
Type Theory and Coq 2015-2016
29-06-2016

1. (a) Consider the three untyped lambda terms:

I := λx. x

K := λx. λy. x

S := λx. λy. λz. xz(yz)

For each of these three terms give a most general type in the
Curry-style simply typed lambda calculus.

I : a→ a

K : a→ b→ a

S : (a→ b→ c)→ (a→ b)→ a→ c

(b) Give the three terms of the Church-style simply typed lambda cal-
culus that correspond to the typings in the previous subexercise.
(I.e., give versions of these terms where types for the variables are
given explicitly.)

λx : a. x
λx : a. λy : b. x

λx : a→ b→ c. λy : a→ b. λz : a. xz(yz)

(c) Give a Church-style typed lambda term for the term

II

where I is the lambda term given above.

(λx : a→ a. x)(λy : a. y)

(d) Give a full type derivation in the simply typed lambda calculus
for the term from the previous subexercise.

x : a→ a ` x : a→ a

` (λx : a→ a. x) : (a→ a)→ a→ a

y : a ` y : a

` (λy : a. y) : a→ a

` (λx : a→ a. x)(λy : a. y) : a→ a

1

(e) Give the natural deduction proof that corresponds to the lambda
term in the previous two subexercises according to the Curry-
Howard isomorphism.

[a→ ax]

(a→ a)→ a→ a
I[x]→

[ay]

a→ a
I[y]→

a→ a
E→

(f) Does the proof from the previous subexercise contain a detour?
Explain your answer. If so, also give the normal form of this proof.

Yes, there is the detour: the elimination E→ directly follows the
introduction I[x]→. To eliminate the detour, we substitute the
the proof of the right branch in the left branch, and we get:

[ay]

a→ a
I[y]→

This proof is in normal form.

This normalization corresponds to the reduction of the proof term:

(λx : a→ a. x)(λy : a. y)→β (λy : a. y)

2. (a) Give a natural deduction proof of the propositional formula

a ∧ b→ b ∧ a

[a ∧ bx]
b

Er∧
[a ∧ bx]
a

El∧

b ∧ a
I∧

a ∧ b→ b ∧ a
I[x]→

(b) Give the proof term for this proof according to the Curry-Howard
isomorphism. You can use in this term the three functions:

conj : Πa : ∗.Πb : ∗. a→ b→ (a ∧ b)
proj1 : Πa : ∗.Πb : ∗. (a ∧ b)→ a

proj2 : Πa : ∗.Πb : ∗. (a ∧ b)→ b

2

λx : a ∧ b. conj b a (proj2 a b x) (proj1 a b x)

(c) Give definitions of proj1 and proj2 using the recursor of the con-
juction:

and ind : Πa : ∗.Πb : ∗.Πc : ∗. (a→ b→ c)→ (a ∧ b)→ c

proj1 := λa : ∗. λb : ∗. λz : a ∧ b. and ind a b a (λx : a. λy : b. x) z

proj2 := λa : ∗. λb : ∗. λz : a ∧ b. and ind a b b (λx : a. λy : b. y) z

Or, with eta-reduction:

proj1 := λa : ∗. λb : ∗. and ind a b a (λx : a. λy : b. x)

proj2 := λa : ∗. λb : ∗. and ind a b b (λx : a. λy : b. y)

3. (a) Give a natural deduction proof in minimal predicate logic of:

∀x. ((∀y. p(x, y))→ p(x, x))

[∀y. p(x, y)H]

p(x, x)
E∀

(∀y. p(x, y))→ p(x, x)
I[H]→

∀x. ((∀y. p(x, y))→ p(x, x))
I∀

(b) Give the proof term that corresponds to the proof from the pre-
vious subexercise under the Curry-Howard isomorphism.

λx : D.λH : (Πy : D. p x y). H x

(c) Give the full λP judgement (including the context) that gives the
typing of the term from the previous subexercise. (Note that you
do not need to give the derivation of that judgment.)

D : ∗, p : D → D → ∗ `
(λx : D.λH : (Πy : D. p x y). H x) : (Πx : D. ((Πy : D. p x y)→ p x x))

3

4. In this exercise we work in the context:

Γ := nat : ∗, O : nat, S : nat→ nat

(a) One can encounter the following three expressions:

M1 := λx : nat. nat

M2 := Πx : nat. nat

M3 := ∀x : nat. nat

Explain what each of these expressions mean.

• M1 is the function that maps each natural number to the type
of natural numbers.

• M2 and M3 are two notations for the same term. This is the
type of functions from natural numbers to natural numbers,
nat→ nat.

(b) What are the types of these three expressions M1, M2 and M3?

M1 : nat→ ∗
M2 : ∗
M3 : ∗

(c) For each of the expressions M1, M2 and M3, give a term, where
the expression occurs as a proper subterm. These terms should
be well typed in the context Γ of this exercise.

M1O
λf : M2. f O
λf : M3. f O

5. (a) Is the following expression well-typed in the calculus of construc-
tions λC?

(λx : ∗. x)(Πy : ∗. y)

This one is subtle. According to the rules in the test, this is okay.
But in Coq it depends. If you represent ∗ by Prop it is okay, but
if you represent it by Set it is not okay.

4

(b) If your answer to the previous subexercise was ‘yes’, give the type
of this expression. If it was ‘no’, explain why this is not well-typed.

(λx : ∗. x)(Πy : ∗. y) : ∗

(c) Give the full λC derivation of the type judgement

` (λx : ∗. x) : ∗ → ∗

You can find the rules of λC on page 10 of this test.

` ∗ : �

x : ∗ ` x : ∗
` ∗ : �

` ∗ : � ` ∗ : �

x : ∗ ` ∗ : �

` ∗ → ∗ : �

` (λx : ∗. x) : ∗ → ∗

6. (a) Give the Coq definition of an inductive type tree for binary trees
where the leaves do not have a label, but where the nodes are both
labeled with a natural number and with a color (red or black). If
you like, you can use the Coq type bool for the color, but you can
also define a Coq type color for yourself, if you prefer that.

Definition color : Set := bool.

Definition black : color := true.

Definition red : color := false.

Inductive tree : Set :=

| Leaf : tree

| Node : nat -> color -> tree -> tree -> tree.

(b) Give the Coq type of the induction principle of the type you have
just defined.

forall P : tree -> Prop,

P Leaf ->

(forall (n : nat) (c : color) (t0 t1 : tree),

P t0 -> P t1 -> P (Node n c t0 t1)) ->

forall t : tree, P t

5

(c) Give the Coq definition of a recursive function count nodes that
counts the number of nodes in the tree. (The function that adds
two natural numbers is called plus.)

Fixpoint count_nodes (t : tree) {struct t} : nat :=

match t with

| Leaf => O

| Node n c t0 t1 =>

S (plus (count_nodes t0) (count_nodes t1))

end.

(d) Give the Coq definition of a predicate not red root that says that
a tree does not have a red root (where the leaves are taken to be
black).

Inductive not_red_root : tree -> Prop :=

| not_red_root_leaf : not_red_root Leaf

| not_red_root_node : forall (n : nat) (t0 t1 : tree),

not_red_root (Node n black t0 t1).

or

Fixpoint not_red_root (t : tree) {struct t} : Prop :=

match t with

| Leaf => True

| Node n c t0 t1 => c = black

end.

or

Definition not_red_root (t : tree) : Prop :=

t = Leaf

exists n : nat, exists t1 : tree, exists t2 : tree,

t = Node n black t1 t2.

(e) Give the Coq definition of an inductive predicate okay that says
that in a tree of the type that you just defined, a red node will
never have a red child.

Inductive okay : tree -> Prop :=

| okay_leaf : okay Leaf

| okay_black : forall (n : nat) (t0 t1 : tree),

6

okay t0 -> okay t1 ->

okay (Node n black t0 t1)

| okay_red : forall (n : nat) (t0 t1 : tree),

okay t0 -> okay t1 ->

not_red_root t0 -> not_red_root t1 ->

okay (Node n red t0 t1).

7. We want a Coq formalization of the semantics of a very small imp-like
language. The syntax of this language will be:

a ::= n | x | (a1 −̇ a2)
c ::= skip | (x := a) | (c1; c2) | (while a do c od)

We will interpret the arithmetic expressions a as natural numbers,
where subtraction is ‘cut-off’ subtraction (this is zero if the result would
have been negative, so 4 −̇ 3 = 1, but 3 −̇ 4 = 0), and we will interpret
the condition of the while as ‘true’ if the number is not equal to zero
and ‘false’ if it is equal to zero. For convenience we also will use natural
numbers as the identifiers for the variables x.

(a) Write Coq definitions of the syntax of this language as inductive
types. Call the types that you define id (for the identifiers), aexp
and com.

Definition id : Set := nat.

Inductive aexp : Set :=

| ANum : nat -> aexp

| AId : id -> aexp

| AMinus : aexp -> aexp -> aexp.

Inductive com : Set :=

| CSkip : com

| CAss : id -> aexp -> com

| CSeq : com -> com -> com

| CWhile : aexp -> com -> com.

(b) Write a Coq definition for a type that represents the states of this
language. Call this type state.

7

Definition state : Set := id -> nat.

(c) Write a Coq definition for the evaluation function aeval that cor-
responds to [[a]]s. The cut-off subtraction function in Coq is called
minus.

Fixpoint aeval (a : aexp) (s : state) {struct a} : nat :=

match a with

| ANum n => n

| AId x => s x

| AMinus a1 a2 => minus (aeval a1 s) (aeval a2 s)

end.

(d) The rules of a big step semantics for this language are:

[[a]]s = n

(x := a, s) ⇓ s[x 7→ n]

(c1, s) ⇓ s′ (c2, s
′) ⇓ s′′

(c1; c2, s) ⇓ s′′

[[a]]s = 0

(while a do c od, s) ⇓ s
[[a]]s 6= 0 (c, s) ⇓ s′ (while a do c od, s′) ⇓ s′′

(while a do c od, s) ⇓ s′′

Formalize these rules as an inductive relation in Coq. Call the
relation

ceval : com→ state→ state→ Prop

You can use a function

update : state→ id→ nat→ state

for s[x 7→ n] without defining it.

Inductive ceval : com -> state -> state -> Prop :=

| E_Skip : forall s, ceval CSkip s s

| E_Ass : forall x a s n, aeval a s = n ->

ceval (CAss x a) s (update s x n)

| E_Seq : forall c1 c2 s s’ s’’,

8

ceval c1 s s’ -> ceval c2 s’ s’’ ->

ceval (CSeq c1 c2) s s’’

| E_WhileLoop : forall a c s s’ s’’,

~(aeval a s = O) ->

ceval c s s’ -> ceval (CWhile a c) s’ s’’ ->

ceval (CWhile a c) s s’’

| E_WhileEnd : forall a c s,

aeval a s = O ->

ceval (CWhile a c) s s.

(e) Someone extended this until she also had a small step semantics
of this language formalized in Coq, as a relation:

cstep : (com× state)→ (com× state)→ Prop

Give the Coq statement that says that the semantics given by
ceval and the semantics given by cstep correspond to each other.
You can use the function

star : ΠX : Set. (X → X → Prop)→ (X → X → Prop)

that gives the reflexive and transitive closure of a relation, without
defining it.

forall (c : com) (s s’ : state),

ceval c s s’ <-> star (com * state) cstep (c, s) (CSkip, s’)

8. The proof of strong normalization of the simply typed lambda calculus
that was presented in the course associates a set of untyped lambda
terms [[A]] to each simple type A. These sets are called saturated sets
and are defined in a way that they have the two key properties:

• Each lambda term that can be typed (in the style of Curry) with
type A will be in [[A]].

• Each term in [[A]] will be strongly normalizing.

Now answer the following questions:

9

(a) The recursive definition of [[A]], where A is a type of the simply
typed lambda calculus, has the structure:

[[a]] := SN for a an atomic type

[[A→ B]] := . . .

Here SN is the set of all strongly normalizing untyped lambda
terms. Complete this definition by filling in the dots for the second
case.

[[A→ B]] := {M | ∀N ∈ [[A]].MN ∈ [[B]]}

(b) Prove with simultaneous induction that

• [[A]] ⊆ SN

• xN1 . . . Nk ∈ [[A]] when N1, . . . , Nk ∈ SN

(If you do not know the answer to the previous subexercise, at
least prove the base case.)

• The base case is simple.

– The first property holds by definition.

– For the second, it is clear that a term of the shape
xN1 . . . Nk with N1, . . . , Nk strongly normalizing can only
reduce inside the Ni, and hence is in SN = [[A]].

• The induction case is not much harder.

– First we will show that [[A → B]] ⊆ SN. Suppose that
we have M with MN ∈ [[B]] for all N ∈ [[A]]. We need
to show that M is strongly normalizing. By induction x
is in [[A]] (the second property with k = 0), so we know
that Mx ∈ [[B]], and by induction that means that Mx is
strongly normalizing. But if M has an infinite reduction,
that also holds for Mx, so strong normalization of M
follows.

– Now to prove that xN1 . . . Nk ∈ [[A → B]], we need to
show that xN1 . . . NkN ∈ [[B]] for all N ∈ [[A]]. But by
induction we know that these N are all strongly normal-
izing, so from the induction hypothesis about B the re-
quired property will follow.

10

