second order propositional logic

logical verification
week 11
20041124

the course

1st order propositional logic \leftrightarrow simple type theory $\lambda \rightarrow$

1st order predicate logic \leftrightarrow type theory with dependent types λP

2nd order propositional logic \leftrightarrow polymorphic type theory
$\lambda 2$

2nd order propositional logic

propositional logic
$a b c \ldots$
$A \rightarrow B$
\perp
T
$\neg A$
$A \wedge B$
$A \vee B$

```
                                    x yz\ldots
a(\ldots)b(\ldots)c(\ldots) \ldots.... f(\ldots)g(\ldots)h(\ldots)\ldots
A->B
\perp
\top
\neg A
A\wedgeB
A\veeB
\forallx.A
\existsx.A
```

second order propositional logic
$a b c \ldots$
$A \rightarrow B$
\perp
\top
$\neg A$
$A \wedge B$
$A \vee B$
$\forall a . A$
$\exists a . A$

example

$$
\begin{gathered}
a \rightarrow a \\
\forall a \cdot a \rightarrow a
\end{gathered}
$$

if it's tuesday, then it's tuesday
for every proposition, that proposition implies itself
the rules
introduction rules elimination rules

$I[x] \rightarrow$	$E \rightarrow$
	$E \perp$
$I \top$	
$I[x]\urcorner$	$E\urcorner$
$I \wedge$	$E l \wedge E r \wedge$
$I l \vee I r \vee$	$E \vee$
$I \forall$	$E \forall$
$I \exists$	$E \exists$

propositional logic: rules for implication

implication introduction

$$
\begin{gathered}
{\left[A^{x}\right]} \\
\vdots \\
\frac{B}{A \rightarrow B} I[x] \rightarrow
\end{gathered}
$$

implication elimination

propositional logic: rules for falsum and truth
falsum elimination

$$
\frac{\perp}{A} E \perp
$$

truth introduction

$$
\bar{\top} I \top
$$

propositional logic: rules for conjunction

conjunction introduction

$$
\frac{A \quad B}{A \wedge B} I \wedge
$$

conjunction elimination

$$
\frac{A \wedge B}{A} E l \wedge \quad \frac{A \wedge B}{B} E r \wedge
$$

propositional logic: rules for disjunction

disjunction introduction

$$
\frac{A}{A \vee B} I l \vee \quad \frac{B}{A \vee B} I l \vee
$$

disjunction elimination

2nd order propositional logic: rules for universal quantification
universal quantification introduction

$$
\frac{A}{\forall a \cdot A} I \forall
$$

variable condition: a not a free variable in any open assumption

universal quantification elimination

$$
\frac{\forall a . A}{A[a:=B]} E \forall
$$

2nd order propositional logic: rules for existential quantification
existential quantifier introduction

$$
\frac{A[a:=B]}{\exists a . A} I \exists
$$

existential quantifier elimination

$$
\frac{\exists a . A \quad \forall a .(A \rightarrow B)}{B} E \exists
$$

variable condition: a not a free variable in B

variable conditions

- for rule $I \forall$

check:

variable does not occur in any of the available assumptions

- for rule $E \exists$
check:
variable does not occur in the conclusion

examples

example 1

$(\forall b . b) \rightarrow a$

example 2

$$
a \rightarrow \forall b .((a \rightarrow b) \rightarrow b)
$$

example 3

$(\exists b . a) \rightarrow a$
example 4
$\exists b .((a \rightarrow b) \vee(b \rightarrow a))$

example 5

$$
\forall a . \forall b .((a \rightarrow b) \vee(b \rightarrow a))
$$

this needs classical logic

$$
\forall a .(a \vee \neg a)
$$

$$
a \rightarrow \forall a . a
$$

$(\exists a . a) \rightarrow a$

higher order logic

the 'order' of a variable
first order object
second order set of objects
predicate on objects
function from objects to objects
third order set of second order objects
predicate on predicates on objects
function from second order objects to ...
etc.
example from 2nd order predicate logic
induction principle for natural numbers

$$
\forall a .(a(0) \rightarrow(\forall m \cdot a(m) \rightarrow a(S(m))) \rightarrow \forall n \cdot a(n))
$$

m 1st order variable
$n \quad 1$ st order variable
0 1st order constant
a 2nd order variable
S 2nd order constant
only predicates without arguments
quantify over predicates $\quad \rightarrow$ 2nd order predicate logic
\ldots the same without terms \rightarrow 2nd order propositional logic
impredicative encoding of inductive types
the connectives in Coq
\rightarrow hard-wired into the type theory
$\forall \quad$ hard-wired into the type theory
\perp inductive type
\wedge inductive type
\checkmark inductive type
$\exists \quad$ inductive type

inductive definition of False

Inductive False : Prop :=

$$
\text { False_ind : } \forall a . \perp \rightarrow a
$$

the constructors are the introduction rules the induction principle is the elimination rule

inductive definition of and

Inductive and ($a b$: Prop) : Prop := conj : $a \rightarrow b \rightarrow a \wedge b$.

$$
\text { and_ind : } \forall a b c \cdot(a \rightarrow b \rightarrow c) \rightarrow(a \wedge b) \rightarrow c
$$

the constructor is the introduction rule the induction principle gives the elimination rules

alternative version of conjunction elimination

conjunction elimination: alternative version

$$
\frac{A \wedge B \quad A \rightarrow B \rightarrow C}{C} E \wedge
$$

conjunction elimination: normal version

$$
\frac{A \wedge B}{A} E l \wedge \quad \frac{A \wedge B}{B} \operatorname{Er} \wedge
$$

inductive definition of or

Inductive or ($a b$: Prop) : Prop :=
or_introl : $a \rightarrow a \vee b$
| or_intror : $b \rightarrow a \vee b$.

$$
\text { or_ind : } \forall a b c .(a \rightarrow c) \rightarrow(b \rightarrow c) \rightarrow(a \vee b) \rightarrow c
$$

the constructors are the introduction rules the induction principle is the elimination rule

impredicative definition of False

$$
\perp \quad:=\quad \forall a . a
$$

induction principle next to impredicative definition

$$
\begin{aligned}
& \forall a . \perp \rightarrow a \\
& \forall a . \quad a
\end{aligned}
$$

impredicative definition of and

$$
a \wedge b:=\quad \forall c \cdot(a \rightarrow b \rightarrow c) \rightarrow c
$$

induction principle next to impredicative definition

$$
\begin{array}{cl}
\forall a b . & \forall c .(a \wedge b) \rightarrow \\
\forall c . & (a \rightarrow b \rightarrow c) \rightarrow c \\
\forall c . & (a \rightarrow b \rightarrow c) \rightarrow c
\end{array}
$$

impredicative definition of or

$$
a \vee b:=\quad \forall c .(a \rightarrow c) \rightarrow(b \rightarrow c) \rightarrow c
$$

induction principle next to impredicative definition

$$
\begin{array}{lr}
\forall a b . \forall c .(a \vee b) \rightarrow(a \rightarrow c) \rightarrow(b \rightarrow c) \rightarrow c \\
\forall c . & (a \rightarrow c) \rightarrow(b \rightarrow c) \rightarrow c
\end{array}
$$

impredicative definitions for other inductive types
impredicative definition of the booleans

$$
\forall a . a \rightarrow a \rightarrow a
$$

impredicative definition of the natural numbers

$$
\forall a . a \rightarrow(a \rightarrow a) \rightarrow a
$$

why have inductive types as primitive then?

- one can prove less equalities
- one gets weaker induction principles
- some people don't like impredicativity

