propositional logic

logical verification
week 1
20040908

Femke

Freek

Paulien
what

- 13 lectures
- practical work
- Coq proofs \& paper proofs
- 9 out of 12
- final test

stuff

- hand out
- course notes
- exercises
- web page
- hand out
- files for the exercises
- solutions for the exercises
- slides
- old tests
- lectures: S201

Coq lab: S345
http://www.cs.vu.nl/~tcs/al/
tcs@cs.vu.nl

- Freek:
tuesdays \& wednesdays: U333
freek@cs.ru.nl
topic
computer science
formal methods
proof assistants
type theory

examples of applications of formal methods

- Intel bug
- driverless train
- spacecraft
- credit cards

proof assistants

- PVS
- Coq/NuPRL
- ACL2
- HOL/Isabelle
- Mizar
what we will do here

Curry-Howard-de Bruijn
isomorphism
logic
natural deduction
\longleftrightarrow
lambda calculus
'type theory'
on paper
in Coq

logics

- the systems in this course

propositional logic	\longleftrightarrow
calculus called $\lambda \rightarrow$	
predicate logic	\longleftrightarrow
calculus called λP	
2nd order propositional logic	\longleftrightarrow
calculus called $\lambda 2$	

and also

- inductive types
- built-in
- higher order encoding
- program extraction

today

first order propositional logic
first order predicate logic
second order propositional logic

formulas

$$
\begin{aligned}
& A \rightarrow B \\
& \quad \perp \\
& \quad \top \\
& \quad \neg A \quad:=\quad A \rightarrow \perp \\
& A \wedge B \\
& A \vee B
\end{aligned}
$$

logical rules

two kinds of rules

- introduction rules
- elimination rules
rules for \rightarrow
introduction rule

$$
\begin{array}{cc}
{\left[A^{x}\right]} & \text { assumption } \\
\vdots \\
\frac{B}{A \rightarrow B} \\
& \\
\hline x] \rightarrow &
\end{array}
$$

elimination rule

$$
\frac{A \rightarrow B \quad A}{B} E \rightarrow
$$

example

$$
A \rightarrow A
$$

bigger example

$$
((A \rightarrow B) \rightarrow(C \rightarrow D)) \rightarrow C \rightarrow B \rightarrow D
$$

second hour

rules for the other connectives

\perp elimination
T introduction
\neg introduction
\neg elimination
excluded middle
$A \vee \neg A$
\wedge introduction
\wedge elimination, left rule
\wedge elimination, right rule
\checkmark introduction, left rule
\checkmark introduction, right rule
\checkmark elimination
the rules for V
\checkmark introduction

$$
\frac{A}{A \vee B} I l \vee \quad \frac{B}{A \vee B} I r \vee
$$

\checkmark elimination

$$
\frac{A \vee B \quad A \rightarrow C \quad B \rightarrow C}{C} E \vee
$$

example with \vee

$$
(A \vee B) \rightarrow(B \vee A)
$$

Coq

- goals

Coq tells you what is left to be proved

- tactics
you tell Coq how to prove it

Coq term syntax
A $->B$
False
True
~A
A /
A \backslash / B
the Coq language
commands

- Parameter
- Lemma
- Qed

tactics

- intro
- apply
- elim
- exact
- split
- left right

$$
I[x] \rightarrow
$$

$$
E \rightarrow
$$

$E \perp E l \wedge E r \wedge E \vee$
assumption
$I \wedge$
$I l \vee I r \vee$
interfaces

- coqtop + coqc
'command line'
- xemacs + Proof General
- coqide
- pcoq

example

$$
\text { A } \rightarrow \text { A }
$$

- with coqtop
- with Proof General
the second example

$$
((A->B)->(C->D)) \rightarrow C H B \rightarrow D
$$

and the third example

$$
(A \backslash / B)->(B \backslash / A)
$$

summary

- formal methods
- type theory
the Curry-Howard-de Bruijn isomorphism
- propositional logic
- Coq

