Type Theory and Coq

Herman Geuvers

Lecture: Normalization for A— and \2



Properties of A—

e Subject Reduction SR
fI'-M:0and M —3 N, thenI' N : 0.

e Strong Normalization SN
If I' = M : o, then all S-reductions from M terminate.

SR is proved by induction on the derivation using basic properties like:

e Substitution property
f e 7T AF-M:0, 'FP:7,then A+ M|P/x]: 0.

e Thinning
fI'FM:0and I' C A, then A+F M : 0.

which are again proved by induction on the derivation.



Normalization of 3

e \Weak Normalization A term M is WN if there is a reduction
M —pg My —rg My —g ... —g M, with M,, in normal form.

e Strong Normalization A term M is SN if there are no infinite
reductions starting from M
<= (classically) all B-reductions from M lead to a normal form
<= there is a b such that the length of S-reductions from M is
bounded by b (because — 3 is finitely branching)

SN (or WN) cannot be proved by induction on the derivation
I'-M:0—T I'-N:o

I'EMN : T
IH: M is SN and N is SN. So M N is SN 77
No,eg M =M x.xx, N=Ar.xx



Normalization of 8 for A—

Note:

e Terms may get larger under reduction
(Af A f(fx))P —p Ax.P(Px)

e Redexes may get multiplied under reduction.
Az f(f2) (- M)Q) —5 Az (- M)Q)(hy.M)Q)e)

e New redexes may be created under reduction.
(Af Az f(fx))(Ay.N) — 5 Ax.(Ay.N)((A\y.N)x)

First: Weak Normalization

e Weak Normalization: there is a reduction sequence that terminates,

e Strong Normalization: all reduction sequences terminate.



Weak Normalization

General property for (untyped) A-calculus:
There are three ways in which a “new” [-redex can be created.

e Creation
Ar....2 P...)(\y.Q) —5 ... (\y.Q)P...

e Multiplication

e |dentity



Weak Normalization

Proof originally from Turing, first published by Gandy (1980).
Definition
The height (or order) of a type h(o) is defined by

e hia) :=0
e hioc1—...—op—a) :=max(h(o1),...,h(o,)) + 1.
NB [Exercise| This is the same as defining

e hic—T):=max(h(o)+ 1,h(7)).

Definition
The height of a redex (Az:0.P)( is the height of the type of Ax:0.P



Weak Normalization

Definition
We give a measure m to the terms by defining m(N) := (h(N),#N)
with

e h(N) = the maximum height of a redex in NV,

e #N = the number of redexes of height A(N) in N.

The measures of terms are ordered lexicographically:

(h1,2) <; (ha,y) iff hy < hg or (hy = hy and = < y).



Theorem: Weak Normalization

If P is a typable term in A—, then there is a terminating reduction

starting from P.

Proof

Pick a redex of height h(P) inside P that does not contain any other
redex of height h(P). [Note that this is always possible!]

Contract this redex, to obtain ().

Claim: This does not create a new redex of height h(P).

This is the important step. [Exercise: check this; use the three ways in
which new redexes can be created.]

So m(Q) <; m(P)

As there are no infinitely decreasing <; sequences, this process must
terminate and then we have arrived at a normal form.



Strong Normalization for A— a la Curry

This is proved by constructing a model of A—.
Method originally due to Tait (1967); also direct “arithmetical” methods

exist, that use a decreasing ordering (David 2001, David & Nour)
Definition

e [a] := SN (the set of strongly normalizing A-terms).
o [o—7]:={M |VN € [o](MN € [1])}.
Lemma
1. Ny ... Ny € [o] for all x, o and Ny,..., N € SN.
2. [o] € SN

3. If M[N/z]P € [o], N € SN, then (A\z.M)NP € [o].



Strong Normalization for A— a la Curry

Lemma

1. xNy... Ny € o] for all z, 0 and Ny,..., Nx € SN.

2. [o] €SN

3. If M[N/z]P € o], N € SN, then (A\z.M)NP € [o].

Proof: By induction on o; the first two are proved simultaneously.
NB for the proof of (2): We need that [o] is non-empty, which is

guaranteed by the induction hypothesis for (1).
Also, use that M N € SN = M € SN. Think of it a bit and see it's true.
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Proposition

T1iTlye o TpTn M 0

Nlé[[Tl]]a---aNnG[[Tn]] iM[Nl/xl,Nn/wn]e[[O']]

Proof By induction on the derivation of I' = M : o. (Using (3) of the

previous Lemma.)
Corollary A— is SN

Proof By taking N, := x; in the Proposition. (That can be done,
because z; € ;] by (1) of the Lemma.)
Then M € [o] C SN, using (2) of the Lemma. QED

Exercise Verify the details of the Strong Normalization proof. (That is,
prove the Lemma and the Proposition.)
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A little bit on semantics

A— has a simple set-theoretic model. Given sets [a] for type variables

«, define
lo—7] := [7] l] ( set theoretic function space [o] — [7])

If any of the base sets [«] is infinite, then there are higher and higher

(uncountable) cardinalities among the [o]
There are smaller models, e.g.
lo—7] :={f € [o] — [7]|f is definable}

where definability means that it can be constructed in some formal

system. This restricts the collection to a countable set.

For example

lo—7] :={f € [o] — [7r]|f is A-definable}
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A2

Church style:

I'EM:o I'-M :Va.o
a ¢ FV(T) for 7 a A2-type
I'-Xa.M :Va.o ' Mr:ola:=7]
Curry style:
I'EM:o I'M :Va.o
a ¢ FV(D) for 7 a A2-type

I'EM :Va.o I'EM:ola:=T]
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Properties of A2

e Uniqueness of types
fI'-M:0and ' M : 7, then o0 = 7.

e Subject Reduction
fI'=M:0and M —g, N, thenI'- N : 0.

e Strong Normalization
If I' = M : o, then all Sn-reductions from M terminate.
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Strong Normalization of 3 for A2

e For A2 a la Church, there are two kinds of 3-reductions:

— (Ar:o.M )P —3 M|P/x] term reduction
— (Aa.M)T —5 M|7/0q] type reduction

e The second doesn’'t do any harm, so we can just look at A2 a la
Curry

More precisely:
— type reduction is terminating

— if there is an infinite combined term reduction / type reduction

path in A2 a la Church, then there is an infinite term reduction
path in A2 a la Curry.
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Strong Normalization of 3 for A2 a la Curry

Recall the proof for A—:
e [a] :=SN.

o [o—=7]:={M |VN € [o](MN € [7])}.

Question:
How to define [Va.o] 77

[[VO&.O']] = HXEU[[O-]]Q;:X??
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Interpretation of types

Question: How to define [Va.o] 77
[[\V/Oé.O']] = HXEU[[O-]]Q;:X??

e What should U be?
The collection of “all possible interpretations” of types (7)

o Ilxcyfo],,._x gets too big: card(Ilxerr[o],._y) > card(U)
Girard:

e [Va.o] should be small

ﬂ lo],.—x

XeU

e Characterization of U.
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Saturated sets

U := SAT, the collection of saturated sets of (untyped) A-terms.
X C A is saturated if

e tP,...P, € X (forall z € Var, Py,..., P, € SN)
e X CSN
o If M[N/2z]P € X and N € SN, then (Az.M)NP € X.

Let p : TVar — SAT be a valuation of type variables.
Define the interpretation of types [o] , as follows.

o o], :=p(a)
o [o—7],:={M|VN € [o] (MN €[r],)}

* \V/&O-]]p F= ﬁ)(ES/A\-F [[U]]p,a::X
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Soundness property

Proposition
Ty :T1, oy Ty i TnE M 0= M|Py/xq,...

for all valuations p and P, € [1y] ,..., P, € [[Tn]]p

P

Proof
By induction on the derivation of I' - M : o.

Corollary A2 is SN

(Proof: take P; to be x1, ..., P, to be z,.)

, Pn/xn] € [[0]][)
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A little bit on semantics

A2 does not have a set-theoretic model! [Reynolds]

Theorem: If
[o—7] := [7]1) ( set theoretic function space )

then [o] is a singleton set for every o.

So: in a A2-model, [c—7] must be ‘small’.
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