second order propositional logic

logical verification

week 11 2004 11 24

the course

```
1st order propositional logic\leftrightarrowsimple type theory\lambda \rightarrow\lambda \rightarrow1st order predicate logic\leftrightarrowtype theory with dependent types\lambda P\lambda P2nd order propositional logic\leftrightarrowpolymorphic type theory\lambda 2
```

2nd order propositional logic

propositional logic

 $a \ b \ c \ \dots$ $A \rightarrow B$ \bot \top $\neg A$ $A \land B$ $A \lor B$ $A \lor B$

predicate logic

	$x \ y \ z$	
$a(\ldots) \ b(\ldots) \ c(\ldots) \ \ldots$	$f(\ldots) \ g(\ldots) \ h(\ldots) \ \ldots$	
$A \to B$		
\perp		
Т		
$\neg A$		
$A \wedge B$		
$A \lor B$		
$\forall x . A$		
$\exists x . A$		

second order propositional logic

 $a b c \dots$ $A \rightarrow B$ \bot \top $\neg A$ $A \wedge B$ $A \lor B$ $\forall a . A$ $\exists a . A$

 $a \rightarrow a$

$$\forall a. a \rightarrow a$$

if it's tuesday, then it's tuesday

for every proposition, that proposition implies itself

the rules

introduction rules	elimination rules	
$I[x] \rightarrow$	$E \rightarrow$	
	$E \bot$	
I op		
$I[x] \neg$	$E\neg$	
$I \wedge$	$El \wedge Er \wedge$	
$Il \lor Ir \lor$	$E \lor$	
I orall	E orall	
$I \exists$	$E\exists$	

propositional logic: rules for implication

implication introduction

$$\begin{bmatrix} A^{x} \end{bmatrix}$$

$$\vdots$$

$$\frac{B}{A \to B} \quad I[x] \to$$

implication elimination

$$\begin{array}{ccc} \vdots & \vdots \\ A \to B & A \\ \hline B & \end{array} E \to \end{array}$$

-

.

propositional logic: rules for falsum and truth

falsum elimination

truth introduction

propositional logic: rules for conjunction

conjunction introduction

$$\begin{array}{ccc}
\vdots & \vdots \\
\underline{A & B} \\
\underline{A \wedge B} & I \wedge \end{array}$$

conjunction elimination

$$\begin{array}{c} \vdots \\ \hline A \wedge B \\ \hline A \end{array} El \wedge \qquad \begin{array}{c} A \wedge B \\ \hline B \end{array} Er \wedge \end{array}$$

propositional logic: rules for disjunction

disjunction introduction

$$\begin{array}{ccc} \vdots & & \vdots \\ \\ \frac{A}{A \lor B} & Il \lor & \frac{B}{A \lor B} & Il \lor \end{array}$$

disjunction elimination

$$\begin{array}{cccc} \vdots & \vdots & \vdots \\ \hline A \lor B & A \to C & B \to C \\ \hline C & & & \\ \end{array} E \lor$$

2nd order propositional logic: rules for universal quantification

universal quantification introduction

$$\frac{A}{\forall a.\,A} \ I \forall$$

•

variable condition: *a* not a free variable in any open assumption

.

universal quantification elimination

$$\frac{\forall a. A}{A[a := B]} \quad E \forall$$

2nd order propositional logic: rules for existential quantification

existential quantifier introduction

$$\frac{A[a := B]}{\exists a. A} I \exists$$

•

existential quantifier elimination

variable condition: a not a free variable in B

variable conditions

• for rule $I \forall$

check:

variable does not occur in any of the available assumptions

• for rule $E\exists$

check:

variable does not occur in the conclusion

example 1

 $(\forall b. b) \rightarrow a$

$$a \to \forall b. ((a \to b) \to b)$$

 $(\exists b. a) \to a$

$$\exists b.((a \rightarrow b) \lor (b \rightarrow a))$$

$$\forall a. \forall b. ((a \rightarrow b) \lor (b \rightarrow a))$$

this needs classical logic

 $\forall a. (a \lor \neg a)$

non-example 6

 $a \rightarrow \forall a. a$

non-example 7

 $(\exists a. a) \to a$

higher order logic

the 'order' of a variable

first order	object
second order	set of objects predicate on objects function from objects to objects
third order	set of second order objects predicate on predicates on objects function from second order objects to

etc.

example from 2nd order predicate logic

induction principle for natural numbers

$$\forall \mathbf{a}. (\mathbf{a}(0) \to (\forall m. \mathbf{a}(m) \to \mathbf{a}(S(m))) \to \forall n. \mathbf{a}(n))$$

- m 1st order variable
- *n* 1st order variable
- 0 1st order constant
- *a* 2nd order variable
- S 2nd order constant

only predicates without arguments

- quantify over predicates \rightarrow 2nd order predicate logic
- ... the same without terms \rightarrow 2nd order **propositional** logic

impredicative encoding of inductive types

the connectives in Coq

- \rightarrow hard-wired into the type theory
- \forall hard-wired into the type theory
- \perp inductive type
- \wedge inductive type
- ∨ inductive type
- \exists inductive type

inductive definition of False

Inductive False : Prop :=

•

False_ind : $\forall a. \perp \rightarrow a$

the constructors are the introduction rules the induction principle is the elimination rule inductive definition of and

Inductive and (a b : Prop) : Prop := conj : $a \to b \to a \wedge b$.

$$\texttt{and_ind} \ : \ \forall a \ b \ c. \ (a \to b \to c) \to (a \land b) \to c$$

the constructor is the introduction rule the induction principle gives the elimination rules alternative version of conjunction elimination

conjunction elimination: alternative version

$$\begin{array}{ccc}
\vdots & \vdots \\
\underline{A \land B} & A \rightarrow B \rightarrow C \\
\hline C & E \land
\end{array}$$

conjunction elimination: normal version

$$\begin{array}{ccc} \vdots & & \vdots \\ \hline A \wedge B & & \hline A \wedge B \\ \hline A & & B \end{array} E l \wedge & \begin{array}{c} A \wedge B \\ \hline B & & E r \wedge \end{array}$$

inductive definition of or

Inductive or $(a \ b : \text{Prop})$: Prop := or_introl : $a \rightarrow a \lor b$ | or_intror : $b \rightarrow a \lor b$.

$$\texttt{or_ind} \ : \ \forall a \ b \ c. \ (a \to c) \to (b \to c) \to (a \lor b) \to c$$

the constructors are the introduction rules the induction principle is the elimination rule

impredicative definition of False

$$\perp$$
 := $\forall a. a$

induction principle next to impredicative definition

$$\begin{array}{l} \forall a. \perp \to a \\ \forall a. \qquad a \end{array}$$

impredicative definition of and

$$a \wedge b := \forall c. (a \rightarrow b \rightarrow c) \rightarrow c$$

induction principle next to impredicative definition

$$\forall a \ b. \ \forall c. \ (a \land b) \to (a \to b \to c) \to c$$
$$\forall c. \qquad (a \to b \to c) \to c$$

impredicative definition of or

$$a \lor b := \forall c. (a \to c) \to (b \to c) \to c$$

induction principle next to impredicative definition

$$\forall a \ b. \ \forall c. \ (a \lor b) \to (a \to c) \to (b \to c) \to c$$
$$\forall c. \qquad (a \to c) \to (b \to c) \to c$$

impredicative definitions for other inductive types

impredicative definition of the booleans

 $\forall a. a \rightarrow a \rightarrow a$

impredicative definition of the natural numbers

 $\forall a. a \to (a \to a) \to a$

why have inductive types as primitive then?

- one can prove less equalities
- one gets weaker induction principles
- **some** people don't like impredicativity