The consensus problem, slightly generalised

- Decision value is binary
 - Output register initially \perp, can only be written once.
- Consistency
 - all correct processes decide on the same value
- Non-triviality
 - there is an execution in which 0 is decided, and there is an execution in which 1 is decided
 - Note that we do not assume any relationship with the input values.
- Input combinations
 - All combinations of per-process allowed input values constitute a possible starting configuration
 - To disallow problems where the output is already ‘baked’ into all possible inputs
- Asynchronous

The consensus problem, slightly generalised

- 1-crash run: at least $n - 1$ processors take infinite number of steps
 - A terminating processor can always be augmented with a busy while loop
- 1-crash fair run: a 1-crash run where all correct processors receive messages sent to them
- Termination: In every 1-crash fair run all correct processors decide
Fischer – Lynch – Paterson impossibility

- No distributed protocol exists with these five properties: consensus, non-triviality, input-combinations, asynchronous, termination.

- Paraphrased: consensus cannot be solved in a completely asynchronous system.

Preliminaries (1)

- Recall configuration C contains local state $C[p]$ of processor p as well as state (i.e., buffer of messages in transit) $C[e]$, of edge $e = (p,q)$.

- Events, i.e., processor steps, move the system from one configuration to the next.
 - A step is a pair (p,m) that is applicable in a certain state of processor p when m is in transit to p; it changes the state of p and may send a new message. If $m = \emptyset$ then the step is applicable independent of messages being in transit.

- Let run $\sigma = a_1, a_2, a_3, ..., a_n$ then $\sigma(C)$ is the configuration C' that results from applying the steps $a_1, a_2, a_3, .., a_n$ to C in sequence.
 - A configuration C is reachable from C if there is a finite run σ such that $C' = \sigma(C)$.
 - We write $\Sigma(C)$ for the set of all configurations reachable from C.

Preliminaries (2)

- A configuration C is accessible if it is reachable from some initial configuration C_0.

- A configuration C has decision value v if $C[p].decision = v$ for some processor p.
 - A configuration is v-valent if v is the only decision value for all reachable configurations.
 - A configuration is bivalent if both decision values are reachable.

- A run is admissible if at most 1 processor is faulty (and all messages to non-faulty processors are eventually received).
 - A processor is non-faulty if it takes infinitely many steps.
Let P be a consensus protocol

P is partially correct if

- No accessible configuration has more than 1 decision value
- For $v \in \{0, 1\}$ there is an accessible configuration with decision value v

P is deciding if some processor decides in that run

A run is deciding if some processor decides in that run

P is a totally correct consensus protocol in spite of one fault if it is partially correct and all its admissible runs are deciding

Idea:
- show that every partially correct protocol for the consensus problem has some admissible run that is not deciding.

Lemma 1: commutativity of steps

Lemma 1: If runs σ, σ' are disjoint (i.e. no processor takes that takes a step in σ occurs in σ' and vice versa), then they can be applied in either order to reach the same final configuration. i.e. $\sigma(\sigma'(C)) = \sigma'(\sigma(C))$.

Proof of lemma 1

Steps on one processor never disable steps on other processors (they can only send a message and hence enable an action.)
Lemma 2: bivalence exists initially

- **Lemma 2**: It has bivalent initial configurations
 - Suppose not. Then by partial correctness, \(P \) has both 0 and 1 valent initial configurations.
 - Let \(C_0 \) be 0 valent and \(C_1 \) be 1 valent, such that they differ only on the initial state of some processor \(p \).
 - Start in some 0-valent configuration and change the state of one processor at a time to its state in some fixed 1-valent configuration. At some point you cross from 0-valent to 1-valent. These are the \(C_0 \) and \(C_1 \) we need.
 - Let \(e \) be an admissible deciding run starting in \(C_0 \) in which (only) \(p \) takes no steps. (Such \(e \) exists because the protocol is partially correct, and it is admissible because only \(p \) takes no steps.) Let \(v \) be the decision value.
 - Let \(\sigma \) be an admissible deciding run starting in \(C_0 \) in which (only) \(p \) takes no steps. (Such \(\sigma \) exists because the protocol is partially correct, and it is admissible because only \(p \) takes no steps.) Let \(v \) be the decision value.
 - Start \(\sigma \) in \(C_1 \). Because \(C_0 \) and \(C_1 \) are equivalent except for the initial state of \(p \), and because \(p \) does not take any steps in \(\sigma \), the resulting configuration is equivalent except for the state of \(p \). Again the decision value is \(v \).
 - But then, if \(v = 1 \), \(C_0 \) is bivalent while if \(v = 0 \), \(C_1 \) is bivalent.

Lemma 3: bivalence cannot be avoided

- **Lemma 3**: Let \(C \) be bivalent and let \(a \) be an event enabled for \(p \) in \(C \).
 - Let \(X \) be the set of configurations reachable from \(C \) without applying \(a \), and let \(Y = \{ a(C') | C' \in X \} \).
 - Note that \(p \) may execute other events!
 - Because \(a \) is enabled in \(C \) it is enabled in all \(C' \in X \).
 - Then \(Y \) contains a bivalent configuration.

Proof of lemma 3

- Suppose \(Y \) contains no bivalent configurations
 - Let \(E \) be a \(0 \)-valent configuration reachable from \(C \).
 - Both exist because \(C \) is bivalent.
 - If \(E \in X \) let \(F = a(E) \in Y \); otherwise \(a \) was applied to reach \(E \) and so there is a \(F \in Y \) through which \(E \) was reached.
 - Because \(E \) is \(0 \)-valent, \(F \) is \(1 \)-valent:
 - One configuration is reached from the other, and by assumption \(F \) is not bivalent.
 - \(Y \) contains both \(0 \)-valent and \(1 \)-valent configurations.
Proof of lemma 3

Now let \(C, C_T \in \mathcal{X} \) such that \(D_T = a_K(C_T) \) is i-valent while \(C_5 = a_W(C_5) \) (w.l.o.g.) for some action \(a \) (i.e. they are 'neighbours')

- These \(D_T \) exist because \(\mathcal{Y} \) contains both 0 and 1 valent configurations

If \(p = q \) then \(D_T = a_W(D_T) \) by lemma 1, but this is impossible as this conflicts with valence of both configurations

If \(p = q \) let \(\sigma \) be any finite run in which \(q \) takes no steps and that leads to a decision when started in \(C_p \). Let \(\Lambda = \sigma(C_p) \).

By lemma 1, \(\sigma \) is also applicable to \(D \). Let \(E_T = \sigma(D) \). \(E_T \) is i-valent because \(D \) is.

By lemma 1, \(E_0 = a_K(\Lambda) \) and \(E_5 = a_W(a_W(\Lambda)) \). But then \(\Lambda \) is bivalent and not deciding, contradicting the choice of \(\sigma \).

Proof of impossibility result

Let \(C_0 \) be a bivalent initial configuration

- This one exists by lemma 2

Let \(C_T \) be the bivalent configuration at the start of stage \(i \)

- Let \(p \) be the processor that has taken a step longest ago that has an action \(a \) enabled:
 - Once enabled it will be enabled forever; hence the run constructed this way is fair and admissible

According to lemma 1 there is a bivalent configuration \(C_{i+1} \) reachable from \(C_i \) in which \(a \) takes the last step

Repeat forever, always staying bivalent