
Type theory and proof assistants

21 January 2009, 15.30–17.30

This test has 15 exercises, and each exercise is worth 6 points. The first 10
points are free, and the final mark is the number of points divided by ten.

Good luck!

1. Give the term in simply typed lambda calculus that under the Curry-
Howard isomorphism corresponds to a proof of the formula of minimal
propositional logic

(a → b → c) → b → a → c

2. Give a type derivation of the type judgment for the term that is your
answer to the previous exercise.

3. Give a proof of minimal propositional logic that contains a detour and
give the corresponding proof after detour elimination. What reduction in
the simply typed lambda calculus corresponds to this detour elimination?

4. Someone wants to have a definition of lists with

list : Set -> nat -> Set

so that

list A n

is the type of lists with elements in A that have length n. Furthermore the
same someone wants to be able to write

nil A

for the empty list in list A O. What will be the type of the nil function,
or in other words, what should be in the place of the question mark in

nil : ?

Write this type both in mathematical notation (with ∗, �, λ, Π, →) as
well as in Coq notation (with Set, Type, fun, forall, ->).

5. Someone defines a type of binary trees in Coq as

Inductive tree : Set :=

| leaf : tree

| node : tree -> tree -> tree.
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Give the induction principle that belongs to this type (in Coq notation).

6. Give a derivation of the judgment

A : ∗ ⊢ (λx : A. x) : A → A

in the lambda calculus with dependent types λP . For the typing rules of
λP , see page 4.

7. Give the term in the polymorphic lambda calculus that corresponds un-
der the Curry-Howard isomorphism to a proof of the formula of minimal
second order propositional logic

∀a. (∀c. (a → c) → c) → a

Give also the type of this term.

8. What is the impredicative definition in the polymorphic lambda calculus
of the type of natural numbers consisting of the Church numerals? What
is a term in this type that corresponds to the number 2?

9. Which of the following type judgments belong to λ→, which belong to λP

and which belong to λ2?

A : ∗ ⊢ A : ∗

A : ∗ ⊢ (Πx : A.A) : ∗

A : ∗ ⊢ (Πx : ∗. A) : ∗

A : ∗ ⊢ ∗ : �

A : ∗ ⊢ (Πx : A. ∗) : �

A : ∗ ⊢ (Πx : ∗. ∗) : �

10. Give the Coq definition of an inductive predicate of type

even : nat -> Prop

that says whether a natural number is even or not. (The constructors of
the type nat are called O and S.)

11. Give the order-preserving function Φeven on the complete lattice on the
powerset of the natural numbers that corresponds to the inductive pred-
icate from the previous exercise. Explain what it means that Φeven is
order-preserving. What is the least fixpoint of Φeven?

12. Give an example of a complete lattice L and a map Φ : L → L which is
not order-preserving, and such that Φ does not have a fixpoint. What is
the set H of pre-fixpoints of this map, and what is

∨
L H?

13. What are the type checking, type synthesis and type inhabitation prob-
lems? Which of these problems is decidable for λP?
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14. A substitution lemma might read

Γ, x : B ⊢ M : A and Γ ⊢ P : B then Γ ⊢ M [x := P ] : A[x := P ]

Explain why for a pure type system this cannot be proved with a straight-
forward induction on the derivation of Γ, x : B ⊢ M : A. Furthermore
give a more general version of this lemma that can be proved with a
straight-forward induction.

15. We define for each type A of the simply typed lambda calculus a set of
untyped lambda terms [[A]] by

[[a]] := SN

[[A → B]] := {M | ∀N ∈ [[A]].MN ∈ [[B]]}

where SN is the set of strongly normalizing lambda terms.

Prove by induction on the structure of A that from M [x := N ]~P ∈ [[A]]

and N ∈ SN it follows that (λx.M)N ~P ∈ [[A]].
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Derivation rules of the Pure Type Systems λP and λ2

In these rules the variable s ranges over the set of sorts {∗,�}. The product
rule differs between λP and λ2.

axiom
⊢ ∗ : �

variable
Γ ⊢ A : s

Γ, x : A ⊢ x : A

weakening
Γ ⊢ A : B Γ ⊢ C : s

Γ, x : C ⊢ A : B

application
Γ ⊢ M : Πx : A.B Γ ⊢ N : A

Γ ⊢ MN : B[x := N ]

abstraction
Γ, x : A ⊢ M : B Γ ⊢ Πx : A.B : s

Γ ⊢ λx : A.M : Πx : A.B

product (λP )
Γ ⊢ A : ∗ Γ, x : A ⊢ B : s

Γ ⊢ Πx : A.B : s

product (λ2)
Γ ⊢ A : s Γ, x : A ⊢ B : ∗

Γ ⊢ Πx : A.B : ∗

conversion
Γ ⊢ A : B Γ ⊢ B′ : s

Γ ⊢ A : B′
where B =β B′
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