Type Theory and Coq 2012

23-01-2013

1. (a) Prove the formula

$$
(a \rightarrow a \rightarrow c) \rightarrow(b \rightarrow a) \rightarrow(b \rightarrow c)
$$

in minimal propositional logic. Indicate whether the proof has any detours.

$$
\left.\begin{array}{rl}
{\left[a \rightarrow a \rightarrow c^{x}\right]} & {\left[a^{w}\right]} \\
\hline a \rightarrow c & \\
& \frac{c}{a \rightarrow c} I[w] \rightarrow \quad \frac{\left[a^{w}\right]}{a \rightarrow c} E \rightarrow \quad \frac{\left[b \rightarrow a^{y}\right] \quad\left[b^{z}\right]}{a} \\
& \frac{c}{b \rightarrow c} I[z] \rightarrow \\
(a \rightarrow a \rightarrow c) \rightarrow(b \rightarrow a) \rightarrow b \rightarrow c
\end{array}\right][x] \rightarrow
$$

This proof has one detour, the $E \rightarrow$ elimination right after the the $I[w] \rightarrow$ introduction.
(b) Give the lambda term of Church-style simple type theory that corresponds to this proof.

$$
\lambda x: a \rightarrow a \rightarrow c . \lambda y: b \rightarrow a . \lambda z: b .(\lambda w: a . x w w)(y z)
$$

2. (a) Prove the formula

$$
a \rightarrow \forall b .(\forall c . a \rightarrow c) \rightarrow b
$$

in second order propositional logic.

$$
\begin{gathered}
\frac{\left[\forall c . a \rightarrow c^{H_{2}}\right]}{a \rightarrow b} E \forall\left[a^{H_{1}}\right] \\
\frac{b}{a} I \rightarrow \\
\frac{(\forall c . a \rightarrow c) \rightarrow b}{\left.\frac{\forall b .(\forall c . a \rightarrow c) \rightarrow b}{a} I \forall H_{2}\right] \rightarrow} \\
\frac{a b \cdot(\forall c . a \rightarrow c) \rightarrow b}{} I\left[H_{1}\right] \rightarrow
\end{gathered}
$$

(b) Give the lambda term of $\lambda 2$ that corresponds to this proof, and give its type.

$$
\begin{gathered}
\lambda H_{1}: a \cdot \lambda b: * \cdot \lambda H_{2}:(\Pi c: * \cdot a \rightarrow c) . H_{2} b H_{1} \\
\vdots \\
a \rightarrow \Pi b: * \cdot(\Pi c: * \cdot a \rightarrow c) \rightarrow b
\end{gathered}
$$

3. The rules for the eight systems from the Barendregt cube are given by the following table:

$$
\begin{array}{ll}
\lambda \rightarrow & \mathcal{R}=\{(*, *)\} \\
\lambda P & \mathcal{R}=\{(*, *),(*, \square)\} \\
\lambda 2 & \mathcal{R}=\{(*, *), \quad(\square, *)\} \\
\lambda P 2 & \mathcal{R}=\{(*, *),(*, \square),(\square, *)\} \\
\lambda \underline{\omega} & \mathcal{R}=\{(*, *), \\
\lambda P \underline{\omega} & \mathcal{R}=\{(\square, \square)\} \\
\lambda \omega & \mathcal{R}=\{(*, *),(*, \square), \quad(\square, \square)\} \\
\lambda C & \mathcal{R}=\{(*, *),(*, \square),(\square, *),(\square, \square)\} \\
\lambda, \square)\}
\end{array}
$$

in which $\left(s_{1}, s_{2}\right)$ is an abbreviation of $\left(s_{1}, s_{2}, s_{2}\right)$.
Furthermore, the PTS product and abstraction rules are:

$$
\begin{aligned}
& \frac{\Gamma \vdash A: s_{1} \quad \Gamma, x: A \vdash B: s_{2}}{\Gamma \vdash \Pi x: A \cdot B: s_{3}}\left(s_{1}, s_{2}, s_{3}\right) \in \mathcal{R} \\
& \frac{\Gamma, x: A \vdash M: B \quad \Gamma \vdash \Pi x: A \cdot B: s}{\Gamma \vdash \lambda x: A . M: \Pi x: A . B}
\end{aligned}
$$

Finally we have the typings:

$$
\begin{aligned}
& \text { nat }: * \\
& \text { vec : nat } \rightarrow *
\end{aligned}
$$

For each of the following three terms, list in which of the systems from the Barendregt cube the term is typable:
(a)

$$
\text { nat } \rightarrow \text { nat }
$$

All eight systems.
(b)

$$
\lambda a: * . a \rightarrow a
$$

The systems that extend $\lambda \underline{\omega}$, i.e.: $\lambda \underline{\omega}, \lambda P \underline{\omega}, \lambda \omega, \lambda C$.
The type of this term is $* \rightarrow *$ and to have that type one needs the rule (\square, \square).
(c)

$$
\Pi n: \text { nat. vec } n
$$

The systems that extend λP, i.e.: $\lambda P, \lambda P 2, \lambda P \underline{\omega}, \lambda C$.
This product type itself only needs the rule $(*, *)$, but to type vec one also needs ($*, \square$).
4. (a) Consider the Coq definition

```
Inductive nat : Set :=
| O : nat
| S : nat -> nat.
```

Give the dependent induction principle nat_ind of this type.

```
nat_ind :
```

 forall P : nat -> Prop,
 P O -> (forall n : nat, P n -> P (S n)) ->
 forall n : nat, P n
 (b) Give the normal form of the term
nat_ind P c f (S (S O))
that uses the principle from the previous exercise. In this term the variables P, c, f and n are variables from the context.

```
nat_ind P c f (S (S O)) ->* f (S O) (f O c)
```

(c) Give the non-dependent induction principle that corresponds to the induction principle from 4(a).

```
nat_ind :
    forall P : Prop,
        P -> (nat -> P -> P) ->
        nat -> P
```

5. (a) Consider the Coq definition
```
Inductive le (n : nat) : nat -> Prop :=
| le_n : le n n
| le_S : forall m : nat, le n m -> le n (S m).
```

Give the non-dependent induction principle le_ind of this type. (Hint: first determine the dependent induction principle, and then remove the dependence on the elements of le n m in the predicate.)
The dependent induction principle would have been:

```
le_ind :
    forall (n : nat)
        (P : forall m : nat, le n m -> Prop),
        P n (le_n n) ->
        (forall (m : nat) (H : le n m),
            P m H -> P (S m) (le_S n m H)) ->
    forall (m : nat) (H : le n m), P m H
```

But the induction principle in Coq is non-dependent, and therefore it is:

```
le_ind :
    forall (n : nat) (P : nat -> Prop),
    P n ->
    (forall m : nat, le n m -> P m -> P (S m)) ->
    forall m : nat, le n m -> P m
```

Note that this very much resembles the dependent induction principle for nat, but then for the natural numbers $\geq n$.
(b) Prove that $1 \leq 2$, i.e., give an inhabitant of
le (S O) (S (S O))
where le is the type from the previous exercise.

```
le_S (S O) (S O) (le_n (S O))
```

6. Which of the following four inductive definitions are allowed by Coq? For the definitions that are not allowed, explain what requirement is not satisfied.
(a) Inductive T1 : Type :=
| b1 : T1
| c1 : (T1 -> T1) -> T1.
Not allowed: the first T1 in the type of c1 does not occur positively.
(b) Inductive T2 (A : Type) : Type :=
| b2 : T2 A
| c2 : T2 (A -> A) -> T2 A.
Allowed.
(c) Inductive T3 (A : Type) : Type :=
| b3 : T3 A
| c3 : T3 A -> T3 (A -> A).
Not allowed: the parameter in the type of c3 has to match the parameter in the definition.
(d) Inductive T4 : Type :=
| b4 : T4
| c4 : (nat -> T4) -> T4.
Allowed.
7. We recursively define an operation M^{*} on untyped lambda terms:

$$
\begin{aligned}
x^{*} & :=x \\
(\lambda x \cdot M)^{*} & :=\lambda x \cdot M^{*} \\
((\lambda x \cdot M) N)^{*} & :=M^{*}\left[x:=N^{*}\right]
\end{aligned}
$$

$$
(M N)^{*}:=M^{*} N^{*} \quad \text { when } M N \text { is not a beta redex }
$$

and we inductively define a relation $M \Rightarrow N$ on untyped lambda terms:

$$
x \Rightarrow x
$$

$$
\begin{gathered}
M \Rightarrow M^{\prime} \\
\lambda x \cdot M \Rightarrow \lambda x \cdot M^{\prime} \\
M \Rightarrow M^{\prime} \quad N \Rightarrow N^{\prime} \\
M N \Rightarrow M^{\prime} N^{\prime} \\
M \Rightarrow M^{\prime} \quad N \Rightarrow N^{\prime} \\
\frac{M x . M) N \Rightarrow M^{\prime}\left[x:=N^{\prime}\right]}{}
\end{gathered}
$$

(a) State the diamond property for this relation $M \Rightarrow N$.

If $M \Rightarrow M_{1}$ and $M \Rightarrow M_{2}$ then there exists a term N such that $M_{1} \Rightarrow N$ and $M_{2} \Rightarrow N$.
(b) What is the relation between the M^{*} operation and the $M \Rightarrow N$ relation that allows one to prove this property? (Note that the exercise does not ask you to prove that this relation holds.)
If $M \Rightarrow N$ then $N \Rightarrow M^{*}$.

