port

1 (West) exit at port 2 (North). To understand semantics of mux in and mux out signals, refer
to Fig. 3(b).

5. Second connection is established after 8 clock signals after the previous one: flits incoming from
port 2 (North) exit at port 4 (Local).
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Fig. 8. Establishment of five simultaneously active connections in a single switch, to illustrate the peak performance

situation.
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6. Third connection is established: flits incoming from port 3 (South) exit at port 1 (West).
7. Fourth connection is established: flits incoming from port 4 (Local) exit at port 0 (East).
8. Fifth connection is established: flits incoming from port 0 (East) exit at port 3 (South).
9. After this sequence of events, the switch is working at peak performance, taking 2 clock cycles

to switch 5 8-bit flits, i.e. 500Mbits/s at a clock rate of 25MHz.

7. Prototyping and results

The Hermes switch and NoC behavior has already been sketched in Sections 5 and 6. This
Section is intended to present some quantitative data about these. Section 7.1 describes how to
define a good compromise between latency and buffer size for 8-bit flits. Next, Section 7.2 presents
data about the switch area consumption for different buffer and flit sizes. Finally, Section 7.3
provides results about FPGA prototyping.

7.1. Network latency and buffer sizing

A 5� 5 mesh topology is employed to evaluate the network performance. The Hermes NoC is
described in VHDL, while traffic generation and analysis is written in the C language. Co-
simulation uses ModelSim and the FLI library [42], which allows VHDL and C to communicate.

7.1.1. Latency and buffer sizing without packet collision
The goal of the first conducted experiment is to define how to dimension the switch input

buffers for the ideal situation where no packet collisions arise. As demonstrated later in this
Section, this minimum buffer size is a good value, even for situations where collisions arise. The
experiment was conducted as follows. A file containing 50 packets with 39 flits addressed to IPs
located at different distances from the source IP is connected to the Local port of one switch,
which serves as a traffic source. The tested distances between source and target varies from 1 to 5
hops. When a given flit enters the network, its timestamp3 is stored, and when it arrives at the
target switch, the total flit transmission time is stored in the output file. The plot of the simulation
results is shown in Fig. 9.

The time spent to deliver packets grows linearly with the number of hops. For buffer sizes of six
or more positions, the time remains almost constant, growing 10 clock cycles per hop. This
happens because each switch spends some clock cycles to execute the arbitration and switching
algorithms. If the buffer is too small, the switch cannot receive new flits until the destination port
is chosen. Therefore, the buffer size to minimize latency has to be equal to the number of write
operations that can be performed during the arbitration and switching algorithms execution. In
the Hermes NoC, these algorithms consume 10 clock cycles and each write operation takes two
clock cycles. Considering that the header flit must be in the buffer to be processed, the buffer size
has to be at least six. With such buffer size, the flits are delivered as in an ideal pipeline. If the
network works in this way, the formula below can be used to compute the total time to deliver
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3Timestamp corresponds to the present simulation time.
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a set of packets:

Total time without packet collision ¼ ðST þ ðNF � 1Þ�2Þ�NP;

where ST is the number of clock cycles to execute the arbitration and routing algorithms, 10 in
the Hermes NoC, NF is the number of flits, 39 in this experiment; the –1 factor is used because the
first flit (header) is processed in ST ; �2: each flit spends two clock cycles to be transmitted to the
next switch, NP is the number of packets, 50 in this experiment.

Replacing the values in the above equation, the total time spent to deliver 50 packets with
39 flits is 4300 clock cycles, exactly the value observed in Fig. 9.

Buffers larger than the computed minimum size can be used to reduce contention, at the cost of
some extra area. When dimensioning buffers during the NoC implementation, the designer has to
consider the trade-off among area, latency, and throughput.

7.1.2. Latency and buffer sizing with random traffic and collision

The second experiment analyzes the NoC behavior in the presence of collisions, using random
traffic. A random traffic generator and a process to store data concerning arriving flits were
connected to each of the 25 switches. Two different buffer sizes were tested: 8 and 16 positions.
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Fig. 9. Total time, in clock cycles, to deliver 50 packets of length 39 flits, for various 8-bit flit buffer sizes.

Table 2

NoC latency and throughput evaluation of 500 packets with random traffic for buffer sizes 8 and 16

Buffer size=8 Buffer size=16

Traffic 1 Traffic 2 Traffic 3 Average Traffic 1 Traffic 2 Traffic 3 Average

Average 260 275 271 268 312 324 326 321

Std. Deviation 170 199 167 179 203 208 201 204

Minimum 89 89 100 93 89 89 100 93

Maximum 1305 1618 1221 1381 1225 1644 1385 1418

Total time 5346 5559 5142 5349 4686 5088 4908 4894

Three sets of random data were used. Numbers in Table express clock cycles.
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Table 2 presents the traffic results of simulating 500 packets passing through the network, where
each switch sends 20 packets with 39 flits to random targets. Table 3 presents the traffic results of
simulating 100,000 packets sent across the network. The two most relevant parameters are the
average time to deliver a packet (first line), associated to the packet latency, and the total time to
deliver all packets (last line), associated to the NoC throughput.

Tables 2 and 3 show that the average time to deliver a packet increased when doubling the
buffer size (first line). This increased latency can be better understood analyzing Fig. 10. This
Figure presents a header flit (number 1) arriving in two buffers with no empty space left. In the
smaller buffer, the header has to wait that 7 flits be sent to the next switch before it can be treated,
while in the bigger buffer the header waits a longer time.

The second line in Tables 2 and 3 presents the standard deviation of the average time to deliver
the packets. To obtain the number of clock cycles to deliver 95% of the packets it suffices to add
the average time to deliver a packet (first line) to the standard deviation. It is possible to observe
that some packets stay in the network for a much longer time (fourth line—maximum). This may
arise if a set of packets is transmitted to the same target or simply because of random collisions.
Further analysis of these data is under way, in order to develop adequate traffic models and
associated switching algorithms to reduce this problem.

The last line in Tables 2 and 3 presents the total time to deliver all packets. As in a pipeline, with
additional buffer capacity the latency increases (as mentioned before) and the throughput is
improved (8% in both experiments, 4894/5349 and 899,291/974,279). This improvement in
throughput is due to the reduction in the network contention, since blocked flits use less network
resources while waiting to be routed. The results indicate that buffers dimensioned with values
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Table 3

NoC latency and throughput evaluation of 100,000 packets with random traffic for buffer sizes 8 and 16

Buffer size=8 Buffer size=16

Traffic 1 Traffic 2 Traffic 3 Average Traffic 1 Traffic 2 Traffic 3 Average

Average 281 280 281 281 348 347 348 348

Std. deviation 195 191 193 193 228 226 229 228

Minimum 99 99 89 96 100 100 89 96

Maximum 3073 2663 2601 2779 3350 3318 3025 3231

Total time 974,286 972,563 975,989 974,279 898,199 893,376 906,297 899,291

Three sets of random data were used. Numbers in Table express clock cycles.

14 cycles

8-flit buffer 

16 

17 

18 

19 

20 

1 

30 cycles 

16-flit buffer 

16 

17 

18 

19 

20 

1 

10 

11 

12 

13 

14 

15 

8 9 

15 

14 

6 7 

Fig. 10. Header flit latency for full buffers. In the first buffer, the header flit waits 14 clock cycles to be routed while in

the second buffer it waits 30 clock cycles.
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near the minimum size for improving latency (6, in the case stated before) represent a good trade-
off between latency and throughput while keeping area consumption small, as explained in
Section 7.2.

It is also interesting to compare the performance of NoCs against shared bus architectures.
Consider an ideal bus, able to send one word (the same width of the NoC flit) per clock cycle4. As
the total number of words to be transmitted is respectively 19,500 and 3,900,000 (500 packets and
100,000 packets with 39 flits), it would be necessary 19,500 and 3,900,000 clock cycles to transmit
all data. Data concerning a real NoC (Tables 2 and 3) show that it is necessary around 5300 and
975,000 clock cycles to transmit the same amount of data. In this situation, the NoC is almost 4
times faster than the ideal bus architecture. If real bus architectures are considered, NoCs are
expected to present at least one order of magnitude of gain in performance over busses.

The results in Tables 2 and 3 were obtained with a pure XY switch algorithm. A fully adaptive
XY algorithm was also employed, but then deadlock situations were observed. Deadlock-free
adaptive switching algorithms are currently under implementation to overcome limitations of the
pure XY algorithm.

Table 4 presents the average co-simulation time for the experiments showed in Tables 2 and 3.
The co-simulation time grows linearly as a function of the number of transmitted packets.

The load offered by a given simulated traffic is defined as the percentage of the channel
bandwidth used by each communication initiator [18]. The simulated traffic in the experiments
reported here corresponds to a nominal load of 100%, since all cores are continually sending data
to the NoC, without interruption between successive packets. In real situations, the system load is
much smaller. This can be compared to data reported in [18], where the PI-bus architecture is
shown to work well with load values below 4% and the SPIN NoC with load values below 28%.
The Hermes NoC, due to its mesh topology, does support heavier traffic loads. The presented co-
simulation time data correspond in fact to an upper bound simulation time, since, as mentioned
before, in real benchmarks a much smaller load will be observed.

7.2. Switch area growth rate

The switch area consumption was estimated by varying two parameters: flit width and buffer
size. The Leonardo Spectrum tool was used to synthesize the Hermes switch in two different
technologies: Xilinx Virtex-II FPGAs and 0.35mm CMOS ASIC. Synthesis was conducted with
maximum effort, maximum area compaction, and hierarchy preservation (to allow collecting data
about the individual modules composing the system).
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Table 4

Co-simulation time of a 5� 5 Hermes NoC. Simulation time expressed for Modelsim running in a Sun Blade 2000 with

900MHz clock frequency

Number of packets 500 1000 10,000 100,000

Co-simulation time (ms) 8978 16,898 162,002 1,614,682

4 In practice, this is not feasible because of the latency associated to arbitration and bus protocols.
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Fig. 11 presents the area growth rate of ASIC mappings for different configurations of the
switch, in equivalent gates. It is clear from the plotted data that the increase of the buffer size leads
to a linear increase of the switch area for any flit size. In addition, the analysis of the raw data
shows that the converse is also true, i.e. the increase of the flit size leads to a linear increase of the
switch area for any buffer size. Another important result is that the buffer area dominates the
switch area. For the smallest synthesized configuration, 4-flit buffers and 4-bit flit size, the switch
logic consumes around 58% of the ASIC mapping area, and around 42% refers to buffer area.
When the switch is configured with an 8-flit buffer and an 8-bit flit size, the buffer area takes 69%
of the switch area. If the buffer and flit size increase to 32, buffers occupy 96% of the switch area.

In fact, the linear area growth shown in Fig. 11 is misleading, since this behavior appears only
for buffer size steps in powers of 2. For example, the area growth rate is practically zero for
buffers with dimension between 9 and 16 positions, for any flit size. This happens because the
synthesis tool can only deal with memories which sizes are a natural power of two.

It would be expectable that the FPGA mapping behaves similar to the ASIC mapping.
However, Fig. 12 presents a rather distinct behavior. The plot shows that independently of the
buffer size, the LUT count, used as FPGA area unit, is practically invariant up to 32 bits. The
fluctuations are due to the non-deterministic synthesis process. To really understand the area
invariance it is necessary to delve into the FPGA device architecture and on how synthesis tools
map hardware into this architecture. In this specific case, generic VHDL code was input to the
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Leonardo tool, and the tool was instructed to perform LUT RAM inference. In Virtex families,
each LUT can behave either as a 4-input truth table or as a small 16-bit RAM, named LUT
RAM. When it is configured to be an LUT RAM, the component presents a 4-bit address input,
to access up to 16 1-bit memory positions. Therefore, just one bit can be read from a LUT RAM
at a time. For instance, if one 8-bit word must be read from a set of LUT RAMs, it is necessary to
put eight LUT RAMs in parallel. Unfortunately, in this case, just one bit out of the 16 available
per LUT will be used. On the other hand, if a 16-word buffer is used, only the same eight LUTs
are needed. In the prototyping case study, the Leonardo tool inferred the switch buffers using
Dual Port LUT RAMs. Dual Port LUT RAMs is a component that groups two LUTs. This is
why the graphic is basically constant for buffer sizes until exactly 32 positions.

7.3. Prototyping

The Hermes NoC was prototyped using the Memec Insight Virtex-II MB1000 development kit.
This kit is composed by three boards, the main one containing a million-gate Xilinx XC2V1000
456-pin FPGA device, memory and peripheral/communication devices [43]. A 2� 2 NoC was
implemented. To validate the prototyped NoC, two IP cores were developed: an RS-232 serial
core and an embedded processor, named R8. The RS-232 serial core is responsible to send and
receive packets to and from the network, providing an interface with a host computer. The R8
processor is a 40-instruction, 16-bit non-pipelined, load store architecture, with a 16� 16 bit
register file [44,45]. This processor was added to the NoC to validate the interconnection network
as a multiprocessor platform. Each processor IP uses two internal 18 Kbits RAM blocks as
instruction cache memory. The serial core was attached to switch 00 and the processor cores were
attached to the other three switches.

Two software programs were used for hardware validation. The first one, developed in the
scope of this work, provides communication between the development kit and the host computer.
The second software is Xilinx ChipScope, which allows visualizing FPGA internal signals at run
time [43]. Fig. 13 is a ChipScope snapshot showing the same signals presented in Fig. 7 functional
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Fig. 13. ChipScope software snapshot, with data obtained directly from the prototyping board.
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simulation. This picture shows that Hermes NoC works in FPGAs exactly as predicted by
simulation, including the performance figures presented in Section 6.2.

The NoC with 4 IP cores (1 serial and 3 processor cores) and four switches was synthesized
using the Leonardo synthesis tool. Table 5 presents area estimates generated by synthesis, where it
can be seen that approximately 50% of the FPGA resources were employed.

Table 6 details the area usage of the NoC modules for two mappings, FPGA and ASIC. The
switch itself takes 555 LUTs to be implemented, which represents around 5.4% (555/10240) of
the available LUTs in the million-gate device, or around 9% (555/6115) of overhead in the
implemented NoC. The Table also gives area data for three modules: serial and R8 processor.
These modules were used to build an NoC-based on-chip multiprocessing system. SR is a send/
receive wrapper module containing the interface between a switch and each IP core. Additional
glue logic is needed to connect the IP core to SR, adding to the total gate count of the wrapped
module.

This multiprocessor NoC platform is presently used to execute parallel programs, such as
sorting algorithms [46].

8. Conclusions and future work

Networks on chip are a recent technology where much research and development work is left
undone. From Section 3, it is possible to infer that scarce implementation data have been reported
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Table 5

2� 2 Hermes NoC area data for XC2V1000 FPGA. LUTs are 4-input look-up-tables, a slice has 2 LUTs and 2 flip-

flops and BRAMs are 18-Kbit RAM blocks

Resources Used Available Used/total (%)

Slices 3058 5120 59.73

LUTs 6115 10,240 59.72

Flip flops 2968 11,212 26.47

BRAM 6 40 15.00

Table 6

2� 2 Hermes NoC modules area report for FPGA and ASIC (0.35 mm CMOS). LUTs represent combinational logic.

ASIC mapping represents the number of equivalent gates

Virtex II mapping ASIC mapping

LUTs FFs BRAM

Switch 555 172 — 3838

SR 210 233 — 2495

Serial 92 93 — 859

Serial+SR 608 563 — 5571

R8 538 114 — 2156

RAM+SR+R8 1111 576 2 6826
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in the available literature. The Section 3 review is preliminary and shows mostly raw data found in
the literature. It could be improved by reducing these data to a common ground, enabling an
easier comparison of the different NoC proposals. Also, data about tools supporting NoC design
and validation are already available, but were not addressed in this paper.

To the knowledge of the authors, the commercial offer of SoCs based on NoCs is not yet a
reality. However, the potential advantages and current results of using NoCs lead already to the
conclusion that they are a competitive technology. Among the problems for which NoCs appear
as providing solutions, it is important to stress at least two: the enabling of SoC asynchronous
communication between synchronous regions and SoC size scalability.

The body of knowledge about interconnection networks already available from the
computer networks, distributed systems, and telecommunication subject areas is a virtually
infinite source of results waiting to be mapped for the NoC domain. This mapping is anything but
simple, since the constraints imposed by silicon to the implementation of network infrastructures
are significant.

The Hermes infrastructure, switch, and NoC fulfilled the requirement of implementing a low
area overhead and low latency communication for on-chip modules. The most relevant point of
this work is the availability of a hardware testbed where NoC architectures, topologies, and
algorithms can evolve, be implemented, and evaluated. A first application of the Hermes
infrastructure is in the construction of a wireless multimedia application prototyping platform,
named Fenix (www.brazilip.org/fenix). All design, implementation, and results data reported
here are publicly available [46]. As required by the specification, the switch area is small. It is
possible to note that the area of the IP cores is strongly influenced by the SR wrapper. The SR
wrapper is still a preliminary structure, with buffers large enough to guarantee correct
functionality of the communication. Better dimensioning of the SR and wrapping structures is
an ongoing work.

It is already possible to compare area results obtained for the Hermes switch with some
approaches found in the literature. First, Marescaux employed exactly the same prototyping
technology and proposed switches that occupy 450 [24] and 611 [25] Virtex-II FPGA slices.
Hermes switch employs 278 slices (555 LUTs), but it does not implement virtual channels. Second,
the aSOC approach [19] mentions a switch ASIC implementation with an estimated transistor
count of 50,000. The Hermes switch with the smallest possible buffer size (since aSOC does not
use buffers) and a 32-bit flit size (the same as aSOC) has an estimated gate count of 10,000, which
translates to 40,000 transistors.

The Hermes infrastructure provides in its current state support to the implementation
of best effort (BE) NoCs only [10,11]. In BE, sent packets can be arbitrarily delayed by the
network, as evidenced in Table 2 for the Hermes NoC. For applications with hard real time
constraints, it is necessary to provide guaranteed throughput (GT) services. Another ongoing
work is to provide the Hermes infrastructure with the possibility of addressing the implemen-
tation of GT NoCs. Maybe the most important kind of traffic to support in current SoCs is that
arising from streaming applications, such as real-time video and audio. Further studies on the
adequacy of the Hermes infrastructure for transporting streaming applications data are
under way. Also, the Hermes IP to switch interface employs the OCP standard interface,
providing enhanced reusability of the infrastructure and connectivity to available OCP compliant
IP cores.
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