
Type Theory and Coq 2012

23-01-2013

1. (a) Prove the formula

(a → a → c) → (b → a) → (b → c)

in minimal propositional logic. Indicate whether the proof has
any detours.

[a → a → cx] [aw]

a → c
E→

[aw]

c
E→

a → c
I[w]→

[b → ay] [bz]

a

c
E→

b → c
I[z]→

(b → a) → b → c
I[y]→

(a → a → c) → (b → a) → b → c
I[x]→

This proof has one detour, the E→ elimination right after the the
I[w]→ introduction.

(b) Give the lambda term of Church-style simple type theory that
corresponds to this proof.

λx : a→a→c. λy : b→a. λz : b. (λw : a. xww)(yz)

2. (a) Prove the formula

a → ∀b. (∀c. a → c) → b

in second order propositional logic.

[∀c. a → cH2 ]

a → b
E∀

[aH1 ]

b
E→

(∀c. a → c) → b
I[H2]→

∀b. (∀c. a → c) → b
I∀

a → ∀b. (∀c. a → c) → b
I[H1]→

1



(b) Give the lambda term of λ2 that corresponds to this proof, and
give its type.

λH1 : a. λb : ∗. λH2 : (Πc : ∗. a → c). H2 bH1

:
a → Πb : ∗. (Πc : ∗. a → c) → b

3. The rules for the eight systems from the Barendregt cube are given by
the following table:

λ→ R = {(∗, ∗)}
λP R = {(∗, ∗), (∗,�)}
λ2 R = {(∗, ∗), (�, ∗)}
λP2 R = {(∗, ∗), (∗,�), (�, ∗)}
λω R = {(∗, ∗), (�,�)}
λPω R = {(∗, ∗), (∗,�), (�,�)}
λω R = {(∗, ∗), (�, ∗), (�,�)}
λC R = {(∗, ∗), (∗,�), (�, ∗), (�,�)}

in which (s1, s2) is an abbreviation of (s1, s2, s2).

Furthermore, the PTS product and abstraction rules are:

Γ ⊢ A : s1 Γ, x : A ⊢ B : s2

Γ ⊢ Πx : A.B : s3

(s1, s2, s3) ∈ R

Γ, x : A ⊢ M : B Γ ⊢ Πx : A.B : s

Γ ⊢ λx : A.M : Πx : A.B

Finally we have the typings:

nat : ∗

vec : nat → ∗

For each of the following three terms, list in which of the systems from
the Barendregt cube the term is typable:

(a)
nat → nat

All eight systems.

2



(b)
λa : ∗. a → a

The systems that extend λω, i.e.: λω, λPω, λω, λC.

The type of this term is ∗ → ∗ and to have that type one needs
the rule (�,�).

(c)
Πn : nat. vec n

The systems that extend λP , i.e.: λP , λP2, λPω, λC.

This product type itself only needs the rule (∗, ∗), but to type vec

one also needs (∗,�).

4. (a) Consider the Coq definition

Inductive nat : Set :=

| O : nat

| S : nat -> nat.

Give the dependent induction principle nat_ind of this type.

nat_ind :

forall P : nat -> Prop,

P O -> (forall n : nat, P n -> P (S n)) ->

forall n : nat, P n

(b) Give the normal form of the term

nat_ind P c f (S (S O))

that uses the principle from the previous exercise. In this term
the variables P, c, f and n are variables from the context.

nat_ind P c f (S (S O)) →∗ f (S O) (f O c)

(c) Give the non-dependent induction principle that corresponds to
the induction principle from 4(a).

3



nat_ind :

forall P : Prop,

P -> (nat -> P -> P) ->

nat -> P

5. (a) Consider the Coq definition

Inductive le (n : nat) : nat -> Prop :=

| le_n : le n n

| le_S : forall m : nat, le n m -> le n (S m).

Give the non-dependent induction principle le_ind of this type.
(Hint: first determine the dependent induction principle, and then
remove the dependence on the elements of le n m in the predi-
cate.)

The dependent induction principle would have been:

le_ind :

forall (n : nat)

(P : forall m : nat, le n m -> Prop),

P n (le_n n) ->

(forall (m : nat) (H : le n m),

P m H -> P (S m) (le_S n m H)) ->

forall (m : nat) (H : le n m), P m H

But the induction principle in Coq is non-dependent, and therefore
it is:

le_ind :

forall (n : nat) (P : nat -> Prop),

P n ->

(forall m : nat, le n m -> P m -> P (S m)) ->

forall m : nat, le n m -> P m

Note that this very much resembles the dependent induction prin-
ciple for nat, but then for the natural numbers ≥ n.

(b) Prove that 1 ≤ 2, i.e., give an inhabitant of

le (S O) (S (S O))

where le is the type from the previous exercise.

4



le_S (S O) (S O) (le_n (S O))

6. Which of the following four inductive definitions are allowed by Coq?
For the definitions that are not allowed, explain what requirement is
not satisfied.

(a) Inductive T1 : Type :=

| b1 : T1

| c1 : (T1 -> T1) -> T1.

Not allowed: the first T1 in the type of c1 does not occur posi-
tively.

(b) Inductive T2 (A : Type) : Type :=

| b2 : T2 A

| c2 : T2 (A -> A) -> T2 A.

Allowed.

(c) Inductive T3 (A : Type) : Type :=

| b3 : T3 A

| c3 : T3 A -> T3 (A -> A).

Not allowed: the parameter in the type of c3 has to match the
parameter in the definition.

(d) Inductive T4 : Type :=

| b4 : T4

| c4 : (nat -> T4) -> T4.

Allowed.

7. We recursively define an operation M∗ on untyped lambda terms:

x∗ := x

(λx.M)∗ := λx.M∗

((λx.M)N)∗ := M∗[x := N∗]

(MN)∗ := M∗N∗ when MN is not a beta redex

and we inductively define a relation M ⇒ N on untyped lambda terms:

x ⇒ x

5



M ⇒ M ′

λx.M ⇒ λx.M ′

M ⇒ M ′ N ⇒ N ′

MN ⇒ M ′N ′

M ⇒ M ′ N ⇒ N ′

(λx.M)N ⇒ M ′[x := N ′]

(a) State the diamond property for this relation M ⇒ N .

If M ⇒ M1 and M ⇒ M2 then there exists a term N such that
M1 ⇒ N and M2 ⇒ N .

(b) What is the relation between the M∗ operation and the M ⇒ N

relation that allows one to prove this property? (Note that the
exercise does not ask you to prove that this relation holds.)

If M ⇒ N then N ⇒ M∗.

6


