
Piglets to the rescue
Declarative User Interface Specification with Pluggable View Models

Loı̈c Denuzière Ernesto Rodriguez Adam Granicz
{loic.denuziere,ernesto.rodriguez,granicz.adam}@intellifactory.com

IntelliFactory, http://intellifactory.com

Abstract
This paper introduces Pluggable Interactive GUI-lets (or Piglets,
for short) as a mean for constructing reusable, reactive graphical
user interfaces that can be instantiated over different view mod-
els and presentation layers. Piglets therefore provide an attractive
alternative for pragmatic user interface specification that can tar-
get multiple content delivery channels from the same declarative,
type-safe user interface definition, keeping programmers happy and
highly productive.

Categories and Subject Descriptors Human-centered computing
[Human computer interaction (HCI)]: Interactive system and tools;
Software and its engineering [Software notations and tools]: Func-
tional languages

Keywords functional reactive programming, GUI, piglets, F#,
WebSharper

1. Introduction
Keeping functionally different parts of an application separate is
an important step to take in order to avoid excessive complexity
while retaining flexibility. In particular, in the domain of graphical
user interfaces, the separation between the user input on one hand,
and the construction and validation of result values on the other
hand, has been a closely studied area in recent years. To various
degrees, paradigms such as MVC, MVVM, functional reactive
programming have provided elements of response to this issue.

Piglets are a new approach based on functional reactive pro-
gramming and inspired by Formlets [4] [2] that help specify the
structure and validation of data in a succint and type-safe way,
while providing the flexibility to build an interactive user inter-
face to input and visualize this data, and keeping these two aspects
modular and reusable. They are designed around these fundamental
principles:

Modularity: The “data definition and validation” component
(sometimes called controller) can be specified once and used
with different views within the same application, or even in
different applications, such as the web and mobile version of a
given application.

[Copyright notice will appear here once ’preprint’ option is removed.]

Genericity: Piglets do not assume the use of any particular GUI
framework. Piglets have been successfully tested with various
frameworks such as WebSharper HTML [8], Sencha Touch [3]
and Windows Presentation Foundation [13].

Type safety: Individual form fields, as well as resulting data struc-
tures, are strongly typed, which provides extra guarantees with
regards to the correctness of the data. In addition, while the
terseness of Piglets can certainly be equaled by dynamically
typed libraries, strong typing prevents a number of errors, in
particular mismatch errors between different modules where
one has not been correctly updated to reflect changes in the
other.

DRYness: While many frameworks perform data validation at the
UI level, Piglets provide a simple data validation system that
performs at the controller level. This means that different views
connected to the same back-end do not need to repeat any data
validation in the UI. Similarly, common components of differ-
ent controls can trivially be re-used between these controls.

This paper presents the concept of Piglets together with an im-
plementation in F#, using WebSharper HTML for UI construction.
An additional Sencha Touch user interface, using the WebSharper
bindings for Sencha Touch, for the running example in this paper
is provided in Appendix C.

2. Structure of a Piglet
2.1 Streams
The Piglets library relies on the fundamental notion of a stream,
represented by type Stream<’a>. A stream represents a reactive
sequence of values that can be subscribed to by multiple clients, and
written to by multiple producers. Only the latest value of a stream
is kept in memory, and clients are notified in real-time whenever
a producer pushed a new value into the stream. Piglet streams are
similar to knockout Observables [14] and Rx hot observables [11].

Streams are further refined into readers and writers, represented
by types Reader<’a> and Writer<’a>, respectively. A Reader is
a stream to which clients can subscribe, but to which producers
cannot push values. Conversely, a Writer is a stream to which pro-
ducers can push values, but to which clients cannot subscribe. Thus,
a simple Stream<’a> as described in the previous paragraph is a
subtype of both Reader<’a> and Writer<’a>. The distinction be-
tween the two is useful when a stream needs to process the written
values and, for example, conditionally trigger a value depending on
the written data. In such a case, the stream can be a subtype of both
Writer<’a> and Reader<’b>, with ’a 6= ’b.

2.2 Piglets
A Piglet is a data structure composed of two parts:

1 2013/8/21

type Piglet<’a, ’v> =
{ stream: Stream<’a>; viewBuilder: ’v }

• A stream which represents the successive values returned by the
Piglet. It can both be read (by composed Piglets and the view)
and written to (by the view).

• A view builder responsible of feeding the individual streams
that compose the result data into a view function. The view func-
tion then returns an actual user interface capable of interacting
with the streams.

Two combinators are provided to create Piglets:

val Return : ’a → Piglet<’a, ’b → ’b>

Return x creates a Piglet with its stream initialized with x, one
whose view builder doesn’t feed any extra argument to the view
function.

val Yield :
’a → Piglet<’a, (Stream<’a> → ’b) → ’b>

Yield x creates a Piglet with its stream initialized with x and
with its view builder feeding this stream to the view function.

The most important operation on Piglets is combination, de-
noted⊗, which allows to build complex Piglets out of simpler ones
in order to represent a resulting data structure. It is used similarly to
the applicative composition operator. It has the same effect as ap-
plicative composition on the Piglets’ streams, and composes their
view builders into a new builder that passes arguments from both
original builders to the view function.

val ⊗ : Piglet<’a → ’b, ’v1 → ’v2>
→ Piglet<’a, ’v2 → ’v3>
→ Piglet<’b, ’v1 → ’v3>

For example, the following code fragment builds a complex
Piglet for a record type based on simple Piglets for its members.
The resulting view builder feeds a stream for each member to the
view function.

type Person = { first: string; last: string }

let PersonPiglet (init: Person) =
Return (fun first last →
{ first = first; last = last })

⊗ Yield init.first
⊗ Yield init.last

The type of this Piglet is:

val PersonPiglet : Person →
Piglet<Person, (Stream<string>

→ Stream<string>
→ ’b
) → ’b>

which can be read as “a Piglet which returns a Person, and
feeds two string streams to the view function”.

Once this Piglet has been built, a user interface for it can be
written. In the above example, the UI widget type is ’b, showing
that the same Piglet can be used with any user interface technology.

In this paper, the embedded language for HTML provided by
WebSharper [8] will be used to illustrate Piglet user interfaces,
which should be easy to understand for the reader familiar with
HTML. The following built-in F# constructs will also be used:

// Reversed function application
let (|>) x f = f x

A Piglet is connected to a view function using the combinator
Render, as follows:

let initUser =
{ first = "Alonzo"; last = "Church" }

PersonPiglet initUser
|> Render (fun first last →
// Here, first and last are both Stream<string>
Div [

Controls.Input first
Controls.Input last
Div [

Text "Your name is "
Span [] |> Controls.ShowString first id
Text " "
Span [] |> Controls.ShowString last id

]
])

The functions in the Controls module are provided by the
Piglets library for easy integration with WebSharper. Input takes
a string stream and shows an input box which reads and writes the
stream. ShowString takes a stream, a mapping function f to string
and an HTML element into which it reactively writes the value of
the stream mapped through f.

The above code can be inserted into a standard WebSharper
application to provide reactive text inputs and display, as shown
in Figure 1.

Figure 1. The rendered PersonPiglet

The purpose of constructing a value from simpler streams is
generally to perform an action on this resulting value, such as
submitting it to a server-side or saving it. To accomplish this, the
constructed value can be forwarded to an arbitrary function using
the Run combinator. This combinator doesn’t modify the Piglet
itself, but simply reads its stream.

PersonPiglet initUser
|> Run (fun name →

Alert ("Hi, " + name.first))
|> Render ...

3. Data validation
Piglets provide a way to integrate input validation in the controller
part, ie. the Piglet itself, rather than the view as is often done by
various other approaches [16].

Streams actually carry a value of type Result<’a>, defined as:

type Result<’a> =
| Success of ’a
| Failure of list<ErrorMessage>

All Piglets that have been described so far will only trigger
Success values. These can be combined with validation combi-
nators, which act as a filter on a Piglet’s stream and transform its
value into Failure when a given condition is not fulfilled. A val-
idator creates a new stream that reads the underlying stream and
produces:

• the underlying error message if the underlying stream already
fails;

2 2013/8/21

• a new error message if the underlying stream succeeds and the
test fails;

• the same value if the underlying stream succeeds and the test
succeeds.

A validator can be applied to any Piglet, either simple or com-
plex. For example, we can check that neither the first name nor the
last name of our user are empty, and that the resulting full name is
present in a given dictionary:

let PersonPiglet (init: Person) =
Return (fun first last →
{ first = first; last = last })

⊗ (Yield init.first
|> Validation.Is Validation.NotEmpty

"Please enter a first name.")
⊗ (Yield init.last

|> Validation.Is Validation.NotEmpty
"Please enter a last name.")

|> Validation.Is (fun fullName →
dictionary.Contains fullName) "Unknown user."

Whenever one of the validator fails, its failure propagates
through the combinators and the resulting Person stream fails
as well. If several individual streams fail, then their error messages
accumulate. For example, if both input fields are empty, the result
value is:

Failure ["Please enter a first name.";
"Please enter a last name."]

In order to run an action even when the Piglet fails, a refinement
of Run called RunResult can be used.

PersonPiglet initUser
|> RunResult (function

| Failure ms → Alert (String.concat ", " ms)
| Success x → Alert ("Hi, " + name.first))

4. Advanced Piglets operations
4.1 Submitting
The previously presented Piglets produce a new value, either
Failure or Success, every time the user modifies one of the input
fields. In a real-world situation, one generally wants to provide a
way to confirm the data entered, and obtain a stream that only gets
updated when this confirmation happens. This would be typically
displayed as a “Submit” button.

This is the role of a Submitter. The type Submitter<’a> is a
subtype of Writer<unit> and Reader<’a>. It possesses an un-
derlying stream, and propagates the value of this stream to its sub-
scribers whenever its Writer gets triggered. In order to create a
Submitter, the Piglet is passed to the combinator WithSubmit.
This combinator adds a Submitter<’a> to the view function ar-
guments, and filters the Piglet’s stream as described.

Figure 2 shows an example use of a Submitter. The module
Controls provides the function Submit which displays a sub-
mit button that triggers the Submitter’s Writer<unit> whenever
clicked. When this happens, the Submitter’s Reader<Person> is
triggered with the current value of the Piglet.

Figure 2 also shows the use of ShowResult, which updates its
display whenever the submitter Reader<Person> is triggered, i.e.
whenever the user clicks “Submit”.

4.2 Mapping
Mapping is a very common pattern in functional programming
in which a function is applied to the value(s) in a given functor.
Expectedly, Piglets provide different variants of this facility:

PersonPiglet initUser
|> WithSubmit
|> Render (fun first last submit →
Div [

Controls.Input first
Controls.Input last
Controls.Submit submit
Div [

Text "Your name is "
Span [] |> Controls.ShowResult submit

(function
| Success x →

Text (x.first + " " + x.last)
| Failure ms →

Text (String.concat ", " ms))
]

])

Figure 2. A view with a submit button and displaying errors

val Map : (’a → ’b)
→ Piglet<’a, ’v>
→ Piglet<’b, ’v>

val MapToResult : (’a → Result<’b>)
→ Piglet<’a, ’v>
→ Piglet<’b, ’v>

This makes it possible, for example, to provide a Piglet for
values of a certain type which passes to the view a stream of a
different (mapped) type. However, the use cases of Map itself are
rare because mapping is generally performed at the applicative
level, i.e. the function passed to Return in the Person example.

Another type of mapping, however, is very useful, especially in
the context of web development. The MapAsync family of functions
allow mapping over functions that can be executed asynchronously.

val MapAsync : (’a → Async<’b>)
→ Piglet<’a, ’v>
→ Piglet<’b, ’v>

val MapToAsyncResult : (’a → Async<Result<’b>>)
→ Piglet<’a, ’v>
→ Piglet<’b, ’v>

In WebSharper, for example, such a function can perform an
Ajax call and return the response of this call; MapAsync then passes
it as the value of the Piglet. In the case of a Person, if the goal is
to save the input data to the server when Submit is triggered, then
the Piglet can be mapped asynchronously:

PersonPiglet initUser
|> MapAsync (fun person →

async {
let! serverResult = SubmitToServer person
return serverResult

}
)

4.3 Fine-grained validation
When a validator is applied to a Piglet, the stream of this Piglet
is not modified: the Piglet returned by the validator has its own
stream, which listens to the underlying Piglet’s stream. This is
necessary so that input controls still have a value to show to the user
even when this value is deemed invalid by the validator. It would
be inconvenient to get the field wiped as soon as the user inputs an
invalid value.

3 2013/8/21

What this means, however, is that the stream passed to the
view function by a simple Piglet does not contain any information
about the validity of its value. This information would be useful
to highlight the actual invalid input, rather than just showing the
corresponding error message at the bottom of the form.

Piglets provide a solution to this issue. Every error message is
tagged with a unique identifier that can be used to track which base
stream caused it. To make use of this facility, the base Reader pro-
vides a Through method that takes the outer Reader as argument
(for example, the Submitter for the global result) and returns the
same value as the original, except when the outer Reader has er-
ror messages associated with the base Reader; in which case these
error messages are returned instead.

type Reader<’a> =
// ...
member Through : Reader<’b> -> Reader<’a>

This allows the example to be enriched with error messages
positioned at the source of each error.

PersonPiglet initPerson
|> WithSubmit
|> Render (fun first last submit ->

Div [
Controls.Input first
Controls.ShowErrors (first.Through submit)

(fun errors -> String.concat ", " errors)
Controls.Input last
Controls.ShowErrors (last.Through submit)

(fun errors -> String.concat ", " errors)
Controls.Submit submit

])

Logically, Controls.ShowErrors shows the error messages
associated with the given Reader. In this case, these error messages
only show up when the user clicks “Submit”, since the Readers
passed to ShowErrors are passed through submit.

If the error messages need to be shown “in real-time”, i.e.
on every change of the base streams as opposed to only when
submitted, then the submitter’s input stream is the one needed. It
is accessible using the Input property of the Submitter class.

5. Piglet collections
A common necessity in user interfaces is to provide the user with a
way to input multiple values of the same type, with the possibility
to add, remove, and reorder these values. Visually, this can take the
shape of a grid, a list, or simply a sequence of similar sub-forms.

For example, the PersonPiglet can be extended to include a
list of pets, defined as follows:

type Species = Cat | Dog | Piglet
type Pet = { species: Species; name: string }
type Person =
{ first: string; last: string; pets: Pet[] }

The Piglet for a single Pet can be defined as follows:

let PetPiglet (init: Pet) =
Return (fun species name →
{ species = species; name = name })

⊗ Yield init.species
⊗ Yield init.name

To keep the code modular, it would be preferable to use
PetPiglet as part of the definition of PersonPiglet. With the
related Formlets approach[4], this can be achieved with the follow-
ing Many combinator[2]:

val Many : Formlet<’a> → Formlet<’a[]>

With Piglets, the presence of the view builder complicates this
combinator. It requires a mechanism to specify the rendering of
each inner view, and a way to attach it to the outer view. The in-
dividual streams of each inner Piglet have to be combined consis-
tently to generate the final sequence value.

The corresponding Many combinator for Piglets therefore has a
more complex type signature.

val Many : ’a
→ (’a → Piglet<’a, ’v → ’w>)
→ Piglet<

’a[],
(Many.Stream<’a, ’v, ’w> → ’x) → ’x>

• The first argument, of type ’a, is the value with which newly
inserted inner Piglets will be initialized.

• The second argument, of type ’a → Piglet<’a, ’v →
’w>, defines how inner Piglets are created from an initial value.
In the previous example, it is the function PetPiglet.

• The combinator returns a Piglet whose stream has values of type
’a[], and adds a Many.Stream to the view function arguments.
Many.Stream provides functionality to edit and display the
collection. It can be read as a Reader<’a[]>, but it can only be
written to by its Add method, which appends an element to the
back of the collection and a corresponding inner view at the end
of the container, or by inner items through its Render method.

type Many.Stream<’a, ’v, ’w> =
// ...
member Render : Container<’w, ’u>

→ (Operations → ’v)
→ ’u

This method is responsible for rendering inner elements into a
container, and providing these elements with the streams they need
to be able to delete and reorder items.

• The first argument to Render is the container into which the
inner Piglets will be sequentially rendered. It satisfies the fol-
lowing interface:

type Container<’in, ’out> =
abstract member Add : ’in → unit
abstract member Remove : int → unit
abstract member MoveUp : int → unit
abstract member Container : ’out

where ’in specifies the type of element returned by the view
function of inner Piglets, and ’out is the type of element re-
turned by the view function of the outer Piglet. Every rendering
engine (such as WebSharper HTML elements) needs to imple-
ment this interface in order to be used with Many.

• The second argument is the function that gets called when a new
inner Piglet needs to be rendered. It receives an Operations
object, containing Writers for deleting and reordering this
item, and any arguments fed by the inner view builder.
Concretely, the Operations object contains:

Two reordering writers, MoveUp and MoveDown which,
when triggered, move the current inner item in the view
and in the resulting collection.

A Delete writer which, when triggered, removes the cur-
rent inner item from the view and from the resulting collec-
tion.

4 2013/8/21

Putting all of this together, the new PersonPiglet is imple-
mented in Appendix A and rendered in Appendix B as follows:

• First, a Piglet for individual Pets is created (PetPiglet, Ap-
pendix A l. 22), including appropriate validation.

• Then, the outer Piglet for the Person is defined (PersonPiglet,
Appendix A l. 30), also including appropriate validation. It uses
the Many combinator to include the list of pets (Appendix A l.
41).

• After the Piglets are defined, they are rendered (Appendix B
l. 1). The pets are represented by the view argument pets,
of type Many.Stream<Pet, PetRender, Element> where
PetRender is the view function for the PetPiglet:

type PetRender =
Stream<Pet> → Stream<string> → Element

Note that the return type of PetRender is specialized to the
Element type from WebSharper because it is used as such in
the body of the view function; but the Piglet itself is still generic
in terms of the view type.

• The Render method from the Many.Stream is called in the
view function (Appendix B l. 8) to display the Piglets for ev-
ery Pet. It receives an HTMLContainer, which is an imple-
mentation of Container<Element, Element> provided by
Controls. It also receives a view function for individual Pets.
This view function uses the Writers it receives from its argu-
ment ops to display buttons which allow moving the current
pet up or down, or deleting it.

• The Add method from the Many.Stream is used in the view
function (Appendix B l. 23) to display a button which, when
clicked, adds a new pet to the collection, initialized as defaultPet.

• Finally, since WebSharper provides combinators to generate
HTML elements, it is easy to display the final value (Ap-
pendix B l. 25). The pets are displayed by mapping over the
pets array and returning HTML elements (Appendix B l. 32).

Figure 3. The rendered Piglet from Appendix B after the user
added two pets

A commonly needed variant is to create new entries in the
collection, not from a fixed initial value, but interactively. For
example, one can have a complex form to create entries, and an
editable grid that displays the collection of created entries. The
Piglet used for the grid entries then needs to be different from the
one used for the creation form: they might have different individual
input fields, and most importantly, the creation form will require a
Submit button while grid entries might not.

For these reasons, such a case requires a more general ver-
sion of Many, which we call ManyPiglet, using a generalized
Many.Stream called Many.GenStream.

val ManyPiglet : Piglet<’a, ’y -> ’z>
→ (’a → Piglet<’a, ’v → ’w>)
→ Piglet<

’a[],
(Many.GenStream<’a, ’v, ’w, ’y, ’z>

→ ’x) → ’x>

This combinator is similar to Many, but instead of providing an
initial value as first argument, we provide the Piglet for the creation
form. This form can then be displayed by the view function using
the AddRender method of the GenStream.

6. Generalizing the View Function
Often enough it is desired to provide the same functionality across
different user interfaces. The common scenario is extending an ap-
plication to work on both a mobile device and a desktop computer.
The genericity of the Piglets rendering mechanism enables such
possibility without requiring any modification to the Piglet itself.
It is only necessary to provide the Piglet with a different rendering
function that generates the desired view output. To illustrate this
feature, the example from Appendix B was also extended to work
with the Sencha Touch bindings for WebSharper, as well as Win-
dows Presentation Foundation (WPF) for desktop interfaces. The
code for Sencha Touch can be found at Appendix C. The Sencha
Touch output is portrayed in Figure 4, and the WPF output is visible
in Figure 5.

Figure 4. The example Piglet rendered using Sencha Touch[3]

7. Related work
The Piglet approach is inspired by Formlets [2, 4, 17]. Formlets
provide a type-safe and declarative mechanism to generate user
interfaces for a given data structure, and are speficied in many ways
similarly to Piglets. However, since Formlets generate their view
under the hood, it is difficult to customize appearance. Reactive
behavior is also limited due to the fact that the input fields are
generated as part of the automatic process. Piglets are a promising
alternative to Formlets where finer control over the appearance of
the resulting user interfaces is desired. For instance, the running
example of this paper was implemented using both WebSharper
HTML markup and Sencha Touch without any modification to the
underlying Piglet.

Functional reactive programming (FRP) has been researched as
an approach to developing interactive user interfaces [1, 5, 6]. The
main advantage of this approach is that heavily reduces the amount
of code required to update a user interface and hides these details in
the notation. One notable recent example is the Elm Programming

5 2013/8/21

Figure 5. The example Piglet rendered using Windows Presenta-
tion Foundation

Language[6]. It is a web-oriented functional language inspired by
Haskell and uses FRP as its approach to handle user input. It
has similar combinators to those in Piglets and enable building
interactive user interfaces easily.

Piglets extend functional reactive programming with a generic
mechanism to change view models for collecting user input. Dif-
ferent user interfaces can be created to work against the same input
data with minimal amount of extra code. Additionally, Piglets asso-
ciate the data validation logic with the input data structures in a sin-
gle place, which enforces the derived views to respect the validation
rules. Since the error notification mechanism for Piglets is generic,
user interfaces can be built without requiring detailed knowledge
of the validation process. This ensures a more consistent behav-
ior across multiple user interfaces and eliminates the possibility of
propagating invalid data due to a faulty interface.

An alternative approach to reactive programming is shared state,
as used by workflow management systems such as iTasks[12]. An
advantage of this approach is to provide tools such as merging al-
gorithms that allow multiple tasks to work on a shared state. This
allows GUIs to apply modifications across a distributed system.
User interfaces are derived from a task and specified in a declarative
style. The system automatically takes care of rendering it, provid-
ing the advantage of simplicity at the cost of less flexibility in the
rendering process.

In the context of dynamic languages, similar approaches have
been developed to provide generic mechanisms that update data
with different display mechanisms [9, 14, 15]. The approaches
are very flexible and easily allow implementing reactive behavior
inside the interface. Piglets take advantage of the full power of the
ML type system allowing the compiler to assist the developer in
massively reducing semantic errors in the application. Furthermore,
our typed approach also provides valuable insights for developing
additional user interfaces to existing data. The type system also
provides strong guarantees that all views asociated with a Piglet
will be modified accordingly when the underlying data structure is
modified. Static typing comes with a cost, though. Currently it is
impossible to recursively embed a Piglet inside itself with the Many
combinator since doing so results in an infinite type even though
the code would behave correctly at run-time.

Finally, Piglets have some similarities to the MVC pattern [10].
In particular, this approach also separates the mechanism to dis-
play and manipulate data. In this approach, the controller usually
provides an interface that the view uses to perform operations over
the data. The Piglet approach is fundamentally more data-oriented

than MVC. This is due to the fact that they are inspired from FRP
where the core idea is to interpret data as a stream over time. This
provides the developer with the flexibility to work in a generic way
over any data structure instead of having to heavily depend on the
interface of the controller.

8. Conclusions
Functional reactive programming has been an active field of re-
search in recent years. It provides a simple way to combine values
gathered interactively from a user interface into more complex data
structures. The user interface uses a minimal amount of extra code
to take care of updating the data, and a separate controller then
gathers this data and processes it as needed.

In this paper, we have developed an approach, which we call
Pluggable Interactive GUI-lets, or Piglets, derived from functional
reactive programming, which extends the above capabilities and
allows to describe the controller in a concise, declarative way. The
Piglet controller uses the type system to ensure that data is collected
correctly. It decides which data streams the user interface needs to
be able to interact with. It also includes the validation logic which
is common to all potential different views associated with it. It
is independent from the GUI frameworks used to produce these
views, and the same Piglet controller can be used with different
view instantiations. This approach is especially useful for writing
applications that need to target multiple content delivery channels,
and may have desktop, web, and mobile user interfaces at the same
time.

Piglets also provide more advanced facilities, such as the Many
combinator that abstracts away the manipulation of collections of
data, including the display of multiple inputs for items in such a
collection, in a grid or any other type of nested layout. They also
give user interfaces the flexibility in the way they display collected
values and validation messages, whether grouped or associated
with their corresponding individual fields.

Our next steps in the development of Piglets are the formaliza-
tion of the semantics of the Piglet controller, and an evaluation of
the feasibility and convenience of implementing classic functional
reactive programming combinators such as combining, folding and
accumulating. Another ambitious goal is to take further advantage
of the modularity of Piglets to run in a client-server configuration,
where the Piglet controller sits on the server and synchronizes po-
tentially different view clients, using techniques such as operational
transformations [18] or differential synchronization [7].

A. The common Person Piglet
1 type Species = | Cat | Dog | Piglet
2 type Pet = { species: Species; name: string }
3 type Person =
4 { first: string; last: string; pets: Pet[] }
5

6 let showSpecies = function
7 | Cat → "cat"
8 | Dog → "dog"
9 | Piglet → "piglet"

10

11 let dictionary =
12 set [
13 ("Alonzo", "Church")
14 ("Alan", "Turing")
15 ("Edsger", "Dijkstra")
16 ("Charles", "Babbage")
17]
18

19 let defaultPet =

6 2013/8/21

20 { species = Piglet; name = "Spot" }
21

22 let PetPiglet (init: Pet) =
23 Return (fun species name →
24 species = species; name = name)
25 ⊗ Yield init.species
26 ⊗ (Yield init.name
27 |> Validation.Is Validation.NotEmpty
28 "Please enter the pet’s name.")
29

30 let PersonPiglet (init: Person) =
31 Return (fun first last pets →
32 { first = first;
33 last = last;
34 pets = pets })
35 ⊗ (Yield init.first
36 |> Validation.Is Validation.NotEmpty
37 "Please enter a first name.")
38 ⊗ (Yield init.last
39 |> Validation.Is Validation.NotEmpty
40 "Please enter a last name.")
41 ⊗ Many defaultPet PetPiglet
42 |> Validation.Is (fun fullName →
43 dictionary.Contains
44 (fullName.first, fullName.last))
45 "Unknown user."
46 |> WithSubmit
47

48 let initUser =
49 {first = "Alonzo"; last = "Church"; pets = [||]}

B. A Piglet rendered using WebSharper HTML
1 PersonPiglet initUser
2 |> Render (fun first last pets submit →
3 Div [
4 H3 [Text "Name:"]
5 Controls.Input first
6 Controls.Input last
7 H3 [Text "Pets:"]
8 pets.Render (HtmlContainer(Div[]))
9 (fun ops species name →

10 Div [
11 Controls.Radio species
12 [(Cat, "Cat");
13 (Dog, "Dog");
14 (Piglet, "Piglet")]
15 Controls.Input name
16 Controls.Button ops.MoveUp
17 -< [Text "Move up"]
18 Controls.Button ops.MoveDown
19 -< [Text "Move down"]
20 Controls.Button ops.Delete
21 -< [Text "Delete"]
22])
23 Controls.Button pets.Add -< [Text "Add a pet"]
24 Controls.Submit submit
25 Div [
26 Text "Your name is "
27 Span [] |> Controls.ShowResult submit
28 (function
29 | Success x →
30 [Text (x.first + " " + x.last +
31 " and your pets are ")
32 Text (x.pets
33 |> Array.map (fun pet →

34 pet.name + " (" +
35 showSpecies pet.species + ")")
36 |> String.concat ", ")]
37 | Failure ms →
38 [Text (String.concat ", " ms)])
39]
40])

C. A Piglet rendered using Sencha Touch
1 let view (c: Ext.Container) =
2 PersonPiglet initUser
3 |> Render (fun first last pets submit →
4

5 let pets =
6 SenchaContainer(ExtCfg.Container().Create())
7 |> pets.Render (fun opts species name →
8 let petOptions =
9 Array.map (fun s →

10 {text=showSpecies s;value=s})
11 [|Piglet;Cat;Dog|]
12

13 let elems : Ext.Component [] =
14 [|
15 ExtCfg.field.Select(Options=petOptions)
16 .Create()
17 |> Select.WithSelect(id,id,species);
18

19 Ext.field.Text() |> Text.WithText name;
20

21 ExtCfg.Button(Text="Move Up").Create()
22 |> Button.WithTap opts.MoveUp;
23

24 ExtCfg.Button(Text="Move Down")
25 .Create()
26 |> Button.WithTap opts.MoveDown;
27

28 ExtCfg.Button(Text="Delete").Create()
29 |> Button.WithTap opts.Delete
30 |]
31

32 ExtCfg.Container(Items=elems,Layout="hbox")
33 .Create()
34)
35

36 let showPerson p =
37 let pets =
38 p.pets
39 |> Seq.map (fun x →
40 String.concat ":"
41 [
42 x.name;
43 (showSpecies x.species)
44])
45 |> String.concat ", "
46 p.first + " " + p.last + " has " + pets
47

48 let infoLabel =
49 Ext.Label()
50 |> Label.WithLabelGen (showPerson,submit)
51

52 let errorContainer =
53 let err = ExtCfg.Container().Create()
54 submit.Subscribe(
55 fun msg →
56 err.RemoveAll (true,true);

7 2013/8/21

57 match msg with
58 | Failure ms →
59 ms |> Seq.map (fun m →
60 ExtCfg.Label(Html="m.Message")
61 .Create())
62 |> Seq.toArray
63 |> err.Add |> ignore
64 | _ → ()
65) |> ignore
66 err
67

68 let items : Ext.Component [] =
69 [|
70 ExtCfg.Label(Html="Name").Create();
71 Ext.field.Text() |> Text.WithText first;
72 Ext.field.Text() |> Text.WithText last;
73

74 ExtCfg.Label(Html="Pets").Create();
75 pets;
76

77 ExtCfg.Button(Text="Add Pet").Create()
78 |> Button.WithTap pets.Add;
79

80 ExtCfg.Button(Text="Submit").Create()
81 |> Button.WithTap submit
82

83 infoLabel;
84 errorContainer
85 |]
86

87 ExtCfg.Container(Items=items).Create()
88 |> c.Add
89)

References
[1] H. Apfelmus. Reactive-banana. Library Home Page http://

www.haskell.org/haskellwiki/Reactive-banana, Retrieved
on August 1, 2013.

[2] J. Bjornson, A. Tayanovsky, and A. Granicz. Composing Reactive
GUIs in F# using WebSharper. In Implementation and Application of
Functional Languages. Springer, 2010.

[3] J. E. Clark. Sencha Touch Mobile JavaScript Framework. Packt
Publishing Ltd, 2012.

[4] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. An Idioms Guide to
Formlets. Technical report, University of Edinburg, 2008.

[5] A. Courtney. Genuinely Functional User Interfaces. In ACM Sigplan
Workshop on Haskell, pages 41–69, 2001.

[6] E. Czaplicki and S. Chong. Asynchronous Functional Reactive Pro-
gramming for GUIs. In Programming Language Design and Imple-
mentation, Seattle, WA, 2013. ACM.

[7] N. Fraser. Differential Synchronization. In DocEng’09, Proceed-
ings of the 2009 ACM Symposium on Document Engineering, pages
13–20, 2 Penn Plaza, Suite 701, New York, New York 10121-
0701, 2009. URL http://neil.fraser.name/writing/sync/
eng047-fraser.pdf.

[8] A. Granicz, A. Tayanovskyy, and J. Bjornson. WebSharper. Home
Page http://websharper.com, Retrieved on August 1, 2013.

[9] A. Gutierrez. Web application client side architecture with angularjs.
2013.

[10] G. Krasner and S. Pope. A description of the Model-View-Controller
user interface paradigm in the Smalltalk-80 system. Journal of Object
Oriented Programming, 1(3):26–49, 1988. URL http://citeseer.
ist.psu.edu/krasner88description.html.

[11] E. Meijer. Reactive extensions (Rx): curing your asynchronous pro-
gramming blues. In ACM SIGPLAN Commercial Users of Functional
Programming, page 11. ACM, 2010.

[12] S. Michels, R. Plasmeijer, and P. Achten. iTask as a New Paradigm
for Building GUI Applications. In Implementation and Application of
Functional Languages. Springer, 2010.

[13] A. Nathan. Windows Presentation Foundation Unleashed. Sams
Publishing, 2006.

[14] J. Papa. Knockout’s Built-in Bindings for HTML and JavaScript.
MSDN Magazine http://msdn.microsoft.com/en-us/
magazine/hh852598.aspx, Retrieved on August 1, 2013.

[15] A. Ronacher. Pluggable views. Library Home Page http://flask.
pocoo.org/docs/views/, Retrieved on August 1, 2013.

[16] S. Senf. Ketchup – Tasty Form Validation. Library Home Page
https://github.com/mustardamus/ketchup-plugin, Re-
trieved on August 1, 2013.

[17] M. Snoyman. Developing Web Applications with Haskell and Yesod,
chapter 8. O’Reilly Media, 2012.

[18] C. Sun and C. Ellis. Operational transformation in real-time group
editors: issues, algorithms, and achievements. In Proceedings of the
1998 ACM Conference on Computer Supported Cooperative Work,
pages 59–68. ACM, 1998.

8 2013/8/21

http://www.haskell.org/haskellwiki/Reactive-banana
http://www.haskell.org/haskellwiki/Reactive-banana
http://neil.fraser.name/writing/sync/eng047-fraser.pdf
http://neil.fraser.name/writing/sync/eng047-fraser.pdf
http://websharper.com
http://citeseer.ist.psu.edu/krasner88description.html
http://citeseer.ist.psu.edu/krasner88description.html
http://msdn.microsoft.com/en-us/magazine/hh852598.aspx
http://msdn.microsoft.com/en-us/magazine/hh852598.aspx
http://flask.pocoo.org/docs/views/
http://flask.pocoo.org/docs/views/
https://github.com/mustardamus/ketchup-plugin

	Introduction
	Structure of a Piglet
	Streams
	Piglets

	Data validation
	Advanced Piglets operations
	Submitting
	Mapping
	Fine-grained validation

	Piglet collections
	Generalizing the View Function
	Related work
	Conclusions
	The common Person Piglet
	A Piglet rendered using WebSharper HTML
	A Piglet rendered using Sencha Touch

