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Abstract

The optimal space used to represent routing schemes in
communication networks is established, both for worst-case
static networks and on the average for all static networks.
Several factors may influence the cost of representing a rout-
ing scheme for a particular network. It is therefore unavoid-
able that we first describe several reasonable models in which
to measure this cost. Failure to do so in the past has obfus-
cated previous results.

We show that, in most models, for almost all graphs
©(n?) bits are necessary and sufficient for shortest path
routing. By ‘almost all graphs’ we mean the Kolmogorov
random graphs which constitute a fraction of 1 —1/n° of all
graphs on n nodes, where ¢ > 3 is an arbitrary fixed con-
stant. In contrast, there is a model that rises the average
case lower bound to Q(n?logn) and another model where
the average case upper bound drops to O(nlog”n). This
clearly exposes the sensitivity of such bounds to the model
under consideration. Furthermore, if paths have to be short,
but need not be shortest (i.e., if the stretch factor may be
larger than 1), our other upper bounds indicate that much
less space is needed on average, even in the more demanding
models.

For worst-case static networks we prove a Q(n?logn)
lower bound for shortest path routing, for those models
where the nodes in the network are labelled 1,...,n. This
lower bound holds even for all stretch factors < 2.

Throughout, we use the incompressibility method based
on Kolmogorov complexity.

1 Introduction

A universal routing strategy for static communication net-
works will, for every network, generate a routing scheme
for that particular network. Such a routing scheme com-
prises a local routing function for every node in this network.
The routing function of node u returns for every destination
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v # u an edge incident to u on a path from w to v. This way,
a routing scheme describes a path, called a route, between
every pair of nodes u,v in the network. The stretch factor
of a routing scheme equals the maximum ratio between the
length of a route it produces, and the shortest path between
the endpoints of that route. The stretch factor of a routing
strategy equals the maximal stretch factor attained by any
of the routing schemes it generates. If the stretch factor of a
routing strategy equals 1, it is called a shortest path routing
strategy because then it generates for every graph a routing
scheme that will route a message between arbitrary v and v
over a shortest path between u and v.

In a full information shortest path routing scheme, the
routing function in w must, for each destination v return
all edges incident to u on shortest paths from u to v. These
schemes allow alternative, shortest, paths to be taken when-
ever an outgoing link is down.

We consider point to point communication networks on
n nodes described by an undirected graph G. The nodes of
the graph initially have unique labels taken from {1,...,n}.
Edges incident to a node v with degree d(v) are connected
to ports, with fixed labels 1,...,d(v), by a so called port as-
signment. This coincides with the minimal local knowledge
a node needs to route: a) a unique identity to determine
whether it is the destination of an incoming message, b) the
guarantee that each of its neighbours can be reached over a
link connected to exactly one of its ports, and c) that it can
distinguish these ports.

The space requirements of a routing scheme is measured
as the sum over all nodes of the number of bits needed on
each node to encode its routing function. If the nodes are
not labelled with {1,...,n}—the minimal set of labels—
we have to add to the space requirement, for each node,
the number of bits needed to encode its label. Otherwise,
the bits needed to represent the routing function could be
appended to the original identity yielding a large label that
is not charged for but does contain all necessary information
to route.

The cost of representing a routing function at a particu-
lar node depends on the amount of (uncharged) information
initially there. Moreover, if we are allowed to relabel the
graph and change its port assignment before generating a
routing scheme for it, the resulting routing functions may
be simpler and easier to encode. On a chain, for example,
the routing function is much less complicated if we can re-
label the graph and number the nodes in increasing order
along the chain. We list these assumptions below, and ar-
gue that each of them is reasonable for certain systems. We



start with the three options for the amount of information
initially available at a node.

I Nodes do not initially know the labels of their neigh-
bours, and use ports to distinguish the incident edges.
This models the basic system without prior knowledge.

IA The assignment of ports to edges is fixed and can-
not be altered. This assumption is reasonable for
systems running several jobs where the optimal
port assignment for routing may actually be bad
for those other jobs.

IB The assignment of ports to edges is free and can
be altered before computing the routing scheme
(as long as neighbouring nodes remain neighbours
after re-assignment). Port re-assignment is justi-
fiable as a local action that usually can be per-
formed without informing other nodes.

IT Nodes know the labels of their neighbours, and know
over which edge to reach them. This information is
for free. Or, to put it another way, an incident edge
carries the same label as the node it connects to. This
model is concerned only with the additional cost of
routing messages beyond the immediate neighbours,
and applies to systems where the neighbours are al-
ready known for various other reasons?.

Orthogonal to that, the following three options regarding
the labels of the nodes are distinguished.

a Nodes cannot be relabelled. For large scale distributed
systems relabelling requires global coordination that
may be undesirable or simply impossible.

B Nodes may be relabelled before computing the rout-
ing scheme, but the range of the labels must remain
1,...,n. This model allows a bad distributions of la-
bels to be avoided.

v Nodes may be given arbitrary labels before comput-
ing the routing scheme, but the number of bits used to
store its label are added to the space requirements of a
node. Destinations are given using the new, complex,
labels?. This model allows us to store additional rout-
ing information, e.g. topological information, in the
label of a node. This option is justified for centrally de-
signed interconnect networks for multiprocessors and
communication networks.

These two orthogonal sets of assumptions IA, IB, or II, and
a, (3, or =y, define the nine different models we will consider
in this paper.

1.1 Summary of our results

We determine the optimum space used to represent shortest
path routing schemes on almost all graphs, namely the Kol-
mogorov random graphs which constitute a fraction of at

1We do not consider models that give neighbours for free and, at
the same time, allow free port assignment. For, given a labelling
of the edges by the nodes they connect to, the actual port assign-
ment doesn’t matter at all, and can in fact be used to represent
d(v)log d(v) bits of the routing function. Namely, each assignment
of ports corresponds to a permutation of the ranks of the neighbours
— the neighbours at port ¢ moves to position i. There are d(v)! such
permutations.

2In this model it is assumed that a routing function cannot tell
valid from invalid labels, and that a routing function always receives
a valid destination label as input. Requiring otherwise makes the
problem harder.

least 1 —1/n? of all graphs. These bounds straightforwardly
imply the same bounds for the average case over all graphs.
For an overview of the results, refer to Table 13.

We prove that for almost all graphs Q(n?) bits are nec-
essary to represent the routing scheme, if relabelling is not
allowed and nodes know their neighbours (II A @) or nodes
do not know their neighbours (IA V IB)*. Partially match-
ing this lower bound, we show that O(n?) bits are sufficient
to represent the routing scheme, if the port assignment may
be changed or if nodes do know their neighbours (IB V II).
In contrast, for almost all graphs, the lower bound rises to
Q(n? log n) bits if both relabelling and changing the port as-
signment is not allowed (IA A a). And, again for almost all
graphs, the upper bound drops to O(n log? n) bits if nodes
know the labels of their neighbours and nodes may be arbi-
trarily relabelled (II A ).

Full information shortest path routing schemes are shown
to require, on almost all graphs, Q(n®) bits to be stored, if
relabelling is not allowed (c). This matches the obvious
upper bound for all graphs.

For stretch factors larger than 1 we obtain the follow-
ing results. When nodes know their neighbours (II), for
almost all graphs, routing schemes achieving stretch factors
s with 1 < s < 2 can be stored using a total of O(nlogn)
bits®. Similarly, for almost all graphs in the same models
(II), O(nloglog n) bits are sufficient for routing with stretch
factor > 2. Finally, for stretch factors > 6logn on almost
all graphs again in the same model (II), the routing scheme
occupies only O(n) bits.

For worst case static networks we prove, by construction
of explicit graphs, a Q(n?logn) lower bound on the total
size of any routing scheme with stretch factor < 2, if nodes
may not be relabelled (o). The techniques used through-
out are incompressibility arguments based on Kolmogorov
complexity, [8].

1.2 Comparison with related work

Previous upper- and lower bounds on the total number of
bits necessary and sufficient to store the routing scheme in
worst-case static communication networks are due to Peleg
and Upfal [9], and Fraigniaud and Gavoille [2]. Our bounds
are stronger, because they apply to the average case as well.

In [9] it was shown that for any stretch factor s > 1, the
total number of bits required to store the routing scheme for
some n-node graph is at least Q(n'*t'/(#**%)) and that there
exist routing schemes for all n-node graphs, with stretch
factor s = 12k + 3, using O(k*n't/*logn) bits in total.
For example, with stretch factor s = 15 we have £ = 1
and their method guarantees O(n?logn) bits to store the
routing scheme. The lower bound is shown in the model
where nodes may be arbitrarily relabelled and where nodes

31n this table, arrows indicate that the bound for that particular
model follows from the bound found by tracing the arrow. In partic-
ular, the average case lower bound for model IA A 3 is the same as
the IB A v bound found by tracing — and |. The reader may have
guessed that a 7 marks an open question

4We write A V B to indicate that the results hold under model A
or model B. Similarly, we write A A B to indicate the result holds only
if the conditions of both model A and model B hold simultaneously.
If only one of the two ‘dimensions’ is mentioned, the other may be
taken arbitrary (i.e., IA is a shorthand for (IA A a) V (IA A 8) V (IA
A7)

5For Kolmogorov random graphs which have diameter 2 by
Lemma 2 routing schemes with s = 1.5 are the only ones possible
in this range.



no relabelling  permutation  free relabelling

(a) (8) ()
worst case — lower bounds
port assignment free (IB) — Q(n’logn) [3] ?
neighbours known (II) Q(n?logn) Q(n?) [2] Q(n7/6) [9]
average case — upper bounds
port assignment fized (TA)  O(n®logn) — —
port assignment free (IB) o(n?) — —
neighbours known (II) 0(n?) — O(nlog?n)
average case — lower bounds
port assignment fized (TA)  Q(n?logn) — 1
port assignment free (IB) l — Q(n?)
neighbours known (II) Q(n?) ? ?

Table 1: Size of shortest path routing schemes: overview of results

know their neighbours (II A 7). Free port-assignment in
conjunction with a model where the neighbours are known
(II) can, however, not be allowed. Otherwise, each node
would gain nlogn bits to store the routing function in (see
the footnote to model II).

Fraigniaud and Gavoille [2] showed that for stretch fac-
tors s < 2 there are routing schemes that require a total of
Q(n?) bits to be stored in the worst case if nodes may be
relabelled by permutation (3).

Kranakis et al. in [6, 7, 5] independently use Kolmogorov
complexity to obtain results on interval routing, bounded
degree graphs, full information routing, shortest path fami-
lies, and an alternative proof for the result of Fraigniaud and
Gavoille [2]. In particular, they show that for each n there
extst graphs on n nodes (actually about a 1/2"/2th fraction
of all such graphs), which may not be relabelled (), that
require Q(n®) bits to store a full information shortest path
routing scheme.

Finally, Gavoille and Pérennés [3] recently showed that
there are routing schemes that require a total of Q(n? log d)
bits to be stored in the worst case for some graphs with
maximal degree d, if nodes may be relabelled by permutation
and the port-assignment may be changed (IB A 3).

To the best of our knowledge, Jan van Leeuwen was the
first to formulate explicitly the question of what exactly is
the optimal size of the routing functions, and he recently
drew also our attention to this group of problems. See also

[1].
2 Kolmogorov complexity

The Kolmogorov complexity, [4], of z is the length of the
shortest effective description of z. That is, the Kolmogorov
complezity C(z) of a finite string z is simply the length of
the shortest program, say in FORTRAN (or in Turing ma-
chine codes) encoded in binary, which prints z without any
input. A similar definition holds conditionally, in the sense
that C(z|y) is the length of the shortest binary program
which computes x given y as input. It can be shown that
the Kolmogorov complexity is absolute in the sense of being
independent of the programming language, up to a fixed ad-
ditional constant term which depends on the programming
language but not on z. We now fix one canonical program-
ming language once and for all as reference and thereby C/().

For the theory and applications, see [8]. Let z,y,z €
N, where N denotes the natural numbers. Identify A/ and
{0,1}* according to the correspondence (0, €),(1,0),(2,1),
(3,00), (4,01),.... Hence, the length |z| of z is the number
of bits in the binary string . Let T1,T%,... be a standard
enumeration of all Turing machines. Let (-, -) be a standard
invertible effective bijection from A" x N to N. This can be
iterated to ((-,-),-).

DEFINITION 1 Let U be an appropriate universal Turing
machine such that U({{(¢,p),y)) = T:({p,y)) for all : and
(p,y). The Kolmogorov complezity of x given y (for free) is

C(zly) = min{|p| : U((p,y)) = =,p € {0,1}"}.

3 Kolmogorov random graphs

One way to express irregularity or randomness of an individ-
ual network topology is by a modern notion of randomness
like Kolmogorov complexity. A simple counting argument
shows that for each y in the condition and each length n
there exists at least one x of length n which is incompress-
ible in the sense of C(z|y) > n, 50% of all z’s of length n is
incompressible but for 1 bit (C(z|y) > n—1), 75% of all z’s
is incompressible but for 2 bits (C(z|y) > n—2) and in gen-
eral a fraction of 1—1/2° of all strings cannot be compressed
by more than c bits, [8].

DEFINITION 2 Each graph G = (V,E) on n nodes V =
{1,2,...,n} can be coded by a binary string E(G) of length
n(n — 1)/2. We enumerate the n(n — 1)/2 possible edges
uv in a graph on n nodes in standard lexicographical order
without repetitions and set the ith bit in the string to 1
if the ¢-th edge is present and to 0 otherwise. Conversely,
each binary string of length n(n — 1)/2 encodes a graph on
n nodes. Hence we can identify each such graph with its
corresponding binary string.

DEFINITION 3 Let § be a simply described recursive function
over the natural numbers, such as log n,loglog n, v/n. That
is,

C(8) := min{C(T) : T is a Turing machine computing &}

is bounded by a small fixed constant. An individual graph G
on n nodes is 6-random (in contrast to a randomly generated



graph) if it satisfies
C(E(G)In) 2 n(n —1)/2 = §(n), (1)
Elementary counting shows that a fraction of at least
1—1/25

of all graphs on n nodes has that high complexity, [8]. We
need the notion of self-delimiting binary strings.

DEFINITION 4 We call = a prefiz of y if there is a z such
that y = zz. A set A C {0,1}" is prefiz-free, if no element
in A is the prefix of another element in A. A 1:1 function
E:{0,1}* — {0,1}* (equivalently, E : N' — {0, 1}*) defines
a prefiz-code if its range is prefix-free. A simple prefix-code
we use throughout is obtained by reserving one symbol, say
0, as a stop sign and encoding

z = 1°0g,
|Z] = 2|z|+1.
Sometimes we need the shorter prefix-code z':
, —
zr = |z|z,

'] = |z +2[log(Jz| +1)] + 1.

We call Z or z' a self-delimiting version of the binary string
z. We can effectively recover both x and y unambiguously
from the binary strings Zy or z'y. For example, if 2y =
111011011, then x = 110 and y = 11. If zy = 1110110101
then = 110 and y = 1. The self-delimiting form z’...y'z
allows the concatenated binary sub-descriptions to be parsed
and unpacked into the individual items z, ..., y, 2z; the code
z' encodes a separation delimiter for z, using 2[log(|z| + 1)]
extra bits, and so on, [8].

LEMMA 1 The degree d of each node of a §-random graph
satisfies

d—(n—1)/2| =0 ( (6(n) + logn)n) .

PROOF. Assume that the deviation of the degree d of a node
win G from (n —1)/2 is at least k. From the lower bound
on C(E(G)|n) corresponding to the assumption that G is
random, we can estimate an upper bound on k, as follows.
Describe G = (V, E) given n as follows. We can indicate
which edges are incident on node u by giving the index of
the interconnection pattern (the characteristic sequence of
the set Vi, = {v € V—{u} : wv € E} in n — 1 bits where the
v-th bit is 1 if v € V,, and 0 otherwise) in the ensemble of

_ n—1 n_—k*/(n—1)
m= ) ( . >§2 e (2)

l[d—(n—1)/2[2k

possibilities. The last inequality follows from a general es-
timate of the tail probability of the binomial distribution,
with s, the number of successful outcomes in n experiments
with probability of success 0 < p < 1 and where ¢ =1 — p.
Namely, Chernoff’s bounds, [8], pp. 127-130, give

Pr(|s, — np| > k) < 2e7*/4we, (3)

To describe G it then suffices to modify the old code of
G by prefixing it with

A description of this discussion in O(1) bits;
e the identity of node u in [log(n + 1)] bits,

the value of d in [log(n + 1)] bits, possibly adding non-
significant 0’s to pad up to this amount,

the index of the interconnection pattern in logm +
2log log m bits in self-delimiting form, ©

followed by the old code for G with the bits in the code
denoting the presence or absence of the possible edges which
are incident on node u deleted.

Clearly, given n we can reconstruct the graph G from the
new description. The total description we have achieved is
an effective program of

logm + 2loglogm + O(logn) +n(n —1)/2 — (n — 1)

bits. This must be at least the length of the shortest effec-
tive binary program, which is C(E(G)|n) satisfying Eq. (1).
Therefore,

logm + 2loglogm >n —1 — O(logn) — §(n).
Since we have estimated in Eq. (2) that
logm <n—1—(k*/(n—1))loge,

it follows that

k=0 ( (6(n) +10gn)n) .

LEMMA 2 All o(n)-random graphs have diameter 2.

PrOOF. The only graphs with diameter 1 are the complete
graphs which can be described in O(1) bits, given n, and
hence are not random. It remains to consider G = (V, E)
is an o(n)-random graph with diameter greater than 2. Let
u, v be a pair of nodes with distance greater than 2. Then we
can describe G by modifying the old code for G by prefixing
it with

e A description of this discussion in O(1) bits;

e The identities of u < v in 2logn bits,

e The old code E(G) of G with, for each w with uw € E,
all bits representing presence or absence of an edge wv
between w and v deleted. We know that all the bits
representing such edges must be 0 since the existence
of any such edge shows that uww, wv is a path of length
2 between u and v contradicting the assumption that
u and v have distance > 2. This way we save at least
n/4 bits, since we save bits for as many edges wv as
there are edges ww, that is, the degree of u which is
n/2 + o(n) by Lemma 1.

Since we know the identities of © and v, and the nodes adja-
cent to u (they can be obtained from E(G) because u < v)
we can reconstruct G from this discussion and the new de-
scription, given n. Since by Lemma 1 the degree of u is
at least n/4, the new description of G, given n, requires at
most

n(n —1)/2 —n/4 + O(log n)

bits, which contradicts Eq. (1) from some n onwards. a

8From now on we write simply ‘logn’ for ‘[log(n + 1)]’ in cases
where the difference clearly doesn’t matter.



LEMMA 3 Let ¢ be a fized constant. If G is clogn-random
then from each mode u all other nodes are either directly
connected to u or are directly connected to one of the least
(c+ 3)logn nodes directly adjacent to w.

PROOF. Given u, let A be the set of the least (¢ + 3)logn
nodes directly adjacent to u. Assume, by way of contradic-
tion, there is a node w of G that is not directly connected

to a node in A J{u}. We can describe G as follows.

e A description of this discussion in O(1) bits.
e A literal description of u in logn bits.

e A literal description of the presence or absence of edges
between v and the other nodes in n — 1 bits.

e A literal description of w and the presence or absence
of edges between w and the other nodes in logn +n —
2—(c+3) log n bits (by omitting the bits corresponding
to the least (¢ + 3)log n nodes directly adjacent to u).

e The encoding E(G) with the edges incident with nodes
u and w deleted, saving at least 2n — 2 bits,

Altogether the resultant description has

n(n—1)/2+2logn+2n—3 — (c+ 3)logn — 2n + 2

bits which contradicts the clog n-randomness of G by Eq. (1).
O

The lemma is proven.

4 Upper bounds

In this section we show how one can route messages over
Kolmogorov random graphs with routing schemes that can
be stored efficiently. Specifically we show that in general
(i-e., on almost all graphs) one can use shortest path rout-
ing schemes occupying at most O(n?) bits. If one can re-
label the graph in advance, and if nodes know their neigh-
bours, shortest path routing schemes are shown to occupy
only O(nlog®n) bits. Allowing stretch factors larger than
one reduces the space requirements — even as low as O(n)
bits for stretch factors of O(logn).

THEOREM 1 For shortest path routing in O(logn)-random
graphs, where the port assignment may be changed or nodes
know their neighbours (IB V II), it suffices to have local rout-
ing functions stored in 6n bits per node (hence the complete
routing scheme is represented by 6n® bits).

ProoF. We prove the theorem for the model where nodes
know their neighbours (II), without resorting to relabelling
(i-e., nodes are labelled 1 through n). If, instead, the port as-
signment may be chosen arbitrarily, we can represent knowl-
edge of the neighbours and the edges over which they are
reached as follows. Neighbours are coded using the stan-
dard interconnection vector (as in Def. 2) using n — 1 bits.
The port mapping is chosen such that the i-th neighbour is
connected to the i-th port. This adds only n — 1 bits per
node to the local routing function to be constructed next.
Hence the theorem holds for the model with arbitrary port
mapping as well (IB).

Let G be an O(logn)-random graph on n nodes. By
Lemma 3 we know that from each node u we can shortest
path route to each node v through the first O(log n) directly
adjacent nodes of u. By Lemma 2, G has diameter 2. Once
the message reached node v the destination is either node v
or a direct neighbour of node v which is known in node v

by assumption of our routing model. It follows readily from
Lemma 3 that routing functions of size O(n loglogn) can be
used to do shortest-path routing. As we will see we can do
better than this. Let A9 C V be the set of nodes in G which
are not directly connected to u.

CrAamM 1 Let v1,...,vm be O(logn) directly adjacent nodes
to u through which we can shortest path route to all nodes in
Ao. (For example, the O(log n) least nodes directly adjacent
to node u, Lemma 3.) For t :=1,2...,l define A; := {w €
Ao—Ui;i As :viw € E}. Let mo = |Ao| and define my41 =
my — |Aiy1|. Let I be the first ¢ such that m; < n/loglogn.
Then, |A¢| > 1/3*my;_1 for 1 <t < 1. This means that v; is
connected by an edge in F to at least 1/3 of the nodes not
connected by edges in E to nodes u,v1,...,vt—1.

PROOF. Suppose, by way of contradiction, that there exists
a least t < I such that ||A¢| — m¢—1/2]| > (1/6)ms—1. Then
we can describe G, given n, as follows.

e This discussion in O(1) bits.

e Nodes u,v; in 2logn bits.

e The presence or absence of edges incident with nodes
U, V1,...,0—1inT =n—1+---+n—(t—1) bits. This
gives us the characteristic sequences of Ag,..., A;_1 in
VT

o A self-delimiting description of the characteristic se-
quence of A; in Ag— Ui;i A,, using Chernoff’s bound
as cited in Eq. (2), in at most mt_l—(l/G)zmt_l log e+
O(log m;_1) bits.

e The description E(G) with all bits corresponding to
the presence or absence of edges between v; and the
nodes in Ag — Ui;i A, deleted, saving m;_1 bits. Fur-
thermore, we delete also all bits corresponding to pres-
ence or absence of edges incident with u,v1,...,v¢—1
saving a further r bits.

This description of G uses at most
n(n—1)/2+ O(logn) +ms—1 — (1/6)2mt_1 loge — my_1

bits, which contradicts the O(logn)-randomness of G by
Eq. (1), because m;—1 > n/loglogn. m|

Recall that [ is the first time in the construction such that
m; < n/loglogn. By Lemma 3, I = O(log n). We construct
the local routing function F(u) as follows.

e A table of intermediate routing node entries for all the
nodes in Ao in increasing order. For each node w in
Uls=1 A, we enter in the w-th position in the table the
unary representation of the least intermediate node v,
with uwv,vw € E, followed by a 0. For the nodes that
are not in Ui: As; we enter a 0 in their position in
the table indicating that an entry for this node can be
found in the second table. By Claim 1, the size of this
table is bounded by:

n+Y (1/3)(2/3)° 'sn <nt Y (1/3)(2/3)" 'sn < 4n

s=1 s=1

TA characteristic sequence of A in V is a string of |V/| bits with
for each v € V the v-th bit equals 1 if v € A and the v-th bit is 0

otherwise.



e A table with explicitly binary coded intermediate nodes
on a shortest path for the ordered set of the remaining
destination nodes. Those nodes had a 0 entry in the
first table and there are at most m; < n/loglogn of
them, namely the nodes in Ay — Ui:l As. Each entry
consists of the code of length loglogn + O(1) for the
position in increasing order of a node out of v1,...,vm
with m = O(logn) by Lemma 3. Hence this second
table requires at most 2n bits.

The routing algorithm is as follows. The direct neighbours
of u are known in node u and are routed without routing
table. If we route from start node u to target node w which
is not directly adjacent to u, then we do the following. If
node w has an entry in the first table then route over the
edge coded in unary, otherwise find an entry for node w in
the second table.

Altogether, we have |F(u)| < 6n. Adding another n—1
in case the port assignment may be chosen arbitrarily, this
proves the theorem with 7n instead of 6n. Slightly more
precise counting and choosing ! such that m; is the first
such quantity < n/logn shows |F(u)| < 3n. a

If we allow arbitrary labels for the nodes, then shortest path
routing schemes of O(nlog®n) bits suffice on Kolmogorov
random graphs, as witnessed by the following theorem.

THEOREM 2 For shortest path routing on clogn-random gra-
phs, if nodes know their neighbours and nodes may be ar-
bitrarily relabelled (II A ), using labels of size (1 + (c +
3)logn)logn bits results in local Touting functions stored in
O(1) bits per node (hence the complete routing scheme is
represented by (c + 3)nlog® n+ nlogn + O(n) bits).

ProOOF. Let G = (V,E) be a clogn-random graph on n
nodes. By Lemma 3 we know that from each node u we
can shortest path route to each node w through the first
(c + 3)logn directly adjacent nodes f(u) = v1,...,vm of u.
By lemma 2, G has diameter 2. Relabel G such that the
label of node u equals u followed by the original labels of
the first (c+ 3) log n directly adjacent nodes f(u). This new
label occupies (1 + (¢ + 3)logn)logn bits. To route from
source u to destination v do the following.

If v is directly adjacent to u we route to v in 1 step in
our model (nodes know their neighbours). If v is not directly
adjacent to u, we consider the immediate neighbours f(v)
contained in the name of v. By Lemma 3 at least one of
the neighbours of v must have a label whose original label
(stored in the first log n bits of its new label) corresponds
to one of the labels in f(v). Node u routes the message to
any such neighbour. This routing function can be stored in
O(1) bits. m|
Without relabelling routing using less than O(n?) bits is
possible if we allow stretch factors larger than 1. The next
three theorems clearly show a trade-off between the stretch
factor and the size of the routing scheme.

THEOREM 3 For routing with any stretch factor > 1 in clogn-

random graphs, where nodes know their neighbours (II), it
suffices to have n — 1 — (¢ + 3)logn nodes with local rout-
ing functions stored in at most [log(n + 1)] bits per node,
and 14 (c+ 3) log n nodes with local routing functions stored
in 6n bits per node (hence the complete routing scheme is
represented by less than (6¢c + 20)nlogn bits).

ProoF. Let G = (V,E) be a clogn-random graph on n
nodes. By Lemma 3 we know that from each node u we

can shortest path route to each node w through the first
(c + 3)logn directly adjacent nodes v1,...,vm of u. By
Lemma 2, G has diameter 2. Consequently, each node in
V is directly adjacent to some node in B = {u,v1,...,0m}.
Hence, it suffices to select the nodes of B as routing centers
and store, in each node w € B, a shortest path routing func-
tion F(w) to all other nodes, occupying 6n bits (the same
routing function as constructed in the proof of Theorem 1
if the neighbours are known). Nodes v € V — B route any
destination unequal to their own label to some fixed directly
adjacent node w € B. Then |F(v)| < [log(n+1)] + O(1),
and this gives the bit count in the theorem

To route from a originating node v to a target node w
the following steps are taken. If w is directly adjacent to v
we route to w in 1 step in our model. If w is not directly
adjacent to v then we first route in 1 step from v to its
directly connected node in B, and then via a shortest path
to w. Altogether, this takes either 2 or 3 steps whereas
the shortest path has length 2. Hence the stretch factor is
at most 1.5 which for graphs of diameter 2 (i.e., all clogn-
random graphs by Lemma 2) is the only possibility between
stretch factors 1 and 2. This proves the theorem. O

THEOREM 4 For routing with stretch factor 2 in clogn-ran-
dom graphs, if nodes know their neighbours (II), it suffices
to have n — 1 nodes with local routing functions stored in at
most loglog n bits per node and 1 node with its local routing
function stored in 6n bits (hence the complete routing scheme
1s represented by nloglogn + 6n bits).

PrOOF. Let G be a clogn-random graph on n nodes. By
Lemma 2, G has diameter 2. Therefore the following routing
scheme has stretch factor 2. Let node 1 store a shortest
path routing function. All other nodes only store a shortest
path to node 1. To route from a originating node v to a
target node w the following steps are taken. If w is an
immediate neighbour of v, we route to w in 1 step in our
model. If not, we first route the message to node 1 in at most
2 steps, and then from node 1 through a node v to node w in
again 2 steps. Because node 1 stores a shortest path routing
function, either v = w or w is a direct neighbour of v.
Node 1 can store a shortest path routing function in at
most 6n bits using the same construction as used in the
proof of Theorem 1 (if the neighbours are known). The
immediate neighbours of 1 either route to 1 or directly to
the destination of the message. For these nodes, the routing
function occupies O(1) bits. For nodes v at distance 2 of
node 1 we use Lemma 3, which tells us that we can shortest
path route to node 1 through the first (c + 3) logn directly
adjacent nodes of v. Hence, to represent this edge takes
log log n+1log(c+3) bits and hence the local routing function
F(v) occupies at most loglogn + O(1) bits. O

THEOREM 5 For routing with stretch factor (c + 3)logn in
clog n-random graphs, where nodes know their neighbours
(II), it suffices to have local routing functions stored in O(1)
bits per node (hence the complete routing scheme is repre-

sented by O(n) bits).

Proor. From Lemma 3 we know that from each node u
we can shortest path route to each node v through the first
(c+3) log n directly adjacent nodes of u. By Lemma 2, G has
diameter 2. So the local routing function — representable
in O(1) bits — is to route directly to the target node if it
is a directly adjacent node, otherwise to simply traverse the



first (¢ + 3)logn incident edges of the starting node and
look in each of the visited nodes whether the target node is
a directly adjacent node. If so, the message is forwarded to
that node, otherwise it is returned to the starting node for
trying the next node. Hence each message for a destination
at distance 2 traverses at most 2(c + 3) log n edges. O

5 Lower bounds

The first two theorems of this section together show that
indeed Q(n?) bits are necessary to route on Kolmogorov
random graphs in all models we consider, except for the
models where nodes know their neighbours and relabelling
is allowed (II A 3 and II A «). Hence the upper bound in
Theorem 1 is tight.

THEOREM 6 For shortest path routing in o(n)-random graphs
where relabelling is not allowed and nodes know their neigh-
bours (II A a), each local routing function must be stored in
at least n/2 — o(n) bits per node (hence the complete routing
scheme requires at least n?/2 — o(n?) bits to be stored).

PROOF. Let G be a o(n)-random graph. Let F(u) be the
local routing function of node u of G, and let |F(u)| be the
number of bits used to store F(u). Let E(G) be the standard
encoding of G in n(n — 1)/2 bits as in Def. 2. We now give
another way to describe G using some local routing function

F(u).

e A description of this discussion in O(1) bits.

e A description of u in logn bits. (If it is less pad the
description with 0’s.)

A description of the presence or absence of edges be-
tween u and the other nodes in V' in n — 1 bits.

A description of F(u) in |F(u)| + O(log |F(u)|) bits
(the logarithmic term to make the description self-
delimiting).

e The code E(G) with all bits deleted corresponding to
edges vw € E for each w and v such that F(u) routes
messages to w through the least® intermediary node v
(saving at least n/2 — o(n) bits since there are at least
n/2 — o(n) nodes w such that uw ¢ E by Lemma 1
and since the diameter of G is 2 by Lemma 2 there is a
shortest path wv, vw € E? for some 1)).9 Furthermore,
also all bits deleted corresponding to the presence or
absence of edges between u and the other nodes in V,
saving another n — 1 bits.

From this description we can reconstruct G, given n, by
reconstructing the bits corresponding to the deleted edges
from v and F(u) and subsequently inserting them in the
appropriate positions to reconstruct E(G). We can do so
because these positions can be simply reconstructed in in-
creasing order. In total this new description has

n(n —1)/2 + O(1) + O(log n) + |F(u)| — n/2 + o(n)

8F(u) may route from node u to node w by many different paths of
length 2 using more than one intermediary node v. Allowing this may
have as consequence that there is a more compact way of encoding
F(u), and makes our lower bound results stronger.

9Note that we cannot save the bits for the presence or absence of
edges uv and uw. Namely, the routing function F(u) may use the
particular connection pattern of u saying things like ‘route to node
w using the 30th least node directly connected to u’. Thus, F(u)
may route using the connection pattern of node u, while that pattern
cannot be reconstructed from F(u).

which must be at least n(n—1)/2—o(n) by Eq. (1). We con-
clude that |F(u)| = n/2 — o(n), which proves the theorem.
O

THEOREM T For shortest path routing in o(n)-random gra-
phs, if the neighbours are not known (IA V IB), the com-
plete routing scheme requires at least n? /32 — o(n?) bits to
be stored.

PROOF. In the proof of this theorem we need the following
combinatorial result.

CLAIM 2 Let k and n be arbitrary natural numbers such that
1 <k <n. Let z;, for 1 <1i <k, be natural numbers such

that ; > 1. If Zle x; = n, then

k
Zﬂogzﬂ <n-—k
i=1

PrROOF. By inductionon k. If k = 1, then 1 = n and clearly
[logn] < m—1if n > 1. Supposing the claim holds for k
and arbitrary » and z;, we now prove it for ¥’ = k+1, n and
arbitrary z;. Let Zle z; = n. Then Zle T, = N — Tp.
Now

D Moga:] =) ogai] + [log zu]

=1 =1

By the induction hypothesis the first term on the right-hand
side is less than or equal to <n — z — k, so

k’
Z[log z;] < n—zp—k+[logzy | = n—k'+[log zp | +1—zp

=1

Clearly [log zx/]+1 < zy if £y > 1, which proves the claim.
O

If we cannot enumerate the labels of all nodes in less than
n2/32 we are done. So assume we can (this includes models
a and 8 where the labels are not charged for, but can be
described using log n bits). Let G be an o(n)-random graph.

CLAIM 3 Given the labels of all nodes, we can describe the
interconnection pattern of a node u using the local routing
function of node u plus an additional n/2 4+ o(n) bits.

PrOOF. Apply the local routing function to each of the
labels of the nodes in turn (these are given by assumption).
This will return for each edge a list of destinations reached
over that edge. To describe the interconnection pattern it
remains to encode, for each edge, which of the destinations
reached is actually its immediate neighbour. If edge 7 routes
z; destinations, this will cost [log z;] bits. By Lemma 1 the
degree of a node in G is at least n/2 — o(n). Then in total,

Z?:/f_o(") [log z;] bits will be necessary; separations need
not be encoded because they can be determined using the

knowledge of all z;’s. Using Claim 2 finishes the proof. O

Now we show that there are n/2 nodes in G whose local rout-
ing function requires at least n/8 — 3logn bits to describe
(which implies the theorem).

Assume, by way of contradiction, that there are n/2
nodes in G whose local routing function requires at most
n/8 — 3logn bits to describe. Then we can describe G as
follows:



A description of this discussion in O(1) bits,

e The enumeration of all labels in at most n?/32 (by
assumption),

e A description of the n/2 nodes in this enumeration in
at most n bits,

e The interconnection patterns of these n/2 nodes in
n/8 — 3logn plus n/2 + o(n) bits each (by assump-
tion, and using Claim 3). This amounts to n/2(5n/8 —
3logn) +o(n?) bits in total, with separations encoded
in another nlogn bits,

e The interconnection patterns of the remaining n/2 no-
des only among themselves using the standard encod-
ing, in 1/2(n/2)? bits.

This description altogether uses

O(1) +n”/32 + n+n/2(5n/8 — 3logn)+
+o(n®) +nlogn +1/2(n/2)* =
= n2/2 - n2/32 +n+ 0(n2) —n/2logn

bits, contradicting the o(n)-randomness of G by Eq. (1). We
conclude that on at least n/2 nodes a total of n?/16 — o(n?)
bits are used to store the routing scheme. O

If neither relabelling nor changing the port assignment is
allowed, the next theorem implies that for shortest path
routing on such ‘static’ graphs one cannot do better than
storing the routing tables literally, in O(n?logn) bits.

THEOREM 8 For shortest path routing in o(n)-random gra-
phs where relabelling and changing the port assignment is
not allowed (IA A ), each local routing function must be
stored in at least n/2logn/2 — O(n) bits per node (hence
the complete routing scheme requires at least n®/2logn/2 —
O(n?) bits to be stored).

ProoF. If the graph cannot be relabelled and the port-
assignment cannot be changed, the adversary can set the
port-assignment of each node to correspond to a permu-
tation of the neighbours. As each node has n/2 — o(n)
neighbours by Lemma 1, such a permutation can have Kol-
mogorov complexity as high as n/2logn/2 — O(n) [8]. Be-
cause the neighbours are not known, the local routing func-
tion must for each neighbour determine the port to route
messages for that neighbour over. Hence the local routing
function completely describes the permutation and thus it
must also occupy at least n/2logn/2 — O(n) bits. This
proves the theorem. O

Even if stretch factors between 1 and 2 are allowed, the
next theorem shows that Q(n®logn) bits are necessary to
represent the routing scheme in the worst case.

THEOREM 9 For routing with stretch factor < 2 in graphs
where relabelling is not allowed (o), there exist graphs on
n nodes (almost (n/3)! such graphs) where the local routing
function must be stored in at least (n/3)logn — O(n) bits
per node at n/3 nodes (hence the complete routing scheme
requires at least (n?/9)logn — O(n?) bits to be stored).

ProoF. Consider the graph G with n = 3k nodes depicted
in Figure 1. Each node v; in vg41,...,v2; is connected to
vi+r and to each of the nodes v1,...,vr. Fix a labelling of
the nodes vy, . .., vy, with labels from {1,...,2k}. Then any
labelling of the nodes vog41,- - ., v3r With labels from {2k +
1,...,3k} corresponds to a permutation of {2k +1,...,3k}
and vice versa.

U3k V3k—1
Figure 1: Graph Gg.

Clearly, for any two nodes v; and v; with 1 < 7 < k
and 2k + 1 < j < 3k, the shortest path from v; to v;
passes through node v;j_; and has length 2, whereas any
other path from v; to v; has length at least 4. Hence any
routing function on G with stretch factor < 2 routes such
v; from v; over the edge v;vj_r. Then at each of the k
nodes v1,...,vr the local routing functions corresponding
to any two labellings of the nodes vag+1, ..., v, are differ-
ent. Hence each representation of a local routing function
at the k nodes v;, 1 < i < k, corresponds one-one to a per-
mutation of {2k + 1,...,3k}. So given such a local routing
function we can reconstruct the permutation (by collecting
the response of the local routing function for each of the
nodes k + 1,...,3k and grouping all pairs reached over the
same edge). The number of such permutations is k!. A frac-
tion at least 1—1/2* of such permutations 7 has Kolmogorov
complexity C(w) = klog k — O(k) [8]. Because 7 can be re-
constructed given any of the k local routing functions, these
k local routing functions each must have Kolmogorov com-
plexity klogk — O(k) too. This proves the theorem for n a
multiple of 3. For n = 3k — 1 or n = 3k — 2 we can use Gp,
dropping vx and vg_1. O

Our last theorem shows that for full information shortest
path routing schemes on Kolmogorov random graphs one
cannot do better than the trivial upper bound.

THEOREM 10 For full-information shortest path routing on
o(n)-random graphs where relabelling is not allowed (o), the
local routing function occupies at least n®/4 — o(n?) bits for
every node (hence the complete routing scheme requires at
least n3 /4 — o(n?) bits to be stored).

PROOF. Let G be a graph on nodes {1,2,...,n} satisfying
Eq. (1) with §(n) = o(n). Then we know that G satisfies
Lemmas 1, 2. Let F'(u) be the local routing function of node
u of G, and let |F(u)| be the number of bits used to encode
F(u). Let E(G) be the standard encoding of G in n(n—1)/2
bits as in Def. 2. We now give another way to describe G
using some local routing function F(u).

e A description of this discussion in O(1) bits.

e A description of u in logn bits. (If it is less pad the
description with 0’s.)

e A description of the presence or absence of edges be-
tween u and the other nodes in V in n — 1 bits.



e A description of F(u) in |F(u)| + O(log |F(u)|) bits
(the logarithmic term to make the description self-
delimiting).

e The code E(G) with all bits deleted corresponding to
the presence or absence of edges between each w and v
such that v is a neighbour of u and w is not a neighbour
of u. Since there are at least n/2 — o(n) nodes w such
that uw ¢ E and at least n/2 —o(n) nodes v such that
uv € E, by Lemma 1, this saves at least (n/2 — o(n))?
bits.

From this description we can reconstruct G, given n, by
reconstructing the bits corresponding to the deleted edges
from v and F(u) and subsequently inserting them in the
appropriate positions to reconstruct E(G). We can do so
because F(u) represents a full information routing scheme
implying that vw € E iff uv is among the edges used to
route from u to w. In total this new description has

n(n —1)/2 + O(log n) + |F(u)| — n” /4 + o(n?)

which must be at least n(n—1)/2—o0(n) by Eq. (1). We con-
clude that |F(u)| = n%/4—o(n?), which proves the theorem.
O

6 Average routing

We now extend our results to the average cost, taken over all
labelled graphs of n nodes, of representing a routing scheme
for graphs over n nodes.

DEFINITION 5 For a graph G, let T(G) be the number of bits
used to store its routing scheme. The average total number
of bits to store the routing scheme for routing over graphs
on n nodes is Y. T(G)/2™" /2 with the sum taken over
all graphs G on nodes {1,2,...,n}. (That is, the uniform
average over all the labelled graphs on n nodes.)

The results on Kolmogorov random graphs above have the
following corollaries. Consider the subset of (3log n)-random
graphs within the class of O(logn)-random graphs on n
nodes. They constitute a fraction of at least (1 — 1/n®) of
the class of all graphs on n nodes. The trivial upper bound
on the minimal total number of bits for all routing func-
tions together is O(n?logn) for shortest path routing on all
graphs on n nodes (or O(n?) for full-information shortest
path routing). Simple computation of the average of the
total number of bits used to store the routing scheme over
all graphs on n nodes shows the following.

COROLLARY 1 The average total number of bits to store the
routing scheme for graphs of n nodes 1s:

1. O(n?) for shortest path routing in model IB V II (The-
orem 1),

2. O(nlog®n) for shortest path routing in model II A ~
(Theorem 2),

3. O(nlogn) for routing with any stretch factor s for 1 <
s < 2 in model II (Theorem 3),

4. O(nloglogn) for routing with stretch factor 2 in model
IT (Theorem 4),

5. O(n) for routing with stretch factor 6logmn in model II
(Theorem 5 with ¢ =3),

6. Q(n?) for shortest path routing in model o, IA and IB
(Theorem 6 and Theorem 7),

7. Q(n?logn) for shortest path routing in model IA A «
(Theorem 8),

8. @(nS) for full information shortest path routing in mo-
del o (Theorem 10).
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