
Functionally Redundant Declarations
for Improved Performance Portability

— Extended abstract —

Artjoms Šinkarovs
School of Mathematical and Computer Sciences,

Heriot-Watt University, Edinburgh
a.sinkarovs@macs.hw.ac.uk

Sven-Bodo Scholz
School of Mathematical and Computer Sciences,

Heriot-Watt University, Edinburgh
s.scholz@hw.ac.uk

1. Introduction
Most of the programmers who got used writing their codes in im-
perative style find it very difficult to switch to a more declarative
style. One of the difficulties they often have is that a declarative
style of programming in most cases makes it very difficult to de-
velop a cost intuition. Even worse, the declarative style typically
prevents programmers from enforcing low-level choices which on
some architectures are essential for achieving acceptable perfor-
mance. Consequently, programmers in the declarative domain have
to rely on the abilities of the compiler to get these choices right.
If the compiler fails to deliver the desired performance, typically,
there is very little that can be done to achieve substantial perfor-
mance improvements.

One way out of this dilemma is to provide declarative encapsu-
lations of low-level mechanisms and, thus, to shift back the control
to the programmer. Examples for that approach are explicit paral-
lelism control instructions such as par and seq or destructive up-
dates for statefull arrays. Being properly integrated into the declar-
ative world, these can subsequently be abstracted away by applying
the full arsenal of declarative weaponry. Strategies as described in
[2] as well as the parallel arrays described in [1] demonstrate the
benefits of this approach very nicely. Even though one might argue
that this approach actually puts back the obligation to specify how
things are to be computed into the hands of the programmer and,
thus, is counter the basic credo of declarative programming, the el-
egant abstractions on top of the low level primitives create a rather
declarative eco-system.

The downside of this approach is that it is at odds with the
current shift towards a rather diverse landscape of computing plat-
forms. Different hardware architectures may, and increasingly do,
require different solutions not only on the lowest level but also in
the way the code is mapped to hardware and in the way code is op-
timised. A good example for this are the differences in code optimi-
sation for GPUs and for multi-core CPUs. Compilation for FPGAs
has yet other requirements. When targeting heterogeneous systems,
even mixtures of different codes need to be employed. This diver-

[Copyright notice will appear here once ’preprint’ option is removed.]

sity and heterogeneity of modern hardware architectures renders
old assumptions inapplicable and, as a result, the software written
with old assumptions in mind increasingly fails to deliver excellent
performance. To make matters worse, re-writing the performance
critical sections from sketch for every new hardware architecture is
only viable in very limited application scenarios.

This observation seems to demand a renaissance of the purely
declarative approach and, with it, the challenge of being stuck
with whatever performance a compiler can deliver for a given
specification.

This paper proposes a new and, as we will argue, more declar-
ative approach towards helping the compiler to find a good per-
formance across a wide range of platforms. The key idea is to en-
able programmers to specify code equalities of various kinds. These
equalities could be different algorithms that specify the same com-
putation such as box standard matrix multiplication and Strassen’s
algorithm, or they could be some domain-specific knowledge such
as a formulation of some basic laws on certain function composi-
tions, or they could be different low-level versions that aim at sev-
eral different hardware-specific effects. Based on these equalities,
a compiler then can choose whatever combination of code snippets
will deliver a good performance on a given target hardware. The
extent to which such equalities are provided can be tuned to the
capabilities of any given compiler. Consequently, any given set of
equalities can be extended to widen the capabilities of a compiler.
The important aspect here is that all the specifications create op-
tions without forcing the compiler to take a specific route.

In order to support this statement with an example, we are
presenting a study of different implementations of the Cholesky
Decomposition. The benchmark has a number of properties that
are very common to several algorithms from linear algebra, so the
results can be transferable to the whole class of applications.

Most of the algorithms of linear algebra, like for example
Cholesky Decomposition, can be expressed on scalar elements or
on matrix blocks. Blocking is very handy if it can increase the level
of concurrency for a given sub-operation, which it normally does.
However, one has to choose the granularity right, one has to con-
sider a new memory access and one has to decide how to process an
individual block: dividing it further, or switching to the algorithm
on scalars.

In this work we are studying several options for Cholesky de-
composition on shared memory machines equipped with CUDA
graphic cards and capable of doing SIMD operations. First of all we
are going to demonstrate effects of choosing one or the other imple-
mentation. Secondly we consider kinds of optimisations a compiler
should be capable of in order to generate efficient code. Finally we
are going to demonstrate how the sizes of input data and properties

1 2013/8/22

of an architecture influence choices of algorithm implementation.
We also discuss which properties can be obtained automatically and
which should come from a programmer.

The overall approach we take can be considered as a generalisa-
tion of DSL-based approaches, where all the optimisation potential
stems from domain-specific knowledge within one particular ap-
plication domain. In our setting we hope to achieve the same trans-
formational potential by means of establishing algorithmic equal-
ities between functions and function compositions. After this step
is done, a compiler gets significantly larger set of options it can
chose from. By applying the knowledge about underlying architec-
ture and by being able to approximate execution times, it can do a
better job in composing the parts delivering the best performance.

Our paper is structured as follows. The next section introduces
our case study problem of Cholesky Decomposition. It discusses
several possible algorithms for Cholesky Decomposition alongside
with their C implementation and some rationale why the different
versions are of practical interest. Section Three provides an exten-
sive performance study of the considered versions. Section Four
repeats the experiment using now the functional language SaC and
the attending toolchain’s ability to generate code for a range of
platforms. Section Five discusses the findings and outlines our pro-
posed solution to the problem. Section Six presents related work
before we conclude in Section Seven.

2. Cholesky decomposition
In this section we present the Cholesky decomposition which we
are going to use as a running example through the rest of the paper.
For every Hermitian positively defined matrix A, a decomposition
into lower triangular matrix L and its conjugate transpose is called
a Cholesky decomposition.

A = LL∗ (1)

For our discussion we are going to consider the case when A is
real, which simplifies the equation to:

A = LLT (2)

From this specification we can deduce a straight-forward com-
putation of L which is called Cholesky–Banachiewicz algorithm:

A = LLT

=

l11 0 0
l21 l22 0
l31 l31 l33

l11 l21 l31
0 l22 l31
0 0 l33


=

 l211 symmetric
l21l11 l221 + l222
l31l11 l31l21 + l32l22 l231 + l232 + l233

 (3)

Which allows us obtaining an algorithm to compute L:

lij =



√
ajj −

j−1∑
k=1

l2jk i = j

1

ljj

√
aij −

j−1∑
k=1

likljk i > j

(4)

By analysing the formula we can conclude that it would be pos-
sible to reuse the memory of the original matrix to compute L. Two
straight-forward implementations can be deduced directly from the
formula. One would update the diagonal element and update the
matrix row by row or column by column. From the perspective of a
row-major data representation, row-by-row update is a bit more fa-
vorable as the updated elements are going to be sequential in mem-
ory. The corresponding code in C looks as follows:

1 void c h o l e s k y r e f i n p l a c e (r e a l ∗ m , s i z e t n)
{

3 r e a l (∗m) [n] [n] = (r e a l (∗) [n] [n]) m ;

5 f o r (s i z e t i = 0 ; i < n ; i ++)
f o r (s i z e t j = 0 ; j < (i + 1) ; j ++) {

7 r e a l s = 0 ;

9 f o r (s i z e t k = 0 ; k < j ; k ++)
s += (∗m) [i] [k] ∗ (∗m) [j] [k] ;

11

i f (i == j)
13 (∗m) [i] [j] = s q r t ((∗m) [i] [i] − s) ;

e l s e
15 (∗m) [i] [j] = 1 . 0 / (∗m) [j] [j] ∗ ((∗m) [i] [j] − s) ;

}
17 }

As we use dynamically allocated two-dimensional array, we
have to use (∗m)[i][j] syntax to access the element at row i and
column j. We use type alias real to alternate between float and
double types.

Several interesting things to notice about the implementation.
First of all, the loops in lines 5 and 6 can be interchanged, but not
with a simple swap. It would be possible to express the same loop
where j would iterate from 0 to n and i would iterate from j to n.
This optimisation probably can be done by some of the compilers
by using some of the dependency analysis techniques, but most
likely would be rejected as useless, as the overall gain is not clear.

The loop at line 9 can can be rewritten using SIMD operations.
The benefit of that is that we do V multiplications at the same
time and do the reduction of V elements. V in this case is a
length of a vector register on a given architecture. Technically, this
optimisation is often considered unsafe, as it changes the canonical
order of the reduction, which might result in a different value due
to rounding errors. Modern compilers like GCC can identify this
loop as vectorisable, but due to order violation it would skip it as
unsafe. A user can override this by passing --unsafe-math flag
to the compiler.

As for concurrency, both row-updating and column-updating
algorithms grant a chance to run the inner loop (line 6 in case
of row-updating algorithm), for that a slight code modification is
required. In the row-updating algorithm the last element has to be
computed after all the elements in line j are already pre-computed.
In case of colum-updating algorithm, the diagonal element has to
be precomputed first before the rest of the column can be updated.

Finally we can observe that both algorithms would be less
suitable for computing LT , assuming that row major order is used,
as that would require traversing along the columns and would
also prevent from vectorising a loop at line 9. Obviously in the
column-major data storage, the computation of LT would make
more sense. In order to perform transition from computing LT

instead of L, a compiler would need to know that, first of all,
the matrix is symmetric, and secondly, that the elements in the
upper triangular are not going to be used later in the program.
To our knowledge none of the existing compilers could possibly
do such an optimisation. Some compilers could decide to copy the
data to have a better memory access, but that requires quite some
sophisticated analysis to figure out that it actually is not harmful. A
general rule of thumb is to avoid as much copying as possible.

Another version of the algorithm that we are going to study is
based on the observation that we can try to get rid of the loop at line
9, by updating all the elements on the previous iteration. In other
words, we can avoid reads from the columns less than i (in case
we are computing L) if on the previous iterations all the columns
greater than i would have been updated. Mathematically it can be
expressed as follows:

2 2013/8/22

(
α11 aT21
a21 A22

)
=

(
λ11 0
l21 L22

)(
λ11 lT21
0 LT22

)
=

(
λ2
11 0

λ11l21 l21l
T
21 + L22L

T
22

)
(5)

In this notation α11 and λ11 are scalars, a and l are column
vectors and A22 and L22 are matrices of size n − 1 × n − 1.
Now, L22L

T
22 term suggests that L22 can be found if we apply

cholesky to the whole term. Hence the algorithm decomposes into
the following steps:

(
λ11 =

√
α11 λ11l

T
21

l21 = a21
λ11

L22 = cholesky(A22 − l21lT21)

)
(6)

That gives us the following straight-forward implementation in
C:
void c h o l e s k y r e c (r e a l ∗ m , s i z e t n)

2 {
r e a l (∗m) [n] [n] = (r e a l (∗) [n] [n]) m ;

4

f o r (s i z e t i = 0 ; i < n ; i ++) {
6 (∗m) [i] [i] = s q r t ((∗m) [i] [i]) ;

8 f o r (s i z e t j = i +1 ; j < n ; j ++)
(∗mat) [j] [i] /= (∗m) [i] [i] ;

10

f o r (s i z e t j = i +1 ; j < n ; j ++)
12 f o r (s i z e t k = i +1 ; k <= j ; k ++)

(∗m) [j] [k] −= (∗m) [j] [i] ∗ (∗m) [k] [i] ;
14 }
}

In order to automatically deduce this implementation from the
reference one, a compiler has to have a powerful dependency-
analysis mechanism which would allow to reschedule the iterations
avoiding reads from the columns greater than i. Probably some of
the polyhedra-based compilers can figure this out, however, such
an optimisation, intuitively at least, brings a slowdown as it shifts
reduction into memory updates. The number of updates increases
from O(n2) to O(n3), so it is highly unlikely that any of the
compiler would actually choose such a code transformation.

Nevertheless, there are two important facts to be noted here.
First of all, if we would compute LT instead of L the memory ac-
cess at line 8 becomes sequential, and all the inner loops become
vectorisable by means of SIMD instructions. Unfortunately C com-
piler won’t do it automatically, as vector loads and stores should be
aligned to be effective, otherwise memory operations might out-
weight vectorisation benefits. Now, here we can use the knowledge
that the compiler doesn’t have – we don’t care about the elements
below (in case of LT) the main diagonal and we can use the fact
that a ≡ a√

a
, which might or might be known to a compiler. So we

can perform aligned vector stores overwriting the elements that are
irrelevant to our computation. Finally, as operations in the nested
loop at line 11 can be executed in arbitrary order, we can inter-
change loops at lines 11 and 12 in order to get sequential memory
access. This can be expressed in C1 as follows:

1 # d e f i n e sz (V) v e c t o r s i z e (V ∗ s i z e o f (r e a l))
t y p e d e f r e a l a t t r i b u t e ((s z (V))) v e c r e a l ;

3 void c h o l e s k y r e c u p v e c (r e a l ∗ m , s i z e t n)
{

5 r e a l (∗m) [n] [n] = (r e a l (∗) [n] [n]) m ;

7 f o r (s i z e t i = 0 ; i < n ; i ++) {
r e a l mi i = s q r t ((∗m) [i] [i]) ;

9 v e c r e a l ∗ rowi = (v e c r e a l ∗) (∗m) [i] ;

11 f o r (s i z e t i v = i / V; i v < n / V; i v ++)

1 C with GCC-specific extensions which allow portable vector program-
ming avoiding architecture-specific assembly.

rowi [i v] /= mi i ;
13

f o r (s i z e t j = i +1 ; j < n ; j ++) {
15 v e c r e a l ∗ rowj = (v e c r e a l ∗) (∗m) [j] ;

f o r (s i z e t kv = j / V; kv < n / V; kv ++)
17 rowj [kv] −= (rowi [kv] ∗ (∗m) [i] [j]) ;

}
19 }
}

Finally we consider the blocked version of Cholesky decompo-
sition. The overall idea is the same as with the recursive algorithm,
but we split the original matrix in four parts where the top left sub-
matrix is of size k×k. Then after applying some of linear algebraic
operations we get the following:(

A11 AT21
A21 A22

)
=

(
L11 0
L21 L22

)(
LT11 LT21
0 LT22

)
=

(
L11L

T
11 L11L

T
21

L21L
T
11 L21L

T
21 + L22L

T
22

)
(7)

Now from the following equation we can deduce the final
blocked algorithm:(

L11 = cholesky(A11) 0
L21 = A21L

−T
11 L22 = cholesky(A22 − L21L

T
22)

)
(8)

As we learned previously, we would prefer to compute LT

instead of L as it is more beneficial for the row-major order. So
the code for the blocked LT looks as follows:
void c h o l e s k y t o p u p p e r (r e a l ∗ b l o c k , r e a l ∗ d i a g ,

2 s i z e t bs)
{

4 r e a l (∗ b l o c k) [bs] [bs] = (r e a l (∗) [bs] [bs]) b l o c k ;
r e a l (∗ d i a g) [bs] [bs] = (r e a l (∗) [bs] [bs]) d i a g ;

6

f o r (s i z e t i = 0 ; i < bs ; i ++) {
8 f o r (s i z e t j = 0 ; j < bs ; j ++)

(∗ b l o c k) [i] [j] /= (∗ d i a g) [i] [i] ;
10

f o r (s i z e t k = i +1 ; k < bs ; k ++)
12 f o r (s i z e t j = 0 ; j < bs ; j ++)

(∗ b l o c k) [k] [j] −= (∗ d i a g) [i] [k] ∗ (∗ b l o c k) [i] [j] ;
14 }
}

16

void c h o l e s k y b o t u p p e r (r e a l ∗ b l o c k , r e a l ∗ b1 ,
18 r e a l ∗ b2 , boo l d i a g o n a l p ,

s i z e t bs)
20 {

r e a l (∗ b l o c k) [bs] [bs] = (r e a l (∗) [bs] [bs]) b l o c k ;
22 r e a l (∗ b1) [bs] [bs] = (r e a l (∗) [bs] [bs]) b1 ;

r e a l (∗ b2) [bs] [bs] = (r e a l (∗) [bs] [bs]) b2 ;
24

f o r (s i z e t j = 0 ; j < bs ; j ++)
26 f o r (s i z e t i = 0 ; i < bs ; i ++) {

r e a l t = −(∗b2) [j] [i] ;
28 s i z e t k = d i a g o n a l p ? i : 0 ;

30 f o r (; k < bs ; k ++)
(∗ b l o c k) [i] [k] += t ∗ (∗ b1) [j] [k] ;

32 }
}

34

void c h o l e s k y b l o c k e d u p p e r (r e a l ∗ b l o c k s , s i z e t bn ,
36 s i z e t bs)
{

38 r e a l ∗ (∗ b l o c k s) [bn] [bn] ;

40 b l o c k s = (r e a l ∗ (∗) [bn] [bn]) b l o c k s ;
f o r (s i z e t i = 0 ; i < bn − 1 ; i ++) {

42 s i z e t k , j ;

44 c h o l e s k y d i a g o n a l ((∗ b l o c k s) [i] [i] , bs) ;

46 f o r (s i z e t j = i +1 ; j < bn ; j ++)
c h o l e s k y t o p u p p e r ((∗ b l o c k s) [i] [j] ,

48 (∗ b l o c k s) [i] [i] , bs) ;

3 2013/8/22

50 f o r (k = i +1; k < bn ; k ++) {
f o r (j = k ; j < bn ; j ++)

52 c h o l e s k y b o t u p p e r ((∗ b l o c k s) [k] [j] ,
(∗ b l o c k s) [i] [j] ,

54 (∗ b l o c k s) [i] [k] ,
j == k , bs) ;

56 }
}

58

c h o l e s k y d i a g o n a l ((∗ b l o c k s) [bn−1][bn−1] , bs) ;
60 }

Please note that cholesky_diagonal call in the blocked func-
tion can be substituted with any available implementation of the
Cholesky decomposition. The choice of the implementation de-
pends on the problem size and underlying architecture. Update of
the bottom triangular (cholesky_bot_upper) is actually a ma-
trix multiplication where the first matrix is transposed. Again, that
might be arbitrary difficult for a compiler to spot this, especially
as the implementation includes a special case of a upper-triangular
matrix. The current implementation of the blocked algorithm gets a
matrix which is already split into blocks. The splitting routines are
not included here.

To our knowledge none of the existing compilers can automati-
cally deduce a blocked version from any of the non-blocked ones.
Some of the polyhedra-based frameworks can perform tiling of the
loop, but that is not enough. The current blocked version abstracts
away operations on individual blocks and applies those abstractions
on the groups of blocks. In order to have a transition from tiling
a compiler would have to prove that all the operations on all the
blocks can be abstracted away into finite number of operations and
then to find a scheduling for the block operations. It is arbitrary
hard to solve this in general.

3. Experimental Evaluation
In this section we are going to demonstrate the runtime of different
implementations we have discussed earlier. First of all we notice
that the reference implementation reveals a clear cubical behaviour
while running on a single core. The runtime can be approximated
as T (n) = cn

3

2
with a precision of 10%. That allows us to use the

reference runtime as a basis.
All our measurements currently presented in this paper were

taken on Intel i3-2310M CPU with AVX SIMD instructions. The
length of the SIMD register is 256 bits which allows to per-
form arithmetic operation on 4 doubles or on 8 floats. We used
GNU GCC compiler version 4.7.3 p1.0 with the following compi-
lation flags enabled: -march=native -mtune=native -Ofast
-funroll-all-loops. The runtime figures were obtained by
measuring pure function execution time avoiding initialisation and
input-output operations. The resolution of the timer is 10−9 sec.
The runtime was taken as a median out of 5 consequent runs.

First of all the vectorisation of the reference implementation
(line 9 in cholesky ref results in 1.5 times difference for all
the problem sizes. The way to check that was to compile the
benchmark with -fno-tree-vectorize flag. Further down all
the measurements of the reference version are performed on a
vectorised code.

As we can see on Fig. 1 the cholesky rec up vec version of
the algorithm clearly outperforms the reference one on the problem
sizes with N being less than 300. After such a size the reference
version becomes faster. This effect can be clearly seen on bigger
problem sizes (Fig. 2).

The behaviour of the blocked version (we use the constantly
sized blocks 64×64 elements) can be seen at Fig. 2 which demon-
strates performance benefits for N being greater or equal to 1024
elements.

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

 0 50 100 150 200 250 300 350 400

R
el

at
iv

e
ru

nt
im

e

Problem size

Reference implementation
Vectorised-upper alg relatively to the reference implementation

Figure 1. Runtime of the Cholesky decomposition on small ma-
trices using vectorised algorithm (cholesky rec up vec) and the
reference implementation.

-120.00%

-100.00%

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
el

at
iv

e
ru

nt
im

e

Problem size

Reference implementation
Vectorised algorithm relatively to the reference implementation

Blocked algorithm relatively to the reference implementation

Figure 2. Runtime of the Cholesky decomposition on big matri-
ces using vectorised algorithm (cholesky rec up vec), blocked
algorithm (cholesky blocked upper) and the reference imple-
mentation.

The reference version reveals some potential for parallelism, but
as we can only do one row or column concurrently, which makes
granularity of work very small an also it introduces a necessity to
synchronise on every row/column. That results in relatively poor
scaling. Using OpenMP annotations, the maximum performance
increase was 20% for 4 threads.

The blocked and recursive versions grant more concurrency as
the update of a triangular (line 11 in recursive algorithm and line 50
in blocked) can be done in parallel. The only problem with that is
non-rectangular shape of the data structure which has an impact on
the workload of each individual thread. The naive parallelisation of
the outer loop allows to get two times speed-up in case of blocked
version.

4. Cholesky Decomposition in SaC
In this section we relate C implementation and its behavior with
corresponding SaC implementations. We would start with a refer-
ence version which can be literally translated from C into SaC. It
looks as follows:
double [. , .] c h o l e s k y r e f (double [. , .] A)

2 {
n = shape (A) [0] ;

4

f o r (i = 0 ; i < n ; i ++)
6 f o r (j = 0 ; j < i + 1 ; j ++) {

s = 0d ;
8 f o r (k = 0 ; k < j ; k ++)

s += A[i , k] ∗ A[j , k] ;
10

i f (i == j)

4 2013/8/22

12 A[i , j] = s q r t (A[i , i] − s) ;
e l s e

14 A[i , j] = 1 . 0 d / A[j , j] ∗ (A[i , j] − s) ;
}

16 re turn A;
}

The recursive version (cholesky_rec) is implemented in SaC
using data parallel constructs to update the bottom triangular of
LT , however, the region of update increases from triangular to
rectangular. By doing this, a scheduling within the multi-threaded
execution becomes simpler, and the overhead can be amortized
starting if the number of threads is large enough.

1 double [. , .] c h o l e s k y r e c t a n g u l a r (double [. , .] A)
{

3 n = shape (A) [0] ;
f o r (i = 0 ; i < n ; i ++) {

5 A[i , i] = s q r t (A[i , i]) ;
A = with {

7 ([i , i +1] <= i v < [i +1 , n])
: A[i v] / A[i , i] ;

9 } : modarray (A) ;
A = with {

11 ([i +1 , i +1] <= [j , k] < [n , n])
: A[j , k] − A[i , j] ∗ A[i , k] ;

13 } : modarray (A) ;
}

15 re turn A;
}

Finally the blocked version uses rectangular algorithm to com-
pute Cholesky decomposition on the blocks from the main diagonal
and the cholesky_bot_upper is implemented as a call to matrix
multiplication.
double [. , .] t r i s o l v e (double [. , .] L , double [. , .] A)

2 {
bs = shape (L) [0] ;

4 f o r (i =0 ; i< bs ; i ++) {
A[i] = A[i] / L [i , i] ;

6 A = with {
([i +1] <= [i p] < [bs]) : A[i p] − L [i , i p] ∗ A[i] ;

8 } : modarray (A) ;
}

10 re turn A;
}

12

double [. , .] c h o l e s k y b l o c k e d (double [N,N] AA)
14 {

A = b l o c k (AA, 2 ˆ bse) ;
16 bn = shape (A) [0] ;

18 f o r (b i = 0 ; b i < bn ; b i ++) {
A[bi , b i] = c h o l e s k y r e c t a n g u l a r (A[bi , b i]) ;

20 A = with {
([b i , b i +1] <= i v < [b i +1 , bn])

22 : t r i s o l v e (A[bi , b i] , A[i v]) ;
} : modarray (A) ;

24 A = with {
([b i +1 , b i +1] <= [bj , bk] < [bn , bn])

26 : A[bj , bk] − matmmul (t r a n s p o s e (A[bi , b j]) ,
A[bi , bk]) ;

28 } : modarray (A) ;

30 }
re turn unb lock (A) ;

32 }

In the full paper we are going to include more details regarding
each variant of the algorithm as well as performance figures on a
range of architectures including GPUs.

5. Specifying Code Equalities
As we can see from the previous section, the performance obtained,
even in a highly optimising declarative setting, depends very much
on a combination of three aspects:

• the algorithm including potential parameterisations such as the
blocking size,

• the problem size, and
• the architecture the program is run on.

In particular the dependency between the algorithm used and
the performance obtained shows that a pure compiler-optimisation-
based approach in infeasible in general.

Another important observation from our experiment is that it
is not the implementation of several alternative algorithms that is
tedious. In contrast, it is the runtime experiments for finding out
which one to use which takes most of the effort.

The key idea of this paper is to create a mechanism that allows
the programmer to do the former and enables the compiler to do the
latter.

All that is needed to achieve that goal is to extend the overload-
ing mechanism of the language and to implement a mechanism that
chooses between the variants provided.

We propose two extensions over the existing language: First,
we allow function overloadings with identical name and parameter
types. Second, we introduce the notion of non-functional parame-
ters. These are parameters that are not provided by applications of
the function but are chosen by the compiler. In conjunction with
these non-functional parameters, we also allow for constraint ex-
pressions in order to restrict the sset of possible values.

signature ⇒ rettypes funname [nf args] f args

nf args ⇒ [args [| expr]]
f args ⇒ (args)

rettypes ⇒ type [, type]*

Figure 3. SaC syntax extensions to allow specification of equal
algorithms.

Our syntax for function headers can be found in Fig. 3, and for
the blocked Cholesky example we could specify:
double [. , .] c h o l e s k y (double [. , .] A)

2 { . . . }

4 double [. , .] c h o l e s k y (double [. , .] A)
{ . . . }

6

double [. , .] c h o l e s k y [i n t bse | bse > 3] (double [. , .] AA)
8 {

A = b l o c k (AA, 2 ˆ bse) ;
10 bn = shape (A) [0] ;

12 f o r (b i = 0 ; b i < bn ; b i ++) {
A[bi , b i] = c h o l e s k y (A[bi , b i]) ;

14 A = with {
([b i , b i +1] <= i v < [b i +1 , bn])

16 : t r i s o l v e (A[bi , b i] , A[i v]) ;
} : modarray (A) ;

18 A = with {
([b i +1 , b i +1] <= [bj , bk] < [bn , bn])

20 : A[bj , bk] − matmmul (t r a n s p o s e (A[bi , b j]) ,
A[bi , bk]) ;

22 } : modarray (A) ;

24 }
re turn unb lock (A) ;

26 }

Note here, that we have three different implementations of
cholesky. Only the blocked implementation has one non-functional
parameter named bse which is of type int and is constrained to
be larger than 3. This non-functional parameter then is referred to
in the body to compute the block size as 2 ^ bse which serves
as a functional parameter of the function block. Another interest-
ing aspect is that any application of cholesky only receives the
functional parameters. In the example, this can be observed for the
recursive call in line 13.

5 2013/8/22

We define the semantics of these extensions as a non-deterministic
choice between the matching overloading and a non-deterministic
choice of the non-functional parameters. In terms of implementa-
tion, we envision a profiling-based choice between the specified
alternatives.

6. Related Work
...will be in the full paper only...

7. Conclusions
This paper looks at the problem of obtaining high levels of perfor-
mance from declarative specifications. At the example of Cholesky
Decomposition, we show that a single implementation does not
suffice to get good performance on a range of architectures, even
when building on the very high transformational potential that re-
sults from the side-effect free setting. We analyse various different
implementations in an imperative as well as in the declarative set-
ting. These experiments show clearly that even in the declarative
setting there is a need to provide implementation alternatives and
that the choice between the alternatives requires experimental eval-
uation.

Consequently, we propose a language extension that enables the
programmer to specify implementation alternatives but leaves the

tedious, execution platform specific choice between these alterna-
tives to the compiler and the runtime system.

This approach has several benefits. It opens up a wide range
of compilation options. The choice between variants can either be
based on code analyses or on profiling or auto-tuning techniques,
or on combinations thereof. This flexibility also allows the com-
piler to enforce choices depending on the context in which such
code alternatives are executed. As a consequence, this mechanism
could be used to generally inform the compiler about domain spe-
cific equalities and, thus, enable meta-level optimisations typically
found in the context of DSLs. If time to solution is the dominating
criterion and overall resource consumption only plays a minor role,
different alternatives can be executed in parallel and the first result
be chosen.

References
[1] G. Keller, M. M. T. Chakravarty, R. Leshchinskiy, S. L. P. Jones, and

B. Lippmeier. Regular, shape-polymorphic, parallel arrays in haskell.
In P. Hudak and S. Weirich, editors, ICFP, pages 261–272. ACM, 2010.
ISBN 978-1-60558-794-3.

[2] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones. Al-
gorithm + Strategy = Parallelism. Journal of Functional Programming,
8(1):23–60, Jan. 1998.

6 2013/8/22

