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1. Consider the term of the untyped lambda calculus:

λx.λy.λz.x(yz)zy

(a) Write this term with brackets that show how the lambdas and
applications associate.

(λx.(λy.(λz.(((x(yz))z)y))))

(b) Give a most general type of this term, where the term is taken to
be a term of Curry-style simple type theory. (You do not need to
explain how you obtained this type, nor why it is a most general
type.)

(a → b → (b → a) → c) → (b → a) → b → c

(c) Give the term of Church-style simple type theory that corresponds
to the untyped lambda term and that has the type from the pre-
vious subexercise.

λx : (a → b → (b → a) → c). λy : (b → a). λz : b. x(yz)zy

(d) Give a type of this term in Curry-style simple type theory that is
not a most general type.

(a → a → (a → a) → a) → (a → a) → a → a

2. Consider the formula of first order propositional logic:

(a → b → c) → (b → a → c)
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(a) Give a proof in first order propositional logic of this formula.
(Write all the names of the proof rules in the proof tree.)

[a → b → cx] [az]

b → c
E→

[by]

c
E→

a → c
I[z]→

b → a → c
I[y]→

(a → b → c) → (b → a → c)
I[x]→

(b) Give the proof term of Church-style simple type theory of this
proof.

λx : (a → b → c). λy : b. λz : a. xzy

(c) Give the type judgment for the term from the previous subexer-
cise.

⊢ (λx : (a → b → c). λy : b. λz : a. xzy) : (a → b → c) → (b → a → c)

(d) Give a derivation of the type judgment from the previous subex-
ercise. (You do not need to give names for the typing rules in the
derivation tree, and you may use abbreviations for contexts.)

We use the abbreviation Γ2 :≡ x : (a → b → c), y : b, z : a.

Γ2 ⊢ x : a → b → c Γ2 ⊢ z : a

Γ2 ⊢ xz : b → c Γ2 ⊢ y : b

Γ2 ⊢ xzy : c

x : (a → b → c), y : b ⊢ λz : a. xzy : a → c

x : (a → b → c) ⊢ λy : b. λz : a. xzy : b → a → c

⊢ λx : (a → b → c). λy : b. λz : a. xzy : (a → b → c) → (b → a → c)

3. Consider the formula of first order predicate logic:

(∀x.R(x, c)) → (∀x.∃y.R(x, y))
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Furthermore we have the λC context:

Γ3 :≡ D : ∗ ,
c : D ,
R : D → D → ∗ ,
ex : ΠA : ∗. (A → ∗) → ∗ ,

ex intro : ΠA : ∗.ΠP : (A → ∗).Πx : A.Px → exAP

(a) Give a proof in first order predicate logic of this formula. (Write
all the names of the proof rules in the proof tree.)

[∀x.R(x, c)H ]

R(x, c)
E∀

∃y.R(x, y)
I∃

∀x.∃y.R(x, y)
I∀

(∀x.R(x, c)) → (∀x.∃y.R(x, y))
I[H]→

(b) Which of the rules in this proof has a variable condition, what is
this condition, and why is it satisfied?

The I∀ rule has the variable condition that the variable x should
not occur free in any of the available assumptions. Yes, this vari-
able condition is satisfied, as the only available assumption at that
point is ∀x.R(x, c), and x does not occur free in that assumption.

(c) Give the type of λC that corresponds to the formula in the context
Γ3. (Use the syntax for dependent products from Femke’s course
notes, i.e., written using Π and with explicit types.)

(Πx : D.Rxc) → (Πx : D. exD (λy : D.Rxy))

(d) Give a λC proof term for the type from the previous subexercise.

λH : (Πx : D.Rxc). λx : D. ex introD (λy : D.Rxy) c (Hx)
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(e) The type judgment for the term from the previous subexercise,
which encodes a proof of first order predicate logic, is a judgment
of λC. Is it also a judgment of λP?

No it is not. The typing of ex and ex intro also needs the product
rule with s1 = s2 = □, and therefore we need to be at least in
λPω.

4. Consider the term of λC:

ex2 :≡ λA : ∗. λP : (A → ∗).ΠQ : ∗. (Πx : A.P x → Q) → Q

(a) Give the type of ex2 in λC. (See page 8 for the typing rules of λC,
in case you need those.)

ΠA : ∗. (A → ∗) → ∗

(b) Give a term of λC that inhabits the following λC type:

ΠA : ∗.ΠP : (A → ∗).Πx : A.Px → ex2 AP

λA : ∗. λP : (A → ∗). λx : A. λH1 : Px. λQ : ∗. λH2 : (Πx : A.P x → Q). H2xH1

5. Consider the λC type a → ∗ in the context a : ∗.

(a) Give the λC typing judgment (without a derivation) that gives
the kind of this type.

a : ∗ ⊢ (a → ∗) : □

(b) Give a derivation in λC of the judgment from the previous subex-
ercise. (See page 8 for the typing rules of λC. You do not need to
give names for the typing rules in the derivation tree.)

⊢ ∗ : □
a : ∗ ⊢ a : ∗

⊢ ∗ : □ ⊢ ∗ : □
a : ∗ ⊢ ∗ : □

⊢ ∗ : □
a : ∗ ⊢ a : ∗

a : ∗, x : a ⊢ ∗ : □
a : ∗ ⊢ a → ∗ : □
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(c) Give also an inhabitant in λC of this type.

λx : a. a

(d) Give the λC typing judgment (without a derivation) for this in-
habitant.

a : ∗ ⊢ (λx : a. a) : a → ∗

6. Consider the Coq inductive type for unlabeled binary trees:

Inductive tree : Set :=

| leaf : tree

| node : tree -> tree -> tree.

(a) Give a Coq term that represents a tree with four leaves.

node (node (node leaf leaf) leaf) leaf

(b) Give the type of the dependent induction principle tree_rect for
this inductive type. (You can write this induction principle using
Coq syntax or using PTS syntax, whatever is your preference.)

forall P : tree -> Type,

P leaf ->

(forall t1 : tree, P t1 -> forall t2 : tree, P t2 ->

P (node t1 t2)) ->

forall t : tree, P t

ΠP : (tree → ∗).
P leaf →
(Πt1 : tree. P t1 → Πt2 : tree. P t2 → P (node t1 t2)) →
Πt : tree. P t

(c) Give the type of the corresponding non-dependent induction prin-
ciple tree_rect_nondep for this inductive type.
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forall P : Type,

P ->

(tree -> P -> tree -> P -> P) ->

tree -> P

ΠP : ∗. P → (tree → P → tree → P → P ) → tree → P

(d) Write a function mirror that mirrors the tree using a combination
of Fixpoint and match. (For instance

mirror (node (node (node leaf leaf) leaf) leaf) =

node leaf (node leaf (node leaf leaf))

should hold.)

Fixpoint mirror (t : tree) {struct t} : tree :=

match t with

| leaf => leaf

| node t1 t2 => node (mirror t2) (mirror t1)

end.

(e) Now also write the mirror function using the non-dependent in-
duction priciple used as a primitive recursor.

tree_rect_nondep tree leaf

(fun t1 : tree => fun m1 : tree =>

fun t2 : tree => fun m2 : tree =>

node m2 m1)

7. Consider the type that in HoTT is used for equality, written using Coq
syntax:

Inductive eq (A : Type) (x : A) : A -> Type :=

| refl : eq A x x.

We write x =A y or even x = y for (eqAxy).

6



(a) What is path induction?

Path induction is the proof method where if one wants to prove a
fact for all paths

p : x =A y

it is sufficient to set y to x in the fact to be proved and then prove
it with p everywhere replaced by

reflAx : x =A x

(b) Give the path induction principle that corresponds to the eq type.
(This rule is called J ′ in the master thesis of Dijkstra, is called
ind′=A

in the HoTT book, and is called eq_rect in Coq.) You
may write it either using Coq syntax, using PTS syntax, or in the
shape of a derivation rule.

A : U x : A P : ∀y : A. x =A y → U H : P x (reflAx) y : A p : x =A y

J ′AxPHyp : Pyp

(c) Prove symmetry of equality using path induction in the style of
the HoTT book.

We need to prove y =A x for all paths p : x =A y. With path
induction it is sufficient to prove this with y set to x. But then
refl is a proof.

(d) Give the type that represents this symmetry statement.

∀A : U . ∀x, y : A. x =A y → y =A x

(e) Give the proof term (using J ′) of the symmetry proof that inhabits
the type from the previous subexercise.

λA : U . λx, y : A. λp : (x =A y).
J ′Ax (λy : A. λq : (x =A y). y =A x) (reflAx) y p

(f) Explain why the homotopical interpretation of equality makes
clear that the path induction principle cannot be used to show
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that all proofs of x =A x are equal to refl. Or, more explicitly,
why from p : x =A x one cannot deduce using this principle that

p =(x=Ax) reflAx

This does not hold under this interpretation for the circle, because
there is no homotopy between the interpretations of loop and
refl.
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