The 101haskell chrestomathy
http://softlang.uni-koblenz.de/101lhaskell/

Ralf Lammel

Thomas Schmorleiz

Andrei Varanovich

University of Koblenz-Landau, Software Languages Team, Germany

Extended abstract

In philology and linguistics, the term chrestomathy refers to a
collection of sample texts in one language designed to be useful
for learning the language by demonstrating some language aspects
such as language development or literary style.

In programming, the term program chrestomathy refers to a col-
lection of sample programs in one or more programming languages
designed to be useful for learning programming (or becoming more
proficient in programming) by demonstrating some programming
language aspects such as comparison of programming style, ex-
pressiveness, and applicable programming techniques in one lan-
guage or across different languages.

More broadly, the term software chrestomathy [1] refers to a
collection of software systems relying on one or more software lan-
guages as well as any number of software technologies; a software
chrestomathy demonstrates aspects of programming and software
development. When compared to a program chrestomathy, a soft-
ware chrestomathy collects systems rather than programs, thereby
possibly covering additional details such as building, testing, and
sample data.

The 101haskell chrestomathy is a collection of tiny or small
Haskell-based software systems designed to be useful for learn-
ing functional programming in Haskell. The collected systems
present Haskell-based solutions to a number of general system
requirements as defined by the 101companies project [1]]. Also,
the systems exercise alternative applicable programming tech-
niques and technologies (e.g., libraries) for the requirements. The
101haskell chrestomathy is the Haskell-specific sub-chrestomathy
of the 101companies chrestomathy which covers dozens of pro-
gramming and software languages. Following the terminology
of 101companies, the collected systems are called contributions,
thereby emphasizing the community aspect of collection.

It happens that Haskell has played a special role in the 101com-
panies project, i.e., Haskell has been used to bootstrap and demon-
strate various capabilities of 101. (To a slightly reduced extent, this
is also true for Java.) Here is a partial list of such capabilities:

Code management The tiny or small systems (‘contributions’) are
all readily available from a GitHub repository, with Cabal-based
dependency tracking and building and testing, thereby support-
ing software engineering best practices and collaborative devel-
opment and maintenance.

Content management The documentation of each contribution
is readily maintained on the 101wiki which also aggregates
knowledge about software concepts, languages, and technolo-
gies. All content is managed in several namespaces with a meta-
model designated to each namespace.

Semantic properties With many software concepts (e.g., ‘monad’),
software languages (e.g., ‘XML’ or ‘SQL’), and technologies
(e.g., ‘GHC’ or ‘SYB’) involved, it is important to maintain
semantically strong links between all these entities. Thus, links

are qualified by a property (predicate). For instance, a specific
link may express that a given system uses a certain technology.

Wikipedia integration In the 101companies project, we do not
try to define all the encountered software concepts anew; in-
stead, the objective is to connect to existing knowledge re-
sources. In particular, we apply a scheme of curation such that
concepts are linked to Wikipedia pages while qualifying the
level of curation: ‘same as’, ‘similar to’, ‘not the same as’.

Textbook integration With some textbooks being accessible on-
line, it becomes possible to link wiki content to textbook con-
tent so that users may take advantage of integrated knowledge.
We use a specific framework for text mining and presenting
such links; two Haskell textbooks are readily linked.

Fragment location Documentation may also refer to code at the
fragment level (e.g., individual function or type declarations).
In this manner, we separate classic program documentation
(which is part of the code) from the higher-level discussion of
systems on the wiki. There is the language-parametric notion of
fragment location which supports references to code units and
their retrieval or rendering.

Themes (sub-collections) All the Haskell-based systems are or-
ganized in a number of themes addressing different interests
(stakeholders), e.g., generic functional programming. Haskell-
based systems also participate in themes that are not Haskell-
specific, thereby demonstrating the ‘Haskell way’ of addressing
some problem, e.g., parsing or web programming.

Code similarity management It is important to manage (to under-
stand, to maintain) the code similarity across systems using the
same language. For instance, several contributions may use the
same or a similar data model and such reuse should be discover-
able and maintainable (in the view of evolution). We investigate
special forms of clone detection and version control to this end.

Didactic structure The different systems need to be explorable
in a systematic manner to be more useful for learning. The
101haskell systems are organized along several orthogonal di-
mensions, e.g., in a sequence of lecture scripts. Further, the in-
dividual systems refer to each other to explain similarities and
differences.

Acknowledgment

We are grateful to several people (fellow ‘10lers’) who helped on the tech-
nical part of this work—specifically Kevin Klein, Olexiy Lashyn, Martin
Leinberger, Sebastian Jackel, and Arkadi Schmidt.

References

[1] J.-M. Favre, R. Limmel, T. Schmorleiz, and A. Varanovich. /01compa-
nies: a community project on software technologies and software lan-
guages. In Proc. of TOOLS 2012, volume 7304 of LNCS, pages 59-74.
Springer, 2012.


http://softlang.uni-koblenz.de/101haskell/

