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Abstract. We introduce Fortuna, the first tool for model checking
priced probabilistic timed automata (PPTAs). Fortuna can handle the
combination of real-time, probabilistic and cost features, which is re-
quired for addressing key design trade-offs that arise in many practi-
cal applications. For example the Zeroconf, Bluetooth, IEEE802.11 and
Firewire protocols, protocols for sensor networks, and scheduling prob-
lems with failures. PPTAs are an extension of probabilistic timed au-
tomata (PTAs) with cost-rates and discrete cost increments on states.
Fortuna is able to compute the maximal probability by which a state
can be reached under a certain cost-bound (and time-bound). Although
this problem is undecidable in general, there exists a semi-algorithm
that produces a non-decreasing sequence of probabilities converging to
the maximum. This paper presents a number of crucial optimizations
of that algorithm. Since PPTAs are PTAs with trivial cost parameters,
we were able to compare the performance of Fortuna with existing ap-
proaches for PTAs. Surprisingly, although PPTAs are more general, our
techniques exhibit superior performance.

1 Introduction

Model checking technology has initially been developed for finite state mod-
els. Both hardware and communication protocols may be modelled naturally in
terms of finite state models, and in these areas model checking has been very
successful [13]. In practice, however, finite state models are often not sufficiently
rich. A characteristic of embedded and cyber-physical systems, is that they have
to meet a multitude of quantitative constraints. These constraints involve the
resources that a system may use (computation resources, power consumption,
memory usage, communication bandwidth, costs, etc.), assumptions about the
environment in which it operates (arrival rates, hybrid behaviour), and require-
ments on the services that the system has to provide (timing constraints, QoS,
availability, fault tolerance, etc.). In order to handle quantitative constraints,
model checking technology has been extended with features for specifying real-
time, probabilistic behaviour, and costs. Efficient tools have been developed such
as Uppaal [3], Uppaal Cora [5] and PRISM [14], that have been successfully ap-
plied to challenging problems in different areas [3, 5, 14]. Nevertheless, until now
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no model checking tool was able to handle the combination of real-time, prob-
abilistic and cost features. For many practical applications, however, the key
design trade-offs can only be addressed by models that incorporate all these
features. We give three examples:

– Operation of the Zeroconf protocol [8] depends in an essential way on both
timing and probabilities. In order to determine the optimal value for some
parameters (like the number of retransmissions) one needs a cost function
that combines timing delays and cost of failure [10, 8]. Many other protocols
also require formal methods that combine probabilities, costs and timing.

– Timing plays an essential role in communication protocols for sensor net-
works. In a network with battery-powered devices, the limited energy budget
can be modelled using costs. Probabilities are needed to model node failure
and message loss.

– In scheduling problems it may be useful to consider the probability that a
resource (e.g., a production machine) breaks down or produces imperfect
output.

This paper presents Fortuna, the first model checking tool that is able to deal
with the combination of probabilities, costs and timing. Fortuna is based on the
model of priced probabilistic timed automata (PPTAs) introduced in [9, 17]. PP-
TAs equip timed automata with prices and probabilities on discrete transitions.
Cost-rates indicate the increase of cost per time unit, whereas prices on discrete
transitions indicate instantaneous costs. PPTAs are the orthogonal extension of
both probabilistic timed automata (PTAs) [15] and priced timed automata [4,
1], as PTAs extend timed automata with probabilities on discrete transitions
and priced timed automata extend timed automata with prices. Fortuna is
able to compute the fundamental problem of cost-bounded maximal probabilis-
tic reachability (CBMR) for PPTA. CBMR determines the maximal probability
by which a state can be reached under a certain cost-bound (and time-bound.)
Sections 6 gives two examples that show the usefulness of CBMR in practice.

As PTAs are PPTAs with trivial cost parameters, we were able to compare
the performance of Fortuna with existing approaches for PTAs that compute
maximal probabilistic reachability. The comparison is made on a number of
existing PTA case studies to the best approaches available: the game-based ver-
ification of [16], and the backwards reachability approach of [18]. Surprisingly,
although Fortuna is more general, it shows the best performance.

Fortuna adds a number of crucial optimizations to the algorithm described
in [9]. The algorithm of [9] performs symbolic backwards exploration, in the
spirit of the backwards reachability approach of [18]. Like that work, Fortuna

only adds intersections of symbolic states to the state space, thereby reducing
the number of stored states. To compute the probability, the explored symbolic
state graph is transformed into a Markov decision process that is analysed with
existing techniques. For PPTA Fortuna may not terminate, since the problem
is known to be undecidable in general [7]. But, for increasing exploration depth,
the produced sequence of probabilities is non-decreasing and converges to the
maximum probability [9].
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The optimizations described in this article increase performance drastically.
Three optimizations make modifications to the symbolic state graph that is ex-
plored, by generating abstractions that preserve probabilistic reachability. The
proofs are done in a rigorous way by the use of (probabilistic) simulation rela-
tions. The last optimization employs Hasse diagram data structures to speed up
comparisons between symbolic states.

Other approaches for maximal probabilistic reachability on PTA use quite
different techniques. Game-based verification [16] uses an abstraction–refinement
scheme to iteratively generate tighter lower and upper bounds on the solution.
We present a detailed comparison of Fortuna with the results from [16]. We
do not compare with the digital clocks approach of [17] since the same authors
have shown game-based verification to be much faster [16].

Organization of the paper Section 2 are the preliminaries, introducing definitions
and lemmas from: probability theory, Markov decision processes, and automata
theory. Section 3 introduces the model of PPTAs and cost-bounded maximal
probabilistic reachability. In Section 4, the algorithm to compute cost-bounded
maximal probabilistic reachability on PPTAs is discussed, its correctness the-
orem, and several optimizations and their correctness theorems. Section 5 dis-
cusses some implementation issues of Fortuna. Section 6 compares Fortuna

with existing approaches on case studies, and shows the usefulness of our opti-
mizations. In addition verification of an example PPTA model is shown. Finally,
Section 7 concludes this work.

The Fortuna tool and case studies discussed in this paper are available
from http://www.cs.ru.nl/J.Berendsen/fortuna/.

2 Preliminaries

In this section, we provide a summary of basic mathematical notions neces-
sary for our development. In particular, we review the definitions of probabil-
ity spaces, Markov decision processes, and probabilistic reachability.For a more
leisurely introduction we refer to []. Our reader is encouraged to skip (portions
of) this section as he sees fit.

2.1 Probability Spaces

Let V be a set. A subset F of 2V is said to be a σ-field over V if F satisfies the
following properties:

– V ∈ F
– if W ∈ F then V \W is also in F (closed under complement)
– if W1, W2, . . . ∈ F then W1 ∪ W2 ∪ . . . is also in F (closed under countable

union)

The pair (V,F) is called a measurable space.
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A measure over (V,F) is a function µ : F → R≥0 such that µ(∅) = 0,
and for each countable set Γ of pairwise disjoint elements of F , we have that
µ

(
⋃

G∈Γ G
)

=
∑

G∈Γ µ(G). If µ(V ) ≤ 1, then µ is a sub-probability measure. In
case F = 2V a special situation arises: for each set W ∈ F we have that µ(W ) =
∑

w∈W µ(w), where µ(w) = µ({w}). In this case µ is called a distribution. The
set of distributions over V is denoted Dist(V ). The support of a distribution µ

is defined as supp(µ)
def
= {v ∈ V | µ(v) > 0}.

2.2 Markov Decision Processes

Markov decision processes (MDPs) are widely used to formally model and anal-
yse systems that exhibit both nondeterministic and probabilistic behaviour.

Definition 1 (MDP). Let Act be a fixed set of actions. An MDP is a tuple
M = (S, sinit, T ), where S is a set of states, sinit ∈ S is the initial state, and
T ⊆ S ×Act×Dist(S) is a probabilistic transition relation. We require that T is
total in the sense that, for each state s, there exists an action a and a distribution
µ such that (s, a, µ) ∈ T .

The restriction of having at least one distribution for each state is imposed to
ensure that policies (defined below) always exist.

Intuitively speaking, an MDP describes the following behaviour. Whenever
the system is in some state, s ∈ S say, an action a ∈ Act and a distribution µ
with (s, a, µ) ∈ T are selected nondeterministically. Subsequently, the next state
is selected probabilistically according to µ, i.e. the next state r is selected with
probability µ(r). Thus, a transition involves resolving both a nondeterministic
and a probabilistic choice.

Note that our definition of MDPs allows sub-distributions for the transition
relation. For (s, a, µ) ∈ T , the remaining probability 1 −

∑

r µ(r) may be inter-
preted as a deadlock probability. Note that any MDP can easily be transformed
into an MDP that uses only complete distributions by adding a trapping state
strap that is equipped with a self-loop with probability 1, such that the ‘missing’
probabilities of all sub-distributions lead to strap . For the rest of the paper we
implicitly apply this transformation when needed.

A probabilistic transition s
a,µ
−−→ is made by nondeterministically selecting an

action a and a distribution µ ∈ Dist(S) such that (s, a, µ) ∈ T . A transition

s
a,µ
−−→ r is made by the probabilistic transition s

a,µ
−−→ followed by choosing next

state r ∈ S with probability µ(r) > 0. In case µ is a Dirac distribution we also

write s
a
−→ r.

An infinite path starting in state s0 is an infinite sequence of transitions:

ω = s0
a0,µ0
−−−→ s1

a1,µ1
−−−→ s2

a2,µ2
−−−→ · · · such that (si, ai, µi) ∈ T for all i. Let ωi

denote the ith state in the path ω, i.e. ωi = si.
A finite path is a finite prefix of an infinite path. We denote the last state in

a finite path ω by last(ω). The length of a path is the number of transitions that
it contains. A path of length 0 consists only of the starting state.
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We assume a special action label τ ∈ Act that denotes internal transitions.

We assume internal transitions to be non-probabilistic, i.e. s
τ,µ
−−→ implies µ =

{r 7→1}, for some r. When we have a finite path of τ -transitions s0
τ
−→ · · ·

τ
−→ sn

we write s0 ⇒ sn.

Automata (also called labelled transition systems) can be seen as a spe-
cialization of MDPs, where the probabilistic transition relation uses only Dirac
distributions. Alternatively we may redefine the transition relation to go to a
single next state instead of a distribution, as is done in the following definition.

Definition 2 (Automaton). An automaton is a tuple (S, sinit, D), where S is
a set of states, sinit ∈ S is the initial state, and D ⊆ S × Act × S.

Let Paths∞M and Paths∗M denote the infinite and finite paths, respectively, of
MDP M . In order to associate a probability space to an MDP, we first need to
resolve all nondeterministic choices. To this end, we consider policies (also called
strategies, schedulers, or adversaries.) A (deterministic) policy is a function that
maps every finite path ω in an MDP to an action a ∈ Act and a distribution
µ ∈ Dist(S) such that (last(ω), a, µ) ∈ T . We use Pol(M) to denote the set of all
deterministic policies of an MDP M . A policy resolves all nondeterminism, and
therefore an MDP together with a policy yields a discrete-time Markov chain.

In the literature also a more general notion of policy has been proposed, which
maps every finite path to a distribution of probabilistic transitions. From [20] we
know that deterministic policies are sufficient to obtain maximal probabilistic
reachability (defined below) when a bounded number of transitions may be used
to reach the goal. In case the number of states and probabilistic transitions in
the MDP is finite, this also holds when an unbounded number of transitions may
be used to reach the goal.

For a given state s, we now define probability measure ProbA(s) on Paths∞M .
Let F be the smallest σ-field over Paths∞M such that every cone of some finite path
ω ∈ Paths∗M is in F . A cone of a finite path is the set all infinite continuations
of the path. Formally, the cone C(ω) of ω ∈ Paths∗M is defined as {ω′ ∈ Paths∞M |
ω < ω′}, where < is the standard prefix order on sequences. The function QA

assigns probabilities to finite paths according to decisions made by policy A and
a given starting state s. Formally, for any r, s ∈ S and ω ∈ Paths∗M , we define
QA inductively as follows:

QA(s, r)
def
=

{

1 if s = r

0 otherwise

QA(s, ω
a,µ
−−→ r))

def
=

{

QA(s, ω) · µ(r) if A(ω) = (a, µ)

0 otherwise

The probability assigned to a cone C(ω) equals the probability assigned by QA to

the finite path ω: ProbA(s)(C(ω))
def
= QA(s, ω). By standard measure theoretical

arguments, ProbA(s) is a measure over (Paths∞M ,F).
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2.3 Probabilistic Reachability

The reach probability is the likelihood to reach a certain set of goal states in a
finite number of transitions under some policy. For a starting state s ∈ S, a set
of goal states G ⊆ S, and policy A, it is formally defined as

ProbReachA(s, G)
def
= ProbA(s)({ω ∈ Paths∞M | ∃i ∈ N . ωi ∈ G})

The set {ω ∈ Paths∞M | ∃i ∈ N . ωi ∈ G} is measurable by ProbA(s), because it
may be written as the countable union

⋃

{C(ω) | ω ∈ Paths∗M ∧ last(ω) ∈ G}.
The reach probability using not more than n transitions is defined as

ProbReach
≤n
A (s, G)

def
= ProbA(s)({ω ∈ Paths∞M | ∃i ∈ [0, n] . ωi ∈ G})

Like above {ω ∈ Paths∞M | ∃i ∈ [0, n] . ωi ∈ G} is measurable by ProbA(s). When

s = sinit we write ProbReachA(G) and ProbReach
≤n
A (G), respectively.

Lemma 1 (Convergence). Let M = (S, sinit, T ) be an MDP, A ∈ Pol(M),

s ∈ S, and G ⊆ S. Then 〈ProbReach
≤n
A (s, G)〉n∈N is a non-decreasing sequence

in [0, 1] converging to ProbReachA(s, G).

Proof. By Lemma 34 of [18]. ⊓⊔

The following definition shows how for any policy A and finite path ω, we
can construct a policy A[ω] that acts like A when path ω has already occurred.

Definition 3. For a policy A and finite path ω, let A[ω] be the policy such that
for any finite path ω′:

A[ω](ω′)
def
=

{

A(ω
a,µ
−−→ ω′′) if ω′ is of the form last(ω)

a,µ
−−→ ω′′

A(ω′) otherwise

We have the following known lemma.

Lemma 2. Given state s, policy A such that A(s) = (a, µ), and set of paths
Ω ∈ Paths∞M measurable by ProbA(s), then:

ProbA(s)(Ω) =
∑

r∈S

µ(r) · Prob
A[s

a,µ
−−→r]

(r)({ω | (s
a,µ
−−→ ω) ∈ Ω})

Proof. See Appendix A.1.

Lemma 3. Let A(s) = (a, µ). If s /∈ G, then:

1. for any n ∈ N: ProbReach
≤n+1
A (s, G) =

∑

r∈S µ(r) ·ProbReach
≤n

A[s
a,µ
−−→r]

(r, G)

2. ProbReachA(s, G) =
∑

r∈S µ(r) · ProbReach
A[s

a,µ
−−→r]

(r, G)
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Proof. We prove result 1. The proof of result 2 is very similar: the only difference
is that there is no upperbound n on the length of the paths.

ProbReach
≤n+1
A (s, G)

= ProbA(s)({ω ∈ Paths∞M | ∃i ≤ n + 1.ωi ∈ G}) by definition of ProbReach

= ProbA(s)({ω ∈ Paths∞M | ∃i ∈ [1, n + 1].ωi ∈ G}) since s /∈ G

=
∑

r∈S

µ(r) · Prob
A[s

a,µ
−−→r]

(r)({ω ∈ Paths∞M | ∃i : [0, n].ωi ∈ G}) by Lemma 2

=
∑

r∈S

µ(r) · ProbReach
≤n

A[s
a,µ
−−→r]

(r, G) by definition of ProbReach

⊓⊔

The reach probability depends on the nondeterministic choices made by the
policy. A nondeterministic choice can be used to model a branch in system ex-
ecution that cannot be resolved probabilistically, or for which the probability
distribution is not known. The maximal reach probability is of interest, i.e. the
maximal attainable value if all choices are optimal. The maximal reach proba-
bility for G ⊆ S is defined as:

SupProbReachM (G)
def
= sup

A∈Pol(M)

ProbReachA(G)

And using not more than n transitions:

SupProbReach
≤n
M (G)

def
= sup

A∈Pol(M)

ProbReach
≤n
A (G)

From [20] we know that if A has a finite number of states and probabilistic
transitions, then we can find the policy that obtains the value of SupProbReachM (G).
Moreover, we may restrict to policies that always takes the same decision in each
state, irrespective of the path or the length of the path by which the state was
reached. The value of SupProbReachM (G) can be computed by several techniques
including: value iteration, (modified) policy iteration and linear programming.

3 Priced Probabilistic Timed Automata

3.1 Time, Clocks and Guards

A clock is a real-valued variable that can be used to measure the elapse of time.
All clocks run at the same pace. A clock valuation assigns a non-negative value to
each clock in some set X. Let RX

≥0 denote the set of all possible clock valuations.

A clock valuation v ∈ RX

≥0 is thus a mapping X → R≥0. For d ∈ R≥0, let v+d
denote the clock valuation that maps each x ∈ X to v(x) + d. For R ⊆ X, let
v[R := 0] denote the clock valuation in which the clocks in R have been reset,
i.e. v[R := 0](x) equals 0 if x ∈ R and v(x) otherwise.
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A guard is a conjunction of inequalities where the value of a single clock is
compared to an integer. Formally, the set Guards(X) of guards g is defined by
the grammar:

g ::= x ⊲⊳ b | g ∧ g | true, where x ∈ X, b ∈ N, ⊲⊳∈ {<,≤,≥, > }.

(In)equalities such as (x = b) and (2 ≤ x − y ≤ 3) are abbreviations for a
conjunction of multiple inequalities. We write v |= g when valuation v satisfies
the constraints of guard g.

3.2 PPTAs and their semantics

We are now in a position to define PPTAs.

Definition 4 (PPTA). A priced probabilistic timed automaton (PPTA) is a

tuple A = (L, linit, X, inv, edges, $̇), where:

– L is a finite set of locations;
– linit ∈ L is the initial location;
– X is a finite set of clocks;
– inv : L → Guards(X) assigns an invariant to each location;
– edges ⊆ L × Guards(X) × Dist(2X × N × L) is a finite set of edges; and

– $̇ : L → N associates a cost-rate with each location.

For edge (l, g, p) ∈ edges, l denotes the source location, g the guard, and p a
distribution over instantaneous effects, which consist of a set of clocks to be
reset, a cost increment, and a destination location. For the rest of the paper we
fix a PPTA A = (L, linit, X, inv, edges, $̇).

l3, x≥1, 2

l1, 0 l2, 2

l0, x=0, 0

0.80.3

x≤0

+1
0.7

0.40.6
x:=0

0.2

Fig. 1. Example PPTA

Example 1 Figure 1 shows a PPTA with clock x. Loca-
tions are represented by rounded boxes, with branch-
ing arrows between them denoting the edges of the
PPTA. The initial location is l0. Invariants and cost-
rates are written in the locations. Guards (e. g. x≤0)
are placed next to the source location; probabilities,
resets and cost increments are at the branches (e. g.
probability 0.3 and x:=0.) Probabilities 1, guards that
always hold, and instantaneous cost increments of 0
are left out.

Intuitively, a PPTA behaves as follows. It always is
in a state consisting of a location l, a clock valuation
v, and the cost incurred until now c. A policy makes
the nondeterministic choice between delaying or which
edge to take. Only edges with guards satisfying the
current valuation are available. Delaying will increase each clock by the quantity
of delay and the accumulated cost by the quantity of delay times the cost-rate
$̇(l). When taking an edge, a reset set, cost increment, and destination location
are chosen probabilistically. They determine which clocks are reset, the cost
increment, and the next location.
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Definition 5 (PPTA Semantics). Fix Act = R≥0 ∪ {τ}. The semantics of
PPTA A, denoted JAK, is given by the tuple (S, sinit, T ), where S = {(l, v, c) | l ∈
L ∧ v |= inv(l) ∧ c ∈ R}, i.e. states consist of a location, a clock valuation, and
the accumulated cost; sinit = (linit, {x 7→ 0 | x ∈ X}, 0); and ((l, v, c), d, µ) ∈ T iff
(l, v, c) ∈ S, d ∈ R≥0, v + d |= inv(l) and one of the following conditions holds:

– either µ(l, v + d, c + $̇(l)d) = 1
– or there exists (l, g, p) ∈ edges such that v + d |= g and for all (l′, v′, c′) ∈ S:

µ(l′, v′, c′) =
∑

R⊆X s.t.v′=(v+d)[R:=0] p(R, c′ − d·$̇(l) − c, l′)

If the first condition holds then we call ((l, v, c), d, µ) a time transition, otherwise
we call it a delayed discrete transition.

It is straightforward to prove that JAK is an MDP, where time transitions spend-
ing zero time ensure every state has at least one outgoing transition. Time diver-
gence of JAK is not an issue for this paper since we are dealing with reachability
properties, see [18].

3.3 Cost-Bounded Maximal Reachability

Cost-bounded maximal reachability (CBMR) is the maximal probability by which
a goal location in a PPTA can be reached, without the accumulated cost exceed-
ing some bound. For PPTA A we fix lgoal ∈ L to be the goal state, and cbound ∈ N
to be the cost-bound.

Definition 6 (CBMR). CBMR is the probability SupProbReachJAK(σgoal),

where σgoal = {lgoal} × RX

≥0 × [0, cbound].

Naturally, by comparing CBMR to a probability p, CBPR can be used to answer
the question “Is it possible to reach location lgoal with probability at least p ∈
(0, 1] and with cost at most cbound?”.

3.4 Predecessor Operations

We now define predecessor operations on sets of states of JAK. Predecessor op-
erations are essential to the symbolic backward exploration that is done in our
algorithm. The discrete predecessor of a set of states Z via edge e and instanta-
neous effect f , gives all states in JAK that can reach some state in Z via edge e
and instantaneous effect f . The time predecessor of a set of states Z, gives all
states in JAK that can reach some state in Z by letting time elapse.

Definition 7 (Predecessor Operations). Let JAK = (S, sinit, T ). For any Z ⊆
S, e = (l, g, p) ∈ edges. Let f = (R, h, l′) ∈ supp(p). The discrete predecessor
and time predecessor operations are respectively:

dpree,f (Z)
def
= {(l, v, c) ∈ S | v |= g ∧ (l′, v[R := 0], c + h) ∈ Z}

tpre(Z)
def
= {s ∈ S | ∃d ≥ 0.∃r ∈ Z.s

d
−→ r}
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Lemma 4 (Properties of Predecessors).

– If S = dpree,f (T ), then for all s ∈ S there exists r ∈ T such that s
0,µ
−−→ r.

– If S = tpre(T ), then for all s ∈ S there exists r ∈ T and d ∈ R≥0 such that

s
d
−→ r.

Proof. Straightforward from the definition of tpre and dpre. ⊓⊔

4 The Algorithm

Algorithm 1 is used for computing CBMR for paths of length up to maxlength

(possibly ∞). It gets as inputs a CBMR problem, i.e. a PPTA A, a goal location
lgoal, a cost-bound cbound, and the maximal path length maxlength.1 Algorithm 1
returns a finite automaton (Visited, σinit, D), which we will call reachability graph.
The reachability graph captures symbolically all transitions by which a target
state may be reached. Definition 8 defines an MDP M for the reachability graph.
Now, from Theorem 1, we see that:

1. The maximal reach probability in M is an upperbound on the CBMR solu-
tion.

2. If maxlength = ∞ the upperbound is precise.
3. Increasing maxlength leads to a higher or equal upperbound on CBMR with

unbounded lenght.

Zones are sets of states of JAK that share the same location. Since clocks and
cost take real values, zones may (and will) contain infinitely many states. In [9] it
is shown that the zones generated by our algorithm have a finite representation
called multi-priced zones. Multi-priced zones are closed under the operations of
the algorithm. They are a subclass of convex polyhedra.

Visited are the zones that are generated by Algorithm 1 in a backward fash-
ion: starting from the zone of goal states (σgoal), more zones are generated by
repeatedly computing predecessors of explored zones. The predecessor of a zone
is computed by first computing the time predecessor, and from that the discrete
predecessor. The operations are combined to avoid storing an intermediate zone.
The algorithm proceeds in a breadth-first way, by first calculating the predeces-
sors of all zones that were waiting to be explored, before computing predecessors
of the newly generated zones. In addition to predecessors, intersections of ex-
plored zones are added to Visited, which are zones themselves.

We now discuss the algorithm line by line. An example is given later. Through-
out this work, edges a reachability graph may be called directions to distinguish
them from the edges in a PPTA. An important property of any direction gener-
ated by Algorithm 1 is the following:

A direction (σ, e, f, ρ) means any state in ρ is reachable from some state
in σ by a delayed discrete transition with 0 delay using edge e and
instantaneous effect f , followed by a time transition.

1 As a minor condition, inv(linit) should require all clocks to be zero.
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Algorithm 1: The basic backwards reachability algorithm

1 Input: PPTA A = (L, linit, X, inv, edges, $̇), lgoal, cbound, maxlength,
where inv(linit) =

V

x∈X
(x = 0)

Output: (Visited, σinit, D)
2 σgoal := lgoal × inv(lgoal) × [0, cbound ]
3 σinit := {(linit, {x 7→ 0 | x ∈ X}, 0)}
4 if σinit ⊆ σgoal then σinit := σgoal

5 Visited := {σgoal, σinit}
6 D := {(σgoal, τ, σgoal), (σinit, τ, σinit)}
7 Waiting

0
:= {σgoal}

8 for i := 1 to maxlength

9 if Waitingi−1
= ∅ then break

10 Waitingi := ∅
11 foreach ρ ∈ Waitingi−1

12 foreach e ∈ edges and f is an inst. effect of e going to the location of ρ
13 σ := dpree,f (tpre(ρ))
14 if σ 6= ∅
15 D := D ∪ {(σ, e, f, ρ)}
16 if σ /∈ Visited then Waitingi := Waitingi ∪ {σ},Visited := Visited∪ {σ}
17 foreach (σ′, a′, ρ′) ∈ D
18 if σ ∩ σ′ 6= ∅
19 D := D ∪ {(σ ∩ σ′, e, f, ρ), (σ ∩ σ′, a′, ρ′)}
20 if σ ∩ σ′ /∈ Visited

21 Waitingi := Waitingi ∪ {σ ∩ σ′}, Visited := Visited ∪ {σ ∩ σ′}
22 return (Visited, σinit, D)

Line 2 Zone σgoal is the goal set of states.

Line 3 Zone σinit is a singleton consisting of the initial state.

Line 4 Needed for the special case when σinit ⊂ σgoal.

Line 5 Visited maintains the zones that were generated and starts as {σgoal, σinit}.
Line 6 D maintains the directions of the reachability graph.

Line 7 Waitingi are zones to be explored after iteration i. Goal zone σgoal is the
first zone to be explored.

Line 8 The algorithm takes exactly maxlength steps in the outer loop. All the
paths of maximal length maxlength of JAK are symbolically explored, includ-
ing those having a loop.

Line 9 Quit the loop if there is nothing left to explore.

Line 10 The set of zones waiting to be explored in the next iteration is initially
∅.

Line 11 Pick an arbitrary zone ρ from the current set of zones waiting to be
explored.

Line 12 Explore all incoming edge/effect combinations e, f of the PPTA for ρ.

Line 13 Compute the predecessor σ via e, f .

Line 14 Only proceed if the generated predecessor σ is not empty.

Line 15 Add the direction.

Line 16 In case σ was not visited before, add it to the next set of waiting zones.
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Lines 17–21 are concerned with the intersections. Intersections are useful for
the following reason. Given zones ρ and ρ′, let σ = dpree,f1

(tpre(ρ)) and σ′ =
dpree,f2

(tpre(ρ′)) for some e ∈ edges and f1, f2 instantaneous effects of e. Now, by
Lemma 4, σ∩σ′ contains the states that can reach ρ as well as ρ′: A state in ρ is
reached by taking edge e, probabilistically choosing f1, and delaying some time.
A state in ρ′ is reached by taking the same edge e, probabilistically choosing
f2, and delaying some (possibly different) time. Whenever f1 6= f2 and the goal
can be reached via both ρ and ρ′, the probabilities of choosing either effect can
be added. This explains why we first took the time predecessor and then the
discrete predecessor: only after the probabilistic choice has been resolved, the
policy gets the information whether f1 or f2 was chosen and can decide how long
to delay to reach ρ or ρ′, respectively. This reasoning can easily be generalized
to intersections of more than two zones.

Line 17 Pick each direction in an arbitrary order.
Line 18 Proceed on a non-empty intersection of the source zones.
Line 19 The intersection gets outgoing directions to the target zones of the

two directions. These directions capture the possibility of states in the in-
tersection to go in both ways. Note that in subsequent iterations of the loop
on lines 16–20 more directions may be added that start from the same in-
tersection. Intersections between multiple zones are generated by pair-wise
intersection.

Lines 20, 21 In case the intersection was not visited before, add it to the next
set of waiting zones.
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Fig. 2. Reachability graph

Example 2 Figure 2 shows the reachability graph
that Algorithm 1 would generate for the PPTA
of Figure 1 if lgoal = l3 and cbound = 3. In the
figure, zones are labeled σinit, A, B, . . ., and are
represented by planes in coordinate systems with
x and c at the axes. Furthermore, zones have a
location. Labels on directions are left out and
probabilities are added in such a way that there
is no ambiguity from which edge in the PPTA
they were generated. Plain edges are the ones re-
sulting from line 15. Thus, for example B is the
predecessor of A. The predecessors of B, . . . , E
are left out for brevity. Dashed edges are the
ones resulting from line 19. Note that F is the
intersection of D and E, while C is the inter-
section of C and B. Zone F has only an empty
predecessor.

The next definition is used to transform any reachability graph that is gener-
ated by Algorithm 1 into an MDP. As such, it generates the symbolic semantics
for the PPTA under the given CBMR problem.
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Fig. 3. Con-
structed MDP
without optimiza-
tions

Example 3 Figure 3 shows the MDP of Definition 8 for the
reachability graph of Figure 2. The positions of the states
correspond to the positions of the zones in the reachability
graph. For brevity probabilities and labels have been left
out.

Definition 8 (Symbolic semantics). Given reachability graph Q =
(S, sinit, D), we define the Markov decision process MDP(Q) = (S, sinit, T ), where
(s, a, µ) ∈ T if and only if either

– a = τ and µ = {r 7→1} and there exists (s, τ, r) ∈ D;
or

– a = e and there exists De,µ ⊆ D such that

1. ∀(s′, e′, f ′, r′) ∈ De,µ.s′ = s ∧ e′ = e
2. ∀(s1, e1, f1, r1), (s2, e2, f2, r2) ∈ De,µ.r1 6= r2 =⇒

f1 6= f2

3. De,µ is maximal
4. ∀r ∈ S.µ(r) =

∑

(s,(l,g,p),f,r)∈De,µ
p(f)

Theorem 1. Assume Algorithm 1 is executed with input PPTA A, location lgoal,
cbound ∈ N, and maxlength ∈ N ∪ {∞}. And on the output we define M by
Definition 8. Now all of the following hold:

1. ∀n ≤ maxlength. SupProbReach
≤n

JAK(σgoal) = SupProbReach
≤n
M ({σgoal})

2. ∀n ≤ maxlength. SupProbReach
≤n

JAK(σgoal) ≤ SupProbReachM ({σgoal})

3. If maxlength = ∞ we have that:
SupProbReachJAK(σgoal) = SupProbReachM ({σgoal})

4. Let maxlength = m 6= ∞, and construct M ′ from the same input as M except
that maxlength is set to m + 1. Then, the probability does not decrease:
SupProbReachM ({σgoal}) ≤ SupProbReachM ′({σgoal})

Proof. Result 1 follows from Theorem 1 in [9], but is rephrased in Appendix A.2.
The proof goes along the same lines as the proof of Proposition 29 in [18].
However, the length of paths match in JAK and M , which is possible due to
the delayed discrete transitions in JAK. Results 2, 3, and 4 follow directly from
result 1, the definition of supremum and Lemma 1. ⊓⊔

Definition 9 (Cover). Given a set of zones Σ, for any ρ, σ ∈ Σ, we say ρ
covers σ, written ρ ⊃− σ, iff ρ ⊃ σ and there exists no q ∈ Σ such that ρ ⊃ q ⊃ σ.

Optimization 1 extends Algorithm 1. To understand its basic idea, regard two
zones ρ and ρ′ with ρ ⊃ ρ′. All states in a zone have the same probabilistic tran-
sitions available, as long as these contribute to reaching the goal with maximal
probability. If execution of the MDP enters ρ′, this corresponds to an execution
of the semantics that enters some state r ∈ ρ′. But, execution of the MDP might
as well enter ρ, since r ∈ ρ. Therefore, we may add a τ -direction from ρ′ to
ρ. A τ -direction has probability 1 and does not correspond with any transition
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Optimization 1.
Fragment A: inserted after lines 15 and 19 of Algorithm 1

15bis,19bis foreach (σ, e, f, ρ), (σ′, e′, f ′, ρ′) ∈ D, with (σ′, e′, f ′) = (σ, e, f)
15ter,19ter if ρ′ ⊂ ρ then D := D\{(σ, e, f, ρ)}

Fragment B: replaces line 22 of Algorithm 1
22′ foreach ρ, ρ′ ∈ Visited

23′ if ρ ⊃− ρ′ then D := D ∪ {(ρ′, τ, ρ)}
24′ return (Visited, σinit, D)

Optimization 2: replaces line 18 of Algorithm 1
18′ if σ ∩ σ′ 6= ∅ and (σ′ = σinit or ∃f ′ 6= f.a′ = (e, f ′))

in the semantics. Fragment B adds the minimal number of τ -directions to ob-
tain a path of τ -directions from any subzone to a superzone. The optimization
comes from Fragment A that removes directions from any zone σ to ρ, when ρ′ is
reachable from σ with the same label. A policy can simply go to ρ by first going
to ρ′ and then taking τ -directions. The benefit of Optimization 1 comes from
the way Definition 8 works: given an edge, sets De,µ are constructed by taking
all possible (maximal) combinations of instantaneous effects of that edge. Given
some edge e with n instantaneous effects, a zone with mi outgoing directions
that use the i-th instantaneous effect would have m1 · m2 · . . . · mn possibilities
for De,µ, which gives a blow-up exponential in n.

τ
τ

τ

Fig. 4. MDP when
using Optimiza-
tion 1

Example 4 Recall Example 2. With Optimization 1 the
reachability graph will differ from the one in Figure 2: the
direction from σinit to B will not be present, and there
will be τ -directions (C, τ, B), (F, τ, D) and (F, τ, E). The
generated MDP is depicted in Figure 4.

Theorem 2. Assume that we change Algorithm 1 with
Optimization 1, then Theorem 1 results 2–4 still hold.

Intersections are only useful if they capture probabilis-
tic branching. Optimization 2 is straightforward, and is
also made in [18] to suppress intersections that have only
outgoing transitions with the same probability resolution.

Theorem 3. Both for Algorithm 1 changed with Opti-
mizations 1 and 2, and Algorithm 1 changed with only
Optimization 2, theorem 1 results 2–4 still hold.

We now define a transformation from a reachability graph Q to a reachability
graph Q̄. The transformation reduces the number of probabilistic transitions in
MDP(Q̄) w. r. t. MDP(Q), but does not affect the maximum reach probability.
The zones of Q are maintained by the transformation, but Q̄ has extra inter-
mediate zones. Two or more directions leaving a zone in Q that have the same
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label are replaced in Q̄ by a direction with the same label going to a fresh in-
termediate zone. From the fresh intermediate zone there are τ -directions going
to the goal zones of the original directions in Q. The benefit is the same as for
Optimization 1: we reduce the number of outgoing directions from a state that
have the same label.

τ
τ

τ

τ τ

Fig. 5. MDP with
all optimizations

Example 5 Recall Example 4. Optimization 3 cre-
ates an intermediate state with τ transitions to
zone D and zone E. Figure 5 shows the generated
MDP.

In Q̄ all directions leaving a zone have a different label,
except for τ -directions, that all use the label τ . Because
of these properties of directions in Q̄, from Definition 8
we can see that for each zone and each direction leav-
ing that zone there is only one possibility to construct a
probabilistic transition. Each direction has a correspond-
ing τ -direction from the intermediate zone and there is one
direction to the intermediate zone, so in total at most one
extra direction is needed per instantaneous effect per zone.

Optimization 3. Given reachability graph (S, sinit, D). We define the reacha-
bility graph (S ∪ I, sinit, D̄), where I ⊆ S × Act and for any (s, a, r) ∈ D

– if ∃(s, a, r′) ∈ D.r′ 6= r then (s, a, (s, a)) ∈ D̄ and ((s, a), τ, r) ∈ D̄.
– otherwise: (s, a, r) ∈ D̄.

Theorem 4. Given reachability graph Q. Let Q̄ be obtained from Q by applying
the transformation of Optimization 3, then for any G:

SupProbReachMDP(Q̄)(G) = SupProbReachMDP(Q)(G)

It is not hard to see that also without Optimization 1, Optimization 3 will still
make sure each zone has no two outgoing directions with the same label, except
for τ -directions. However, Optimization 1 is useful for the following reasons:

– It works during the construction of the reachability graph, i.e. directions
from a zone are removed as soon as it gets a new outgoing direction.

– It needs no extra ‘intermediate’ states.
– The added τ -directions do not depend on the labels of the directions that

were removed. As such they can be used for more directions at the same
time.

5 Implementation Issues

A straightforward ehancement Fortuna employs is to consider only locations
that are reachable. To this end a standard symbolic forward exploration is per-
formed, not taking probabilities into account. Since there are no guards on cost,
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lowering the cost in a state by say C will not influence the locations reachable,
although they are reachable with C less cost. Thus, we need to compute mini-
mum cost reachability for combinations of clock values and locations, and store
the locations that are reachable with a cost below the CBMR cost-bound. This
amounts to minimum cost reachability in a priced timed automaton which is a
decidable problem [4].

We use convex polyhedra instead of the multi-priced zones of [9] to repre-
sent zones, because there is a advanced library for them available: the Parma
Polyhedra Library [2]. The library offers operations on convex polyhedra, such
as intersection, inclusion checking, and time predecessor. Another advantage is
that convex polyhedra will allow for an extension to more general classes of
automata, such as the probabilistic linear hybrid automata of [21].

A disadvantage could be reduced performance, although it has yet to be
investigated if multi-priced zones allow for a more efficient implementation than
general convex polyhedra. Some operations of the Parma Polyhedra Library
take considerable computation time, most notably the inclusion and intersection
operations on polyhedra. To reduce the number of intersections, we maintain
a Hasse diagram structure for zones that share the same location. The Hasse
diagrams use the ⊃− relation to order their zones. The top and bottom elements
are added. Now, as a new zone enters the explored state space on line 17, it will
be inserted in the Hasse diagram that corresponds to its location. This means
more inclusion checks to determine the position of the new element in the Hasse
diagram, but the benefit comes at line 18 of Algorithm 1: If one zone includes
the other, the smaller is the intersection of the two, and inclusion can now be
quickly decided based on the Hasse diagram. Additionally, we reuse the diagram
for the τ -directions of Optimization 1: they are no longer stored. However, when
the MDP is generated, they are treated as if they were stored.

6 Case Studies and Model Checking Results

We present two simple case studies that illustrate the practical usefulness of
PPTAs and CBMR. In addition, we present experimental results for some PTA
case studies, taken from [16], which do not include costs. Even though these
case studies only exploit part of the functionality of Fortuna, they allow us
to compare the performance of Fortuna to other tools. We also demonstrate
the usefulness of our optimizations by comparing non-optimized versions of our
algorithm to optimized ones.

Fortuna uses a CCS style parallel composition, whereas the approaches that
we compare with have a CSP style composition. Due to this, the models used
by the different tools are not entirely isomorphic. We tried to stay as close as
possible to the original case studies. We did not change the number of locations
in the PTAs, but only added intermediate locations on some transitions when
needed. Two case studies are concerned with calculating a minimum probabil-
ity. However, both can be rephrased in maximum probability, as shown in the
respective papers.
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Fig. 6. A Production Plant

All experiments are carried out on a 2GHz PC with 2GB RAM, which is
similar to the hardware used in [16]. We do not compare on memory use as
these statistics from the other approaches are unavailable to us. However, for
the instance of the case study that is the largest in both states and directions
(firewire 100k), Fortuna needs only 70MB.

6.1 A Production Plant

This case study has been inspired by a case study on a lacquer production
plant [19]. Although small, it easily scales up to more elaborate plant models.
The PPTA on the left of Figure 6 models a production plant. Initially the system
is in the startup location, but goes immediately to the idle location. At some point
in time, a scheduler may decide to produce the lacquer. Production takes 1 day
and costs 3 credits. With probability 0.7 production succeeds and the lacquer is
stored, which costs 4 credits per day. With probability 0.3 production fails; the
machine needs to be cleaned, after which production can start again. The PPTA
on the right of Figure 6 models the customer. After 4 days the customer will
try to pick up the product. The two PPTAs work in parallel: they start at the
same time and their clocks work at the same speeds. The CBMR is the maximal
probability to reach the locations store and pickup with cost at most 9. Note that
leaving a customer waiting also costs 4 credits per day. Fortuna calculates a
maximum probability of 0.91. In order to realize this, the plant scheduler should
wait for 1.5 days before starting production.

6.2 CSMA with Energy Constraints

IEEE 802.3 CSMA/CD (Carrier Sense, Multiple Access with Collision Detection)
is a protocol to avoid data collision on a single channel. The authors of [18] model
CSMA with PTAs and are able to compute the maximal probability that both
senders have successfully sent their data within a deadline. In certain settings
power consumption is important. Sending data consumes power, and typically
when a node is listening to receive data, it consumes more power than in other
modes. We build a PPTA from the PTA in [18], due to lack of space we refer
to their figures and further explanation. We added the following cost to their
model: an instantaneous cost of 50 upon a send, cost-rate 1 in the wait and
done locations, and cost-rate 3 in the transmit location. All other locations use
cost-rate 0. With CBMR we are now able to compute the maximal probability
by which both nodes are done, but total power consumption is not more than
cbound.
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6.3 Experiments on Optimizations

We have presented Optimizations 1–3 and the optimization that uses Hasse
diagrams. Optimization 2 is already used in the backward reachability algorithm
of [18]. We conjecture this optimization is always useful and did not experiment
with turning it off: by excluding more intersections one can save on the number
of directions that are added at line 19 and the number of zones in the state
space.

Also, we conjecture Optimization 3 is always useful. Like explained, extra
intermediate states are used in the MDP, but the savings in terms of the number
of probabilistic transitions in the MDP is huge. Adhoc tests we ran indicate this.
Notice that the extra intermediate states are only added to the MDP and are
not part of the state space that is explored backwards.

The benefit of the other optimizations becomes apparent from Table 1. The
last column shows the situation when using only use Optimizations 2 and 3. The
second column puts Optimization 1 into play. Finally, the first column also adds
the use of Hasse diagrams.

The implementation gives no guarantees on the order in which zones are
explored. The explored zones determine which directions are present. Therefore
when trying to add an intersection, Optimization 2 may or may not suppress
this. As a result, the number of zones, directions, and τ -directions may vary
between different runs of the algorithm. Each experiment is repeated 10 times.
We use the format a±b to express the calculated mean a and the calculated
standard deviation b, where b has the same significance as the least significant
digit of a.

For each optimization level the number of generated states is approximately
the same. We have displayed the number of directions for each optimization
level, and the number of τ -directions when using Hasse diagrams.

The second column shows a strong reduction in the number of directions, for
all case studies except “csma”. This results mainly in less memory usage. Also
the benefit of using Hasse diagrams is clear. There are some great reductions in
the number of directions, as well as in the run-time.

6.4 Comparison to other Approaches

Table 2 compares the performance of Fortuna to the game-based verification
approach of [16], and the backwards reachability approach of [18]. The statistics
are take from [16]. The probabilities computed by Fortuna, as shown in the
last column, vary slightly from those results on the larger instances. This is a
result of rounding errors.

Uppaal-Pro is another tool for checking maximal reachability on PTA, avail-
able from [12]. Since at the time of writing Uppaal-Pro is still in its development
phase, we have not included it in our comparison. The backwards reachability
approach is included in the comparison because it is closest to our approach in
its workings. From [16], we see the digital clocks approach of [17], performs worse
in all the instances.
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Table 1. Performance statistics of the optimizations

Case study Optimization 1 Optimization 1 only
(parameters) and Hasse diagrams Optimizations 2 and 3
[min /max] Dirs. τ -dirs. Time (s) Dirs. Time (s) Dirs. Time (s)

csma cost 8k 947±0 956±0 1.831±26 1538±20 2.873±28 2357±29 3.041±35
(c bound) 9k 1697±1 1795±0 4.388±32 2780±27 12.026±63 5283±140 12.98±11

[max] 10k 2754±0 2922±0 11.08±16 5277±199 62.684±21 12589±250 67.56±35
11k 4223±0 4662±0 26.59±18 9921±543 271.6±11 28464±1004 296.1±103

csma 2 4 290±0 172±0 0.270±7 360±0 0.265±7 374±0 0.267±9
(max backoff 2 8 742±0 476±0 0.735±8 948±0 0.726±5 1002±0 0.752±12
collisions) 4 4 1593±0 812±0 2.418±34 1941±0 2.366±18 1999±0 2.406±27

[max] 4 8 3273±0 2092±0 7.241±38 4247±0 7.223±37 4617±0 7.901±62
csma abst 1k 1 362±0 309±0 0.323±19 574±3 0.459±22 781±1 0.467±14
(deadline 2k 1 602±0 552±0 0.627±24 1036±7 0.811±17 1591±5 0.863±15
bcmax) 3k 1 1499±0 1527±0 3.445±49 8375±125 6.879±59 10790±5 7.053±82
[min] 1k 2 1298±1 1061±0 1.885±54 2263±6 3.99±13 5236±3 4.401±95

2k 2 2955±0 2737±0 7.75±18 5326±52 13.92±18 13576±27 17.03±11
3k 2 5298±0 5354±0 46.14±44 25492±425 83.68±87 51856±123 102.8±10

firewire abst 5k 102±0 52±0 0.024±5 220±2 0.029±6 290±0 0.034±5
(deadline) 10k 276±0 169±0 0.081±6 1284±0 0.192±6 1727±0 0.216±5

[min] 20k 946±0 629±0 0.587±8 14864±2 4.135±16 18694±2 4.610±20
100k 20884±0 14516±0 221.8±11 > 1 hour > 1 hour

nrp malicious 5 244±3 168±5 0.141±9 312±3 0.192±10 567±15 0.204±12
(deadline) 10 654±12 478±5 0.711±14 997±5 1.480±24 2300±25 1.629±29

[max] 20 1436±27 1107±4 3.135±73 2569±14 12.043±45 7404±37 13.07±10

As Fortuna uses the backward reachability approach with new optimiza-
tions, it improves on the latter. For all instances Fortuna is faster than game-
based verification, often several orders of magnitude. Why Fortuna out-performs
game-based verification is hard to say, as both approaches are very different in
nature. However, we see the following possible reasons:

– Like backward reachability, Fortuna does not calculate the difference be-
tween two zones, but only intersections. As a result, the number of states is
much smaller, as can be seen in the table.

– Fortuna does forward exploration of the reachable state space.
– Fortuna uses the efficient Parma Polyhedra Library [2] to do operations

on zones.
– Fortuna has been implemented in C++, but we do not know the imple-

mentation language for the other tools.

7 Conclusion

We have presented Fortuna, the first tool for model checking PPTA. Fortuna

is able to compute CBMR. It uses novel optimizations that drastically improve
the backward reachability algorithm. Although Fortuna is more general, it
outperforms existing tools for PTAs by several orders of magnitude on a number
of case studies in computing maximal probabilistic reachability.

Users of Fortuna enter models as hard-wired C++ code, using calls to an
interface. Although this interface is quite clear, a user-interface is preferable. To
increase useablity, the actual policy and the traces it generates should be given
as feedback to to the user. Another interesting feature would be to output the
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Table 2. Performance statistics and comparisons

Case study Fortuna Game-based Backwards Min/Max
(parameters) verification [16] reachability [18] reachability
[min /max] States Time (s) States Time (s) States Time (s) probability

csma 2 4 224±0 0.270±7 6,476 3.9 243 20.7 0.143555
(max backoff 2 8 572±0 0.735±8 18,196 8.9 575 77.8 0.00525932

collisions) 4 4 1082±0 2.418±34 34,826 20.5 303 1443.7 0.0769043
[max] 4 8 2315±0 7.241±38 239,298 431.4 > 1 hour 1.65363e-5

csma abst 1k 254±0 0.323±19 6,392 1.9 366 68.2 0.0
(deadline) 2k 437±0 0.627±24 24,173 20.7 722 367.8 0.869791

[min] 3k 1178±0 3.445±49 79,608 448.0 1,736 1436.3 0.999820099
firewire abst 5k 64±0 0.024±5 205 0.25 63 2.45 0.78125
(deadline) 10k 181±0 0.081±6 1,023 1.76 180 3.8 0.9747314

[min] 20k 641±0 0.587±8 9,059 26.1 640 26.4 0.999629555
nrp malicious 5 123±2 0.141±9 1,663 1.5 75 2.9 0.100072

(deadline) 10 293±2 0.711±14 8,080 11.1 408 117.3 0.105447
[max] 20 632±2 3.135±73 49,622 218.1 1,108 1606.5 0.105658

probability at each depth of exploration. This sequence of probabilities is non-
decreasing. The algorithm may be stopped when the outcome is large enough
compared to some objective. In this iterative approach at each iteration one
can benefit from the probabilities calculated in the previous iteration. In case of
model checking PTAs, zones can be represented by DBMs (difference bounded
matrices), see [6]. These allow faster operations on them than the more general
convex polyhedra we use. Thus for this special sub-problem the use of a DBM
library may improve performance drastically for PTA models.
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A Proofs

A.1 Proof of Lemma 2

Recall that we defined the probability space (Paths∞M ,F , ProbA(s)). The σ-field
F is said to be generated by the set of cones {C(ω) | ω ∈ Paths∗M ∧ ω0 = s}.
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The set of cones also generates a (conventional) field F , where F satisfies the
following properties:

– Paths∞M ∈ F

– if W ∈ F then Paths∞M\W ∈ F (closed under complement)

– if X, Y ∈ F then X ∪ Y ∈ F (closed under finite union)

The difference with a σ-field is that a field does require countable unions of
elements to be elements.

Lemma 2 can be viewed as proving that the measure ProbA(s) equals the
measure µ(ω0) ·Prob

A[s
a,µ
−−→ω0]

(ω0)(C(ω)), where both measures are defined over

the same measurable space (Paths∞M ,F). From Carathéodory’s extension theo-
rem, we may derive that in order to check this equality, it is enough to check
that the measures are equal on the elements of F . We may skip elements in F
that are not in F , see e.g. [?].

We first proof the lemma for cones of the form C(s
a,µ
−−→ ω) for any path

(s
a,µ
−−→ ω) ∈ Paths∗M . Thus for A(s) = (a, µ) we want to prove:

ProbA(s)(C(s
a,µ
−−→ ω)) = µ(ω0) · Prob

A[s
a,µ
−−→ω0]

(ω0)(C(ω))

The proof is by induction on the length of ω. For n = 0. Then ω is a single state,
say r.

ProbA(s)(C(s
a,µ
−−→ ω)) = ProbA(s)(C(s

a,µ
−−→ r))

= ProbA(s)(C(s)) · µ(r) by definition of Prob

= µ(r) by definition of Prob

= µ(r) · Prob
A[s

a,µ
−−→r]

(r)(C(r)) by definition of Prob

= µ(ω0) · Prob
A[s

a,µ
−−→ω0]

(ω0)(C(ω))

Now assume the lemma holds for n. We will proof it also holds for n + 1. Let

ω = ω′ a′,µ̄
−−→ r.

ProbA(s)(C(s
a,µ
−−→ ω)) = ProbA(s)(C(s

a,µ
−−→ ω′ a′,µ̄

−−→ r))

= ProbA(s)(C(s
a,µ
−−→ ω′)) · µ̄(r) by definition of Prob

= µ(ω′0) · Prob
A[s

a,µ
−−→ω′0]

(ω′0)(C(ω′)) · µ̄(r) by induction

= µ(ω′0) · Prob
A[s

a,µ
−−→ω′0]

(ω′0)(C(ω′ a′,µ̄
−−→ r)) by definition of Prob

= µ(ω0) · Prob
A[s

a,µ
−−→ω0]

(ω0)(C(ω))

What remains is the case of the element C(s), and the case of elements
that are formed from other elements by complement or union. Assume we have
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arbitrary X, Y ∈ F , such that the measures are equal on X and on Y .

ProbA(s)(Paths∞M\X) = ProbA(s)(Paths∞M ) − ProbA(s)(X)

=
∑

r∈S

µ(r) · Prob
A[s

a,µ
−−→r]

(r)(Paths∞M )

−
∑

r∈S

µ(r) · Prob
A[s

a,µ
−−→r]

(r)({ω | (s
a,µ
−−→ r) ∈ X}) by induction

=
∑

r∈S

µ(r) · Prob
A[s

a,µ
−−→r]

(r)({ω | (s
a,µ
−−→ r) ∈ Paths∞M\X}) by induction

And we have:

ProbA(s)(X ∪ Y ) = ProbA(s)((X\Y ) ∪ Y )

= ProbA(s)(X\Y ) + ProbA(s)(Y ) by union of disjoint sets

=
∑

r∈S

µ(r) · Prob
A[s

a,µ
−−→r]

(r)({ω | (s
a,µ
−−→ r) ∈ X\Y })

+
∑

r∈S

µ(r) · Prob
A[s

a,µ
−−→r]

(r)({ω | (s
a,µ
−−→ r) ∈ Y }) by induction

=
∑

r∈S

µ(r) · Prob
A[s

a,µ
−−→r]

(r)({ω | (s
a,µ
−−→ r) ∈ X ∪ Y })

The final case is when we have the element C(s). By definition of C(·) we

have that C(s) =
⋃

r∈supp(µ) C(s
a,µ
−−→ r). But this union is proven by the previous

cases.

A.2 Proof of Theorem 1

Only result 1 remains to be proven. The proof is very similar to the proof of
Proposition 29 in [18], however the length of paths match in JAK and M . Let
JAK = (S, sinit, T ). Let (Σ, sinit, D) be the reachability graph generated by Algo-
rithm 1, thus Visited = Σ. Let M = (Σ, σinit, T ) be the MDP generated using
Definition 8, i.e. MDP(Σ, sinit, D) = M .

We introduce two new notations that improve the readability of the proof.
Notice that by Definition 5 each state s ∈ S is a tuple (l, v, c) such that l ∈ L,
v ∈ inv(l) and c ∈ R≥0. We overload the + operator and let s+d denote the state
reached from s after a time transition with delay d. Thus, s+d = (l, v + d, c +

d · $̇(l)). For any (l, g, p) ∈ edges and f ∈ supp(p) we know that f = (R, h, l′) for
some R ⊆ X, h ∈ N and l′ ∈ L. We abuse notation by using f as a function and
let f(s) = (l′, v[R := 0], c + h).

The proof needs the following properties:

1. If SupProbReach
≤n

JAK(s, σgoal) > 0 then there exists σ ∈ Σ such that s ∈

tpre(σ).
2. For all (σ, a, µ) ∈ T , if a = τ and µ = {ρ 7→1}, then σ ⊆ ρ.
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3. For all n ∈ N, σ ∈ Σ, B ∈ Pol(M), s ∈ tpre(σ) there exists A ∈ Pol(JAK) such
that:

ProbReach
≤n
A (s, σgoal) ≥ ProbReach

≤n
B (σ, {σgoal})

4. For all n ≤ maxlength, s ∈ S, A ∈ Pol(JAK), if SupProbReach
≤n
JAK(s, σgoal) > 0,

then there exist i ≤ n, σ ∈ Waitingi, B ∈ Pol(M) such that s ∈ tpre(σ) and

ProbReach
≤n
B (σ, {σgoal}) ≥ ProbReach

≤n
A (s, σgoal)

5. For all n ≤ maxlength, A ∈ Pol(JAK), there exist B ∈ Pol(M) such that

ProbReach
≤n
B ({σgoal}) ≥ ProbReach

≤n
A (σgoal)

By Definition 5, sinit = (linit, {x 7→ 0 | x ∈ X}, 0). From Algorithm 1 we have that
σinit = {sinit}. Then tpre(σinit) = σinit by definition of tpre. Thus sinit ∈ tpre(σinit).
Using property 3 and the definition of SupProbReach we have that:

SupProbReach
≤n

JAK(σgoal) ≥ SupProbReach
≤n
M ({σgoal})

Using property 5 and the definition of SupProbReach we have that:

SupProbReach
≤n

JAK(σgoal) ≤ SupProbReach
≤n
M ({σgoal})

Combining the two inequations above concludes the proof.

Proof of property 1 If SupProbReach
≤n
JAK(s, σgoal) > 0 then there exists a finite

path ω ∈ Paths∗JAK such that ω0 = s, |ω| ≤ n, and last(ω) ∈ σgoal. By induction
on n and the definition of dpre and tpre, we can conclude there exists a path
ω ∈ Paths∗M such that |ω| ≤ n, s ∈ tpre(ω0), and last(ω) = σgoal.

Proof of property 2 For any (σ, a, µ) ∈ T with a = τ and µ = {ρ 7→1}, by
Definition 8, we have that (σ, τ, ρ) ∈ D. The proof is by induction on n, which
represents the number of directions in D that use action τ . For n = 2, from
Algorithm 1, we can see all directions are added as a result of line 6, and clearly
σ ⊆ ρ.

Now assume the property holds for some n ≥ 2. We will proof it also holds
for n + 1. The last direction that was added to D and uses action τ must have
been added on line 19. From lines 17–19 we see that it was added as a result of
an existing direction that uses action τ . From line 19 we see that σ ⊆ ρ holds.

Proof of property 3 The proof is by induction on n. Now look at the case when
n = 0. By definition of ProbReach, two cases have to be considered.

– If ProbReach
≤n
B (σ, {σgoal}) = 1, then σ = σgoal. From Algorithm 1 we have

that σgoal = {lgoal × inv(lgoal)× [0, cbound]}. Then tpre(σgoal) = σgoal by defini-

tion of tpre. Since s ∈ tpre(σ) = σgoal we have ProbReach
≤n
A (s, σgoal) = 1 for

any policy A ∈ Pol(JAK).
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– If ProbReach
≤n
B (σ, {σgoal}) = 0, then for any policy A ∈ Pol(JAK) the in-

equality holds.

Now suppose that property 3 holds for n. We will proof it also holds for n+1. If
σ = σgoal, then the result follows as in the first case for n = 0. We are therefore
left to consider the case when σ 6= σgoal. Let B(σ) = (ā, µ̄). By Lemma 3:

ProbReach
≤n+1
B (σ, {σgoal}) =

∑

ρ∈Σ

µ̄(ρ) · ProbReach
≤n

B[σ
ā,µ̄
−−→ρ]

(ρ, {σgoal}) (1)

When ā = τ , we have that µ̄ = {ρ′ 7→1} for some ρ′ ∈ Σ. Using property 2
we have that σ ⊆ ρ′. By definition of tpre we have that s ∈ tpre(ρ′). Thus:

RHS of (1) = ProbReach
≤n

B[σ
ā,µ̄
−−→ρ′]

(ρ′, {σgoal})

≤ ProbReach
≤n
A (s, σgoal) for some A by induction

≤ ProbReach
≤n+1
A (s, σgoal) by Lemma 1

Now look at the case when ā 6= τ . By Definition 8, for some De,µ̄ with
e = (l, g, p) and ā = e we have that

RHS of (1) =
∑

ρ∈Σ





∑

(σ,e,f,ρ)∈De,µ̄

p(f)



 · ProbReach
≤n

B[σ
e,µ̄
−−→ρ]

(ρ, {σgoal})

=
∑

(σ,e,f,ρ)∈De,µ̄

p(f) · ProbReach
≤n

B[σ
e,µ̄
−−→ρ]

(ρ, {σgoal}) (2)

Because s ∈ tpre(σ) there exists a time transition s
d
−→ s+d in JAK, with

s+d ∈ σ. From Algorithm 1 we can see that (σ, e, f, ρ) ∈ De,µ̄ implies that
σ ⊆ dpree,f (tpre(ρ)). By definition of dpre we have that f(s+d) ∈ tpre(ρ) and
s+d |= v. Thus, by induction for any (σ, e, f, ρ) ∈ De,µ̄ there exists a policy
Af ∈ Pol(JAK) such that:

ProbReach
≤n

Af (f(s+d), σgoal) ≥ ProbReach
≤n

B[σ
e,µ̄
−−→ρ]

(ρ, {σgoal})

Let A be the policy such that:

– A(s) = (d, µ), where for any r = (l′, v′, c′) ∈ S:

µ(r) =
∑

R⊆X s.t.
v′=(v+d)[R:=0]

p(R, c′−d · $̇(l)−c, l′) =
∑

f∈supp(p) s.t.
f(s+d)=r

p(f)

The probabilistic transition s
d,µ
−−→ exists due to Definition 5.

– For any (σ, e, f, ρ) ∈ De,µ̄:

A[s
d,µ
−−→ f(s+d)] = Af
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Now we are able to complete the proof of property 3 as follows:

ProbReach
≤n+1
B (σ, {σgoal})

=
∑

(σ,e,f,ρ)∈De,µ̄

p(f) · ProbReach
≤n

B[σ
e,µ̄
−−→ρ]

(ρ, {σgoal}) by (1) and (2)

≤
∑

(σ,e,f,ρ)∈De,µ̄

p(f) · ProbReach
≤n

Af (f(s+d), σgoal) by induction

≤
∑

f∈supp(p)

p(f) · ProbReach
≤n

Af (f(s+d), σgoal)

=
∑

r∈S

∑

f∈supp(p) s.t.
f(s+d)=r

p(f) · ProbReach
≤n

Af (r, σgoal) by rewriting

=
∑

r∈S









∑

f∈supp(p) s.t.
f(s+d)=r

p(f)









· ProbReach
≤n

A[s
d,µ
−−→r]

(r, σgoal) by construction of A

=
∑

r∈S

µ(r) · ProbReach
≤n

A[s
d,µ
−−→r]

(r, σgoal) by construction of A

= ProbReach
≤n+1
A (s, σgoal) by Lemma 3

Proof of property 4 The proof is by induction on n. Now look at the case when
n = 0. By definition of ProbReach, two cases have to be considered.

– If ProbReach
≤n
A (s, σgoal) = 1, then s ∈ σgoal ∈ Waiting0. We have s ∈

tpre(σgoal) by definition of tpre. Now, for arbitrary B we have that ProbReach
≤n
B (σgoal, {σgoal}) =

1.
– The case ProbReach

≤n
A (s, σgoal) = 0. Since we assumed SupProbReach

≤n
JAK(s, σgoal) >

0, by property 1, we have that s ∈ tpre(σ) for some σ ∈ Σ. Clearly from the
algorithm we see that then for some i ≤ n we have that σ ∈ Waitingi. Now
for any policy B ∈ Pol(M) the inequality holds.

Now suppose that property 4 holds for n. We will prove it also holds for
n + 1 ≤ maxlength. If ProbReach

≤n+1
A (s, σgoal) = 0, then the result follows as in

the second case for n = 0. We are therefore left to consider the case when

ProbReach
≤n+1
A (s, σgoal) > 0 (3)

If s ∈ σgoal, then the result follows as in the first case for n = 0. We are therefore
left to consider the case when s /∈ σgoal. Let A(s) = (d, µ). By Lemma 3:

ProbReach
≤n+1
A (s, σgoal) =

∑

r∈S

µ(r) · ProbReach
≤n

A[s
d,µ
−−→r]

(r, σgoal) (4)

By Definition 5 we can distinguish two cases.
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1. A chooses a time transition, so µ = {r 7→1} for some r ∈ S, then

RHS of (4) = ProbReach
≤n

A[s
d,µ
−−→r]

(r, σgoal) (5)

Using assumption (3) we conclude SupProbReach
≤n

JAK(r, σgoal) > 0. Now, by

induction, the exists i ≤ n, σ ∈ Waitingi, B ∈ Pol(M) such that r ∈ tpre(σ)
and

RHS of (5) ≤ ProbReach
≤n
B (σ, {σgoal})

Clearly s ∈ tpre(σ), and using Lemma 1 we are done.

2. A chooses a delayed discrete (probabilistic) transition. By Definition 5:

RHS of (4) =

∑

r∈S









∑

f∈supp(p) s.t.
f(s+d)=r

p(f)









· ProbReach
≤n

A[s
d,µ
−−→r]

(r, σgoal)

=
∑

f∈supp(p)

p(f) · ProbReach
≤n

A[s
d,µ
−−→f(s+d)]

(f(s + d), σgoal) (6)

Now consider any f ∈ supp(p) such that ProbReach
≤n

A[s
d,µ
−−→f(s+d)]

(f(s +

d), σgoal) > 0. By induction there exists i ≤ n, a zone ρf ∈ Waitingi, and a
policy Bf ∈ Pol(M) such that f(s + d) ∈ tpre(ρf ) and

ProbReach
≤n

Bf (ρf , {σgoal}) ≥ ProbReach
≤n

A[s
d,µ
−−→f(s+d)]

(f(s + d), σgoal) (7)

Let σf = dpree,f (tpre(ρf )). By definition of dpre we have that s+d ∈ σf . By

lines 13–15 of Algorithm 1 we have that σf ∈ Waitingi+1 and (σf , e, f, ρf) ∈
D. On lines 17–21 of the algorithm the following zone wil be constructed:

σ =
⋂

{σf | f ∈ supp(p) ∧ SupProbReach
≤n

JAK(f(s + d), σgoal) > 0}

Clearly s+d ∈ σ, thus s ∈ tpre(σ). Moreover, the following directions are
constructed:

D′ = {(σ, e, f, ρf) | f ∈ supp(p) ∧ SupProbReach
≤n

JAK(f(s + d), σgoal) > 0}

Now construct µ̄ using Definition 8, where De,µ̄ ⊇ D′. Let B ∈ Pol(M) such

that B(σ) = (e, µ̄) and B[σ
e,µ̄
−−→ ρf ] = Bf . We are now able to finish the
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proof as follows:

ProbReach
≤n+1
B (σ, {σgoal})

=
∑

ρ∈Σ

µ̄(ρ) · ProbReach
≤n

B[σ
e,µ̄
−−→ρ]

(ρ, {σgoal}) by Lemma 3

=
∑

ρ∈Σ





∑

(σ,(l,g,p),f,ρ)∈De,µ̄

p(f)



 · ProbReach
≤n

B[σ
e,µ̄
−−→ρ]

(ρ, {σgoal})

by construction of µ̄ in Definition 8

≥
∑

(σ,(l,g,p),f,ρf )∈D′

p(f) · ProbReach
≤n

B[σ
e,µ̄
−−→ρf ]

(ρf , {σgoal}) by construction of De,µ̄

=
∑

(σ,(l,g,p),f,ρf )∈D′

p(f) · ProbReach
≤n

Bf (ρf , {σgoal}) by construction of B

≥
∑

(σ,(l,g,p),f,ρf )∈D′

p(f) · ProbReach
≤n

A[s
d,µ
−−→f(s+d)]

(f(s + d), σgoal) by (7)

=
∑

f∈supp(p) s.t.

ProbReach
≤n

A[s
d,µ
−−→f(s+d)]

(f(s+d),σgoal)>0

p(f) · ProbReach
≤n

A[s
d,µ
−−→f(s+d)]

(f(s + d), σgoal)

by construction of D′

= ProbReach
≤n+1
A (s, σgoal) by (6) and (4)

Proof of property 5 The proof is by induction on n. Now look at the case when
n = 0. By definition of ProbReach, two cases have to be considered.

– If ProbReach
≤n
A (σgoal) = 1, then sinit ∈ σgoal ∈ Waiting0. But then σinit ⊆

σgoal. By line 4 of Algorithm 1: σinit = σgoal. Now, for arbitrary B we have

that ProbReach
≤n
B ({σgoal}) = 1.

– If ProbReach
≤n
A (σgoal) = 0, for any policy B ∈ Pol(M) the inequality holds.

Now suppose that property 5 holds for n. We will prove it also holds for
n + 1 ≤ maxlength. By Definition 5, we can distinguish two cases.

– A chooses a time transition, then from Algorithm 1 we know that inv(linit) =
∧

x∈X
(x = 0). Therefore only the time transition with zero delay is possible

from sinit, and by Lemma 3 we have the following:

ProbReach
≤n+1
A (σgoal) = ProbReach

≤n

A[sinit

0−→sinit]
(σgoal) (8)

By induction there exists B ∈ Pol(M) such that

RHS of (8) ≤ ProbReach
≤n
B ({σgoal})

≤ ProbReach
≤n+1
B ({σgoal}) by Lemma 1
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– A chooses a delayed discrete (probabilistic) transition. If ProbReach
≤n+1
A (σgoal) =

0 the inequality holds for any policy B ∈ Pol(M). Now, assume ProbReach
≤n+1
A (σgoal) >

0. This implies SupProbReach
≤n+1
JAK (sinit, σgoal) > 0. By property 4, there ex-

ists i ≤ n + 1, σ ∈ Waitingi, B′ ∈ Pol(M) such that sinit ∈ tpre(σ) and

ProbReach
≤n+1
A (σgoal) ≤ ProbReach

≤n+1
B′ (σ, {σgoal}) (9)

From Algorithm 1 we know that inv(linit) =
∧

x∈X
(x = 0). Therefore tpre(σ) =

σ and sinit ∈ σ. In case σ = σgoal, we have that sinit ∈ σgoal, and the result
follows as in the first case for n = 0. We are therefore left to consider the
case when σ /∈ {σgoal}. Let B′(σ) = (e, µ′).

RHS of (9)

=
∑

ρ∈Σ

µ′(ρ) · ProbReach
≤n

B′[σ
e,µ′

−−→ρ]

(ρ, {σgoal}) by Lemma 3

=
∑

ρ∈Σ





∑

(σ,(l,g,p),f,ρ)∈De,µ′

p(f)



 · ProbReach
≤n

B′[σ
e,µ′

−−→ρ]

(ρ, {σgoal})

by construction of µ′ in Definition 8

=
∑

(σ,(l,g,p),f,ρ)∈De,µ′

p(f) · ProbReach
≤n

B′[σ
e,µ′

−−→ρ]

(ρ, {σgoal})

Because of the invariant inv(linit), we have that σinit ⊆ σ. From lines 17–19
of Algorithm 1, we conclude that we can construct D′ ⊆ D such that for
each (σ, e, f, ρ) ∈ De,µ′ there exists (σinit, e, f, ρ) ∈ D′. Using Definition 8,
we have that (σinit, e, µ), where De,µ = D′. Now, we can construct policy

B ∈ Pol(M) such that B(σinit) = (e, µ) and B[σinit
e,µ
−−→ ρ] = B′[σ

e,µ′

−−→ ρ] for
any ρ ∈ supp(µ). We are now able to finish the proof as follows:

∑

(σ,(l,g,p),f,ρ)∈De,µ′

p(f) · ProbReach
≤n

B′[σ
e,µ′

−−→ρ]

(ρ, {σgoal})

=
∑

(σinit,(l,g,p),f,ρ)∈D′

p(f) · ProbReach
≤n

B[σinit

e,µ
−−→ρ]

(ρ, {σgoal})

=
∑

ρ∈Σ

µ(ρ) · ProbReach
≤n

B[σinit

e,µ
−−→ρ]

(ρ, {σgoal})

= ProbReach
≤n+1
B ({σgoal}) by Lemma 3

A.3 Proof of Theorem 2

We will need the following lemma.

Lemma 5. For any two zones ρ, σ ∈ Σ, when ρ ⊃ σ, then either ρ ⊃− σ or
there exists a zone υ ∈ Σ such that ρ ⊃ υ ⊃− σ.

29



Proof. See [11].

We will now define a notion of weak simulation on reachability graphs needed
for this proof and later proofs. It differs from the traditional notion in that a
transition s

a
−→ r will not be simulated by a path s̄ ⇒

a
−→⇒ r̄, but a path s̄

a
−→⇒ r̄

instead. This limitation is essential to Lemma ??. The necessity of the limitation
is best shown with the following small example.

Assume a probabilistic transition (s, a, µ) in MDP(M), that is generated by
Definition 8 from De,µ = {(s, e, f1, r), (s, e, f2, r)}. Without the limitation there

may exist paths s̄ ⇒ q1
e,f1
−−→⇒ r̄ and s̄ ⇒ q2

e,f2
−−→⇒ r̄, but we are not guaranteed

that there exists a distribution with two outcomes, since q1 and q2 may differ,
thus the probability of reaching r̄ from s̄ is lower than reaching r from s.

Definition 10 (Weak Simulation). Given reachability graphs Q = (S, sinit, D)
and Q̄ = (S̄, s̄init, D̄), we say that Q̄ simulates Q if there exists a relation
R ⊆ S × S̄ such that

1. sinit R s̄init

2. if s R s̄ and s
a
−→ r, then either a = τ and r R s̄, or there exists an r̄ such

that s̄
a
−→⇒ r̄ and r R r̄.

R is called a weak simulation relation.

Lemma 6. Given reachability graphs Q = (S, sinit, D), Q̄ = (S̄, s̄init, D̄), and
G ⊆ S. Assume Q̄ simulates Q via R. Let Ḡ = {s̄ | ∃s ∈ G.s R s̄}, then:

1. For any A ∈ Pol(MDP(Q)), there exists Ā ∈ Pol(MDP(Q̄)) such that

ProbReachĀ(Ḡ) ≥ ProbReachA(G)

2.
SupProbReachMDP(Q̄)(Ḡ) ≥ SupProbReachMDP(Q)(G)

Proof. Result 2 follows in a straightforward manner from result 1. The proof
of result 1 follows straightforwardly from the following lemma which is more
general. ⊓⊔

Lemma 7. Given reachability graphs Q = (S, sinit, T ), Q̄ = (S̄, s̄init, T̄ ), and
G ⊆ S. Assume Q̄ simulates Q via R. Let Ḡ = {s̄ | ∃s ∈ G.s R s̄}. For any
s ∈ S, A ∈ Pol(Q), n ∈ N, and s̄ ∈ S̄ with s R s̄, we have that there exists
Ā ∈ Pol(Q̄) such that

ProbReachĀ(s̄, Ḡ) ≥ ProbReach
≤n
A (s, G)

Proof. When s ∈ G, the righthand side equals 1 by definition of ProbReach.
By definition of Ḡ, we have that s̄ ∈ Ḡ, thus also the lefthand side equals 1.
Now assume s /∈ G. When s̄ ∈ Ḡ, the lefthand side equals 1 by definition of
ProbReach, and the inequality follows trivially. Now assume s̄ /∈ Ḡ.
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The proof is by induction on n. For n = 0, the righthand side equals 0 by
definition of ProbReach, and the inequality follows trivially.

Now assume the lemma holds for n, we prove it also holds for n + 1. Let
A(s) = (a, µ). By Lemma 3:

ProbReach
≤n+1
A (s, G) =

∑

r∈S

µ(r) · ProbReach
≤n

A[s
a,µ
−−→r]

(r, G) (10)

Look at the case when a 6= τ . By Definition 8: µ(r) =
∑

(s,(l,g,p),f,r)∈De,µ
p(f)

for some De,µ, and a = e. By weak simulation, for every δ = (s, e, f, r) ∈ De,µ,

there exists ωδ ∈ Paths∗Q̄ of the form (ωδ)0 ⇒ last(ωδ) such that s̄
e,f
−−→ ωδ and

r R last(ωδ). By induction there exists Aδ ∈ Pol(Q̄) such that:

ProbReachAδ (last(ωδ), Ḡ) ≥ ProbReach
≤n

A[s
e,µ
−−→r]

(r, G)

Let D′ = {(s̄, e, f, (ωδ)0) | δ = (s, e, f, r) ∈ De,µ}. Now construct µ̄ using
Definition 8, where De,µ̄ ⊇ D′. Let Ā ∈ Pol(M̄) such that Ā(s̄) = (e, µ̄),

ProbĀ(s̄)(C(s̄
e,µ̄
−−→ ωδ)) = µ̄((ωδ)0) and Ā[s̄

e,µ̄
−−→ ωδ] = Aδ for any δ ∈ De,µ.

Note that when the state (ωδ)0 is reached after resolving the probabilistic choice
of µ̄, policy Ā will take all the τ transitions of ωδ. We conclude the case as
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follows:

ProbReach
≤n+1
A (s, G)

=
∑

r∈S

µ(r) · ProbReach
≤n

A[s
e,µ
−−→r]

(r, G) by (10)

=
∑

r∈S





∑

(s,(l,g,p),f,r)∈De,µ

p(f)



 · ProbReach
≤n

A[s
e,µ
−−→r]

(r, G) by Definition 8

=
∑

(s,(l,g,p),f,r)∈De,µ

p(f) · ProbReach
≤n

A[s
e,µ
−−→r]

(r, G) by rewriting

≤
∑

δ=(s,(l,g,p),f,r)∈De,µ

p(f) · ProbReach
≤n

Aδ (last(ωδ), Ḡ) by induction

=
∑

δ=(s,(l,g,p),f,r)∈De,µ

p(f) · ProbReach
≤n

Ā[s̄
e,µ̄
−−→(ωδ)0]

((ωδ)0, Ḡ)

by construction of Ā

=
∑

(s,(l,g,p),f,r̄)∈D′

p(f) · ProbReach
Ā[s̄

e,µ̄
−−→r̄]

(r̄, Ḡ) by construction of D′

≤
∑

(s,(l,g,p),f,r̄)∈De,µ̄

p(f) · ProbReach
Ā[s̄

e,µ̄
−−→r̄]

(r̄, Ḡ) since De,µ̄ ⊇ D′

=
∑

r̄∈S̄





∑

(s,(l,g,p),f,r)∈De,µ̄

p(f)



 · ProbReach
Ā[s̄

e,µ̄
−−→r̄]

(r̄, Ḡ) by rewriting

=
∑

r̄∈S̄

µ̄(r̄) · ProbReach
Ā[s̄

e,µ̄
−−→r̄]

(r̄, Ḡ) by construction of µ̄ in Definition 8

= ProbReachĀ(s̄, Ḡ) by Lemma 3

In case a = τ , we have that µ = {r 7→1} for some r ∈ S.

RHS of (10) = ProbReach
≤n

A[s
a,µ
−−→r]

(r, G) (11)

By induction there exists Ā ∈ Pol(M̄) such that

ProbReachĀ(s̄, Ḡ) ≥ RHS of (11)

and we are done. ⊓⊔

Assume that (S, sinit, D) and (S̄, s̄init, D̄) are the reachability graphs generated
by the original and new algorithm, respectively. Assume that M = (S, sinit, T )
and M̄ = (S̄, s̄init, T̄ ) are the MDPs generated on the output of the original and
new algorithm, respectively, using Definition 8. Note that s̄init = sinit.

We will prove the following equation, from which the theorem follows straight-
forwardly.

SupProbReachM̄ ({σgoal}) = SupProbReachM ({σgoal})
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We have the following equation:

D̄ = {(σ, e, f, ρ) ∈ D | ∄(σ, e, f, ρ′) ∈ D.ρ′ ⊂ ρ}∪

{(σ, (l, true, p), ∅, ρ) ∈ D | ρ ⊃− σ ∧ (σ uses l) ∧ p = {(l, ∅)7→1}} (12)

The second part of the union follows directly from Optimization 1 Fragment B.
Since Fragment B is executed only at the very end, we see that before executing
Fragment B, D̄ should be equal to the first part of the union. This follows directly
from Optimization 1 Fragment A that is executed after each added edge.

It follows directly from Optimization 1 that S̄ = S. We define relations
R1, R2 :⊆ S × S as follows: R1 = {(s, s̄) | s = s̄} and R2 = {(s̄, s) | s̄ ⊇ s}.
We will prove (S̄, s̄init, D̄) simulates (S, sinit, D) via R1, and (S, sinit, D) simulates
(S̄, s̄init, D̄) via R2, both non-probabilistically in the sense of Definition 10. The
theorem then follows straightforwardly by Lemma ??.

Clearly sinit R1 s̄init. Assume s R1 s̄ and s
a
−→ r. Note that s = s̄ by construction

of R1. In case this direction is also present in D̄ condition 2 holds. In case this
direction is not present in D̄ this is as a result of Fragment A. Fragment A may
delete multiple directions, but in the end, for each deleted direction s

a
−→ r there

will be a direction s
a
−→ r′ with r′ ⊂ r. Now, by Lemma 5, Fragment B makes

sure there is a path of directions r′ ⇒ r in D̄. Then condition 2 holds.
Clearly s̄init R2 sinit. Assume s̄ R2 s and s̄

a
−→ r̄. In case this direction was not

added as a result of Fragment B, we know that it also exists in D. Note that
s̄ ⊇ s by construction of R2. Because s̄∩ s = s 6= ∅ on line 18, and due to line 19
there will be a direction s

a
−→ r, with r = r̄. Since r̄ R2 r we are done. In case

s̄
a
−→ r̄ was added as a result of Fragment B, we know that a = τ and r̄ ⊃− s̄.

But then r̄ ⊇ s, which implies r̄ R2 s and we are done.

A.4 Proof of Theorem 3

Assume D, D̄ are the directions generated by the original and new algorithm,
respectively. Assume M = (Σ, σinit, T ) and M̄ = (Σ̄, σ̄init, T̄ ) are the MDPs
generated on the output of the original and new algorithm, respectively, using
Definition 8. Note that σ̄init = σinit.

We need the following property. For any σ ∈ Σ and A ∈ Pol(M), there exists
σ̄ ∈ Σ̄ and Ā ∈ Pol(M̄) such that σ̄ ⊇ σ and

ProbReach
≤n

Ā
(σ̄, {σgoal}) = ProbReach

≤n
A (σ, {σgoal})

Using this property we conclude there exists σ̄ ⊇ σinit and Ā ∈ Pol(M̄) such that

ProbReach
≤n

Ā
(σ̄, {σgoal}) = ProbReach

≤n
A ({σgoal})

It follows that the condition on the intersection of line 18’ holds for the intersec-
tion σ̄ ∩ σinit. Since σ̄ ∩ σinit = σinit, by line 19 for every (σ, e, f, ρ) ∈ D, if σ = σ̄,
then also (σinit, e, f, ρ) ∈ D. Let Ā(σ̄) = (a, µ). By Definition 8: µ is defined
by some De,µ. Let De,µ′ = {(σinit, e, f, ρ) | (σ̄, e, f, ρ) ∈ De,µ}, which by Defini-
tion 8 defines µ′. Let A′ ∈ Pol(M̄) be the policy such that A′(σinit) = (a, µ′) and
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A′[σinit
a,µ′

−−→ ρ] = A[σ̄
a,µ
−−→ ρ] for any ρ ∈ Σ̄. Clearly we can conclude the proof

with

ProbReach
≤n
A′ ({σgoal}) = ProbReach

≤n

Ā
(σ̄, {σgoal})

Proof of the property The proof is by induction on n. If n = 0 and σ = σgoal

then ProbReachA(σ, {σgoal}) = 1. We can choose σ̄ = σgoal since σgoal ∈ Σ̄, thus
we are done. For n = 0 and σ 6= σgoal then ProbReachA(σ, {σgoal}) = 0 and we
are done.

Now assume the property holds for n. We will prove it will also holds for n+1.
In case σ = σgoal, the proof is completed as for n = 0. Now assume σ 6= σgoal.
Let A(σ) = (a, µ). By Lemma 3:

ProbReach
≤n+1
A (σ, {σgoal}) =

∑

ρ∈Σ

µ(ρ) · ProbReach
≤n

A[σ
a,µ
−−→ρ]

(ρ, {σgoal}) (13)

By Definition 8: ∀ρ ∈ Σ.µ(ρ) =
∑

(σ,e,f,ρ)∈De,µ
p(f) for some De,µ ⊆ D, where

e = (l, g, p). By induction, for every (σ, e, f, ρ) ∈ De,µ there exists ρ̄ ∈ Σ̄ and
Aρ̄ ∈ Pol(M̄) such that ρ̄ ⊇ ρ and

ProbReach
≤n
Aρ̄

(ρ̄, {σgoal}) = ProbReach
≤n

A[σ
a,µ
−−→ρ]

(ρ, {σgoal})

Zone σ̄ = dpree,f (tpre(ρ̄)) will be generated by line 15 since ρ̄ ∈ Σ̄, thus

(σ̄, e, f, ρ̄) ∈ D̄. From the definitions of dpre and tpre it is easy to see that
σ̄ ⊇ σ.

Let D′ ⊆ D̄ be such that for every (σ, e, f, ρ) ∈ De,µ there exists a (σ̄, e, f, ρ̄) ∈
D′ as described above. Now let σ′ =

⋂

(σ̄,e,f,ρ̄)∈D′ σ̄. And let De,µ̄ = {(σ′, e, f, ρ̄) |

∃σ̄.(σ̄, e, f, ρ̄) ∈ D′}. From De,µ by Definition 8 the new condition in line 18’ will
hold for each pair of elements of De,µ̄. By Definition 8 we have (σ′, µ̄) ∈ T̄ .
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Now let Ā be the policy such that Ā(σ′) = (a, µ̄) and Ā(σ′ e,f,µ̄
−−−→ ρ̄) = Aρ̄(ρ̄).

Now putting everything together:

RHS of (13) =
∑

ρ∈Σ

µ(ρ) · ProbReach
≤n
Aρ̄

(ρ̄, {σgoal}) by induction

=
∑

ρ∈Σ





∑

(σ,(l,g,p),f,ρ)∈De,µ

p(f)



 · ProbReach
≤n
Aρ̄

(ρ̄, {σgoal}) by Definition 8

=
∑

(σ,(l,g,p),f,ρ)∈De,µ

p(f) · ProbReach
≤n
Aρ̄

(ρ̄, {σgoal})

=
∑

(σ′,(l,g,p),f,ρ̄)∈De,µ̄

p(f) · ProbReach
≤n
Aρ̄

(ρ̄, {σgoal}) by construction of De,µ̄

=
∑

ρ̄∈Σ̄





∑

(σ′,(l,g,p),f,ρ̄)∈De,µ̄

p(f)



 · ProbReach
≤n
Aρ̄

(ρ̄, {σgoal})

=
∑

ρ̄∈Σ̄

µ̄(ρ̄) · ProbReach
≤n
Aρ̄

(ρ̄, {σgoal}) by Definition 8

=
∑

ρ̄∈Σ̄

µ̄(ρ̄) · ProbReach
≤n

Ā[σ̄−→ρ]
(ρ̄, {σgoal}) by definition of Ā

= ProbReach
≤n+1

Ā
(σ̄, {σgoal}) by Lemma 3

A.5 Proof of Theorem 4

Let Q = (S, sinit, D) and Q̄ = (S̄, s̄init, D̄). Let M = MDP(Q) and M̄ = MDP(Q̄).
By definition of Optimization 3: S̄ = S ∪ I and s̄init = sinit.

We will prove the following two properties, from which the theorem follows
straightforwardly.

1. For any s ∈ S, G ⊆ S, and A ∈ Pol(M), there exists Ā ∈ Pol(M̄) such that

ProbReachA(s, G) ≤ ProbReachĀ(s, G)

2. For any n ∈ N, s ∈ S, G ⊆ S, and Ā ∈ Pol(M̄), there exists A ∈ Pol(M)
such that

ProbReach
≤n

Ā
(s, G) ≤ ProbReachA(s, G)

Proof of property 1 We define a relation R ⊆ S × S̄ as follows: R = {(s, s̄) |
s = s̄}. We will prove Q̄ simulates Q via R non-probabilistically in the sense of
Definition 10. The property then follows straightforwardly by Lemma ??.

Clearly sinit R s̄init. Assume s R s̄ and s
a
−→ r. Note that s = s̄ by construction

of R. In case this direction is also present in D̄ condition 2 holds. In case this
direction is not present in D̄, there exist directions s

a
−→ (s, a) and (s, a)

τ
−→ r in

D̄, thus condition 2 holds.
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Proof of property 2 The proof is by induction on n. For n = 0, in case s ∈ G
both sides are 1. In case s /∈ G the left side is 0.

Now assume the property holds for n. We will prove it also holds for n + 1.
In case s ∈ G both sides are 1. Now assume s /∈ G, then by Lemma 3, when
Ā(s) = (a, µ):

ProbReach
≤n+1
Ā

(s, G) =
∑

r∈S

µ(r) · ProbReach
≤n

Ā[s
a,µ
−−→r]

(r, G)

By induction there exist policies Ar such that:

≤
∑

r∈S

µ(r) · ProbReachAr
(r, G)

Let A be an policy such that A(s
a,µ
−−→ ω′) = Ar(ω

′), and A(ω) is arbitrary in

case ω does not have the form s
a,µ
−−→ ω′. By Definition 3:

=
∑

r∈S

µ(r) · ProbReach
A[s

a,µ
−−→r]

(r, G)

= ProbReachA(s, G) by Lemma 3

⊓⊔
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