The EfProb Library for
Probabilistic Calculations

https://efprob.cs.ru.nl/

Kenta Cho BartJacobs

Radboud University, Nijmegen

iCIS | Digital Security [B=:=S
Radboud University 34

CALCO Tools
15 June 2017

https://efprob.cs.ru.nl/

EfProb

Cho & Jacobs efprob.cs.ru.nl

EfProb = Effectus Probability

Cho & Jacobs efprob.cs.ru.nl

EfProb = Effectus Probability

e Effectus theory provides a general setting for
discrete/continuous/quantum probability, via

* K¢(D), the Kleisli category for the distribution monad
* K¢(G), the Kleisli category for the Giry monad
* vNA°P, (opposite) category of von Neumann algebras

Cho & Jacobs efprob.cs.ru.nl

EfProb = Effectus Probability

e Effectus theory provides a general setting for
discrete/continuous/quantum probability, via

* K¢(D), the Kleisli category for the distribution monad
* K¢(G), the Kleisli category for the Giry monad
* vNA°P, (opposite) category of von Neumann algebras

* Uniform language with states, predicates, channels
* Channel-based probability theory

Cho & Jacobs efprob.cs.ru.nl

EfProb = Effectus Probability

e Effectus theory provides a general setting for
discrete/continuous/quantum probability, via

* K¢(D), the Kleisli category for the distribution monad

* K¢(G), the Kleisli category for the Giry monad

* vNA°P, (opposite) category of von Neumann algebras
e Uniform language with states, predicates, channels

* Channel-based probability theory

* New perspectives in probability theory
* Conditioning as an operation on a state o and a
predicate p, yielding an updated state o/p

* A predicate/state transformer semantics for Bayesian
learning [Jacobs & Zanasi, MFPS 2016]

Cho & Jacobs efprob.cs.ru.nl

EfProb = Effectus Probability

e Effectus theory provides a general setting for
discrete/continuous/quantum probability, via

* K¢(D), the Kleisli category for the distribution monad

* K¢(G), the Kleisli category for the Giry monad

* vNA°P, (opposite) category of von Neumann algebras
e Uniform language with states, predicates, channels

* Channel-based probability theory

* New perspectives in probability theory

* Conditioning as an operation on a state o and a
predicate p, yielding an updated state o/p

* A predicate/state transformer semantics for Bayesian
learning [Jacobs & Zanasi, MFPS 2016]

m) EfProb: a Python library for discrete/continuous/
quantum probability calculations

Cho & Jacobs efprob.cs.ru.nl

Talk plan

@ Language: States, Predicates, and Channels

® Implementation and Demo

Cho & Jacobs efprob.cs.ru.nl

Talk plan

@ Language: States, Predicates, and Channels

Cho & Jacobs efprob.cs.ru.nl

Discrete probability, states & predicates

Cho & Jacobs efprob.cs.ru.nl

Discrete probability, states & predicates

A state on a set X is a distribution o € D(X), i.e.
o: X —[0,1] with >~ _o(z) = 1. Often denoted as a
formal convex sum, e.g. z|a) + |b) + ¢|c), fora,b,c € X

Cho & Jacobs efprob.cs.ru.nl

Discrete probability, states & predicates

A state on a set X is a distribution o € D(X), i.e.
o: X —[0,1] with >~ _o(z) = 1. Often denoted as a
formal convex sum, e.g. z|a) + |b) + ¢|c), fora,b,c € X

Operations for states o0 € D(X), 7 € D(Y), w € D(X xY)
* Jointstateo®7 € D(X xY) by (c®7)(z,y) = o(z)-7(y)
* Marginal state w; € D(X) by wi(z) =3, w(z,y)

Cho & Jacobs efprob.cs.ru.nl

Discrete probability, states & predicates

A state on a set X is a distribution o € D(X), i.e.
o: X —[0,1] with >~ _o(z) = 1. Often denoted as a
formal convex sum, e.g. z|a) + |b) + ¢|c), fora,b,c € X

Operations for states o0 € D(X), 7 € D(Y), w € D(X xY)
* Jointstateo®7 € D(X xY) by (c®7)(z,y) = o(z)-7(y)
* Marginal state w; € D(X) by wi(z) =3, w(z,y)

A predicate on a set X is (any) function p: X — [0, 1]]

Events £ C X as indicator functions 1g: X — [0, 1]

Cho & Jacobs efprob.cs.ru.nl

Discrete probability, states & predicates

A state on a set X is a distribution o € D(X), i.e.
o: X —[0,1] with >~ _o(z) = 1. Often denoted as a
formal convex sum, e.g. z|a) + |b) + ¢|c), fora,b,c € X

Operations for states o0 € D(X), 7 € D(Y), w € D(X xY)
* Jointstateo®7 € D(X xY) by (c®7)(z,y) = o(z)-7(y)
* Marginal state w; € D(X) by wi(z) =3, w(z,y)

A predicate on a set X is (any) function p: X — [0, 1]]

Events £ C X as indicator functions 1g: X — [0, 1]
* Truth 1y, falsity 0x, and negation (~p)(z) = 1 — p(x)
* Sequential conjunction p & ¢ by (p & ¢)(z) = p(z) - q(x)

Cho & Jacobs efprob.cs.ru.nl

Discrete prob., validity & conditioning

For a state 0 € D(X) and a predicate p € [0, 1]%,
the validity

okp = Y o) p(x) €[0.1]
* Probability that p holds in o

Cho & Jacobs efprob.cs.ru.nl

Discrete prob., validity & conditioning

For a state 0 € D(X) and a predicate p € [0, 1]%,
the validity

ocEp = ZIU(I') -p(z) €[0,1]
* Probability that p holds in o

When the validity o E p is non-zero,
the conditional state o/p € D(X) (‘o given p') defined by

(o/p)a) = TP

ocFED
* Updated state after we observe that p holds

Cho & Jacobs efprob.cs.ru.nl

Discrete prob., validity & conditioning

For a state 0 € D(X) and a predicate p € [0, 1]%,
the validity

oEp = Z o(z)-p(z) €]0,1]

* Probability that p holds in o

When the validity o E p is non-zero,
the conditional state o/p € D(X) (‘o given p') defined by

_ o(z)-p)
/@) = T2
* Updated state after we observe that p holds

Comparing to traditional notation, for events A, B C X
C P(A) = oF 14
* P(A|B) = o/1gFE 14

Cho & Jacobs efprob.cs.ru.nl

Discrete probability, channels

A channel of type X — Y is a 'stochastic map’
c: X xY —[0,1] such that 3 c(z,y) = 1forallz € X

Cho & Jacobs efprob.cs.ru.nl

Discrete probability, channels

A channel of type X — Y is a 'stochastic map’
c: X xY —[0,1] such that 3 c(z,y) = 1forallz € X

(X-indexed states on Y, or a Kleislimap X — D(Y))

Cho & Jacobs efprob.cs.ru.nl

Discrete probability, channels

A channel of type X — Y is a 'stochastic map’
c: X xY —[0,1] such that 3 c(z,y) = 1forallz € X

(X-indexed states on Y, or a Kleislimap X — D(Y))

State/predicate transformation by a channel ¢: X — Y
For a state 0 € D(X),

statec>0€DY) by (e>o0)(y) = Zx c(z,y) - o(x)

Cho & Jacobs efprob.cs.ru.nl

Discrete probability, channels

A channel of type X — Y is a 'stochastic map’
c: X xY —[0,1] such that 3 c(z,y) = 1forallz € X

(X-indexed states on Y, or a Kleislimap X — D(Y))

State/predicate transformation by a channel ¢: X — Y
For a state 0 € D(X),

state c>0 € DY) by (e>0)(y) = Zx c(z,y) - o(x)
For a predicate ¢ € [0,1]",

predicate c< q € [0,1]* by (c<q)(z) = Zy q(y) - c(x,y)

Cho & Jacobs efprob.cs.ru.nl

Discrete probability, channels

A channel of type X — Y is a 'stochastic map’
c: X xY —[0,1] such that 3 c(z,y) = 1forallz € X

(X-indexed states on Y, or a Kleislimap X — D(Y))

State/predicate transformation by a channel ¢: X — Y

For a state 0 € D(X), Stat(X) <= Stat(Y)
state c>0 € DY) by (e>0)(y) = Zx c(z,y) - o(x)
c

For a predicate ¢ € [0, 1]¥, Pred(X) <= Pred(Y)

predicate c< q € [0,1]* by (c<q)(z) = Zy q(y) - c(x,y)

Cho & Jacobs efprob.cs.ru.nl

Discrete probability, channels

A channel of type X — Y is a 'stochastic map’
c: X xY —[0,1] such that 3 c(z,y) = 1forallz € X

(X-indexed states on Y, or a Kleislimap X — D(Y))

State/predicate transformation by a channel ¢: X — Y
For a state 0 € D(X), Stat(X) <= Stat(Y)

state c>0 € DY) by (e>0)(y) = Zx c(z,y) - o(x)
For a predicate ¢ € [0, 1], Pred(X) << Pred(Y)
predicate c<(q € [0,1]% by (c<<q)(x) =) a(y)-c(x,y)

Forward and backward learning are described as
¢>(o/p)ando/(c<q) [Jacobs & Zanasi, MFPS 201 6]J

Cho & Jacobs efprob.cs.ru.nl

Uniform language: continuous / quantum
For continuous probability:
States are probability density functions o: X — R such
that [o(z)dz =1 (where X C R")
Predicates are (measurable) functions p: X — [0, 1]

Channels are ¢c: X x Y — Rxq such that [¢(z,y)dy =1
forallz € X

Cho & Jacobs efprob.cs.ru.nl

Uniform language: continuous / quantum
For continuous probability:
States are probability density functions o: X — R such
that [o(z)dz =1 (where X C R")
Predicates are (measurable) functions p: X — [0, 1]

Channels are ¢c: X x Y — Rxq such that [¢(z,y)dy =1
forallz € X

* Operations such as o F p, ¢>> o by replacing }_ by [

Cho & Jacobs efprob.cs.ru.nl

Uniform language: continuous / quantum
For continuous probability:

States are probability density functions o: X — R such
that [o(z)dz =1 (where X C R")
Predicates are (measurable) functions p: X — [0, 1]
Channels are ¢c: X x Y — Rxq such that [¢(z,y)dy =1
forallz € X

* Operations such as o F p, ¢>> o by replacing }_ by [

For quantum probability:

States are positive trace-one matrices

Predicates are positive matrices with eigenvalues < 1
Channels are completely positive trace-preserving maps

Cho & Jacobs efprob.cs.ru.nl

Uniform language: continuous / quantum
For continuous probability:

States are probability density functions o: X — R such
that [o(z)dz =1 (where X C R")
Predicates are (measurable) functions p: X — [0, 1]
Channels are ¢c: X x Y — Rxq such that [¢(z,y)dy =1
forallz € X

* Operations such as o F p, ¢>> o by replacing }_ by [

For quantum probability:

States are positive trace-one matrices

Predicates are positive matrices with eigenvalues < 1
Channels are completely positive trace-preserving maps

* Operations o E p etc. exist in quantum theory.
Note:p&q#q&p

Cho & Jacobs efprob.cs.ru.nl

Talk plan

® Implementation and Demo

Cho & Jacobs efprob.cs.ru.nl

EfProb: Implementation in Python

* For discrete (and quantum) probability, EfProb is
restricted to finite sets, reducing the calculations into
manipulations of arrays/matrices

Cho & Jacobs efprob.cs.ru.nl

10

EfProb: Implementation in Python

* For discrete (and quantum) probability, EfProb is
restricted to finite sets, reducing the calculations into
manipulations of arrays/matrices

* Continuous probability involves numerical
integration (by SciPy library)

Cho & Jacobs efprob.cs.ru.nl

10

EfProb: Implementation in Python

* For discrete (and quantum) probability, EfProb is
restricted to finite sets, reducing the calculations into
manipulations of arrays/matrices

* Continuous probability involves numerical
integration (by SciPy library)

* Not sampling-based computation via MCMC
* cf. BLOG, Church, Anglican, ...

Cho & Jacobs efprob.cs.ru.nl

10

EfProb: Implementation in Python

* For discrete (and quantum) probability, EfProb is
restricted to finite sets, reducing the calculations into
manipulations of arrays/matrices

* Continuous probability involves numerical
integration (by SciPy library)

* Not sampling-based computation via MCMC
* cf. BLOG, Church, Anglican, ...

* Works well for moderate-size problems;
but not meant for large-scale computation

Cho & Jacobs efprob.cs.ru.nl 10

EfProb: Implementation in Python

* For discrete (and quantum) probability, EfProb is
restricted to finite sets, reducing the calculations into
manipulations of arrays/matrices

* Continuous probability involves numerical
integration (by SciPy library)

* Not sampling-based computation via MCMC
* cf. BLOG, Church, Anglican, ...

* Works well for moderate-size problems;
but not meant for large-scale computation

e Can be helpful eg. for research and teaching

Cho & Jacobs efprob.cs.ru.nl

Demo: Hybrid Bayesian Network example
From [Cobb & Shenoy, 2006]

[price| P(buy) |

e e
T]subsidy\crop\ P(price) ‘

t ¢ |N(20—-¢1)

/ \ f ¢ |IN(10—-¢1)

Cho & Jacobs efprob.cs.ru.nl 11

Demo: Hybrid Bayesian Network example
From [Cobb & Shenoy, 2006]

[price| P(buy) |
’ P ‘1/(1—&—@?*5)‘
T]subsidy\crop\ P(price) ‘
t ¢ |IN(20—-1¢1)
f ¢ |IN(10—-¢1)
P(subsidy) 5 'd/ \ P(crop)
N(5,1)

* ‘subsidy’ and 'buy’ have discrete domain {t, f}

* ‘crop’ and ‘price’ have continuous domain R
* N(u,o) normal (Gaussian) distribution

Cho & Jacobs efprob.cs.ru.nl

Conclusions

* Effectus theory offers a uniform language for
probability, based on states, predicates, and
channels, with validity, conditioning, etc.

* EfProb implements the ideas as a Python library,
useful for probability calculations

e efprob_dc for discrete/continuous
* efprob_qu for quantum

Cho & Jacobs efprob.cs.ru.nl

12

https://efprob.cs.ru.nl/

Conclusions

* Effectus theory offers a uniform language for
probability, based on states, predicates, and
channels, with validity, conditioning, etc.

* EfProb implements the ideas as a Python library,
useful for probability calculations

e efprob_dc for discrete/continuous
* efprob_qu for quantum

e EfProb Manual is available, containing a lot of
examples

Cho & Jacobs efprob.cs.ru.nl

12

https://efprob.cs.ru.nl/

Conclusions

* Effectus theory offers a uniform language for
probability, based on states, predicates, and
channels, with validity, conditioning, etc.

* EfProb implements the ideas as a Python library,
useful for probability calculations

e efprob_dc for discrete/continuous
* efprob_qu for quantum

e EfProb Manual is available, containing a lot of
examples

* Ongoing: disintegration

Cho & Jacobs efprob.cs.ru.nl

12

https://efprob.cs.ru.nl/

Conclusions

* Effectus theory offers a uniform language for
probability, based on states, predicates, and
channels, with validity, conditioning, etc.

* EfProb implements the ideas as a Python library,
useful for probability calculations

e efprob_dc for discrete/continuous
* efprob_qu for quantum

e EfProb Manual is available, containing a lot of
examples

* Ongoing: disintegration

Thank you!
Please visit https://efprob.cs.ru.nl/

Cho & Jacobs efprob.cs.ru.nl

12

https://efprob.cs.ru.nl/

	Language: States, Predicates, and Channels
	Implementation and Demo

