

The EfProb Library for Probabilistic Calculations

<https://efprob.cs.ru.nl/>

Kenta Cho Bart Jacobs

Radboud University, Nijmegen

CALCO Tools
15 June 2017

EfProb

EfProb = **E**ffectus **P**robability

EfProb = **Effectus Probability**

- **Effectus theory** provides a general setting for discrete/continuous/quantum probability, via
 - $\mathcal{Kl}(\mathcal{D})$, the Kleisli category for the distribution monad
 - $\mathcal{Kl}(\mathcal{G})$, the Kleisli category for the Giry monad
 - \mathbf{vNA}^{op} , (opposite) category of von Neumann algebras

EfProb = **Effectus Probability**

- **Effectus theory** provides a general setting for discrete/continuous/quantum probability, via
 - $\mathcal{Kl}(\mathcal{D})$, the Kleisli category for the distribution monad
 - $\mathcal{Kl}(\mathcal{G})$, the Kleisli category for the Giry monad
 - \mathbf{vNA}^{op} , (opposite) category of von Neumann algebras
- Uniform language with **states**, **predicates**, **channels**
 - *Channel-based* probability theory

EfProb = **Effectus Probability**

- **Effectus theory** provides a general setting for discrete/continuous/quantum probability, via
 - $\mathcal{Kl}(\mathcal{D})$, the Kleisli category for the distribution monad
 - $\mathcal{Kl}(\mathcal{G})$, the Kleisli category for the Giry monad
 - \mathbf{vNA}^{op} , (opposite) category of von Neumann algebras
- Uniform language with **states**, **predicates**, **channels**
 - *Channel-based* probability theory
- New perspectives in probability theory
 - **Conditioning** as an operation on a state σ and a predicate p , yielding an updated state σ/p
 - A **predicate/state transformer** semantics for Bayesian learning [Jacobs & Zanasi, MFPS 2016]

EfProb = **Effectus Probability**

- **Effectus theory** provides a general setting for discrete/continuous/quantum probability, via
 - $\mathcal{Kl}(\mathcal{D})$, the Kleisli category for the distribution monad
 - $\mathcal{Kl}(\mathcal{G})$, the Kleisli category for the Giry monad
 - \mathbf{vNA}^{op} , (opposite) category of von Neumann algebras
- Uniform language with **states**, **predicates**, **channels**
 - *Channel-based* probability theory
- New perspectives in probability theory
 - **Conditioning** as an operation on a state σ and a predicate p , yielding an updated state σ/p
 - A **predicate/state transformer** semantics for Bayesian learning [Jacobs & Zanasi, MFPS 2016]

→ EfProb: a **Python** library for discrete/continuous/quantum probability calculations

Talk plan

① Language: States, Predicates, and Channels

② Implementation and Demo

Talk plan

① Language: States, Predicates, and Channels

② Implementation and Demo

Discrete probability, states & predicates

Discrete probability, states & predicates

A **state** on a set X is a distribution $\sigma \in \mathcal{D}(X)$, i.e.
 $\sigma: X \rightarrow [0, 1]$ with $\sum_x \sigma(x) = 1$. Often denoted as a
formal convex sum, e.g. $\frac{1}{3}|a\rangle + \frac{1}{2}|b\rangle + \frac{1}{6}|c\rangle$, for $a, b, c \in X$

Discrete probability, states & predicates

A **state** on a set X is a distribution $\sigma \in \mathcal{D}(X)$, i.e.
 $\sigma: X \rightarrow [0, 1]$ with $\sum_x \sigma(x) = 1$. Often denoted as a
formal convex sum, e.g. $\frac{1}{3}|a\rangle + \frac{1}{2}|b\rangle + \frac{1}{6}|c\rangle$, for $a, b, c \in X$

Operations for states $\sigma \in \mathcal{D}(X)$, $\tau \in \mathcal{D}(Y)$, $\omega \in \mathcal{D}(X \times Y)$

- **Joint state** $\sigma \otimes \tau \in \mathcal{D}(X \times Y)$ by $(\sigma \otimes \tau)(x, y) = \sigma(x) \cdot \tau(y)$
- **Marginal state** $\omega_1 \in \mathcal{D}(X)$ by $\omega_1(x) = \sum_y \omega(x, y)$

Discrete probability, states & predicates

A **state** on a set X is a distribution $\sigma \in \mathcal{D}(X)$, i.e.

$\sigma: X \rightarrow [0, 1]$ with $\sum_x \sigma(x) = 1$. Often denoted as a formal convex sum, e.g. $\frac{1}{3}|a\rangle + \frac{1}{2}|b\rangle + \frac{1}{6}|c\rangle$, for $a, b, c \in X$

Operations for states $\sigma \in \mathcal{D}(X)$, $\tau \in \mathcal{D}(Y)$, $\omega \in \mathcal{D}(X \times Y)$

- **Joint state** $\sigma \otimes \tau \in \mathcal{D}(X \times Y)$ by $(\sigma \otimes \tau)(x, y) = \sigma(x) \cdot \tau(y)$
- **Marginal state** $\omega_1 \in \mathcal{D}(X)$ by $\omega_1(x) = \sum_y \omega(x, y)$

A **predicate** on a set X is (any) function $p: X \rightarrow [0, 1]$

Events $E \subseteq X$ as indicator functions $\mathbf{1}_E: X \rightarrow [0, 1]$

Discrete probability, states & predicates

A **state** on a set X is a **distribution** $\sigma \in \mathcal{D}(X)$, i.e.
 $\sigma: X \rightarrow [0, 1]$ with $\sum_x \sigma(x) = 1$. Often denoted as a
formal convex sum, e.g. $\frac{1}{3}|a\rangle + \frac{1}{2}|b\rangle + \frac{1}{6}|c\rangle$, for $a, b, c \in X$

Operations for states $\sigma \in \mathcal{D}(X)$, $\tau \in \mathcal{D}(Y)$, $\omega \in \mathcal{D}(X \times Y)$

- **Joint state** $\sigma \otimes \tau \in \mathcal{D}(X \times Y)$ by $(\sigma \otimes \tau)(x, y) = \sigma(x) \cdot \tau(y)$
- **Marginal state** $\omega_1 \in \mathcal{D}(X)$ by $\omega_1(x) = \sum_y \omega(x, y)$

A **predicate** on a set X is (any) function $p: X \rightarrow [0, 1]$

Events $E \subseteq X$ as indicator functions $\mathbf{1}_E: X \rightarrow [0, 1]$

- **Truth** $\mathbf{1}_X$, **falsity** $\mathbf{0}_X$, and **negation** $(\sim p)(x) = 1 - p(x)$
- **Sequential conjunction** $p \& q$ by $(p \& q)(x) = p(x) \cdot q(x)$

Discrete prob., validity & conditioning

For a state $\sigma \in \mathcal{D}(X)$ and a predicate $p \in [0, 1]^X$,
the **validity**

$$\sigma \models p := \sum_x \sigma(x) \cdot p(x) \in [0, 1]$$

- *Probability that p holds in σ*

Discrete prob., validity & conditioning

For a state $\sigma \in \mathcal{D}(X)$ and a predicate $p \in [0, 1]^X$,
the **validity**

$$\sigma \models p := \sum_x \sigma(x) \cdot p(x) \in [0, 1]$$

- *Probability that p holds in σ*

When the validity $\sigma \models p$ is non-zero,
the **conditional state** $\sigma/p \in \mathcal{D}(X)$ (' σ given p ') defined by

$$(\sigma/p)(x) := \frac{\sigma(x) \cdot p(x)}{\sigma \models p}$$

- *Updated state after we observe that p holds*

Discrete prob., validity & conditioning

For a state $\sigma \in \mathcal{D}(X)$ and a predicate $p \in [0, 1]^X$,
the **validity**

$$\sigma \models p := \sum_x \sigma(x) \cdot p(x) \in [0, 1]$$

- *Probability that p holds in σ*

When the validity $\sigma \models p$ is non-zero,
the **conditional state** $\sigma/p \in \mathcal{D}(X)$ (' σ given p ') defined by

$$(\sigma/p)(x) := \frac{\sigma(x) \cdot p(x)}{\sigma \models p}$$

- *Updated state after we observe that p holds*

Comparing to traditional notation, for events $A, B \subseteq X$

- $P(A) = \sigma \models \mathbf{1}_A$
- $P(A \mid B) = \sigma/\mathbf{1}_B \models \mathbf{1}_A$

Discrete probability, channels

A **channel** of type $X \rightarrow Y$ is a 'stochastic map'

$c: X \times Y \rightarrow [0, 1]$ such that $\sum_y c(x, y) = 1$ for all $x \in X$

Discrete probability, channels

A **channel** of type $X \rightarrow Y$ is a 'stochastic map'

$c: X \times Y \rightarrow [0, 1]$ such that $\sum_y c(x, y) = 1$ for all $x \in X$

(X -indexed states on Y , or a Kleisli map $X \rightarrow \mathcal{D}(Y)$)

Discrete probability, channels

A **channel** of type $X \rightarrow Y$ is a 'stochastic map'

$c: X \times Y \rightarrow [0, 1]$ such that $\sum_y c(x, y) = 1$ for all $x \in X$

(X -indexed states on Y , or a Kleisli map $X \rightarrow \mathcal{D}(Y)$)

State/predicate transformation by a channel $c: X \rightarrow Y$

For a state $\sigma \in \mathcal{D}(X)$,

state $c \gg \sigma \in \mathcal{D}(Y)$ by $(c \gg \sigma)(y) = \sum_x c(x, y) \cdot \sigma(x)$

Discrete probability, channels

A **channel** of type $X \rightarrow Y$ is a 'stochastic map'

$c: X \times Y \rightarrow [0, 1]$ such that $\sum_y c(x, y) = 1$ for all $x \in X$

(X -indexed states on Y , or a Kleisli map $X \rightarrow \mathcal{D}(Y)$)

State/predicate transformation by a channel $c: X \rightarrow Y$

For a state $\sigma \in \mathcal{D}(X)$,

state $c \gg \sigma \in \mathcal{D}(Y)$ by $(c \gg \sigma)(y) = \sum_x c(x, y) \cdot \sigma(x)$

For a predicate $q \in [0, 1]^Y$,

predicate $c \ll q \in [0, 1]^X$ by $(c \ll q)(x) = \sum_y q(y) \cdot c(x, y)$

Discrete probability, channels

A **channel** of type $X \rightarrow Y$ is a 'stochastic map'

$c: X \times Y \rightarrow [0, 1]$ such that $\sum_y c(x, y) = 1$ for all $x \in X$

(X -indexed states on Y , or a Kleisli map $X \rightarrow \mathcal{D}(Y)$)

State/predicate transformation by a channel $c: X \rightarrow Y$

For a state $\sigma \in \mathcal{D}(X)$,

$\text{Stat}(X) \xrightarrow{c \gg} \text{Stat}(Y)$

state $c \gg \sigma \in \mathcal{D}(Y)$ by $(c \gg \sigma)(y) = \sum_x c(x, y) \cdot \sigma(x)$

For a predicate $q \in [0, 1]^Y$,

$\text{Pred}(X) \xleftarrow{c \ll} \text{Pred}(Y)$

predicate $c \ll q \in [0, 1]^X$ by $(c \ll q)(x) = \sum_y q(y) \cdot c(x, y)$

Discrete probability, channels

A **channel** of type $X \rightarrow Y$ is a 'stochastic map'

$c: X \times Y \rightarrow [0, 1]$ such that $\sum_y c(x, y) = 1$ for all $x \in X$

(X -indexed states on Y , or a Kleisli map $X \rightarrow \mathcal{D}(Y)$)

State/predicate transformation by a channel $c: X \rightarrow Y$

For a state $\sigma \in \mathcal{D}(X)$,

$$\text{Stat}(X) \xrightarrow{c \gg} \text{Stat}(Y)$$

state $c \gg \sigma \in \mathcal{D}(Y)$ by $(c \gg \sigma)(y) = \sum_x c(x, y) \cdot \sigma(x)$

For a predicate $q \in [0, 1]^Y$,

$$\text{Pred}(X) \xleftarrow{c \ll} \text{Pred}(Y)$$

predicate $c \ll q \in [0, 1]^X$ by $(c \ll q)(x) = \sum_y q(y) \cdot c(x, y)$

Forward and **backward learning** are described as

$c \gg (\sigma / p)$ and $\sigma / (c \ll q)$ [Jacobs & Zanasi, MFPS 2016]

Uniform language: continuous / quantum

For **continuous probability**:

States are probability density functions $\sigma: X \rightarrow \mathbb{R}_{\geq 0}$ such that $\int \sigma(x) dx = 1$ (where $X \subseteq \mathbb{R}^n$)

Predicates are (measurable) functions $p: X \rightarrow [0, 1]$

Channels are $c: X \times Y \rightarrow \mathbb{R}_{\geq 0}$ such that $\int c(x, y) dy = 1$ for all $x \in X$

Uniform language: continuous / quantum

For **continuous probability**:

States are probability density functions $\sigma: X \rightarrow \mathbb{R}_{\geq 0}$ such that $\int \sigma(x) dx = 1$ (where $X \subseteq \mathbb{R}^n$)

Predicates are (measurable) functions $p: X \rightarrow [0, 1]$

Channels are $c: X \times Y \rightarrow \mathbb{R}_{\geq 0}$ such that $\int c(x, y) dy = 1$ for all $x \in X$

- Operations such as $\sigma \models p$, $c \gg \sigma$ by replacing \sum by \int

Uniform language: continuous / quantum

For **continuous probability**:

States are probability density functions $\sigma: X \rightarrow \mathbb{R}_{\geq 0}$ such that $\int \sigma(x) dx = 1$ (where $X \subseteq \mathbb{R}^n$)

Predicates are (measurable) functions $p: X \rightarrow [0, 1]$

Channels are $c: X \times Y \rightarrow \mathbb{R}_{\geq 0}$ such that $\int c(x, y) dy = 1$ for all $x \in X$

- Operations such as $\sigma \models p$, $c \gg \sigma$ by replacing \sum by \int

For **quantum probability**:

States are positive trace-one matrices

Predicates are positive matrices with eigenvalues ≤ 1

Channels are completely positive trace-preserving maps

Uniform language: continuous / quantum

For **continuous probability**:

States are probability density functions $\sigma: X \rightarrow \mathbb{R}_{\geq 0}$ such that $\int \sigma(x) dx = 1$ (where $X \subseteq \mathbb{R}^n$)

Predicates are (measurable) functions $p: X \rightarrow [0, 1]$

Channels are $c: X \times Y \rightarrow \mathbb{R}_{\geq 0}$ such that $\int c(x, y) dy = 1$ for all $x \in X$

- Operations such as $\sigma \models p$, $c \gg \sigma$ by replacing \sum by \int

For **quantum probability**:

States are positive trace-one matrices

Predicates are positive matrices with eigenvalues ≤ 1

Channels are completely positive trace-preserving maps

- Operations $\sigma \models p$ etc. exist in quantum theory.
Note: $p \& q \neq q \& p$

Talk plan

① Language: States, Predicates, and Channels

② Implementation and Demo

EfProb: Implementation in Python

- For discrete (and quantum) probability, EfProb is restricted to finite sets, reducing the calculations into manipulations of arrays/matrices

EfProb: Implementation in Python

- For discrete (and quantum) probability, EfProb is restricted to finite sets, reducing the calculations into manipulations of arrays/matrices
- Continuous probability involves numerical integration (by SciPy library)

EfProb: Implementation in Python

- For discrete (and quantum) probability, EfProb is restricted to finite sets, reducing the calculations into manipulations of arrays/matrices
- Continuous probability involves numerical integration (by SciPy library)
- *Not* sampling-based computation via MCMC
 - cf. BLOG, Church, Anglican, ...

EfProb: Implementation in Python

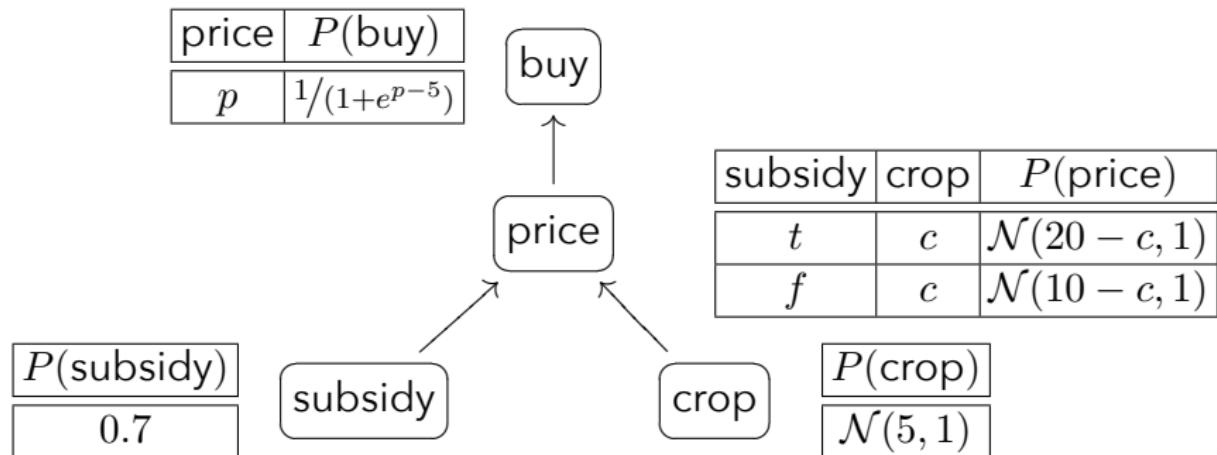
- For discrete (and quantum) probability, EfProb is restricted to finite sets, reducing the calculations into manipulations of arrays/matrices
- Continuous probability involves numerical integration (by SciPy library)
- *Not* sampling-based computation via MCMC
 - cf. BLOG, Church, Anglican, ...
- Works well for moderate-size problems; but not meant for large-scale computation

EfProb: Implementation in Python

- For discrete (and quantum) probability, EfProb is restricted to finite sets, reducing the calculations into manipulations of arrays/matrices
- Continuous probability involves numerical integration (by SciPy library)
- *Not* sampling-based computation via MCMC
 - cf. BLOG, Church, Anglican, ...
- Works well for moderate-size problems; but not meant for large-scale computation
- Can be helpful eg. for research and teaching

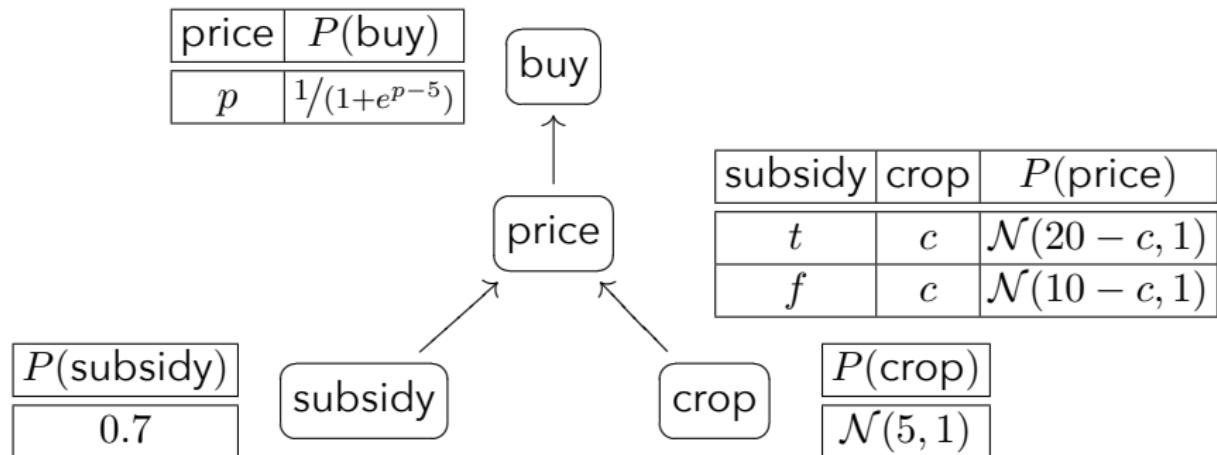
Demo: Hybrid Bayesian Network example

From [Cobb & Shenoy, 2006]



Demo: Hybrid Bayesian Network example

From [Cobb & Shenoy, 2006]



- 'subsidy' and 'buy' have **discrete** domain $\{t, f\}$
- 'crop' and 'price' have **continuous** domain \mathbb{R}
- $\mathcal{N}(\mu, \sigma)$ normal (Gaussian) distribution

Conclusions

- **Effectus theory** offers a uniform language for probability, based on **states**, **predicates**, and **channels**, with validity, conditioning, etc.
- **EfProb** implements the ideas as a **Python library**, useful for probability calculations
 - `efprob_dc` for discrete/continuous
 - `efprob_qu` for quantum

Conclusions

- **Effectus theory** offers a uniform language for probability, based on **states**, **predicates**, and **channels**, with validity, conditioning, etc.
- **EfProb** implements the ideas as a **Python library**, useful for probability calculations
 - `efprob_dc` for discrete/continuous
 - `efprob_qu` for quantum
- **EfProb Manual** is available, containing a lot of examples

Conclusions

- **Effectus theory** offers a uniform language for probability, based on **states**, **predicates**, and **channels**, with validity, conditioning, etc.
- **EfProb** implements the ideas as a **Python library**, useful for probability calculations
 - `efprob_dc` for discrete/continuous
 - `efprob_qu` for quantum
- **EfProb Manual** is available, containing a lot of examples
- Ongoing: disintegration

Conclusions

- **Effectus theory** offers a uniform language for probability, based on **states**, **predicates**, and **channels**, with validity, conditioning, etc.
- **EfProb** implements the ideas as a **Python library**, useful for probability calculations
 - `efprob_dc` for discrete/continuous
 - `efprob_qu` for quantum
- **EfProb Manual** is available, containing a lot of examples
- Ongoing: disintegration

Thank you!

Please visit <https://efprob.cs.ru.nl/>