Type Theory and Coq

Herman Geuvers

Principal Types and Type Checking

Overview of todays lecture

- Simple Type Theory à la Curry (versus Simple Type Theory à la Church)
- Principal Types algorithm
- Type checking dependent type theory: λP

Recap: Simple type theory a la Church.

Formulation with contexts to declare the free variables:

```
x_1:\sigma_1,x_2:\sigma_2,\ldots,x_n:\sigma_n
```

is a context, usually denoted by Γ . Derivation rules of $\lambda \rightarrow$ (à la Church):

$$\frac{x:\sigma \in \Gamma}{\Gamma \vdash x:\sigma} \qquad \frac{\Gamma \vdash M: \sigma \rightarrow \tau \ \Gamma \vdash N:\sigma}{\Gamma \vdash MN: \tau} \qquad \frac{\Gamma, x:\sigma \vdash P:\tau}{\Gamma \vdash \lambda x:\sigma.P:\sigma \rightarrow \tau}$$

 $\Gamma \vdash_{\lambda \to} M : \sigma$ if there is a derivation using these rules with conclusion $\Gamma \vdash M : \sigma$

Recap: Formulas-as-Types (Curry, Howard)

There are two readings of a judgement $M:\sigma$

- 1. term as algorithm/program, type as specification: M is a function of type σ
- 2. type as a proposition, term as its proof: M is a proof of the proposition σ
- There is a one-to-one correspondence:

typable terms in $\lambda \rightarrow \simeq$ derivations in minimal proposition logic

• $x_1 : \tau_1, x_2 : \tau_2, \dots, x_n : \tau_n \vdash M : \sigma$ can be read as M is a proof of σ from the assumptions $\tau_1, \tau_2, \dots, \tau_n$.

Recap: Example

$$\begin{array}{c} \frac{[\alpha \rightarrow \beta \rightarrow \gamma]^3 \ [\alpha]^1}{\beta \rightarrow \gamma} & \frac{[\alpha \rightarrow \beta]^2 \ [\alpha]^1}{\beta} \\ \frac{\beta \rightarrow \gamma}{\alpha \rightarrow \gamma} & \frac{\beta}{\alpha \rightarrow \gamma} \\ \frac{\frac{\gamma}{(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma}^2}{(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma} 3 \end{array}$$

 $\simeq \qquad \begin{array}{l} \lambda x: \alpha \to \beta \to \gamma . \lambda y: \alpha \to \beta . \lambda z: \alpha . x z(yz) \\ : (\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma \end{array}$

Untyped λ -calculus

Untyped λ -calculus

$$\Lambda ::= \mathsf{Var} \mid (\Lambda \Lambda) \mid (\lambda \mathsf{Var}.\Lambda)$$

Examples:

- $\mathbf{K} := \lambda x y . x$ - $\mathbf{S} := \lambda x y z . x z (y z)$ - $\omega := \lambda x . x x$ - $\Omega := \omega \omega$

 $\Omega \longrightarrow_{\beta} \Omega$

Untyped λ -calculus

Untyped λ -calculus is Turing complete

It's power lies in the fact that you can solve recursive equations:

Is there a term ${\boldsymbol{M}}$ such that

$$M x =_{\beta} x M x?$$

Is there a term ${\cal M}$ such that

$$M x =_{\beta} \mathbf{if} (\operatorname{Zero} x) \mathbf{then} 1 \mathbf{else} \operatorname{Mult} x (M (\operatorname{Pred} x))?$$

Yes, because we have a fixed point combinator: - $\mathbf{Y} := \lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$ Property:

$$Yf =_{\beta} f(Yf)$$

Why do we want to add types to λ -calculus?

- Types give a (partial) specification
- Typed terms can't go wrong (Milner) Subject Reduction property
- Typed terms always terminate
- The type checking algorithm detects (simple) mistakes

But: The compiler should compute the type information for us! (Why would the programmer have to type all that?)

This is called a type assignment system, or also typing à la Curry:

For M an untyped term, the type system assigns a type σ to M (or not)

STT à la Church and à la Curry

 $\lambda \rightarrow$ (à la Church):

$x{:}\sigma\in\Gamma$	$\Gamma \vdash M : \sigma {\rightarrow} \tau \ \Gamma \vdash N : \sigma$	$\Gamma, x{:}\sigma \vdash P:\tau$
$\overline{\Gamma \vdash x : \sigma}$	$\Gamma \vdash MN: \tau$	$\Gamma \vdash \lambda x : \sigma . P : \sigma {\rightarrow} \tau$

 $\lambda \rightarrow$ (à la Curry):

$x{:}\sigma\in\Gamma$	$\Gamma \vdash M : \sigma {\rightarrow} \tau \ \Gamma \vdash N : \sigma$	$\Gamma, x{:}\sigma \vdash P:\tau$
$\overline{\Gamma \vdash x : \sigma}$	$\Gamma \vdash MN: \tau$	$\overline{\Gamma \vdash \lambda x.P: \sigma {\rightarrow} \tau}$

Examples

• Typed Terms:

$$\lambda x : \alpha . \lambda y : (\beta \rightarrow \alpha) \rightarrow \alpha . y (\lambda z : \beta . x)$$

has only the type $\alpha \rightarrow ((\beta \rightarrow \alpha) \rightarrow \alpha) \rightarrow \alpha$

• Type Assignment:

$$\lambda x.\lambda y.y(\lambda z.x)$$

can be assigned the types

$$- \alpha \rightarrow ((\beta \rightarrow \alpha) \rightarrow \alpha) \rightarrow \alpha$$
$$- (\alpha \rightarrow \alpha) \rightarrow ((\beta \rightarrow \alpha \rightarrow \alpha) \rightarrow \gamma) \rightarrow \gamma$$

— . . .

with $\alpha \rightarrow ((\beta \rightarrow \alpha) \rightarrow \gamma) \rightarrow \gamma$ being the principal type

Connection between Church and Curry typed STT

Definition The erasure map |-| from STT à la Church to STT à la Curry is defined by erasing all type information.

$$\begin{aligned} |x| &:= x\\ |MN| &:= |M| |N|\\ |\lambda x : \sigma . M| &:= \lambda x . |M| \end{aligned}$$

So, e.g.

$$|\lambda x: \alpha . \lambda y: (\beta \to \alpha) \to \alpha . y(\lambda z: \beta . x))| = \lambda x . \lambda y . y(\lambda z. x))$$

Theorem If $M : \sigma$ in STT à la Church, then $|M| : \sigma$ in STT à la Curry. Theorem If $P : \sigma$ in STT à la Curry, then there is an M such that $|M| \equiv P$ and $M : \sigma$ in STT à la Church. Connection between Church and Curry typed STT

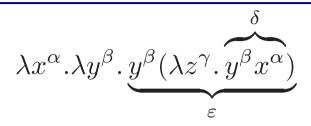
Definition The erasure map |-| from STT à la Church to STT à la Curry is defined by erasing all type information.

$$|x| := x$$
$$|M N| := |M| |N|$$
$$|\lambda x : \sigma M| := \lambda x |M|$$

Theorem If $P : \sigma$ in STT à la Curry, then there is an M such that $|M| \equiv P$ and $M : \sigma$ in STT à la Church. Proof: by induction on derivations.

$$\frac{x:\sigma \in \Gamma}{\Gamma \vdash x:\sigma} \qquad \frac{\Gamma \vdash M: \sigma \rightarrow \tau \ \Gamma \vdash N:\sigma}{\Gamma \vdash MN: \tau} \qquad \frac{\Gamma, x:\sigma \vdash P:\tau}{\Gamma \vdash \lambda x:\sigma.P:\sigma \rightarrow \tau}$$

Example of computing a principal type



- 1. Assign type vars to all variables: $x : \alpha, y : \beta, z : \gamma$.
- 2. Assign type vars to all applicative subterms: $y x : \delta$, $y(\lambda z.y x) : \varepsilon$.
- 3. Generate equations between types, necessary for the term to be typable: $\beta = \alpha \rightarrow \delta$ $\beta = (\gamma \rightarrow \delta) \rightarrow \varepsilon$
- 4. Find a most general unifier (a substitution) for the type vars that solves the equations: $\alpha := \gamma \rightarrow \varepsilon$, $\beta := (\gamma \rightarrow \varepsilon) \rightarrow \varepsilon$, $\delta := \varepsilon$
- 5. The principal type of $\lambda x.\lambda y.y(\lambda z.yx)$ is now

$$(\gamma {\rightarrow} \varepsilon) {\rightarrow} ((\gamma {\rightarrow} \varepsilon) {\rightarrow} \varepsilon) {\rightarrow} \varepsilon$$

Exercise

Compute principal types for

- $\mathbf{S} := \lambda x . \lambda y . \lambda z . x \, z(y \, z)$
- $M := \lambda x \cdot \lambda y \cdot x (y(\lambda z \cdot x \cdot z \cdot z))(y(\lambda z \cdot x \cdot z \cdot z)).$

- A type substitution (or just substitution) is a map S from type variables to types. (Note: we can compose substitutions.)
- A unifier of the types σ and τ is a substitution that "makes σ and τ equal", i.e. an S such that $S(\sigma) = S(\tau)$
- A most general unifier (or mgu) of the types σ and τ is the "simplest substitution" that makes σ and τ equal, i.e. an S such that
 - $-S(\sigma) = S(\tau)$
 - for all substitutions T such that $T(\sigma) = T(\tau)$ there is a substitution R such that $T = R \circ S$.

All these notions generalize to lists of types $\sigma_1, \ldots, \sigma_n$ in stead of pairs σ, τ .

Computing a most general unifier

There is an algorithm U that, when given types $\sigma_1, \ldots, \sigma_n$ outputs

- A most general unifier of $\sigma_1, \ldots, \sigma_n$, if $\sigma_1, \ldots, \sigma_n$ can be unified.
- "Fail" if $\sigma_1, \ldots, \sigma_n$ can't be unified.

•
$$U(\langle \alpha = \alpha, \dots, \sigma_n = \tau_n \rangle) := U(\langle \sigma_2 = \tau_2, \dots, \sigma_n = \tau_n \rangle).$$

- $U(\langle \alpha = \tau_1, \ldots, \sigma_n = \tau_n \rangle) :=$ "reject" if $\alpha \in \mathsf{FV}(\tau_1), \tau_1 \neq \alpha$.
- $U(\langle \sigma_1 = \alpha, \dots, \sigma_n = \tau_n \rangle) := U(\langle \alpha = \sigma_1, \dots, \sigma_n = \tau_n \rangle)$
- $U(\langle \alpha = \tau_1, \dots, \sigma_n = \tau_n \rangle) := [\alpha := V(\tau_1), V]$, if $\alpha \notin FV(\tau_1)$, where V abbreviates $U(\langle \sigma_2[\alpha := \tau_1] = \tau_2[\alpha := \tau_1], \dots, \sigma_n[\alpha := \tau_1] = \tau_n[\alpha := \tau_1] \rangle).$
- $U(\langle \mu \to \nu = \rho \to \xi, \dots, \sigma_n = \tau_n \rangle) := U(\langle \mu = \rho, \nu = \xi, \dots, \sigma_n = \tau_n \rangle)$

Principal type: Definition

Definition σ is a principal type for the closed untyped λ -term M if

- $M: \sigma$ in STT à la Curry
- for all types τ, if M : τ, then τ = S(σ) for some substitution S.
 A principal type is unique up to renaming of type variables.
 Both α → α and β → β are principal type of λx.x.

Principal Types Theorem

Theorem There is an algorithm PT that, when given a closed untyped λ -term M, outputs

A principal type σ of M if M is typable in STT à la Curry, "Fail" if M is not typable in STT à la Curry.

This can be extended to open untyped λ -terms: There is an algorithm PP that, when given an untyped λ -term M, outputs

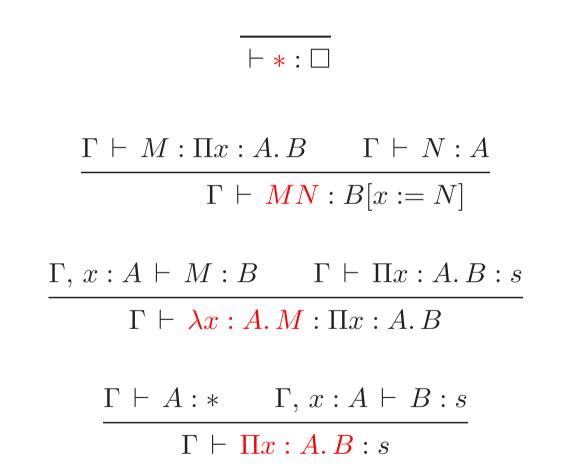
```
A principal pair (\Gamma, \sigma) of M if M is typable in STT à la Curry,
"Fail" if M is not typable in STT à la Curry.
```

Definition (Γ, σ) is a principal pair for M if $\Gamma \vdash M : \sigma$ and for every typing $\Delta \vdash M : \tau$ there is a substitution S such that $\tau = S(\sigma)$ and $\Delta = S(\Gamma)$.

Typical problems one would like to have an algorithm for

$M:\sigma?$	Type Checking Problem	ТСР		
M:?	Type Synthesis Problem	TSP		
$?:\sigma$	Type Inhabitation Problem (by a closed term)	TIP		
For $\lambda \rightarrow$, all these problems are decidable, both for the Curry style and for the Church style presentation.				

- TCP and TSP are (usually) equivalent: To solve $MN : \sigma$, one has to solve N :? (and if this gives answer τ , solve $M : \tau \rightarrow \sigma$).
- For Curry systems, TCP and TSP soon become undecidable beyond $\lambda \rightarrow$.
- TIP is undecidable for most extensions of λ→, as it corresponds to provability in some logic.



 $\frac{\Gamma \vdash A : B \qquad \Gamma \vdash C : s}{\Gamma, \mathbf{x} : \mathbf{C} \vdash A : B}$

 $\frac{\Gamma \vdash A : s}{\Gamma, \ x : A \vdash \mathbf{x} : A}$

$$\frac{\Gamma \vdash A : B \qquad \Gamma \vdash B' : s}{\Gamma \vdash A : B'} \qquad \text{with } B =_{\beta} B'$$

Properties of λP

- Uniqueness of types If $\Gamma \vdash M : \sigma$ and $\Gamma \vdash M : \tau$, then $\sigma =_{\beta} \tau$.
- Subject Reduction If $\Gamma \vdash M : \sigma$ and $M \longrightarrow_{\beta} N$, then $\Gamma \vdash N : \sigma$.
- Strong Normalization

If $\Gamma \vdash M : \sigma$, then all β -reductions from M terminate.

Proof of SN is by defining a reduction preserving map from λP to $\lambda \rightarrow$.

Decidability Questions

$\Gamma \vdash M : \sigma?$	ТСР
$\Gamma \vdash M : ?$	TSP
$\Gamma \vdash ?: \sigma$	TIP

For λP :

- TIP is undecidable (Equivalent to provability in minimal predicate logic.)
- TCP/TSP: simultaneously with Context checking

Type Checking algorithm for λP

Define algorithms Ok(-) and $Type_{-}(-)$ simultaneously:

- Ok(-) takes a context and returns 'true' or 'false'
- $Type_{-}(-)$ takes a context and a term and returns a term or 'false'.

Definition. The type synthesis algorithm $Type_{-}(-)$ is sound if

$$\operatorname{Type}_{\Gamma}(M) = A \Rightarrow \Gamma \vdash M : A$$

for all Γ and M.

Definition. The type synthesis algorithm Type_(-) is complete if $\Gamma \vdash M : A \Rightarrow \text{Type}_{\Gamma}(M) =_{\beta} A$

for all Γ , M and A.

$$Ok(<>) = 'true'$$

 $Ok(\Gamma, x:A) = Type_{\Gamma}(A) \in \{*, kind\},\$

 $Type_{\Gamma}(x) = if Ok(\Gamma) and x: A \in \Gamma then A else 'false',$

 $\operatorname{Type}_{\Gamma}(\mathbf{type}) = \operatorname{if } Ok(\Gamma) \operatorname{then kind else 'false'},$

$$\begin{split} \operatorname{Type}_{\Gamma}(MN) &= & \operatorname{if} \operatorname{Type}_{\Gamma}(M) = C \text{ and } \operatorname{Type}_{\Gamma}(N) = D \\ & \operatorname{then} & \operatorname{if} C \twoheadrightarrow_{\beta} \Pi x : A.B \text{ and } A =_{\beta} D \\ & \operatorname{then} B[x := N] \text{ else 'false'} \\ & \operatorname{else} & \text{'false'}, \end{split}$$

$$\begin{split} \operatorname{Type}_{\Gamma}(\lambda x : A.M) &= & \operatorname{if} \operatorname{Type}_{\Gamma, x : A}(M) = B \\ & \operatorname{then} & \operatorname{if} \operatorname{Type}_{\Gamma}(\Pi x : A.B) \in \{\operatorname{type}, \operatorname{kind}\} \\ & \operatorname{then} \Pi x : A.B \text{ else 'false'} \\ & \operatorname{else 'false'}, \\ \operatorname{Type}_{\Gamma}(\Pi x : A.B) &= & \operatorname{if} \operatorname{Type}_{\Gamma}(A) = \operatorname{type} \text{ and } \operatorname{Type}_{\Gamma, x : A}(B) = s \\ & \operatorname{then} s \text{ else 'false'} \end{split}$$

Soundness and Completeness

Soundness

$$\operatorname{Type}_{\Gamma}(M) = A \Rightarrow \Gamma \vdash M : A$$

Completeness

$$\Gamma \vdash M : A \Rightarrow \operatorname{Type}_{\Gamma}(M) =_{\beta} A$$

As a consequence:

 $\operatorname{Type}_{\Gamma}(M) = \text{`false'} \Rightarrow M \text{ is not typable in } \Gamma$

NB 1. Completeness only makes sense if types are uniqueness upto $=_{\beta}$ (Otherwise: let Type_(-) generate a set of possible types) NB 2. Completeness only implies that Type terminates on all well-typed terms. We want that Type terminates on all pseudo terms.

Termination

We want Type_(-) to terminate on all inputs. Interesting cases: λ -abstraction and application:

$$\begin{split} \mathrm{Type}_{\Gamma}(\lambda x : A.M) &= & \text{if } \mathrm{Type}_{\Gamma, x : A}(M) = B \\ & \text{then} & \text{if } \mathrm{Type}_{\Gamma}(\Pi x : A.B) \in \{ \mathbf{type}, \mathbf{kind} \} \\ & \text{then } \Pi x : A.B \text{ else 'false'} \\ & \text{else 'false'}, \end{split}$$

! Recursive call is not on a smaller term!

Replace the side condition

if $\operatorname{Type}_{\Gamma}(\Pi x: A.B) \in \{ \mathbf{type}, \mathbf{kind} \}$

by

if $\operatorname{Type}_{\Gamma}(A) \in \{\mathbf{type}\}$

Termination

We want Type_(-) to terminate on all inputs. Interesting cases: λ -abstraction and application:

$$\begin{split} \operatorname{Type}_{\Gamma}(MN) &= & \operatorname{if} \operatorname{Type}_{\Gamma}(M) = C \text{ and } \operatorname{Type}_{\Gamma}(N) = D \\ & \operatorname{then} & \operatorname{if} C \twoheadrightarrow_{\beta} \Pi x : A.B \text{ and } A =_{\beta} D \\ & \operatorname{then} B[x := N] \text{ else 'false'} \\ & \operatorname{else} & \text{'false'}, \end{split}$$

! Need to decide β -reduction and β -equality!

For this case, termination follows from soundness of Type and the decidability of equality on well-typed terms (using SN and CR).