
Disintegration and Bayesian Inversion,
Both Abstractly and Concretely†

KENTA CHO and BART JACOBS

Institute for Computing and Information Sciences, Radboud University
P.O.Box 9010, 6500 GL Nijmegen, the Netherlands
Email: {K.Cho,bart}@cs.ru.nl

Received 31 August 2017

The notions of disintegration and Bayesian inversion are fundamental in conditional
probability theory. They produce channels, as conditional probabilities, from a joint state,
or from an already given channel (in opposite direction). These notions exist in the
literature, in concrete situations, but are presented here in abstract graphical formulations.
The resulting abstract descriptions are used for proving basic results in conditional
probability theory. The existence of disintegration and Bayesian inversion is discussed for
discrete probability, and also for measure-theoretic probability — via standard Borel
spaces and via likelihoods. Finally, the usefulness of disintegration and Bayesian inversion
is illustrated in several non-trivial examples.

1. Introduction

The essence of conditional probability can be summarised informally in the following
equation about probability distributions:

joint = conditional · marginal.

A bit more precisely, when we have joint probabilities P(x, y) for elements x, y ranging
over two sample spaces, the above equation splits into two equations,

P(y | x) · P(x) = P(x, y) = P(x | y) · P(y), (1)

where P(x) and P(y) describe the marginals, which are obtained by discarding variables.
We see that conditional probabilities P(y | x) and P(x | y) can be constructed in two
directions, namely y given x, and x given y. We also see that we need to copy variables:
x on the left-hand-side of the equations (1), and y on the right-hand-side.

Conditional probabilities play a crucial role in Bayesian probability theory. They form

† The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement
nr. 320571.

K. Cho and B. Jacobs 2

the nodes of Bayesian networks (Pearl, 1988; Bernardo and Smith, 2000; Barber, 2012),
which reflect the conditional independences of the underlying joint distribution via their
graph structure. As part of our approach, we shall capture conditional independence in
an abstract manner.
The main notion of this paper is disintegration. It is the process of extracting a

conditional probability from a joint probability. Disintegration, as we shall formalise
it here, gives a structural description of the above equation (1) in terms of states and
channels. In general terms, a state is a probability distribution of some sort (discrete,
measure-theoretic, or even quantum) and a channel is a map or morphism in a probabilistic
setting, like P(y | x) and P(x | y) as used above. It can take the form of a stochastic
matrix, probabilistic transition system, Markov kernel, conditional probability table (in a
Bayesian network), or morphism in a Kleisli category of a ‘probability monad’ (Jacobs,
2017). A state is a special kind of channel, with trivial domain. Thus we can work in a
monoidal category of channels, where we need discarding and copying — more formally, a
comonoid structure on each object — in order to express the above conditional probability
equations (1).
In this article we abstract away from interpretation details and will describe disinte-

gration pictorially, in the language of string diagrams. This language can be seen as the
internal language of symmetric monoidal categories (Selinger, 2010) — with comonoids
in our case. The essence of disintegration becomes: extracting a conditional probability
channel from a joint state.

A categorical approach to Bayesian conditioning has appeared for instance in (Culbert-
son and Sturtz, 2014; Staton et al., 2016; Clerc et al., 2017) and in (Jacobs et al., 2015;
Jacobs and Zanasi, 2016; Jacobs, 2017). The latter references use effectus theory (Jacobs,
2015; Cho et al., 2015), a new comprehensive approach aimed at covering the logic of
both quantum theory and probability theory, supported by a Python-based tool ‘EfProb’,
for ‘effectus probability’. This tool is used for the (computationally extensive) examples
in this paper.

Disintegration, also known as regular conditional probability, is a notoriously difficult
operation in measure-theoretic probability, see e.g. (Pollard, 2002; Panangaden, 2009;
Chang and Pollard, 1997): it may not exist (Stoyanov, 2014); even if it exists it may be de-
termined only up to negligible sets; and it may not be continuous or computable (Ackerman
et al., 2011). Disintegration has been studied using categorical language in (Culbertson
and Sturtz, 2014), which focuses on a specific category of probabilistic mappings. Our
approach here is more axiomatic.
We thus describe disintegration as going from a joint state to a channel. A closely

related concept is Bayesian inversion: it turns a channel (with a state) into a channel in
opposite direction. We show how Bayesian inversion can be understood and expressed
easily in terms of disintegration — and also how, in the other direction, disintegration
can be obtained from Bayesian inversion. Bayesian inversion is taken as primitive notion
in (Clerc et al., 2017). Here we start from disintegration. The difference is a matter of
choice.

Bayesian inversion is crucial for backward inference. We explain it informally: let σ be
a state of a domain/type X, and c : X → Y be a channel; Bayesian inversion yields a

Disintegration and Bayesian Inversion 3

channel d : Y → X. Informally, it produces for an element y ∈ Y , seen as singleton/point
predicate {y}, the conditioning of the state σ with the pulled back evidence c−1({y}).
A concrete example involving such ‘point observations’ will be described at the end of
Section 8. More generally, disintegration and Bayesian inversion are used to structurally
organise state updates in presence of new evidence in probabilistic programming, see
e.g. (Gordon et al., 2014; Borgström et al., 2013; Staton et al., 2016; Katoen et al.,
2015). See also (Shan and Ramsey, 2017), where disintegration is handled via symbolic
manipulation.

Disintegration and Bayesian inversion are relatively easy to define in discrete probability
theory. The situation is much more difficult in measure-theoretic probability theory, first
of all because point predicates {y} do not make much sense there, see also (Chang and
Pollard, 1997). A common solution to the problem of the existence of disintegration /
Bayesian inversion is to restrict ourselves to standard Borel spaces, as in (Clerc et al.,
2017). We take this approach too. There is still an issue that disintegration is determined
only up to negligible sets. We address this by defining ‘almost equality’ in our abstract
pictorial formulation. This allows us to present a fundamental result from (Clerc et al.,
2017) abstractly in our setting, see Section 5.

Another common, more concrete solution is to assume a likelihood, that is, a probabilistic
relation X × Y → R≥0. Such a likelihood gives rise to probability density function (pdf),
providing a good handle on the situation, see (Pawitan, 2001). The technical core of
Section 8 is a generalisation of this likelihood-based approach.

The paper is organised as follows. It starts with a brief introduction to the graphical
language that we shall be using, and to the underlying monoidal categories with discarding
and copying. Then, Section 3 introduces both disintegration and Bayesian inversion in
this graphical language, and relates the two notions. Subsequently, Section 4 contains an
elaborated example, namely of naive Bayesian classification. A standard example from
the literature (Witten et al., 2011) is redescribed in the current setting: first, channels
are extracted via disintegration from a table with given data; next, Bayesian inversion
is applied to the combined extracted channels, giving the required classification. This is
illustrated in both the discrete and the continuous version of the example.

Next, Section 5 is more technical and elaborates the standard equality notion of ‘equal
almost everywhere’ in the current setting. This is used for describing Bayesian inversion
in a more formal way, following (Clerc et al., 2017). Section 6 uses our graphical approach
to review conditional independence and to prove at an abstract level several known
results, namely equivalence of various formulations of conditional independence, and the
‘graphoid’ axioms from (Verma and Pearl, 1988; Geiger et al., 1990). Section 7 relaxes the
requirement that maps are causal, so that ‘effects’ can be used as the duals of states for
validity and conditioning. The main result relates conditioning of joint states to forward
and backward inference via the extracted channels, in the style of (Jacobs and Zanasi,
2016); it is illustrated in a concrete example, where a Bayesian network is seen as a graph
in a Kleisli category — following (Fong, 2012). Finally, Section 8 gives the likelihood
formulation of disintegration and inversion, as briefly described above.

K. Cho and B. Jacobs 4

2. Graphical language

The basic idea underlying this paper is to describe probability theory in terms of channels.
A channel f : X → Y is a (stochastic) process from a system of type X into that of Y .
Concretely, it may be a probability matrix or kernel. Our standing assumption is that
types (as objects) and channels (as arrows) form a symmetric monoidal category. For the
formal definition we refer to (Mac Lane, 1998). We informally summarise that we have
the following constructions.

1 Sequential composition g ◦ f : X → Z for appropriately typed channels f : X → Y

and g : Y → Z.
2 Parallel composition f ⊗ g : X ⊗ Z → Y ⊗W for f : X → Y and g : Z → W . This

involves composition of types X ⊗ Z.
3 Identity channels idX : X → X, which ‘do nothing’. Thus id ◦ f = f = id ◦ f .
4 A unit type I, which represents ‘no system’. Thus I ⊗X ∼= X ∼= X ⊗ I.
5 Swap isomorphisms X ⊗ Y ∼= Y ⊗X and associativity isomorphisms (X ⊗ Y)⊗ Z ∼=

X ⊗ (Y ⊗ Z), so the ordering in composed types does not matter.

Representation of such channels in the ordinary ‘formula’ notation easily becomes
complex and thus reasoning becomes hard to follow. A graphical language known as
string diagrams offers a more convenient and intuitive way of reasoning in a symmetric
monoidal category.

In string diagrams, types/objects are represented as wires ‘ ’, with information flowing
bottom to top. The composition of types is depicted by juxtaposition of wires, and the
unit type is ‘no diagram’ as below.

X ⊗ Y = X Y I =

Channels/arrows are represented by boxes with an input wire(s) and an output wire(s),
in upward direction. When a box does not have input or output, we write it as a triangle
or diamond. For example, f : X → Y ⊗ Z, ω : I → X, p : X → I, and s : I → I are
respectively depicted as:

f

X

Y Z

ω

X p

X
s

The identity channels are represented by ‘no box’, i.e. just wires, and the swap isomor-
phisms are represented by crossing of wires:

id

X

X

= X

X

X

Y

Y

Finally, the sequential composition of channels is depicted by connecting the input and

Disintegration and Bayesian Inversion 5

output wires, and the parallel composition is given by juxtaposition, respectively as below:

g ◦ f =
f

g
h⊗ k = h k

The use of string diagrams is justified by the following ‘coherence’ theorem, see (Selinger,
2010).

Theorem 2.1. A well-formed equation between composites of arrows in a symmetric
monoidal category follows from the axioms of symmetric monoidal categories if and only
if the string diagrams of both sides are equal up to isomorphism of diagrams.

We further assume the following structure in our category. For each type X there are a
discarder X : X → I and a copier X : X → X ⊗X. They are required to satisfy the
following equations:

= = = =

This says that (X , X) forms a commutative comonoid on X. By the associativity we
may write:

. . . := . . .

Moreover we assume that the comonoid structures (X , X) are compatible with the
monoidal structure (⊗, I), in the sense that the following equations hold.

X ⊗ Y = X Y I =
X ⊗ Y

=
X Y I

=

Note that we do not assume that these maps are natural. Explicitly, we do not necessarily
have ◦ f = (f ⊗ f) ◦ or ◦ f = .
We will use these symmetric monoidal categories throughout in the paper. For conve-

nience, we introduce a term for them.

Definition 2.2. A CD-category is a symmetric monoidal category (C,⊗, I) with a
commutative comonoid (X , X) for each X ∈ C, suitably compatible as described
above.

Here ‘CD’ stands for Copy/Discard.

Definition 2.3. An arrow f : X → Y in a CD-category is said to be causal if

f = .

A CD-category is affine if all the arrows are causal, or equivalently, the tensor unit I is a
final object.

K. Cho and B. Jacobs 6

The term ‘causal’ comes from (categorical) quantum foundation (Coecke and Kissinger,
2017; D’Ariano et al., 2017), and is related to relativistic causality, see e.g. (Coecke, 2016).

We reserve the term ‘channel’ for causal arrows. Explicitly, causal arrows c : X → Y

in a CD-category are called channels. A channel ω : I → X with input type I is called a
state (on X). For the time being we only consider affine CD-categories, where all arrows
are channels.

Example 2.4. Our main examples of affine CD-categories are two Kleisli categories K`(D)
and K`(G), respectively, for discrete probability, and more general, measure-theoretic
probability.
1 What we call a distribution or a state over a set X is a finite subset {x1, x2, . . . , xn} ⊆

X, called the support where each element xi occurs with a multiplicity ri ∈ [0, 1], such
that

∑
i ri = 1. Such a convex combination is often written as r1|x1〉+ · · ·+ rn|xn〉

with ri ∈ [0, 1]. The ket notation |−〉 is meaningless syntactic sugar that is used
to distinguish elements x ∈ X from occurrences in such formal sums. Notice that
a distribution can also be written as a function ω : X → [0, 1] with finite support
supp(ω) = {x ∈ X | ω(x) 6= 0}. We shall write D(X) for the set of distributions over
X. This D is a monad on the category Set of sets and functions.
A function f : X → D(Y) is called a Kleisli map; it forms a channel X → Y . Such
maps can be composed as matrices, for which we use special notation ◦· .

(g ◦· f)(x)(z) =
∑
y∈Y f(x)(y) · g(y)(z) for g : Y → D(Z) with x ∈ X, z ∈ Z.

We write 1 = {∗} for a singleton set, and 2 = 1 + 1 = {0, 1}. Notice that D(1) ∼= 1
and D(2) ∼= [0, 1]. We can identify a state on X with a channel 1→ X.
The monad D is known to be commutative. This implies that finite products of sets
X × Y give rise to a symmetric monoidal structure on the Kleisli category K`(D).
Specifically, for two maps f : X → D(Y) and g : Z → D(W), the tensor product /
parallel composition f ⊗ g : X × Z → D(Y ×W) is given by:

(f ⊗ g)(x, z)(y, w) = f(x, y) · g(z, w).

For each set X there are a copier X : X → D(X×X) and a discarder X : X → D(1)
given by X(x) = 1|x, x〉 and X(x) = 1|∗〉, respectively. They come from the
cartesian (finite product) structure of the base category Set, through the obvious
functor Set→ K`(D). Therefore K`(D) is a CD-category. It is moreover affine, since
the monad is affine in the sense that D(1) ∼= 1.

2 Let X = (X,ΣX) be a measurable space, where ΣX is a σ-algebra on X. A probability
measure, also called a state, on X is a function ω : ΣX → [0, 1] which is countably
additive and satisfies ω(X) = 1. We write G(X) for the collection of all such probability
measures on X. This set G(X) is itself a measurable space. Notice that G(X) ∼= D(X)
when X is a finite set (as discrete space). In particular, G(2) ∼= D(2) ∼= [0, 1]. This G
is a monad on the category Meas of measurable spaces, with measurable functions
between them; it is called the Giry monad, after (Giry, 1982; Jacobs, 2017).
A Kleisli map, that is, a measurable function f : X → G(Y) is a channel (or a probability
kernel, see Example 7.1). These channels can be composed, via Kleisli composition ◦· ,

Disintegration and Bayesian Inversion 7

using integration:

(g ◦· f)(x)(C) =
∫
Y

g(y)(C) f(x)(dy) where g : Y → G(Z) and x ∈ X,C ∈ ΣZ .

It is well-known that the monad G is commutative and affine, see also (Jacobs, 2017).
Thus, in a similar manner to the previous example, the Kleisli category K`(G) is
an affine CD-category. The parallel composition f ⊗ g : X × Z → G(Y × W) for
f : X → G(Y) and g : Z → G(W) is given as:

(f ⊗ g)(x, z)(B ×D) = f(x)(B) · g(z)(D),

for x ∈ X, z ∈ Z, B ∈ ΣY , and D ∈ ΣW . This indeed determines a unique measure
(f ⊗ g)(x, z) ∈ G(Y ×W), which is a product measure of probability measures f(x)
and g(z).

3. Marginalisation, integration and disintegration

Let C be an affine CD-category. We think of states ω : I → X in C as abstract (probability)
distributions on type X. States of the form ω : I → X ⊗ Y , often called (bipartite) joint
states, are seen as joint distributions on X and Y . Later on we shall also consider n-
partite joint states, but for the time being we restrict ourselves to bipartite ones. For a
joint distribution P(x, y) in ordinary discrete probability, we can calculate the marginal
distribution on X by summing (or marginalising) Y out, as P(x) =

∑
y P(x, y). The

marginal distribution on Y is also calculated by P(y) =
∑
x P(x, y). In our abstract

setting, given a joint state ω : I → X ⊗ Y , we can obtain marginal states simply by
discarding wires, as in:

ω

X marginal on X←−−−−−−−−− [
ω

X Y marginal on Y7−−−−−−−−−→
ω

Y

In other words, the marginal states are the state ω composed with the projection maps
π1 : X ⊗ Y → X and π2 : X ⊗ Y → Y , as below.

π1 :=
X Y

π2 :=
X Y

Example 3.1. For a joint state ω ∈ D(X ×X) in K`(D), the first marginal ω1 = π1 ◦· ω
is given by ω1(x) =

∑
y∈Y ω(x, y), as expected. For a joint state ω ∈ G(X ×X) in K`(G),

the first marginal is given by ω1(A) = ω(A× Y) for A ∈ ΣX . The second marginals are
similar.

A channel c : X → Y is seen as an abstract conditional distribution P(y|x). In ordinary
probability theory, we can calculate a joint distribution P(x, y) from a distribution P(x)
and a conditional distribution P(y|x) by the formula P(x, y) = P(y|x) · P(x), which is
often called the product rule. Similarly we have P(x, y) = P(x|y) · P(y). In our setting,
starting from a state σ : I → X and a channel c : X → Y , or a state τ : I → Y and
a channel d : Y → X, we can ‘integrate’ them into a joint state on X ⊗ Y as follows,

K. Cho and B. Jacobs 8

respectively:

σ

c

X Y

or

τ

d

X Y

(2)

Example 3.2. Let σ ∈ D(X) and c : X → D(Y) be a state and a channel in K`(D). An
easy calculation verifies that ω = (id⊗ c) ◦· ◦· σ, the joint state on X × Y defined as in
(2), satisfies ω(x, y) = c(x)(y) · σ(x), as we expect from the product rule.

For a state σ ∈ G(X) and a channel c : X → G(Y) in K`(G), the joint state ω =
(id⊗ c) ◦· ◦· σ is given by ω(A×B) =

∫
A
c(x)(B)σ(dx) for A ∈ ΣX and B ∈ ΣY . This

‘integration’ construction of a joint probability measure is standard, see e.g. (Pollard,
2002; Panangaden, 2009).

Disintegration is an inverse operation of the ‘integration’ of a state and a channel into
a joint state, as in (2). More specifically, it starts from a joint state ω : I → X ⊗ Y and
extracts either a state ω1 : I → X and a channel c1 : X → Y , or a state ω2 : I → Y and a
channel c2 : Y → X as below,

(
ω1

X

, c1

Y

X

)
disintegration←−−−−−−−− [

ω

X Y disintegration7−−−−−−−−→
(

ω2

Y

, c2

X

Y

)

such that the equation on the left or right below holds, respectively.

ω1

c1

X Y

=
ω

X Y

=

ω2

c2

X Y

(3)

We immediately see from the equation that ω1 and ω2 must be marginals of ω:

ω
=

ω1

c1

=

ω1

=
ω1

and similarly

ω
=

ω2
.

We are thus led to the following definition.

Definition 3.3. Let ω : I → X⊗Y be a joint state. A channel c1 : X → Y (or c2 : Y → X)
is called a disintegration of ω if it satisfies the equation (3) with ωi the marginals of ω.

Example 3.4. Let ω ∈ D(X × Y) be a joint state in K`(D). We write ω1 ∈ D(X) for

Disintegration and Bayesian Inversion 9

the first marginal, given by ω1(x) =
∑
y ω(x, y). Then a channel c : X → D(Y) is a

disintegration of ω if and only if ω(x, y) = c(x)(y) · ω1(x) for all x ∈ X and y ∈ Y . It
turns out that there is always such a channel c. We define a channel c by:

c(x)(y) := ω(x, y)
ω1(x) if ω1(x) 6= 0 ,

and c(x) := τ if ω1(x) = 0, for an arbitrary state τ ∈ D(Y). (We may assume that Y is
nonempty.) This indeed defines a channel c satisfying the required equation. Roughly
speaking, disintegration in discrete probability is nothing but the ‘definition’ of conditional
probability: P(y|x) = P(x, y)/P(x). There is still some subtlety — disintegrations need
not be unique, when there are x ∈ X with ω1(x) = 0.
Disintegrations in measure-theoretic probability, in K`(G), are far more difficult. Let

ω ∈ G(X×Y) be a joint state, with ω1 ∈ G(X) the first marginal. A channel c : X → G(Y)
is a disintegration of ω if and only if

ω(A×B) =
∫
A

c(x)(B)ω1(dx)

for all A ∈ ΣX and B ∈ ΣY . This is the ordinary notion of disintegration (of probability
measures), also known as regular conditional probability; see e.g. (Faden, 1985; Pollard,
2002; Panangaden, 2009). We see that there is no obvious way to obtain a channel c
here, unlike the discrete case. In fact, a disintegration may not exist (Stoyanov, 2014).
There are, however, a number of results that guarantee the existence of a disintegration
in certain situations. We will come back to this issue later in the section.

Bayesian inversion is a special form of disintegration, occurring frequently. We start
from a state σ : I → X and a channel c : X → Y . We then integrate them into a joint
state on X and Y , and disintegrate it in the other direction, as below.

(
σ

X

, c

Y

X

)
integration7−−−−−−−→

σ

c

X Y

disintegration7−−−−−−−−→
(

σ

c

Y

, d

X

Y

)

We call the disintegration d : Y → X a Bayesian inversion for σ : I → X along c : X → Y .
By unfolding the definitions, a channel d : Y → X is a Bayesian inversion if and only if

σ

c

=

σ

d

c
. (4)

Example 3.5. Let σ ∈ D(X) and c : X → D(Y) be a state and a channel in K`(D).
Then a channel d : Y → D(X) is a Bayesian inversion for σ along c if and only if
c(x)(y) · σ(x) = d(y)(x) · c∗(σ)(y), where c∗(σ)(y) =

∑
x′ c(x′)(y) · σ(x′). In a similar

K. Cho and B. Jacobs 10

manner to Example 3.4, we can obtain such a d by:

d(y)(x) := c(x)(y) · σ(x)
c∗(σ)(y) = c(x)(y) · σ(x)∑

x′ c(x′)(y) · σ(x′)

for y ∈ Y with c∗(σ)(y) 6= 0. For y ∈ Y with c∗(σ)(y) = 0, we may define d(y) to be an
arbitrary state in D(X). We can recognise the above formula as the Bayes formula:

P(x|y) = P(y|x) · P(x)
P(y) = P(y|x) · P(x)∑

x′ P(y|x′) · P(x′) .

Let σ ∈ G(X) and c : X → G(Y) be a state and a channel in K`(G). A channel
d : Y → G(X) is a Bayesian inversion if and only if∫

A

c(x)(B)σ(dx) =
∫
B

d(y)(A) c∗(σ)(dy)

for all A ∈ ΣX and B ∈ ΣY . Here c∗(σ) ∈ G(Y) is the measure given by c∗(σ)(B) =∫
X
c(x)(B)σ(dx). As we see below, Bayesian inversions are in some sense equivalent to

disintegrations, and thus, they are as difficult as disintegrations. In particular, a Bayesian
inversion need not exist.
In practice, however, the state σ and channel c are often given via density functions.

This setting, so-called (absolutely) continuous probability, makes it easy to compute a
Bayesian inversion. Suppose that X and Y are subspaces of R, and that σ and c admit
density functions as

σ(A) =
∫
A

f(x) dx c(x)(B) =
∫
B

`(x, y) dy

for measurable functions f : X → R≥0 and ` : X × Y → R≥0. The conditional probability
density `(x, y) of y given x is often called the likelihood of x given y. By the familiar
Bayes formula for densities — see e.g. (Bernardo and Smith, 2000) — the conditional
density of x given y is:

k(y, x) := `(x, y) · f(x)∫
X
`(x′, y) · f(x′) dx′ .

This k then gives a channel d : Y → G(X) by

d(y)(A) =
∫
A

k(y, x) dx

for each y ∈ Y such that
∫
X
`(x′, y) · f(x′) dx′ 6= 0. For the other y’s we define d(y) to be

some fixed state in G(X). An elementary calculation verifies that d is indeed a Bayesian
inversion for σ along c. Later, in Section 8, we generalise this calculation into our abstract
setting.

Although Bayesian inversions are a special case of disintegrations, we can conversely
obtain disintegrations from Bayesian inversions, as in the proposition below. Therefore,
in some sense the two notions are equivalent.

Proposition 3.6. Let ω be a state on X⊗Y . Let d : X → X⊗Y be a Bayesian inversion

Disintegration and Bayesian Inversion 11

for ω along the first projection π1 : X ⊗ Y → X on the left below.

π1 =
X Y

π2 ◦ d = d

X

Y

Then the composite π2 ◦ d : X → Y shown on the right above is a disintegration of ω.

Proof. We prove that the first equation in (3) holds for c1 = π2 ◦ d, as follows.

ω

d

=

ω

d

=

ω

d ∗=

ω

=

ω

=
ω

For the marked equality ∗= we used the equation (4) for the Bayesian inversion d.

We say that an affine CD-category C admits disintegration if for every bipartite state
ω : I → X ⊗ Y there exist a disintegration c1 : X → Y of ω. Note that in such categories
there also exists a disintegration c2 : Y → X of ω in the other direction, since it can be
obtained as a disintegration of the following state:

ω

Y X

.

By Proposition 3.6, admitting disintegration is equivalent to admitting Bayesian inversion.
In Example 3.4, we have seen that K`(D) admits disintegration, but that in measure-

theoretic probability, in K`(G), disintegrations may not exist. There are however a
number of results that guarantee the existence of disintegrations in specific situations,
see e.g. (Pachl, 1978; Faden, 1985). We here invoke one of these results and show that
there is a subcategory of K`(G) that admits disintegration. A measurable space is called
a standard Borel space if it is measurably isomorphic to a Polish space with its Borel
σ-algebra, or equivalently, if it is measurably isomorphic to a Borel subspace of R. Then
the following theorem is standard, see e.g. (Pollard, 2002, §5.2) or (Faden, 1985, §5).

Theorem 3.7. Let X be any measurable space and Y be a standard Borel space. Then for
any state (i.e. a probability measure) ω ∈ G(X×Y) in K`(G), there exists a disintegration
c1 : X → G(Y) of ω.

Let pKrnsb be the full subcategory of K`(G) consisting of standard Borel spaces as
objects. It is easy to see that pKrnsb is an affine CD-category. Then the previous theorem
immediately shows:

Corollary 3.8. The category pKrnsb admits disintegration.

We note that pKrnsb can also be seen as the Kleisli category of the Giry monad restricted
on the category of standard Borel spaces.

K. Cho and B. Jacobs 12

Since there are various ‘existence’ theorems like Theorem 3.7, there may be other
subcategories of K`(G) that admit disintegration. A likely candidate is the category of
perfect probabilistic mappings in (Culbertson and Sturtz, 2014). We do not go into this
question here, since pKrnsb suffices for the present paper.

4. Example: naive Bayesian classifiers via inversion

Bayesian classification is a well-known technique in machine learning that produces a
distribution over data classifications, given certain sample data. The distribution describes
the probability, for each data (classification) category, that the sample data is in that
category. Here we consider an example of ‘naive’ Bayesian classification, where the features
are assumed to be independent. We consider a standard classification example from the
literature which forms an ideal setting to illustrate the use of both disintegration and
Bayesian inversion. Disintegration is used to extract channels from a given table, and
subsequently Bayesian inversion is applied to (the tuple of) these channels to obtain the
actual classification. The use of channels and disintegration/inversion in this classification
setting is new, as far as we know.

For the calculations in this example we use the EfProb library (Cho and Jacobs, 2017),
of which we explain the notation for marginalisation and disintegration. There are many
ways to marginalise an n-partite state, namely one for each subset of the wires {1, 2, . . . , n}.
In EfProb such a subset is described as a mask, consisting of a list of n zero’s or one’s,
where a zero at position i means that the i-th wire/component is marginalised out, and a
one at position i means that it remains. Such a mask M = [b1, . . . , bn] with bi ∈ {0, 1} is
used in EfProb as a post-fix operation in ω % M on an n-partite state ω. An example
explains it all:

if ω = then ω % [1, 0, 1, 0, 0] =

In a similar way one can disintegrate an n-partite state in 2n may ways, where a mask of
length n is now used to describe which wires are used as input to the extracted channel
and which ones as output. In EfProb this is written as ω � M , where M is a mask, as
above. A systematic description will be given in Section 6 below.

In practice it is often useful to be able to marginalise first, and disintegrate next. The
general description in n-ary form is a bit complicated, so we use an example for n = 5.
We shall label the wires with xi, as on the left below. We seek the conditional probability
written conventionally as c = ω[x1, x4 | x2, x5] on the right below.

ω

x1 x2 x3 x4 x5

c

x1 x4

x2 x5

Disintegration and Bayesian Inversion 13

Outlook Temperature Humidity Windy Play

Sunny hot high false no
Sunny hot high true no

Overcast hot high false yes
Rainy mild high false yes
Rainy cool normal false yes
Rainy cool normal true no

Overcast cool normal true yes
Sunny mild high false no
Sunny cool normal false yes
Rainy mild normal false yes
Sunny mild normal true yes

Overcast mild high true yes
Overcast hot normal false yes
Rainy mild high true no

Fig. 1. Weather and play data, copied from (Witten et al., 2011).

This channel c must satisfy:

ω =

ω

c

This picture shows how to obtain the channel c from ω: we first marginalise to restrict
to the relevant wires x1, x2, x4, x5. This is written as ω % [1, 1, 0, 1, 1]. Subsequently we
disintegrate with x1, x4 as output and x2, x5 as input. Hence:

c := ω % [1, 1, 0, 1, 1] � [0, 1, 0, 1]
= ω

[
[1, 0, 0, 1, 0] : [0, 1, 0, 0, 1]

]
in EfProb notation.

We see that the latter EfProb post-fix
[
[1, 0, 0, 1, 0] : [0, 1, 0, 0, 1]

]
is a ‘variable free’ version

of the traditional notation [x1, x4 | x2, x5], selecting the relevant positions — with |
replaced by :.

We have now prepared the ground and can turn to the classification example that we
announced. It involves the classification of ‘playing’ (yes or no) for certain weather data,
used in (Witten et al., 2011). We shall first go through the discrete example in some detail.
The relevant data are in the table in Figure 1. The question is: given this table, what can
be said about the probability of playing if the outlook is Sunny, the temperature is Cold,
the humidity is High and it is Windy?
Our plan is to first organise these table data into four channels dO, dT , dH , dW in a

K. Cho and B. Jacobs 14

network of the form:�� ��Outlook
�� ��Temperature

�� ��Humidity
�� ��Windy

�� ��Play
dO

gg

dH

AA

dW

88

dT

__

(5)

The abstraction of these channels works by disintegration. The representation in EfProb
starts by defining the relevant domains for the categories in the table in Figure 1. We
choose abbreviations for the entries in each of the categories.

>>> Outlook = [’S’, ’O’, ’R’]
>>> Temp = [’H’, ’M’, ’C’]
>>> Humidity = [’H’, ’N’]
>>> Windy = [’t’, ’f’]
>>> Play = [’y’, ’n’]
>>> D = [Outlook, Temp, Humidity, Windy, Play]

This last domain D combines the previous ones into a single domain. It is used for the
representation of the table, where each of the 14 lines in Figure 1 gets a probability 1/14.

>>> table = 1/14 ∗ point_state((’S’,’H’,’H’,’f’,’n’), D) \

... + 1/14 ∗ point_state((’S’,’H’,’H’,’t’,’n’), D) \

... + 1/14 ∗ point_state((’O’,’H’,’H’,’f’,’y’), D) \

... + 1/14 ∗ point_state((’R’,’M’,’H’,’f’,’y’), D) \

... + 1/14 ∗ point_state((’R’,’C’,’N’,’f’,’y’), D) \

... + 1/14 ∗ point_state((’R’,’C’,’N’,’t’,’n’), D) \

... + 1/14 ∗ point_state((’O’,’C’,’N’,’t’,’y’), D) \

... + 1/14 ∗ point_state((’S’,’M’,’H’,’f’,’n’), D) \

... + 1/14 ∗ point_state((’S’,’C’,’N’,’f’,’y’), D) \

... + 1/14 ∗ point_state((’R’,’M’,’N’,’f’,’y’), D) \

... + 1/14 ∗ point_state((’S’,’M’,’N’,’t’,’y’), D) \

... + 1/14 ∗ point_state((’O’,’M’,’H’,’t’,’y’), D) \

... + 1/14 ∗ point_state((’O’,’H’,’N’,’f’,’y’), D) \

... + 1/14 ∗ point_state((’R’,’M’,’H’,’t’,’n’), D)

In this way the table is transformed into a joint probability distribution on the (5-ary)
domain D. Here, the transformation from table to distribution was done by hand, but it
is easy enough to automate this process.

We extract the four channels in Diagram (5) via appropriate disintegrations, from the
Play column to the Outlook / Temperature / Humidity / Windy columns.

>>> dO = table[[1,0,0,0,0] : [0,0,0,0,1]]
>>> dT = table[[0,1,0,0,0] : [0,0,0,0,1]]
>>> dH = table[[0,0,1,0,0] : [0,0,0,0,1]]

Disintegration and Bayesian Inversion 15

>>> dW = table[[0,0,0,1,0] : [0,0,0,0,1]]

Thus, as described in the beginning of this section, the ‘outlook’ channel dO is extracted
by first marginalising the table to the relevant wires, and then disintegrating. Explicitly,
dO is table % [1,0,0,0,1] // [0,1].

In a next step we combine these four channels into a single channel d via tupling. The
answer that we are looking for will be obtained by Bayesian inversion of this channel d.
But Bayesian inversion requires an additional initial state. For this we take the ‘Play’
marginal of the table, in the fifth position.

>>> d = (dO @ dT @ dH @ dW) ∗ copy(Play,4)
>>> prior_play = table % [0,0,0,0,1]
>>> prior_play
0.643|y> + 0.357|n>

>>> posterior_play = d.inversion(prior_play)(’S’,’C’,’H’,’t’)
>>> posterior_play
0.205|y> + 0.795|n>

Notice that the assumptions — Sunny outlook, Cold temperature, High humidity, true
windiness — are used as input to the inversion of d. The resulting classification probability
of 0.205 coincides with the probability of 20.5% that is computed in (Witten et al., 2011)
— in a rather ad hoc manner, without much of a theoretical basis.

One could complain that our approach is ‘too’ abstract, since it remains magical what
these extracted channels do. We elaborate the outlook channel dO, going from the Play
to the Outlook domain. We print the two probability distributions for the two values y
and n of the Play domain:

>>> dO(’y’)
0.222|S> + 0.444|O> + 0.333|R>

>>> dO(’n’)
0.6|S> + 0|O> + 0.4|R>

The first distribution 2
9 |S〉+

4
9 |O〉+

3
9 |R〉 arises as follows. We need to concentrate on the

9 lines in Figure 1 for which Play is yes; in these lines, in the first Outlook column, 2 out
of 9 entries are Sunny, 4 out of 9 are Overcast, and 3 out of 9 are Rainy. This corresponds
to the first distribution dO(’y’). Similarly, the second distribution captures the Outlook
for the 5 lines where Play is no: 3 out of 5 are Sunny and 2 out of 5 are Rainy.
There is a ‘continuous’ variation of this example where numerical values are used for

temperature and humidity. We shall not repeat the table and refer to (Witten et al.,
2011) for details. We use Bayesian inversion, as before, for classification, but we need
a slightly different approach to extract channels for the ‘continuous’ features. One first
computes the mean and standard deviation of the given numerical values, separately
when Play is yes, and when Play is no. These means and standard deviations are used as
parameters for Gaussian (normal) distributions in the EfProb channel definitions below.
The mean and standard deviation values are copied from (Witten et al., 2011). We only
define continuous channels for temperature and humidity, and re-use the discrete channels

K. Cho and B. Jacobs 16

for outlook and windiness to form a single ‘hybrid’ channel c that will be inverted for
classification:

>>> cT = chan_from_states([gaussian_state(73, 6.2),
... gaussian_state(74.6, 7.9)], Play)

>>> cH = chan_from_states([gaussian_state(79.1, 10.2),
... gaussian_state(86.2, 9.7)], Play)

>>> c = (dO @ cT @ cH @ dW) ∗ copy(Play,4)
>>> c.inversion(prior_play)(’S’,66,90,’t’)
0.207|y> + 0.793|n>

The latter inversion computation produces the probability of 0.207 for playing when
the outlook is Sunny, the temperature is 66 (Fahrenheit), the humidity is 90% and the
windiness is true. The value computed in (Witten et al., 2011) is 20.8%. The minor
difference of 0.001 with our outcome can be attributed to (intermediate) rounding errors.

5. Almost equality of channels

This section explains how the standard notion of ‘equal up to negligible sets’ or ‘equal
almost everywhere’ (with respect to a measure) can be expressed abstractly using string
diagrams. Via this equality relation Bayesian inversion can be characterised very neatly,
following (Clerc et al., 2017). We consider an affine CD-category, continuing in the setting
of Section 3.

Definition 5.1. Let c, d : X → Y be two parallel channels, and σ : I → X be a state on
their domain. We say that c is σ-almost equal to d, written as c σ∼ d if

σ

c

=

σ

d

.

It is obvious that σ∼ is an equivalence relation on channels of type X → Y . When S is a
set of arrows of type X → Y , we write S/σ for the quotient S/ σ∼.

To put it more intuitively, we have c σ∼ d iff c and d can be identified whenever the input
wires are connected to σ, possibly through copiers. For instance, using the associativity
and commutativity of copiers, by c σ∼ d we may reason as:

σ

c

=

σ

c =

σ

d =

σ

d

.

Disintegration and Bayesian Inversion 17

In particular, c σ∼ d if and only if

σ

c

=

σ

d

.

Now the following is an obvious consequence from the definition.

Proposition 5.2. If both c, d : X → Y are disintegrations of a joint state ω : I → X⊗Y ,
then c ω1∼ d, where ω1 : I → X is the first marginal of ω.

For channels f, g : X → D(Y) and a state σ ∈ D(X) in K`(D), it is easy to see that
f
σ∼ g if and only if f(x)(y) · σ(x) = g(x)(y) · σ(x) for all x ∈ X and y ∈ Y if and only

if f(x) = g(x) for any x ∈ X with σ(x) 6= 0. Almost equality in K`(G) is less trivial but
characterised in an expected way.

Proposition 5.3. Let f, g : X → G(Y) be channels and µ ∈ G(X) a state in K`(G). Then
f
µ∼ g if and only if for any B ∈ ΣY , f(−)(B) = g(−)(B) µ-almost everywhere.

Proof. By expanding the definition, f µ∼ g if and only if∫
A

f(x)(B)µ(dx) =
∫
A

g(x)(B)µ(dx)

for all A ∈ ΣX and B ∈ ΣY . This is equivalent to f(−)(B) = g(−)(B) µ-almost everywhere
for all B ∈ ΣY , see (Fremlin, 2000, 131H).

Almost-everywhere equality of probability kernels f, g : X → G(Y) is often formulated
by the stronger condition that f = g µ-almost everywhere. The next proposition shows
that the stronger variant is equivalent under a reasonable assumption (any standard Borel
space is countably generated, for example).

Proposition 5.4. In the setting of the previous proposition, additionally assume that
the measurable space Y is countably generated. Then f µ∼ g if and only if f = g µ-almost
everywhere.

Proof. Let the σ-algebra ΣY on Y be generated by a countable family (Bn)n. We may
assume that (Bn)n is a π-system, i.e. a family closed under binary intersections. Let
An = {x ∈ X | f(x)(Bn) = g(x)(Bn)}, and A =

⋂
nAn. Each An is µ-conegligible, and

thus A is µ-conegligible. For each x ∈ A, we have f(x)(Bn) = g(x)(Bn) for all n. By
application of the Dynkin π-λ theorem, it follows that f(x) = g(x). Therefore f = g

µ-almost everywhere.

We can now present a fundamental result from (Clerc et al., 2017, §3.3) in our abstract
setting. Let (I ↓ C) be the comma (coslice) category. for an affine CD-category C.
Objects in (I ↓ C) are states in C, formally pairs (X,σ) of objects X ∈ C and states
σ : I → X. Arrows from (X,σ) to (Y, τ) are state-preserving channels c : X → Y in C

K. Cho and B. Jacobs 18

satisfying c ◦ σ = τ . A joint state (X ⊗ Y, ω) ∈ (I ↓C) is called a coupling of two states
(X,σ), (Y, τ) ∈ (I ↓C) if

ω

X

=
σ

X
and

ω

Y

=
τ

Y
.

We write Coupl((X,σ), (Y, τ)) for the set of couplings of (X,σ) and (Y, τ).

Theorem 5.5. Let C be an affine CD-category that admits disintegration. For each pair
of states (X,σ), (Y, τ) ∈ (I ↓C), there is the following bijection:

(I ↓C)
(
(X,σ), (Y, τ)

)
/σ ∼= Coupl((X,σ), (Y, τ))

Proof. For each c ∈ (I ↓C)
(
(X,σ), (Y, τ)

)
, we define a joint state I → X ⊗ Y to be

the ‘integration’ of σ and c as below, for which we use the following ad hoc notation:

σ = c :=

σ

c

X Y

It is easy to check that σ = c is a coupling of σ and τ . For two channels c, d : X → Y , we
have σ = c = σ = d if and only if c σ∼ d, by the definition of σ∼. This means the mapping

c 7−→ σ = c , (I ↓C)
(
(X,σ), (Y, τ)

)
/σ −→ Coupl((X,σ), (Y, τ))

is well-defined and injective. To prove the surjectivity let (X⊗Y, ω) ∈ Coupl((X,σ), (Y, τ)).
Let c : X → Y be a disintegration of ω. Then c is state-preserving since

τ = ω =

ω

c

=
ω

c
=

σ

c

Moreover we have σ = c = ω, as desired.

Via the symmetry X⊗Y
∼=→ Y ⊗X we have the obvious bijection Coupl((X,σ), (Y, τ)) ∼=

Coupl((Y, τ), (X,σ)). This immediately gives the following corollary.

Corollary 5.6. Let C be an affine CD-category that admits disintegration. For any
states (X,σ), (Y, τ) ∈ (I ↓C) we have

(I ↓C)
(
(X,σ), (Y, τ)

)
/σ ∼= (I ↓C)

(
(Y, τ), (X,σ)

)
/τ

The bijection sends a channel c : X → Y to a Bayesian inversion d : Y → X for σ along c.

Theorem 2 of (Clerc et al., 2017) is obtained as an instance, for the category pKrnsb.
This bijective correspondence yields a ‘dagger’ (−)† functor on (a suitable quotient of)
the comma category (I ↓C) — as noted by the authors of (Clerc et al., 2017).

Disintegration and Bayesian Inversion 19

5.1. Equality extension property

The section concerns a property that allows us to extend almost-equality w.r.t. some state
to a larger state which has the smaller state as marginal. This property is convenient for
equational reasoning between string diagrams, and used later in the proof of Theorem 8.3.

Definition 5.7. We say an affine CD-category has the equality extension property if
for any joint state ω : I → X ⊗ Z and for any channels c, d : X → Y , c ω1∼ d implies
c⊗ idZ

ω∼ d⊗ idZ , where ω1 = π1 ◦ ω is the first marginal of ω.

Lemma 5.8. An affine CD-category has the equality extension property if and only if
for any joint state ω : I → X ⊗ Z, and for any channels c, d : X → Y ,

c
ω1∼ d implies

ω

c
=

ω

d

where ω1 = π1 ◦ ω.

Proof. The ‘only if’ is obvious, since c⊗idZ
ω∼ d⊗idZ implies (c⊗idZ)◦ω = (d⊗idZ)◦ω.

To prove the ‘if’, assume c ω1∼ d for a state ω : I → X ⊗ Z and for channels c, d : X → Y .
We have to prove c⊗ idZ

ω∼ d⊗ idZ , i.e.

ω

c

=
ω

d

This follows from the latter condition applied to the following state:

X Z⊗X⊗Z
:=

ω

X Z X Z

.

In fact, any category admitting disintegration has the equality extension property.

Proposition 5.9. If an affine CD-category admits disintegration, then it has the equality
extension property.

Proof. Assume c ω1∼ d for a state ω : I → X ⊗ Z and for channels c, d : X → Y , with
ω1 = π1 ◦ ω. Suppose that ω is disintegrated as:

ω
=

ω1

e

K. Cho and B. Jacobs 20

Then

ω

c
=

ω1

c e

=

ω1

d e

=
ω

d

This concludes the proof by Lemma 5.8.

Recall that K`(G) does not admit disintegration. Nevertheless, the category has the
equality extension property.

Proposition 5.10. The category K`(G) satisfies the equality extension property.

Proof. We prove the claim using Proposition 5.3 and Lemma 5.8. Assume c ω1∼ d

for ω ∈ G(X ⊗ Z) and c, d : X → G(Y), with ω1 the first marginal of ω. The equality
(c⊗ ηZ) ◦· ω = (d⊗ ηZ) ◦· ω is equivalent to:∫

X×Z
c(x)(A)1C(z)ω(d(x, z)) =

∫
X×Z

d(x)(A)1C(z)ω(d(x, z)) (6)

for all A ∈ ΣX and C ∈ ΣZ . Using∣∣c(x)(A)1C(z)− d(x)(A)1C(z)
∣∣ =

∣∣c(x)(A)− d(x)(A)
∣∣1C(z) ≤

∣∣c(x)(A)− d(x)(A)
∣∣ ,

we have ∣∣∣∫
X×Z

(
c(x)(A)1C(z)− d(x)(A)1C(z)

)
ω(d(x, z))

∣∣∣
≤
∫
X×Z

∣∣c(x)(A)1C(z)− d(x)(A)1C(z)
∣∣ω(d(x, z))

≤
∫
X×Z

∣∣c(x)(A)− d(x)(A)
∣∣ω(d(x, z))

=
∫
X

∣∣c(x)(A)− d(x)(A)
∣∣ (π1)∗(ω)(dx)

=
∫
X

∣∣c(x)(A)− d(x)(A)
∣∣ω1(dx)

= 0 .

This proves the desired equality (6).

6. Conditional independence

Throughout this section, we consider an affine CD-category that admits disintegration.

6.1. Disintegration of multipartite states

So far we have concentrated on bipartite states — except in the classification example in
Section 4. In order to deal with a general n-partite state ω : I → X1 ⊗ · · · ⊗Xn, we will

Disintegration and Bayesian Inversion 21

introduce several notations and conventions in Definitions 6.1, 6.2 and 6.3 below; they
are in line with standard practice in probability theory.
In the conventions, an n-partite state, as below, is fixed, and used implicitly.

ω

. . .X1 X2 Xn

Definition 6.1. When we write
. . .Xi1Xi2 Xik

where i1, . . . , ik are distinct, it denotes the state I → Xi1 ⊗ · · · ⊗Xik obtained from ω by
marginalisation and permutation of wires (if necessary). Let us give a couple of examples,
for n = 5.

X1 X4

:=
ω

X1

X2 X3

X4

X5

X4X2X5

:=
ω

X1

X2

X3

X4 X5

We permute wires via a combination of crossing. This is unambiguous by the coherence
theorem.

Below we will use symbols X,Y, Z,W, . . . to denote not only a single wire Xi but also
multiple wires Xi ⊗Xj ⊗ · · · . Disintegrations more general than in the bipartite case are
now introduced as follows.

Definition 6.2. ForX = Xi1⊗· · ·⊗Xik and Y = Xj1⊗· · ·⊗Xjl
, with all i1, . . . , ik, j1, . . . , jl

distinct, a disintegration X → Y is defined to be a disintegration of

X Y

,

the marginal state given by the previous convention. We denote the disintegration simply
as on the left below,

Y

X

YX

=
X Y

By definition, it must satisfy the equation on the right above. Let us give an example.
The disintegration X1 ⊗X4 → X5 ⊗X2 on the left below is defined by the equation on

K. Cho and B. Jacobs 22

the right.

X1

X5 X2

X4

X1 X5 X2X4

=
X1X4X5X2

More specifically, assuming n = 5 and expanding the notation for marginals, the equation
is:

ω

X1 X2

X1 X3 X4

X4X5

=
ω

X1 X2

X3

X4 X5

Note that disintegrations need not be unique. Thus when we write
Y

X

, we in fact choose

one of them. Nevertheless, such disintegrations are unique up to almost-equality with

respect to
X

, which is good enough for our purpose.

Finally we make a convention about almost equality (Definition 5.1).

Definition 6.3. Let S and T be string diagrams of type X → Y that are made from
marginals and disintegrations of ω as defined in Definitions 6.1 and 6.2. When we say S
is almost equal to T (or write S ∼ T) without reference to a state, it means that S is

almost equal to T with respect to the state
X

.

We shall make use of the following auxiliary equations involving discarding and compo-
sition of disintegrations.

Proposition 6.4. In the conventions and notations above, the following hold.
1 X

Y

Z

∼

X

Z

2 X

Y W

Z

∼

X

Y W

Z

Disintegration and Bayesian Inversion 23

Proof. By the definition of almost equality, 1 is proved by:

X

Y

Z

=
X

Y

Z

=
X Z

=

X Z

.

Similarly, we prove 2 as follows.

X Y WZ

=

X Y WZ

=

X Y WZ

=

X Y WZ

?=
X Z Y W

=
X Z Y W

=

X YZ W

For the marked equality ?=, we used the equality extension property, which is valid in a
category with disintegration.

The equations correspond respectively to
∑
y P(x, y|z) = P(x|z) and P(x|y, z)·P(z|y, w) =

P(x, z|y, w) in discrete probability.

Remark 6.5. In this section, we use symbols X1, X2, . . . or X,Y, Z, . . . in order to
specify wires in string diagrams. These symbols should not mean mere objects/types,
since objects need not be distinct and thus we cannot distinguish wires by objects. As a
consequence, our notations here are somewhat informal. One way to make our notations
more formal is to introduce labels for wires (cf. (Kissinger, 2014)). For the present paper,
however, our informal notations seem to be sufficient.

6.2. Conditional independence

We continue using the notations in the previous subsection. Recall that we fix an n-partite
state

ω

. . .X1 X2 Xn

and use symbols X,Y, Z,W, . . . to denote a wire Xi or multiple wires Xi ⊗Xj ⊗ · · · .
We now introduce the notion of conditional independence. Although it is defined

K. Cho and B. Jacobs 24

with respect to the underlying state ω, we leave the state ω implicit, like an underlying
probability space Ω in ordinary probability theory.

Definition 6.6. LetX,Y, Z denote distinct wires. Then we sayX and Y are conditionally
independent given Z, written as X ‚ Y | Z, if

X Y

Z

∼

X Y

Z

.

The definition is analogous to the condition P(x, y|z) = P(x|z) P(y|z) in ordinary
probability theory. Indeed our definition coincides with this ordinary one, as explained
below.

Example 6.7. In K`(D), let cX|Z : Z → D(X), cY |Z : Z → D(Y), cXY |Z : Z → D(X×Y)
be disintegrations of some joint state, say ω ∈ D(X × Y × Z). Let ωZ ∈ D(Z) be the
marginal on Z. Then X ‚ Y | Z if and only if

cXY |Z(z)(x, y) = cX|Z(z)(x) · cY |Z(z)(y) whenever ωZ(z) 6= 0

for all x ∈ X, y ∈ Y and z ∈ Z. If we write P(x, y|z) = cXY |Z(z)(x, y), P(x|z) =
cX|Z(z)(x), P(y|z) = cY |Z(z)(y), and P(z) = ωZ(z), then the condition will look more
familiar:

P(x, y|z) = P(x|z) · P(y|z) whenever P(z) 6= 0 .

Similarly, in K`(G), let cX|Z : Z → G(X), cY |Z : Z → G(Y), cXY |Z : Z → G(X × Y),
and ωZ ∈ G(Z) be appropriate disintegrations and a marginal of some joint probability
measure ω. Then X ‚ Y | Z if and only if

cXY |Z(z)(A×B) = cX|Z(z)(A) · cY |Z(z)(B) for ωZ-almost all z ∈ Z

for all A ∈ ΣX and B ∈ ΣY .

The equivalences in the next result are well-known in conditional probability. Our
contribution is that we formulate and prove them at an abstract, graphical level.

Proposition 6.8. The following are equivalent.
1 X ‚ Y | Z
2

X Y Z

=

X Y Z

3 X

Y Z

∼

X

Y Z

Disintegration and Bayesian Inversion 25

4

X Y Z

=

X Y Z

5
X Y Z

=

X Y Z

Proof. By definition of almost equality, 1 is equivalent to

X Y Z

=

X Y Z

=:

X Y Z

We then have 1 ⇔ 2, since the identity below holds by the definition of disintegration.

X Y Z

=
X Y Z

Similarly, 3 ⇔ 4 follows by the definitions of almost equality and disintegration. We
have 2 ⇔ 4 because

X Y Z

=

X Y Z

=

X Y Z

,

and similarly 2 ⇔ 5.

Note that the condition 3 of the proposition is an analogue of P(x|y, z) = P(x|z). The
other conditions 2, 4 and 5 say that the joint state can be factorised in certain ways,
corresponding to the following equations:

P(x, y, z) = P(x|z) P(y|z) P(z) = P(x|z) P(y, z) = P(y|z) P(x, z).

The proposition below shows that our abstract formulation of conditional independence
does satisfy the basic ‘rules’ of conditional independence, which are known as (semi-)
graphoids axioms (Verma and Pearl, 1988; Geiger et al., 1990).

K. Cho and B. Jacobs 26

Proposition 6.9. Conditional independence (−) ‚ (−) | (−) satisfies:
1 (Symmetry) X ‚ Y | Z if and only if Y ‚ X | Z.
2 (Decomposition) X ‚ Y ⊗ Z |W implies X ‚ Y |W and X ‚ Z |W .
3 (Weak union) X ‚ Y ⊗ Z |W implies X ‚ Y | Z ⊗W .
4 (Contraction) X ‚ Z |W and X ‚ Y | Z ⊗W imply X ‚ Y ⊗ Z |W .

Proof. We will freely use Proposition 6.8.
(1) Suppose X ‚ Y | Z. Then

Y X Z

=
XY Z

(X‚Y |Z)=

Y X Z

=

Y X Z

.

This means Y ‚ X | Z.
(2) Suppose X ‚ Y ⊗ Z |W , namely:

X Y ZW

=

X Y Z W

Marginalising Z, we obtain

X Y W

=
X Y

Z

W

=

X Y
Z
W

=

X Y W

,

by Proposition 6.4.1. Thus X ‚ Y |W . Similarly we prove X ‚ Z |W .
Finally, we prove 3 and 4 at the same time. Note that X ‚ Y ⊗ Z | W implies

X ‚ Z |W , as shown above. Therefore what we need to prove is that X ‚ Y ⊗Z |W if
and only if X ‚ Y | Z ⊗W , under X ‚ Z |W . Assume X ‚ Z |W , so we have

X

Z W

∼

X

Z W

Then

X Y Z W

=

X Y Z W

=

X Y Z W

Disintegration and Bayesian Inversion 27

=

X Y Z W

=

X Y Z W

=

X Y Z W

This proves X ‚ Y ⊗ Z |W if and only if X ‚ Y | Z ⊗W .

The four properties from the graphoid axioms are essential in reasoning of conditional
independence with DAGs or Bayesian networks (Verma and Pearl, 1988; Geiger et al.,
1990).

Conditional independence has been studied categorically in (Simpson, 2017). There,
a categorical notion of (conditional) independence structure is introduced, generalising
algebraic axiomatisations of conditional independence, such as with graphoids and sep-
aroids (Dawid, 2001). We leave it to future work to precisely relate our approach to
conditional probability to Simpson’s categorical framework.

7. Beyond causal channels

All CD-categories C that we have considered so far are affine in the sense that all arrows
f : X → Y are causal: ◦ f = . We now drop the affineness, in order to enlarge our
category to include ‘non-causal’ arrows. Essentially, we lose nothing by this change: all
the arguments so far can still be applied to the subcategory Caus(C) ⊆ C containing all
the objects and causal arrows. The category Caus(C) inherits the monoidal structure of
C and the comonoid structures on each objects, so that Caus(C) is an affine CD-category.

Recall that channels in C are causal arrows, i.e. arrows in Caus(C). States are channels
of the form σ : I → X. We call endomaps I → I on the tensor unit scalars. The set
C(I, I) of scalars forms a monoid via the composition s · t = s◦ t and 1 = idI . The monoid
of scalars is always commutative — in fact, this is the case for any monoidal category,
see e.g. (Abramsky and Coecke, 2009, §3.2). In string diagram scalars are written as
s or simply as s. We can multiply scalars s to any arrows f : X → Y by the parallel
composition, or diagrammatically by juxtaposition:

fs

We call an arrow σ : I → X is normalisable if the scalar ◦σ : I → I is (multiplicatively)
invertible. In that case we can normalise σ into a proper state as follows.

nrm(σ) :=
σ σ

()−1

Effects in C are arrows of the form p : X → I; they correspond to observables, with

K. Cho and B. Jacobs 28

predicates as special case. Diagrammatically they are written as on the left below.

p
ω |= p :=

σ

p

On the right the validity σ |= p of a state σ : I → X and a effect p : X → I is defined.
It is the scalar given by composition. Note that effects are not causal in general; by
definition, only discarders are causal ones. States σ : I → X can be conditioned by
effects p : X → I via normalisation, as follows.

σ|p := nrm
(

σ

p)
=

σ

p
()−1

σ

p

The conditional state σ|p is defined if the validity σ |= p is invertible.

Example 7.1. Recall that our previous examples K`(D) and K`(G) are both affine. We
give two non-affine CD-categories that have K`(D) and K`(G) as subcategories, respectively.
1 For discrete probability, we use multisets (or unnormalised distributions) over nonneg-

ative real numbers R≥0 = [0,∞), such as

1|x〉+ 0.5|y〉+ 3|z〉 on a set X = {x, y, z, . . . }

We denote byM(X) the set of multisets over R≥0 on X. More formally:

M(X) = {φ : X → R≥0 | φ has finite support} .

It extends to a commutative monadM : Set→ Set, see (Coumans and Jacobs, 2013).
In a similar way to the distribution monad D, we can check that the Kleisli category
K`(M) is a CD-category. For a Kleisli map f : X → M(Y), causality ◦ f =
amounts to the condition

∑
y f(x)(y) = 1 for all x ∈ X. It is thus easy to see that

Caus(K`(M)) ∼= K`(D). In fact, the distribution monad D can be obtained fromM
as its affine submonad, see (Jacobs, 2017).
An effect p : X → 1 in K`(M) is a function p : X → R≥0. Its validity σ |= p in a state
ω is given by the expected value

∑
x σ(x) · p(x). The state σ|p updated with ‘evidence’

p is defined as σ|p(x) = σ(x)·p(x)
σ|=p .

2 For general, measure-theoretic probability, we use s-finite kernels between measurable
spaces (Kallenberg, 2017; Staton, 2017). Let X and Y be measurable spaces. A function
f : X × ΣY → [0,∞] is called a kernel from X to Y if
— f(x,−) : ΣY → [0,∞] is a measure for each X; and
— f(−, B) : X → [0,∞] is measurable for each B ∈ ΣY .
We write f : X Y when f is a kernel from X to Y . A probability kernel is a
kernel f : X Y with f(x, Y) = 1 for all x ∈ X. A kernel f : X Y is finite if
there exists r ∈ [0,∞) such that for all x ∈ X, f(x, Y) ≤ r. (Note that it must be
‘uniformly’ finite.) A kernel f : X Y is s-finite if f =

∑
n fn for some countable

family (fn : X → Y)n∈N of finite kernels.

Disintegration and Bayesian Inversion 29

For two s-finite kernels f : X Y and g : Y Z, we define the (sequential) composite
g ◦ f : X Z by

(g ◦ f)(x,C) =
∫
Y

g(y, C) f(x, dy)

for x ∈ X and C ∈ ΣZ . There are identity kernels ηX : X X given by ηX(x,A) =
1A(x). With these data, measurable spaces and s-finite kernels form a category, which
we denote by sfKrn. There is a monoidal structure on sfKrn. For measurable spaces
X,Y we define the tensor product X ⊗ Y = X × Y to be the cartesian product of
measurable spaces. The tensor unit I = 1 is the singleton space. For s-finite kernels
f : X Y and g : Z W , we define f ⊗ g : X × Z Y ×W by

(f ⊗ g)((x, z), E) =
∫
Y

(∫
W

1E(y, w) g(z,dw)
)
f(x, dy)

=
∫
W

(∫
Y

1E(y, w) f(x,dy)
)
g(z,dw)

for x ∈ X, z ∈ Z,E ∈ ΣY×W . The latter equality holds by the Fubini-Tonelli theorem
for s-finite measures. These make the category sfKrn symmetric monoidal. Finally, for
each measurable spaceX there is a ‘copier’ : X X×X and a ‘discarder’ : X 1,
given by (x,E) = 1E(x, x) and (x, 1) = 1, so that sfKrn is a CD-category. For
more technical details we refer to (Kallenberg, 2017; Staton, 2017).
Note that an s-finite kernel f : X Y is causal if and only if it is a probability kernel,
which is nothing but a Kleisli map X → G(Y) for the Giry monad. Therefore the causal
subcategory of sfKrn is the Kleisli category of the Giry monad: Caus(sfKrn) ∼= K`(G).
In particular, states in sfKrn are probability measures σ ∈ G(X).
An effect p : X 1 in sfKrn, i.e. an s-finite kernel p : X × Σ1 → [0,∞], can be
identified with a measurable function p : X → [0,∞]. The validity σ |= p is then the
integral

∫
X
p(x)σ(dx), defined in [0,∞]. The conditional state σ|p ∈ G(X) is defined

by:

σ|p(A) =
∫
A
p(x)σ(dx)
σ |= p

for A ∈ ΣX , when the validity σ |= p is neither 0 nor ∞.

With these notions in place we return to the original description of disintegration in
Section 3. We assume a joint state ω with its two disintegrations c1 and c2 in:

ω1 = ω

c1

X Y

=
ω

X Y

=

ω = ω2

c2

X Y

(7)

As indicated, we write ω1 and ω2 for the first and second marginals of ω.
Let q be an effect on Y . It can be extended to an effect 1⊗ q on X ⊗ Y , where:

1⊗ q := q

X Y

K. Cho and B. Jacobs 30

Then we can form the conditioned state ω|1⊗q. In a next step we take its first marginal,
written as

(
ω|1⊗q

)
1. It turns out that, in general, this first marginal is different from the

original first marginal ω1, even though the effect q only applies to the second coordinate.
This is called ‘crossover influence’ in (Jacobs and Zanasi, 2017). It happens when the
state ω is ‘entwined’, that is, when its two coordinates are correlated.

A fundamental result in this context is that this crossover influence can also be captured
via the channels c1, c2 that are extracted from ω via disintegrations. This works via effect
transformation c∗(p) := p ◦ c and state transformation c∗(σ) := c ◦ σ along a channel.

Theorem 7.2. In the above setting, assuming that the relevant conditioned states exist,
there are equalities of states:

ω1|c∗1(q) =
(
ω|1⊗q

)
1 =

(
c2
)
∗(ω2|q). (8)

Following (Jacobs and Zanasi, 2016) we can say that the expression on the left in (8)
uses backward inference, and the one on the right uses forward inference.

Proof. We first note that the state in the middle of (8) is the first marginal of:

ω

q
()−1

ω

q

Hence:

(
ω|1⊗q

)
1 =

ω

q
()−1

ω

q

(9)

We note that the above scalar (that is inverted) can also be obtained as:

ω

c1

q

=

ω

c1

q

(7)=
ω

q

(10)

Hence we can prove the equation on the left in (8):

ω1|c∗1(q) =

ω

c1

q()−1

ω

c1

q

(7),(10)=
ω

q
()−1

ω

q

Disintegration and Bayesian Inversion 31

In a similar way we prove the equation on the right in (8), since
(
c2
)
∗(ω2|q) equals:

ω

q
()−1

ω

q

c2

=
ω

q
()−1

ω

q

c2 (7)=
ω

q
()−1

ω

q

The two equations in Theorem 8 will be illustrated in the ‘disease and mood’ example
below, where a particular state (probability) will be calculated in three different ways.

Disease and mood example

We describe a non-trivial example of probabilistic (Bayesian) reasoning. The setting is
the following. We consider a joint state about the occurrence and non-occurrence of a
disease, written as D and ∼D, jointly with the occurrence and non-occurrence of a good
mood, written as M and ∼M . The joint distribution that we start from is of the form:

0.05|M,D〉+ 0.4|M,∼D〉+ 0.5|∼M,D〉+ 0.05|∼M,∼D〉. (11)

Suppose there is a test for the disease, which is positive in 90% of all cases of people
having the disease, and still 5% positive for people without the disease. Suppose the
disease comes out positive. What is then the mood? It is expected that the mood will
deteriorate, since the disease and the mood are ‘entwined’ (correlated) in the above joint
state (11): a high likelihood of disease corresponds to a low mood.
We formalise this example in the EfProb language (Cho and Jacobs, 2017), see also

Section 4. In EfProb one writes conditioning s|p as s/p, state transformation c∗(s) = c ◦ s
as c >> s and predicate (effect) transformation c∗(q) = q ◦ c as c << q. We recall from
Section 4 that marginalisation and disintegration of a state s are written as s % M and
s // M respectively, where M is a mask of zeros and ones.
The above joint (prior) state (11) is defined in EfProb as follows, starting with the

relevant domains (types).

>>> mood_dom = [’M’, ’~M’]
>>> disease_dom = [’D’, ’~D’]
>>> w = State([0.05, 0.4, 0.5, 0.05], [mood_dom, disease_dom])
>>> w
0.05|M,D> + 0.4|M,~D> + 0.5|~M,D> + 0.05|~M,~D>

We see that the latter state w in EfProb corresponds to the above state (11).
We can concentrate on the disease or mood separately, via marginalisations. In EfProb

this is done as follows, via post-fix selection operations.

>>> w1 = w % [1,0]
>>> w2 = w % [0,1]

K. Cho and B. Jacobs 32

>>> w1
0.45|M> + 0.55|~M>

>>> w2
0.55|D> + 0.45|~D>

The sensitivity of the test is defined as a channel, called sens for ‘sensitivity’ below. If
the disease is present, the test gives a positive outcome in 90% of the cases. But if the
disease is absent, the test still has a 5% change of being positive. This is captured in
the definition of the sensitivity channel below. It is applied to the first marginal of the
prior state w to see what the a priori likelihood of a positive test is. This is done via state
transformation, which is written in EfProb as >>.

>>> sens = chan_from_states([flip(9/10),flip(1/20)],disease_dom)
>>> sens >> w2
0.518|True> + 0.482|False>

As explained above, we are interested in the mood after a positive test. This requires
updating the prior state. Below we first define the positive-test predicate, and then
condition (update, revise) the state, via the EfProb-notation /. We introduce a positive-
test predicate (effect) pos_test via predicate transformation, written as << in EfProb.
In order to use it for conditioning the joint state w, we have to ‘weaken’ (extend) the
predicate pos_test to the whole domain of w. This is done via parallel conjunction @
with the truth predicate. Finally, the second marginal of the updated state s gives the
new mood, after the test. This corresponds to the middle expression in (8).

>>> pos_test = sens << yes_pred
>>> pos_test
D: 0.9 | ~D: 0.05

>>> s = w / (pos_test @ truth(mood_dom))
>>> s % [0,1]
0.126|M> + 0.874|~M>

Clearly, a positive test leads to a lower mood: a reduction from 0.45 to 0.126.
Next we show how this result can also be obtained via disintegration of the prior

joint state w. There are two ways to do this, via disintegration in the first component
and predicate transformation (backward inference), or via disintegration in the second
component and state transformation (forward inference). The first way corresponds to
the expression on the left in (8):

>>> c1 = w // [1,0]
>>> w1 / (c1 << pos_test)
0.126|M> + 0.874|~M>

Via disintegration in the second component we get the same result, as on the right in (8):

>>> c2 = w // [0,1]
>>> c2 >> (w2 / pos_test)

Disintegration and Bayesian Inversion 33

0.126|M> + 0.874|~M>

The fact that these three approaches lead to the same mood distribution follows from
Theorem 7.2.

8. Disintegration via likelihoods

We continue in the setting of Section 7 in a CD-category that is not necessarily affine.
The goal of this section is to present Theorem 8.3, which generalises a construction of
Bayesian inversions using densities/likelihoods shown in Example 3.5.
We first introduce ‘likelihoods’ in our setting.

Definition 8.1. We say a channel c : X → Y is represented by a effect ` on X ⊗ Y with
respect to an arrow ν : I → Y if

c =
`

ν

(12)

We call ` a likelihood relation for the channel c with respect to ν.

Interpreted in the category sfKrn, the definition says: a kernel c : X Y satisfies

c(x,B) =
∫
B

`(x, y) ν(dy)

for a kernel ` : X × Y 1 (identified with a measurable function ` : X × Y → [0,∞]) and
a measure ν : 1 Y . This is basically the same as what we have in Example 3.5, but
here ν is not necessarily the Lebesgue measure.
We use the σ-almost equality σ∼ also for non-causal arrows.

Definition 8.2. Let σ : I → X be a state. We say that an arrow c : X → Y is σ-almost
causal if ◦c σ∼ . An effect p : X → I is σ-almost invertible if there is an effect q : X → I

such that:
p q

σ∼ .

The definition allows us to normalise an arrow f : X → Y into an almost causal one,
as follows. If an effect ◦ f is σ-almost inverted by q, as on the left below,

f q σ∼ f q

then clearly the arrow X → Y on the right is σ-almost causal.
We can now formulate and prove our main technical result.

K. Cho and B. Jacobs 34

Theorem 8.3. Let σ be a state on X, and c : X → Y be a channel represented by a
likelihood relation ` with respect to ν as in (12) above. Assume that the category has the
equality extension property, and that the effect

`

σ

=
`

σ
is almost invertible w.r.t. c∗(σ) =

`

νσ

.

Then, writing q : Y → I for an almost inverse to the effect, the channel

d : Y → X :=
`

σ

q

is a Bayesian inversion for σ along c : X → Y . Namely, together they satisfy the equa-
tion (4).

Note that we now allow a non-causal arrow d : Y → X to be a Bayesian inversion.
Nonetheless, it follows from the definition that any Bayesian inversion is c∗(σ)-almost
causal. Similarly, we use the equality extension property for almost causal arrows.

Proof. We reason as follows.

σ

c

d

=

σ

`

ν

`

σ

q

(i)=

σ

q`

ν

`

σ

(ii)=

ν

`

σ

=

σ

`

ν =

σ

c

For the equality (i)= we use associativity and commutativity of copiers . The equality (ii)=
follows by

σ

q`

∼ w.r.t.
`

νσ

Disintegration and Bayesian Inversion 35

using the equality extension property.

Example 8.4. We instantiate the Theorem 8.3 in sfKrn. Let c : X Y be a probability
kernel represented by a likelihood relation ` : X × Y 1 with respect to ν : 1 Y .
The relation ` is identified with a measurable function ` : X × Y → [0,∞] and ν with a
measure ν : ΣY → [0,∞]. The equation (12) amounts to

c(x,B) =
∫
B

`(x, y) ν(dy) .

In particular, each `(x,−) is a probability density function, satisfying
∫
Y
`(x, y) ν(dy) = 1.

Typically, we use the Lebesgue measure as ν, with Y a subspace of R. Let σ : 1 X be
a probability measure. Then c∗(σ) : 1 Y is given as:

c∗(σ)(B) =
∫
X

c(x,B)σ(dx) =
∫
X

∫
B

`(x, y) ν(dy)σ(dx)

The effect

p : Y 1 =
`

σ
is given as: p(y) =

∫
X

`(x, y)σ(dx) .

To define an inverse of p, we claim that 0 < p <∞, c∗(σ)-almost everywhere. We prove
that p−1({0,∞}) = p−1(0) ∪ p−1(∞) is c∗(σ)-negligible, as:

c∗(σ)
(
p−1(0)

)
=
∫
X

∫
p−1(0)

`(x, y) ν(dy)σ(dx)

=
∫
p−1(0)

p(x) ν(dy)

=
∫
p−1(0)

0 ν(dy) = 0

and, similarly we have∫
p−1(∞)

∞ ν(dy) =
∫
p−1(∞)

p(x) ν(dy) = c∗(σ)
(
p−1(∞)

)
≤ 1

but this is possible only when ν(p−1(∞)) = 0, hence c∗(σ)
(
p−1(∞)

)
=
∫
p−1(∞) p(x) ν(dy) =

0. Now define an effect q : Y 1 by

q(y) =
{
p(y)−1 if 0 < p(y) <∞
0 otherwise.

Then p is c∗(σ)-almost inverted by q. By Theorem 8.3, the Bayesian inversion for σ along
c is given by

d : Y → X :=
`

σ

q

,

K. Cho and B. Jacobs 36

namely,

d(y,A) = q(y)
∫
A

`(x, y)σ(dx)

=
∫
A
`(x, y)σ(dx)∫

X
`(x, y)σ(dx) whenever 0 <

∫
X

`(x, y)σ(dx) <∞
(13)

This may be seen as a variant of the Bayes formula. The calculation in Example 3.5 is
reproduced when σ is also given via a density function.

We conclude with another example in which the likelihood-based calculation of Bayesian
inversion, specifically the formula (13) above, is used to condition with respect to point
observations.

Customers calling

Imagine a call centre that is open for 8 hours on each day of the week. The distribution
of calls is different on weekends (Sat-Sun) from other days (Mon-Fri). What can we then
learn from a single call at a given time of the day regarding whether it is weekend or not?

The formalisation in EfProb starts by defining a domain with label W for weekend and
~W for non-weekend, together with a prior state that expresses a change of 2

7 of being in a
weekend.

>>> weekend_dom = [’W’, ’~W’]
>>> prior = State([2/7, 5/7], weekend_dom)
>>> prior
0.286|W> + 0.714|~W>

Next we have a channel that assigns a different Gaussian distribution to W and to ~W.

>>> hours_dom = R(0,8)
>>> c = chan_from_states([gaussian_state(5,4,hours_dom),
... gaussian_state(2,4,hours_dom)],

... weekend_dom)

The probability density functions of the two distributions look as follows.

In the weekend diagram on the left we see that the calls start coming in later. Now we
ask ourselves the question: suppose we see one call at (hour) 6. How does this affect the
prior distribution? Of course, the updated distribution should have a higher likelihood for
‘weekend’ since 6 is relatively late.

We construct an inversion d of the above channel c, together with the prior state, in

Disintegration and Bayesian Inversion 37

order to compute the updated distribution. It yields the channel d, going from hours_dom
to weekend_dom. The distribution at time 6 is obtained by applying channel d to the
value 6.

>>> d = c.inversion(prior)
>>> d(6)
0.374|W> + 0.626|~W>

We see that the weekend probability has increased indeed.

References

Abramsky, S. and Coecke, B. (2009). Categorical quantum mechanics. In Handbook of Quantum
Logic and Quantum Structures: Quantum Logic, pages 261–323. Elsevier.

Ackerman, N. L., Freer, C. E., and Roy, D. M. (2011). Noncomputable conditional distributions.
In Logic in Computer Science, pages 107–116. IEEE.

Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge Univ. Press.
Bernardo, J. and Smith, A. (2000). Bayesian Theory. John Wiley & Sons.
Borgström, J., Gordon, A., Greenberg, M., Margetson, J., and Gael, J. V. (2013). Measure

transformer semantics for Bayesian machine learning. Logical Methods in Comp. Sci., 9(3):1–39.
Chang, J. T. and Pollard, D. (1997). Conditioning as disintegration. Statistica Neerlandica,

51(3):287–317.
Cho, K. and Jacobs, B. (2017). The EfProb library for probabilistic calculations. In Conference
on Algebra and Coalgebra in Computer Science, volume 72 of LIPIcs. Schloss Dagstuhl.

Cho, K., Jacobs, B., Westerbaan, A., and Westerbaan, B. (2015). An introduction to effectus
theory. Preprint. arXiv:1512.05813 [cs.LO].

Clerc, F., Danos, V., Dahlqvist, F., and Garnier, I. (2017). Pointless learning. In Foundations of
Software Science and Computation Structures, volume 10203 of Lect. Notes Comp. Sci., pages
355–369. Springer.

Coecke, B. (2016). Terminality implies no-signalling ...and much more than that. New Generation
Computing, 34(1):69–85.

Coecke, B. and Kissinger, A. (2017). Picturing Quantum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press.

Coumans, D. and Jacobs, B. (2013). Scalars, monads and categories. In Heunen, C., Sadrzadeh,
M., and Grefenstette, E., editors, Quantum Physics and Linguistics. A Compositional, Dia-
grammatic Discourse, pages 184–216. Oxford Univ. Press.

Culbertson, J. and Sturtz, K. (2014). A categorical foundation for Bayesian probability. Applied
Categorical Structures, 22(4):647–662.

D’Ariano, G. M., Chiribella, G., and Perinotti, P. (2017). Quantum Theory from First Principles:
An Informational Approach. Cambridge University Press.

Dawid, A. (2001). Separoids: A mathematical framework for conditional independence and
irrelevance. Annals of Mathematics and Artificial Intelligence, 32(1):335–372.

Faden, A. M. (1985). The existence of regular conditional probabilities: Necessary and sufficient
conditions. The Annals of Probability, 13(1):288–298.

Fong, B. (2012). Causal theories: A categorical perspective on Bayesian networks. Master’s
thesis, Univ. of Oxford. arXiv:1301.6201 [math.PR].

Fremlin, D. H. (2000). Measure Theory (5 volumes). Torres Fremlin.

K. Cho and B. Jacobs 38

Geiger, D., Verma, T., and Pearl, J. (1990). Identifying independence in Bayesian networks.
Networks, 20:507–534.

Giry, M. (1982). A categorical approach to probability theory. In Categorical Aspects of Topology
and Analysis, volume 915 of Lecture Notes in Mathematics, pages 68–85. Springer.

Gordon, A., Henzinger, T., Nori, A., and Rajamani, S. (2014). Probabilistic programming. In
Future of Software Engineering, pages 167–181. ACM.

Jacobs, B. (2015). New directions in categorical logic, for classical, probabilistic and quantum
logic. Logical Methods in Comp. Sci., 11(3):1–76.

Jacobs, B. (2017). From probability monads to commutative effectuses. Journ. of Logical and
Algebraic Methods in Programming, 156.

Jacobs, B., Westerbaan, B., and Westerbaan, A. (2015). States of convex sets. In Foundations of
Software Science and Computation Structures, volume 9034 of Lect. Notes Comp. Sci., pages
87–101. Springer.

Jacobs, B. and Zanasi, F. (2016). A predicate/state transformer semantics for Bayesian learning.
In Math. Found. of Programming Semantics, volume 325 of Elect. Notes in Theor. Comp. Sci.,
pages 185–200. Elsevier.

Jacobs, B. and Zanasi, F. (2017). A formal semantics of influence in Bayesian reasoning. In
Math. Found. of Computer Science, volume 83 of LIPIcs. Schloss Dagstuhl.

Kallenberg, O. (2017). Random Measures, Theory and Applications. Springer.
Katoen, J.-P., Gretz, F., Jansen, N., Lucien Kaminski, B., and Olmedo, F. (2015). Understanding

probabilistic programs. In Correct System Design, volume 9360 of Lect. Notes Comp. Sci.,
pages 15–32. Springer.

Kissinger, A. (2014). Abstract tensor systems as monoidal categories. In Categories and Types
in Logic, Language, and Physics: Essays Dedicated to Jim Lambek on the Occasion of His 90th
Birthday, pages 235–252. Springer.

Mac Lane, S. (1998). Categories for the Working Mathematician. Springer, second edition.
Pachl, J. K. (1978). Disintegration and compact measures. Mathematica Scandinavica, 43:157–168.
Panangaden, P. (2009). Labelled Markov Processes. Imperial College Press.
Pawitan, Y. (2001). In All Likelihood. Statistical Modelling and Inference Using Likelihood.

Clarendon Press.
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann.
Pollard, D. (2002). A User’s Guide to Measure Theoretic Probability. Cambridge University

Press.
Selinger, P. (2010). A survey of graphical languages for monoidal categories. In New Structures

for Physics, volume 813 of Lecture Notes in Physics, pages 289–355. Springer.
Shan, C.-c. and Ramsey, N. (2017). Exact Bayesian inference by symbolic disintegration. In

Princ. of Programming Languages, pages 130–144. ACM.
Simpson, A. (2017). Category-theoretic structure for independence and conditional independence.

In Math. Found. of Programming Semantics. To appear.
Staton, S. (2017). Commutative semantics for probabilistic programming. In European Symp.
on Programming, volume 10201 of Lect. Notes Comp. Sci., pages 855–879. Springer.

Staton, S., Yang, H., Heunen, C., Kammar, O., and Wood, F. (2016). Semantics for probabilistic
programming: higher-order functions, continuous distributions, and soft constraints. In Logic
in Computer Science, pages 525–534. ACM.

Stoyanov, J. M. (2014). Counterexamples in Probability. Dover, third edition.
Verma, T. and Pearl, J. (1988). Causal networks: Semantics and expressiveness. In Uncertainty
in Artificial Intelligence.

Witten, I., Frank, E., and Hall, M. (2011). Data Mining Practical Machine Learning Tools and
Techniques. Elsevier, Amsterdam.

	Introduction
	Graphical language
	Marginalisation, integration and disintegration
	Example: naive Bayesian classifiers via inversion
	Almost equality of channels
	Equality extension property

	Conditional independence
	Disintegration of multipartite states
	Conditional independence

	Beyond causal channels
	Disintegration via likelihoods
	References

