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EfProb

• Effectus theory provides a general setting for
discrete/continuous/quantum probability, via
• Kℓ(D), the Kleisli category for the distribution monad
• Kℓ(G), the Kleisli category for the Giry monad
• vNAop, (opposite) category of von Neumann algebras

• Uniform language with states, predicates, channels
• Channel-based probability theory

• New perspectives in probability theory
• Conditioning as an operation on a state σ and a
predicate p, yielding an updated state σ/p

• A predicate/state transformer semantics for Bayesian
learning [Jacobs & Zanasi, MFPS 2016]

EfProb: a Python library for discrete/continuous/
quantum probability calculations
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Talk plan

1 Language: States, Predicates, and Channels

2 Implementation and Demo

Cho & Jacobs efprob.cs.ru.nl 3



Talk plan

1 Language: States, Predicates, and Channels

2 Implementation and Demo

Cho & Jacobs efprob.cs.ru.nl 4



Discrete probability, states & predicates

A state on a set X is a distribution σ ∈ D(X), i.e.
σ : X → [0, 1] with∑

x σ(x) = 1. Often denoted as a
formal convex sum, e.g. 1

3
|a⟩+ 1

2
|b⟩+ 1

6
|c⟩, for a, b, c ∈ X

Operations for states σ ∈ D(X), τ ∈ D(Y ), ω ∈ D(X × Y )

• Joint state σ⊗ τ ∈ D(X×Y ) by (σ⊗ τ)(x, y) = σ(x) · τ(y)
• Marginal state ω1 ∈ D(X) by ω1(x) =

∑
y ω(x, y)

A predicate on a set X is (any) function p : X → [0, 1]

Events E ⊆ X as indicator functions 1E : X → [0, 1]

• Truth 1X , falsity 0X , and negation (∼p)(x) = 1− p(x)

• Sequential conjunction p& q by (p& q)(x) = p(x) · q(x)
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Discrete prob., validity & conditioning
For a state σ ∈ D(X) and a predicate p ∈ [0, 1]X ,
the validity

σ ⊨ p :=
∑

x
σ(x) · p(x) ∈ [0, 1]

• Probability that p holds in σ

When the validity σ ⊨ p is non-zero,
the conditional state σ/p ∈ D(X) (‘σ given p’) defined by

(σ/p)(x) :=
σ(x) · p(x)

σ ⊨ p

• Updated state after we observe that p holds

Comparing to traditional notation, for events A,B ⊆ X

• P(A) = σ ⊨ 1A

• P(A | B) = σ/1B ⊨ 1A
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Discrete probability, channels
A channel of type X → Y is a ‘stochastic map’
c : X × Y → [0, 1] such that∑y c(x, y) = 1 for all x ∈ X

(X-indexed states on Y , or a Kleisli map X → D(Y ) )

State/predicate transformation by a channel c : X → Y

For a state σ ∈ D(X),

state c≫σ ∈ D(Y ) by (c≫σ)(y) =
∑

x
c(x, y) · σ(x)

For a predicate q ∈ [0, 1]Y ,

predicate c≪ q ∈ [0, 1]X by (c≪ q)(x) =
∑

y
q(y) · c(x, y)

Forward and backward learning are described as
c≫(σ/p) and σ/(c≪ q) [Jacobs & Zanasi, MFPS 2016]
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Uniform language: continuous / quantum
For continuous probability:
States are probability density functions σ : X → R≥0 such
that

∫
σ(x) dx = 1 (where X ⊆ Rn)

Predicates are (measurable) functions p : X → [0, 1]

Channels are c : X × Y → R≥0 such that
∫
c(x, y) dy = 1

for all x ∈ X

• Operations such as σ ⊨ p, c≫σ by replacing∑ by
∫

For quantum probability:
States are positive trace-one matrices
Predicates are positive matrices with eigenvalues ≤ 1
Channels are completely positive trace-preserving maps
• Operations σ ⊨ p etc. exist in quantum theory.
Note: p& q ̸= q & p
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EfProb: Implementation in Python

• For discrete (and quantum) probability, EfProb is
restricted to finite sets, reducing the calculations into
manipulations of arrays/matrices

• Continuous probability involves numerical
integration (by SciPy library)

• Not sampling-based computation via MCMC
• cf. BLOG, Church, Anglican, ...

• Works well for moderate-size problems;
but not meant for large-scale computation

• Can be helpful eg. for research and teaching
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Demo: Hybrid Bayesian Network example
From [Cobb & Shenoy, 2006]

price P (buy)
p 1/(1+ep−5)

�� ��buy

�� ��price

OO

subsidy crop P (price)
t c N (20− c, 1)

f c N (10− c, 1)

P (subsidy)
0.7

�� ��subsidy

=={{{{{{ �� ��crop P (crop)
N (5, 1)

^^>>>>>>

• ‘subsidy’ and ‘buy’ have discrete domain {t, f}
• ‘crop’ and ‘price’ have continuous domain R
• N (µ, σ) normal (Gaussian) distribution
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Conclusions
• Effectus theory offers a uniform language for
probability, based on states, predicates, and
channels, with validity, conditioning, etc.

• EfProb implements the ideas as a Python library,
useful for probability calculations
• efprob_dc for discrete/continuous
• efprob_qu for quantum

• EfProb Manual is available, containing a lot of
examples

• Ongoing: disintegration

Thank you!
Please visit https://efprob.cs.ru.nl/
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