predicate logic

logical verification

week 6
20041013
advertisement
workshop in Nijmegen

Types for Mathematics / Libraries of Formal Mathematics

November 1-2, 2004
invited speakers
Bruno Buchberger (of the Theorema system)
Bob Constable (of the NuPRL system)

```
http://www.cs.ru.nl/fnds/typesworkshop/
    typesworkshop@cs.ru.nl
```


overview

from propositional to predicate logic

first order propositional logic \longleftrightarrow simply typed lambda calculus type theory called $\lambda \rightarrow$
first order predicate logic \longleftrightarrow type theory called λP
second order propositional logic \longleftrightarrow type theory called $\lambda 2$
inductive types
program extraction

applications of logic

- propositional logic
logical circuits
correctness of train track switching
- predicate logic
software correctness 'Hoare logic'
correctness of driverless metro in Paris

predicate logic

'a logic'

- syntax of
- terms
- formulas
- judgments
- derivation rules

terms

- x
- $f\left(M_{1}, \ldots, M_{n}\right)$
symbols f taken from a fixed finite set of function symbols

formulas

- $P\left(M_{1}, \ldots, M_{n}\right)$
- T
- \perp
- $\neg A$
- $A \rightarrow B$
- $A \wedge B$
- $A \vee B$
- $\forall x . A$
- $\exists x . A$
symbols P taken from a fixed finite set of predicate symbols

random example

$$
(\forall x \cdot \exists y \cdot P(f(c, y)) \wedge Q(g(g(x)), y)) \rightarrow(\exists z \cdot \forall w \cdot \neg R(z, w))
$$

here the signature is
function symbols $\quad\{f, c, g, \ldots\}$
predicate symbols $\{P, Q, R, \ldots\}$
each symbol has an arity
the rules of predicate logic
introduction rules
$I \top$

rules for \top and \perp
\top introduction

$$
\bar{\top} I \top
$$

\perp elimination

$$
\frac{\perp}{A} E \perp
$$

rules for \neg
\neg introduction

$$
\begin{gathered}
{\left[A^{x}\right]} \\
\vdots \\
\frac{\perp}{\neg A} I[x] \neg
\end{gathered}
$$

\neg elimination

rules for \rightarrow
\rightarrow introduction

$$
\begin{gathered}
{\left[A^{x}\right]} \\
\vdots \\
\frac{B}{A \rightarrow B} I[x] \rightarrow
\end{gathered}
$$

\rightarrow elimination

rules for \wedge
\wedge introduction

$$
\frac{A \quad B}{A \wedge B} I \wedge
$$

\wedge elimination

$$
\frac{A \wedge B}{A} E l \wedge \quad \frac{A \wedge B}{B} E r \wedge
$$

rules for \vee
\checkmark introduction

$$
\frac{A}{A \vee B} I l \vee \quad \frac{B}{A \vee B} I l \vee
$$

\checkmark elimination

$A \vee B \quad A \rightarrow C$	$B \rightarrow C$
C	

rules for \forall
\forall introduction

$$
\frac{A}{\forall x \cdot A} I \forall
$$

variable condition: x not a free variable in any open assumption
\forall elimination

$$
\frac{\forall x \cdot A}{A[x:=M]} E \forall
$$

rules for \exists
\exists introduction

$$
\frac{A[x:=M]}{\exists x . A} I \exists
$$

\exists elimination

$$
\frac{\exists x . A \quad \forall x .(A \rightarrow B)}{B} E \exists
$$

variable condition: x not a free variable in B
alternative versions of $E \vee$ and $E \exists$
\checkmark elimination

\exists elimination

variable condition: x not a free variable in B or any open assumption
minimal versus intuitionistic versus classical

- minimal predicate logic
just the connectives \rightarrow and \forall
- intuitionistic predicate logic
the system just presented
- classical predicate logic
add any of

$$
\begin{aligned}
& A \vee \neg A \\
& \neg \neg A \rightarrow A \\
& ((A \rightarrow B) \rightarrow A) \rightarrow A \quad \text { (Peirce's law) }
\end{aligned}
$$

empty domains

$$
\begin{gathered}
\frac{\bar{\top}}{\exists x . \top} I \exists \\
\exists x . \top \\
\text { means } \\
\text { 'there exists an object } x^{\prime}
\end{gathered}
$$

the $I \exists$ rule is not valid when the domain is empty!

cOq

terms

- X
- f M1 M2 ... Mn
curried function application: not a first order system!
formulas
- P M1 M2 ... Mn
- True
- False
- ~A
- A -> B
- A \triangle B
- A \/ B
- forall x:D, A
- exists x:D, A
tactics

$$
\begin{aligned}
& & I[x] \rightarrow & I \forall \\
& E \rightarrow & E \forall & \text { intro } \\
& E \perp \wedge & E r \wedge & E \vee \\
& & E \exists & \text { elim } \\
& & I \wedge & \text { split } \\
& & I l \vee & \text { left } \\
& & I r \vee & \text { right } \\
& & I \exists & \text { exists } \\
& & I \top & \text { exact } I
\end{aligned}
$$

examples

example 1

$$
(\forall x . P(x) \rightarrow Q(x)) \rightarrow(\forall x . P(x)) \rightarrow \forall y \cdot Q(y)
$$

example 2

$$
\forall x .(P(x) \rightarrow \neg(\forall y . \neg P(y)))
$$

example 3

$$
(\exists x \cdot P(x) \vee Q(x)) \rightarrow(\exists x \cdot P(x)) \vee(\exists x \cdot Q(x))
$$

variable conditions

\forall introduction

$$
\frac{A}{\forall x \cdot A} I \forall
$$

variable condition: x not a free variable in any open assumption
\exists elimination

$$
\frac{\exists x . A \quad \forall x \cdot(A \rightarrow B)}{B} E \exists
$$

variable condition: x not a free variable in B
example 4: violates the variable condition of $I \forall$

$$
\forall x .(P(x) \rightarrow \forall x . P(x))
$$

example 5: violates the variable condition of $E \exists$

$$
\forall x .((\exists x . P(x)) \rightarrow P(x))
$$

detour elimination

detours

often called 'cuts'
introduction rule of a connective directly followed by the
elimination rule of the same connective

detour elimination for \rightarrow

'proof of B using a lemma A '

detour elimination for \wedge

$\begin{array}{ccc}\frac{A \quad B}{A \wedge B} I \wedge \\ A & & \square \wedge\end{array} \quad \rightarrow \quad A$

detour elimination for \forall

$$
\begin{array}{lcc}
\frac{A}{\forall x \cdot A} I \forall \\
A[x:=M] \\
& & \vdots * \\
& & A[x:=M] \\
& \text { * replace } x \text { everywhere by } M
\end{array}
$$

'proof of $A[x:=M]$ from the generalization A '

decidability

a theorem by Gödel

- propositional logic
provability is decidable
- predicate logic
provability is undecidable
first order provers
- programs that search for proofs in predicate logic

Otter
Bliksem
Vampire
E-SETHEO

- tactics that search for proofs in predicate logic coq: jprover

the CASC competition

$$
\begin{aligned}
\text { CASC } & =\text { CADE ATP System Competition } \\
\text { CADE } & =\text { Conference on Automated Deduction } \\
\text { ATP } & =\text { Automated Theorem Proving }
\end{aligned}
$$

yearly competition of first order provers
this year the winner was: Vampire (solved 180 out of 200 problems)

