Type Theory and Coq 2013

first first opportunity
07-01-2014

1. Consider the term of the untyped lambda calculus:

Az Ay Az.x(yz)zy

(a) Write this term with brackets that show how the lambdas and
applications associate.

(Az.(Ay-(Az.(((2(y2))2)))))

(b) Give a most general type of this term, where the term is taken to
be a term of Curry-style simple type theory. (You do not need to
explain how you obtained this type, nor why it is a most general
type.)

(a—=b—>(b—a)—c)—>(b—a)—>b—c
(c) Give the term of Church-style simple type theory that corresponds
to the untyped lambda term and that has the type from the pre-
vious subexercise.

At :(a—=b—(b—a)—c)Ay:(b—a)z:bx(yz)zy

(d) Give a type of this term in Curry-style simple type theory that is
not a most general type.

(a—a—(a—a)—=a)—(a—a)>a—a

2. Consider the formula of first order propositional logic:

(a—=b—c)—=(b—a—c)

(a) Give a proof in first order propositional logic of this formula.
(Write all the names of the proof rules in the proof tree.)

[a—=b—c®] [a7]

E—
b—c [bY]
E—
c
I[z]—
a—c
Ty
—Sa—=c
I[x]—

(a—=b—c)—=(b—a—c)

(b) Give the proof term of Church-style simple type theory of this
proof.

Az (a—=b—c). A y:b Az:a.xzy

(¢) Give the type judgment for the term from the previous subexer-
cise.

FAz:(a—=b—c) y:b.Az:axzy): (a—b—c)— (b—a—c)

(d) Give a derivation of the type judgment from the previous subex-
ercise. (You do not need to give names for the typing rules in the
derivation tree, and you may use abbreviations for contexts.)

We use the abbreviation I'y :=z: (a - b—¢),y: b, z: a.

I'vFrx:a—=b—c I'ybz:a
lobF22z:b—c¢ Loby:b
loFazy:c

r:(a—=b—c),y:bEAzra.zzy:a—c

z:(a—=b—c)FAy:bAz:azzy:b—a—c
FX:(a—=b—c)Ay:bAz:azzy:(a—b—c)— (b—a—c)

3. Consider the formula of first order predicate logic:

(Vo.R(z,c)) — (Vo.3y.R(x,y))

2

Furthermore we have the \C' context:

I's = D : x,
c : D,
R : D—=D—x,
ex : A% (A — %) — x,
exintro @ ITA:*IIP: (A — %).Illx: A. Pr — ex AP

(a) Give a proof in first order predicate logic of this formula. (Write
all the names of the proof rules in the proof tree.)

V. R(x,c)H]

EV
R(z,c) =
Jy.R(z,y) v

Vz.3y.R(x,y)
(Vz.R(z,c)) — (Va.3y.R(z,y))

H]—

(b) Which of the rules in this proof has a variable condition, what is
this condition, and why is it satisfied?
The IV rule has the variable condition that the variable z should
not occur free in any of the available assumptions. Yes, this vari-
able condition is satisfied, as the only available assumption at that
point is Vz.R(x, ¢), and does not occur free in that assumption.

(c) Give the type of A\C' that corresponds to the formula in the context
I';. (Use the syntax for dependent products from Femke’s course
notes, i.e., written using Il and with explicit types.)

(Ilz : D. Rxc) — (Ilz : D.ex D (\y : D. Rzy))

(d) Give a AC proof term for the type from the previous subexercise.

AH : (Ilz : D. Rxc). A\x : D.ex_intro D (\y : D. Rxy) c(Hx)

(e) The type judgment for the term from the previous subexercise,
which encodes a proof of first order predicate logic, is a judgment
of AC. Is it also a judgment of AP?

No it is not. The typing of ex and ex_intro also needs the product
rule with s; = sy = [, and therefore we need to be at least in
APw.

4. Consider the term of \C":

exos = M i AP (A— %) 1Q:*. (llz: APz — Q) —Q

(a) Give the type of exy in AC. (See page 8 for the typing rules of AC,
in case you need those.)

[TA : *. (A — %) — %

(b) Give a term of AC that inhabits the following AC' type:
A : %« 1IP: (A — x).llx: A.Pr — exg AP

A% AP (A=). Az : A NH, : Pe.\Q : x. \Hy: (lIx : A. Pz — Q). HyxHy

5. Consider the AC type a — * in the context a : *.

(a) Give the A\C typing judgment (without a derivation) that gives
the kind of this type.

a:*xk(a—x):0

(b) Give a derivation in A\C' of the judgment from the previous subex-
ercise. (See page 8 for the typing rules of AC. You do not need to
give names for the typing rules in the derivation tree.)

F+«:0 Fx:0 %[
s O a:xFx:0 a:xFa:x*
a:xkFa:x a:x,r:abx:U

a:xFa—x*:0

(c) Give also an inhabitant in AC' of this type.

AT a.a

(d) Give the AC' typing judgment (without a derivation) for this in-
habitant.

a:xF(Ar:a.a):a—x*

6. Consider the Coq inductive type for unlabeled binary trees:

Inductive tree : Set :=
| leaf : tree
| node : tree -> tree -> tree.

(a) Give a Coq term that represents a tree with four leaves.

node (node (node leaf leaf) leaf) leaf

(b) Give the type of the dependent induction principle tree_rect for
this inductive type. (You can write this induction principle using
Coq syntax or using PTS syntax, whatever is your preference.)

forall P : tree —> Type,
P leaf —>
(forall t1 : tree, P t1 -> forall t2 : tree, P t2 —>
P (node t1 t2)) —>
forall t : tree, P t

IIP : (tree —).
Pleaf —

(ITty : tree. Pty — Ilty : tree. Pty — P (nodet; ty)) —
IIt : tree. Pt

(c) Give the type of the corresponding non-dependent induction prin-
ciple tree_rect_nondep for this inductive type.

forall P : Type,
P —>
(tree => P -> tree -> P -> P) —>
tree -> P

IIP :%. P — (tree —» P — tree - P — P) — tree — P

(d) Write a function mirror that mirrors the tree using a combination
of Fixpoint and match. (For instance

mirror (node (node (node leaf leaf) leaf) leaf) =
node leaf (node leaf (node leaf leaf))

should hold.)

Fixpoint mirror (t : tree) {struct t} : tree :=
match t with
| leaf => leaf
| node t1 t2 => node (mirror t2) (mirror t1)
end.

(e) Now also write the mirror function using the non-dependent in-
duction priciple used as a primitive recursor.

tree_rect_nondep tree leaf
(fun t1 : tree => fun ml : tree =>
fun t2 : tree => fun m2 : tree =>
node m2 mil)

7. Consider the type that in HoTT is used for equality, written using Coq
syntax:

Inductive eq (A : Type) (x : A) : A -> Type :=
| refl : eq A x x.

We write © =4 y or even z =y for (eq Axy).

(a) What is path induction?
Path induction is the proof method where if one wants to prove a
fact for all paths
P:T=4ay
it is sufficient to set y to = in the fact to be proved and then prove
it with p everywhere replaced by

reflAx:x =42

(b) Give the path induction principle that corresponds to the eq type.
(This rule is called J’ in the master thesis of Dijkstra, is called
ind/:4 in the HoTT book, and is called eq_rect in Coq.) You
11121}»" write it either using Coq syntax, using PTS syntax, or in the
shape of a derivation rule.

A:U z2:A P:Vy:Az=,y—U H:Px(reflAz) y: A p:x=xy
J'AzPHyp : Pyp

(¢) Prove symmetry of equality using path induction in the style of
the HoTT book.

We need to prove y =4 x for all paths p : x =4 y. With path
induction it is sufficient to prove this with y set to x. But then
refl is a proof.

(d) Give the type that represents this symmetry statement.
VA:UNVz,y: Ax=2y—>y=acx

(e) Give the proof term (using J’) of the symmetry proof that inhabits
the type from the previous subexercise.

MU Xzyy: A dp: (x=41).
JAx(Ny: A XNg: (x=4y)y=a2)(reflAz)yp

(f) Explain why the homotopical interpretation of equality makes
clear that the path induction principle cannot be used to show

that all proofs of x =4 = are equal to refl. Or, more explicitly,
why from p : =4 x one cannot deduce using this principle that

P =(2—aa2) Tefl Ax

This does not hold under this interpretation for the circle, because
there is no homotopy between the interpretations of loop and
refl.

