
Compilation à la Carte

Laurence E. Day
Functional Programming Laboratory

University of Nottingham
led@cs.nott.ac.uk

Graham Hutton
Functional Programming Laboratory

University of Nottingham
graham.hutton@nottingham.ac.uk

Abstract
In previous work, we proposed a new approach to the problem of
implementing compilers in a modular manner, by combining earlier
work on the development of modular interpreters using monad
transformers with the à la carte approach to modular syntax. In this
article, we refine and extend our existing framework in a number
of directions. In particular, we show how generalised algebraic
datatypes can be used to support a more modular approach to typing
individual language features, we increase the expressive power of
the framework by considering mutable state, variable binding, and
the issue of noncommutative effects, and we show how the Zinc
Abstract Machine can be adapted to provide a modular universal
target machine for our modular compilers.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

Keywords compilation, modularity, monads, catamorphisms

1. Introduction
When describing a compiler, the term modularity is frequently used
to refer to the decoupling of the various stages of the manipula-
tion of a source program, such as lexing, parsing and code genera-
tion. However, there is an alternative axis of modularity on which
comparatively little work has been done, namely according to the
features supported by the source language, of which there are two
varieties. First of all, there are effectful features, such as exception
handling and mutable state, and secondly those relating to control-
flow, such as conditional expressions and recursion schemes.

In previous work [9], we have begun addressing the implemen-
tation of programming languages in a modular manner by building
upon the work of Liang et al. [22], who showed how to construct
interpreters in a modular manner using monad transformers. Com-
bining this approach with the à la carte technique of Swierstra [30]
permits a framework in which the syntax of individual language
features are described as functors, the semantics of features are
given as algebras, and fold operators (or catamorphisms) are used
to combine the individual components. The result is a modular ap-
proach in which the addition of new language features only requires
describing these new features and how they interact with the exist-
ing features, rather than modifying any existing definitions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM . . . $10.00

In this article, we refine and extend the modular compiler frame-
work that was developed in our previous work [9]. More specifi-
cally, this article makes the following contributions:

• We show how the use of generalised algebraic datatypes
(GADTs) [28] to model particular signature functors and value
domains permits certain forms of type constraints to be cap-
tured in a clean and modular manner.

• We extend the framework with support for both mutable state
and variable binding (via the lambda calculus), improving the
potential expressive power of a modular source language.

• We consider the issue of effects that do not commute (such as
exceptions and state), which potentially require programs to be
compiled in different manners depending on the ordering of the
effects, and present two approaches to addressing this issue.

• We define a modular variant of the Zinc Abstract Machine [12]
as a suitable universal target machine upon which to execute the
resulting code from our modular compilers.

This article is aimed at functional programmers with a basic knowl-
edge of interpreters, compilers, monads and monad transformers,
but we do not assume specialist knowledge of modular interpreters
or the à la carte technique. As in our previous work, we use Haskell
throughout as both a semantic meta-language and an implementa-
tion language. The Haskell code associated with the article is avail-
able from the authors’ web pages.

The rest of the article is structured as follows. In sections 3 and 4
we briefly recap the theory behind the à la carte technique, and de-
scribe the structure of generalised algebraic datatypes and show
how they can be used when compiling into a modular target lan-
guage in section 5. Sections 6 and 7 respectively describe the way
in which the lambda calculus and state are introduced to this frame-
work, with the latter leading into a discussion on noncommutative
effects in section 8. Two approaches to the issue of compiling pro-
grams with respect to varying semantics are proposed in section 9,
and we describe the construction of a virtual machine capable of ex-
ecuting the resulting code in section 10. The article concludes with
a brief survey of related work in the field of modular compilation,
and presents a number of directions for future research.

2. Motivation
A central tenet when designing a programming language compiler
is that it must be correct. The correctness of a compiler can be cap-
tured by stating that the result of compiling an expression in the
source language and then executing the resulting code is equivalent
to evaluating the expression with respect to its semantic interpreta-
tion, as illustrated by the following commuting diagram:

Expr

comp

��

eval // Value

Code

exec

;;

Given the close interplay between the various datatypes and
functions involved in such a statement of correctness, the compiler
designer should seek to ensure that any changes made to the source
language Expr are minimally disruptive. However, even compara-
tively minor extensions can require disproportionate modifications.
By way of a simple example, consider the source language Expr
comprising integers and addition, and a function eval which maps
expressions to their integer values:

data Expr = Val Int | Add Expr Expr

eval :: Expr -> Int
eval (Val n) = n
eval (Add x y) = eval x + eval y

Now suppose that we wish to extend our expression language to
support a simple form of exception handling, by adding throw and
catch constructors to the Expr datatype:

data Expr = Val Int | Add Expr Expr
| Throw | Catch Expr Expr

In order to accurately reflect the new semantics expected of
Expr, we must alter the eval function to take account of the fact
the evaluation may either succeed or fail:

eval :: Expr -> Maybe Int
eval (Val n) = Just n
eval (Add x y) = case eval x of

Nothing -> Nothing
Just n -> case eval y of
Nothing -> Nothing
Just m -> Just (n+m)

eval (Throw) = Nothing
eval (Catch x h) = case eval x of

Nothing -> eval h
Just n -> Just n

However, as we can see, the required changes to the definition of
eval are substantial. In particular, the return type has been changed
from Int to Maybe Int to accommodate potential failure, the ex-
isting cases for Val and Add are rewritten to reflect the new se-
mantics, which in the case of addition now requires a cumbersome
nested case analysis, and two new cases are added to handle the
new Throw and Catch constructors. This is far from ideal.

This is a common issue, which Wadler terms the expression
problem [34]. Multiple solutions have been proposed, and in the
next section we describe one such technique for solving the expres-
sion problem in Haskell: datatypes à la carte.

3. Modular Syntax Revisited
In the previous section, we saw an example of how extending a
datatype Expr with new constructors can result in many other def-
initions needing to be changed as a consequence. The à la carte
technique [30] allows us to build datatypes such as Expr and func-
tions over them in a modular manner. To illustrate the technique,
consider the underlying signatures for both the arithmetic and ex-
ception handling features of our simple language:

data Arith e = Val Int | Add e e

data Except e = Throw | Catch e e

These signatures are trivially functors in Haskell:

instance Functor Arith where
fmap f (Val n) = Val n
fmap f (Add x y) = Add (f x) (f y)

instance Functor Except where
fmap _ (Throw) = Throw
fmap f (Catch x h) = Catch (f x) (f h)

For any functor f, its induced recursive datatype, Fix f, is de-
fined as the least fixpoint of f, implemented as follows:

data Fix f = In (f (Fix f))

Now that we have tied the ‘recursive knot’ of a signature,
Fix Arith is a language equivalent to the original Expr datatype
which allowed integer values and addition. In turn, Fix Except is
a degenerate language in which the only operations that are permit-
ted are the throwing and catching of exceptions. What we require
now is a manner in which signatures can be combined. This can be
achieved using the notion of coproduct:

data (f :+: g) e = Inl (f e) | Inr (g e)

By taking the coproduct of multiple signatures and taking the
least fixpoint of the result, we can now define the syntax of expres-
sion in a modular manner by combining the two sublanguages:

type Expr = Fix (Arith :+: Except)

The above type synonym describes a datatype that is equivalent
to the extended Expr of the previous section, but is obtained via the
composition of algebraic descriptions of each constituent feature
rather than by augmenting an existing datatype. Building values
of such types requires the use of smart constructors [30] to insert
the appropriate fixpoint and coproduct tags, but the details are
straightforward and are omitted here.

Having reminded ourselves how to define language syntax in a
modular manner, it remains for us to recall how to define functions
over such datatypes in a modular fashion.

4. Modular Semantics Revisited
In this section we construct a modular function eval that interprets
expressions that are constructed using the à la carte technique, by
exploiting the functorial nature of signatures, the monadic nature
of semantics, and the class system of Haskell.

For suitable functors f, we are able to define a generic fold
operator – or catamorphism [23] – to act as the foundation upon
which functions are defined over Fix f :

fold :: Functor f => (f a -> a) -> Fix f -> a
fold f (In t) = f (fmap (fold f) t)

The first argument of fold is an f -algebra, which provides
the behaviour of each constructor associated with a given signa-
ture f. The goal now is to define a modular evaluation function
using fold. Such a function will have type Fix f -> m Int for
some functor f that captures the syntax of the language, and some
monad m that captures the underlying effects of the language. To
define functions of this type using fold, we introduce the notion of
a class of evaluation algebras, defined as follows:

class (Functor f, Monad m) => Eval f m where
evAlg :: f (m Int) -> m Int

For example, the evaluation algebra for the signature functor for
arithmetic can be defined in the following manner:

instance Monad m => Eval Arith m where
evAlg (Val n) = return n
evAlg (Add x y) = do n <- x

m <- y
return (n + m)

There are two important points to note about this definition.
First of all, it is parametric in an underlying monad m, as reflected in
the Monad m class constraint. Secondly, the semantics of arithmetic
is now defined in terms of the return and >>= operations of this
monad (as abbreviated by the use of the do notation.)

In a similar manner, the evaluation algebra for exceptions can
be defined as follows, in which the class constraint MonadPlus m
allows us to use the generic mzero and mplus operations to define
the semantics for the two exception handling operations:

instance MonadPlus m => Eval Except m where
evAlg (Throw) = mzero
evAlg (Catch x h) = x ‘mplus‘ h

Finally, an evaluation algebra can be defined for coproducts in
terms of the algebras for the two underlying signatures:

instance (Eval f m, Eval g m) =>
Eval (f :+: g) m where

evAlg (Inl x) = evAlg x
evAlg (Inr y) = evAlg y

Using the above machinery, we can now define a modular inter-
preter eval by simply folding an evaluation algebra:

eval :: Eval f m => Fix f -> m Int
eval = fold evAlg

This evaluation function can be used with any modularly con-
structed datatype Fix f, provided that algebra instances have been
defined for each component signature, and the associated monad
satisfies all of the required constraints. In this way, we recover the
behaviour of the original, nonmodular, evaluation functions. For
example, consider the following two values (where val, add and
throw are smart constructors that insert the appropriate tags):

three :: Fix Arith
three = val 1 ‘add‘ val 2

error :: Fix (Arith :+: Except)
error = val 42 ‘add‘ throw

The meaning of these values is then given by our modular eval-
uation function eval. Note that the choice of the underlying monad
can be varied, provided that it satisfies the necessary constraints, as
shown in the two interpretations of three below:

> eval three :: Identity Int
I 3

> eval three :: Maybe Int
Just 3

> eval error :: Maybe Int
Nothing

We now consider how the à la carte technique can be used to
implement a modular compiler which translates between modular
source and target languages. As we shall see in the next section,
there are a number of difficulties that arise.

5. Introducing GADTs
In our original presentation of a modular compilation frame-
work [9], the compilation function that we constructed using the
techniques described in the previous sections had type:

comp :: Expr -> Code -> Code

The function comp takes an expression in the source language,
Expr, and with the help of an accumulator of type Code, returns
a program in the target language Code that can then be executed on
a stack-based virtual machine. In the case of our example language
supporting arithmetic and exceptions, the target language Code can
be defined in a modular manner as follows:

type Code = Fix (ARITH :+: EXCEPT :+: NIL)

data ARITH e = PUSH Int e
| ADD e

data EXCEPT e = THROW e
| MARK Code e
| UNMARK e

data NIL e = NIL

The PUSH and ADD operations simply push a number onto the
stack and add the topmost two numbers, respectively. In turn,
THROW indicates that an exception has been raised and initiates
a search for handler code on the stack, MARK pushes the supplied
handler code onto the stack to be run in the event of an exception,
and UNMARK pops such a handler when it is no longer in scope.
Finally, NIL provides a base case for the code type.

However, there is a problematic issue regarding the MARK con-
structor. While the target language Code is constructed in a mod-
ular manner, it is explicitly defined as a type synonym, fixing the
features of the target language. The use of this fixed type in the
MARK constructor breaks precisely the modularity in the definition
of the target language that we are attempting to obtain. Note that
we cannot simply replace the use of Code in MARK by the parame-
ter type e, because the type for the compilation function comp de-
termines that e will ultimately be instantiated to Code -> Code,
whereas what is required here is simply Code. Similarly, due to the
modular nature of individual language signatures, were the argu-
ment to MARK to be polymorphic in the form (Fix f) a compile-time
error would occur because there is no way to give f its correct type,
as nothing is known about its component signatures. A potential
solution is to extend the EXCEPT signature as follows:

data EXCEPT f e = THROW e
| MARK (Fix f) e
| UNMARK e

However, making the underlying functor f into a parameter in
this manner essentially means that every language that uses EXCEPT
now needs to explicitly refer to the overall functor f that captures
all the desired language features, which again breaks modularity.
One approach to resolving this would be to impose a class con-
straint on the signature itself, in the following manner:

data Functor f =>
EXCEPT e = THROW e

| MARK (Fix f) e
| UNMARK e

Unfortunately, this is no longer possible using the algebraic
datatypes of Haskell1. Our solution is to define those signatures
which contain problematic constructors such as MARK as gener-
alised algebraic datatypes (GADTs), which permits individual
constructors to be typed explicitly, and with their own class con-
straints. For example, consider the GADT representation of the
nonmodular variant of Expr as described in section 2:

data Expr e where
Val :: Int -> Expr Int
Add :: Expr Int -> Expr Int -> Expr Int
Throw :: Expr e
Catch :: Expr e -> Expr e -> Expr e

Note that whilst this representation enables a level of type-safety
which was previously unavailable (consider the Add constructor,
which dictates that only subexpressions which represent an Int
can be added together), we primarily utilise GADTs to leverage
existential types into our framework. By describing constructors as
methods associated with a type, we can now impose constraints on
individual constructors without affecting the datatype as a whole.

Using this idea, the signature functor for exception handling in
the target language can be redefined as follows:

data EXCEPT e where
THROW :: e -> EXCEPT e
MARK :: Functor f =>

Fix f -> e -> EXCEPT e
UNMARK :: e -> EXCEPT e

As a result, we have made two significant improvements over
the original definition. Firstly, by abstracting over the syntax of the
target language we have avoided the need to refer to an explicitly
defined type synonym that must be edited whenever the source
language is changed. And secondly, we have placed a constraint
on the argument f without including it in the top-level definition of
EXCEPT and without constraining other constructors similarly.

This now suggests that our modular compiler need not target
a particular language, but rather any language which meets the
appropriate constraints. Key to these constraints is the notion of
a subtyping relation, captured at the type-level as follows:

class (Functor f, Functor g) => f :<: g where
inj :: f a -> g a

The inj method embeds a value within the subtype functor
f into a value within the supertype functor g. For example, the
subtyping relation Arith :<: (Arith :+: Except) states that
the signature functor for arithmetic is a component of the signature
functor for both arithmetic and exception handling combined.

The modular counterpart of the compilation function comp will
have type Fix f -> Fix g -> Fix g, for signature functors f
and g that characterise the syntax of the source and target languages
respectively. In order to supply an initial value for the accumulator
(the second argument), we require that NIL (which represents the
empty code fragment) is a subtype of g. Putting this all together,
we define the class of compilation algebras as follows:

class (Functor f, NIL :<: g) =>
Comp f g where

compAlg :: f (Fix g -> Fix g)
-> Fix g -> Fix g

We can now instantiate the compilation algebras for Arith and
Except, using the subtype relation to constrain the target functor

1 The GHC pragma allowing this, -XDatatypeContexts, was removed in
Haskell 2010, being widely considered a misfeature.

g to any language which supports the required signatures (where
push, add, throw, etc. are smart constructors):

instance (ARITH :<: g) => Comp Arith g where
compAlg (Val n) = push n
compAlg (Add x y) = x . y . add

instance (EXCEPT :<: g) => Comp Except g where
compAlg (Throw) = throw
compAlg (Catch x h) = \c ->

mark (h c) (x (unmark c))

In the above, expressions are compiled in the expected manner,
framed in our modular setting. In particular, values are compiled
by pushing the associated integer onto the stack, and addition is
compiled by compiling the two subexpressions and adding the re-
sulting two values on top of the stack. In turn, a thrown exception
is compiled directly into a corresponding throw instruction in the
machine, while catch blocks are compiled by marking the stack
with the compiled handler code, producing code for the body of
the block, and finally unmarking the stack by removing the top-
most handler. Note that the use of continuation-passing style in the
compilation algebras is key to compiling the Catch operation [9],
and also means that concatenation of code is achieved simply by
function composition as shown in the case for addition.

In conclusion, we have successfully refactored our modular
compiler to produce code for a modular target language. Having
seen how GADTs can be used in one aspect of our modular frame-
work, in the next section we extend the modular source language
with support for variable binding, and discuss the role that GADTs
play in defining its modular semantics.

6. Introducing the Lambda Calculus
The ability to abstract over variable names in the body of a func-
tion is a near-universal feature in programming languages, and in
this section we will introduce variable binding into our modular
framework using the untyped lambda calculus of Church [7]. Al-
though variables in lambda terms are often given names in the same
way that we would name other variables, there are many alternative
ways to model bindings, including such approaches as higher or-
der abstract syntax (HOAS) and de Bruijn indices [10], amongst
others. In this article, we use a de Bruijn indexed encoding of the
lambda calculus. Our reasoning for this is that naming variables in
lambda terms can give rise to issues of α-equivalence, and requires
guarantees of capture-avoiding substitution when applying lambda
terms. Alternatively, the HOAS approach uses the binders of the
metalanguage to describe the binding structure of the language be-
ing implemented, which eliminates the need to ensure that term
substitution is defined correctly, but comes at the price of increased
dependence on the implementation language.

The underlying signature for the de Bruijn indexed lambda
calculus is defined in the following manner:

data Lambda e = Index Int | Abs e | Apply e e

The number associated with an Index constructor represents a
variable, and refers to the number of binders in scope before its
binding site. In turn, Abs indicates the presence of a binder and
Apply represents the substitution of lambda terms, and is passed
both a function body and its argument as subexpressions.

However, by choosing not to use the HOAS approach, a prob-
lematic issue arises regarding the Apply constructor. When defin-
ing a modular semantics for the Lambda signature, the carrier of the
evaluation algebra determines that both of its subexpressions will
be typed as m Int. The following attempt at defining the evaluation
algebra illustrates the underlying problem:

instance Monad m => Eval Lambda m where
evAlg (Apply f x) = f >>= \f’ -> ...

The definition of Apply cannot be completed in a sensible way,
because the semantic domain is not expressive enough. In particu-
lar, the result of binding the function body f has the primitive type
Int which accepts no arguments. Moreover, binding the result of f
breaks the abstraction that a function body represents.

Our solution to this issue is to extend the semantic domain with
support for closures. To do this, we redefine Value as a GADT:

data Value m where
Num :: Int -> Value m
Clos :: Monad m => [Value m] ->

m (Value m) -> Value m

In the above, the Num constructor represents an integer value,
and the Clos constructor takes as arguments a list of values (which
acts as an environment) and a computation which represents an
unevaluated function body. There are two points to note about this
definition. Firstly, we would not be capable of representing closures
in this way without the Monad m constraint [33], and secondly,
this constraint is imposed on the Value parameter m, rather than
a parameter specific to a single constructor.

To make use of closures when giving a semantics to the lambda
calculus, we define a class CBVMonad of operations associated
with the call-by-value evaluation scheme, which reduces function
arguments to values before applying them to a function body:

class Monad m => CBVMonad m where
env :: m [Value m]
with :: [Value m] -> m (Value m)

-> m (Value m)

Intuitively, the env operation provides the list of values that are
currently in scope, and the with operation takes both a computation
and an associated environment and returns the result of performing
substitution. We can now give a semantics to the lambda calculus
signature, using the CBVMonad class constraint to allow the use of
the env and with operations in the following manner:

instance CBVMonad m => Eval Lambda m where
evAlg (Index i) = env >>= \e

-> return (e !! i)
evAlg (Abs t) = env >>= \e

-> return (Clos e t)
evAlg (Apply f x) = f >>= \(Clos ctx t)

-> x >>= \c
-> with (c:ctx) t

In the above, a de Bruijn index is evaluated by looking up the
index in the current environment, a lambda abstraction is packaged
up with the current environment to form a closure, and substitution
of lambda terms is performed by evaluating argument x, adding
this value to the environment of the closure which represents the
function body, and finally evaluating the function body with respect
to the updated environment. Implicit in the above is that all lambda
terms defined in a modular manner must be closed.

We can now write terms in our modular source language that
use variable binding. For example, consider the following example
(where apply, abs etc. are the appropriate smart constructors):

e :: Fix (Lambda :+: Arith)
e = apply (abs (ind 0)) (add (val 1) (val 2))

> eval e :: [Value Identity]
[Num 3]

The source language used in this example is capable of using both
variable binding and arithmetic. The expression e represents the
lambda term (λx.x)(1 + 2), and evaluating e with respect to the
list monad, which can readily be made into an instance of the class
CBVMonad, returns the singleton value Num 3.

We are also capable of defining multiple evaluation schemes
for terms in the lambda calculus. A common alternative is call-by-
name, which does not evaluate arguments before applying them to a
function body. The difference between this scheme and the call-by-
value scheme which we have just implemented is that environments
now contain computations, not values. Another class CBNMonad is
needed to reflect this change, defined as follows:

class Monad m => CBNMonad m where
env :: m [m (Value m)]
with :: [m (Value m)] -> m (Value m)

-> m (Value m)

Constraining by this class allows a call-by-name semantics to
be defined for the lambda calculus as follows:

instance CBNMonad m => Eval Lambda m where
evAlg (Index i) = env >>= \e

-> (e !! i)
evAlg (Abs t) = env >>= \e

-> (Clos e t)
evAlg (Apply f x) = f >>= \(Clos ctx t)

-> with (x:ctx) t

The above definition is similar to that for call-by-value evalua-
tion, the main difference being that the substitution of terms does
not bind the argument x to a value before using it.

We have presented two separate evaluation algebras, both de-
fined over a signature Lambda. However, despite the differing con-
texts, Haskell does not permit the two algebras to coexist in the
same source file, stating that they are overlapping instances. One
possible solution to is to define two source signatures LambdaCBV
and LambdaCBN which contain appropriately tagged constructors
to avoid naming conflicts. An alternative involves parameterising
the evaluation algebra class with a tag that can be pattern-matched
upon, and we will see more of this idea when describing a solution
to the issue of noncommutative effects.

Having successfully implemented variable binding modelled
using the lambda calculus in a modular manner, a natural progres-
sion is to consider how to introduce the notion of persistent, updat-
able state to our modular compilation framework.

7. Introducing Mutable State
In programming languages, a widely used feature is mutable state
variables that can change value over time. In this section, we extend
the expressive power of a modular source language by introducing
the notion of mutable state. As proof of concept we consider a
single integer variable, and the syntax associated with such an
updatable value is given by the following signature:

data State e = Get | Set Int e

In the above, the Get operation represents the current state, and
the Set operation takes an integer and an expression that treats this
new value as the current state. As with each new feature, we define
a class StateMonad of associated operations:

class Monad m => StateMonad m where
update :: (Int -> Int) -> m Int

The update operations takes a function (Int -> Int) and
uses it to alter the state variable. By passing different functions

to update, it can be used to define an evaluation algebra for the
State signature in the following manner:

instance StateMonad m => Eval State m where
evAlg (Get) = update id

>>= \n -> return (Num n)
evAlg (Set v c) = update (_ -> v)

>> c

When evaluating a Get constructor, the update operation is
passed the identity function id, which leaves the state value un-
changed. This value is then bound to n and embedded into the
Value domain. In turn, when evaluating a Set constructor, update
is passed an anonymous function overwriting the state value to v
before evaluating the subexpression c. Note that the use of update
cannot be eliminated from the definition for the Get case because
of the presence of the underlying monad m.

We can now write terms in our modular source language that
utilise an integer state variable. To illustrate, consider the following
two terms x and y, built from languages supporting both arithmetic
and state, and state and exception handling respectively:

x :: Fix (Arith :+: State)
x = set 1 (add get (val 2))

y :: Fix (State :+: Except)
y = set 1 (catch throw get)

Informally, the expression x first sets the state to value 1, then adds
the current state to the number 2. In turn, expression y first sets the
state to value 1, then immediately throws an exception that is then
handled by returning the value of the current state.

In our modular compilation framework, we evaluate a modular
expression with respect to a monad that has been constructed by
applying the appropriate monad transformers to a base monad, for
which purposes we often use the identity monad Identity. The
underlying machinery associated with the monad transformer class
allows access to the operations associated with each constituent
feature (such as throw, update, env etc.) at the top level, with
all of the necessary lifting handled automatically.

Every monad transformer comes equipped with an accessor
function which, when called, allows access to the underlying rep-
resentation. By first evaluating an expression and then applying
the accessor functions of all monad transformers comprising the
monad within which the expression was evaluated to the result, we
obtain a final value, as illustrated in the following:

> let a = eval x
:: StateT Int Identity (Value ())

> runS 0 (runId a)
Num 3

> let b = eval y
:: ErrorT (StateT Int Identity) (Value ())

> runE (runS 0 (runId b))
Just (Num 1)

In both of the above evaluations, we see that modular expres-
sions involving state are given a semantics by applying the StateT
state monad transformer at some point when building the monad,
and similarly that the ErrorT exception monad transformer is ap-
plied when handling exceptions in a modular manner.

However, an issue arises when considering the order in which
certain monad transformers are applied. Consider the following
definitions for the StateT transformer:

newtype StateT s m a =
S { runS :: s -> m (a, s) }

instance MonadT (StateT s) where
lift m = S $ \s -> m >>=

\x -> return (x, s)

instance Monad m => Monad (StateT s m) where
return x = S $ \s -> return (x, s)
(S g) >>= f = S $ \s -> do (x, t) <- g s

runS (f x) t

instance Monad m
=> StateMonad (StateT Int m) where
update f = S $ \s -> (s, f s)

The newtype definition of StateT and associated instance dec-
larations appear to be no different to that of any other monad trans-
former associated with a particular feature. However, closer inspec-
tion shows that the manner in which the state monad transformer is
defined gives rise to the issue of noncommutative effects, the impact
of which we describe in the next section.

8. Noncommutative Effects
In the previous section we saw two examples of how monad trans-
formers are used to access the operations needed to define evalua-
tion algebras. However, in some cases separate features can interact
in multiple ways, and this is reflected when applying the associated
monad transformers in different orders. Consider the following ex-
pression demo, constructed from a modular source language which
supports arithmetic, mutable state and exception handling:

demo :: Fix (Arith :+: Except :+: State)
demo = set 0

(catch
(add (set 1 get) (throw))
(get))

The demo example must be evaluated within a monad that sup-
ports both exceptions and state, and therefore must contain both of
the relevant monad transformers. It is less obvious, however, that
switching the order in which these two transformers are applied has
an observable effect on the resulting semantic domain. Assuming
that no other features are present, and using Identity as the base
monad, the types resulting from the two possible orderings are:

newtype ErrorT m a =
E { runE :: m (Maybe a) }

type LocalM a =
StateT Int (ErrorT Identity) a =

\Int -> ErrorT Identity (a, Int) =
\Int -> Identity (Maybe (a, Int)) =
\Int -> Maybe (a, Int)

type GlobalM a =
ErrorT (StateT Int Identity) a =

StateT Int Identity (Maybe a) =
\Int -> Identity (Maybe a, Int) =
\Int -> (Maybe a, Int)

In particular, when applied to a parameter a, the underlying
representation of the LocalM monad takes an Int and either suc-
cessfully returns a pair (a, Int), or an exception in the form of
Nothing. In turn, the GlobalM monad also takes an Int but always
returns a pair, where the first element can return Nothing.

More specifically, when handling an exception the ‘local state’
monad restores the state to its most recent value prior to entering the
catch-block that threw the exception, while the ‘global state’ monad

treats any updates to the state value as irreversible. Specifically,
demo produces the value Num 1 when evaluated with respect to
GlobalM, and the value Num 0 with respect to LocalM.

These are both sensible results, and depend on how we wish to
order the underlying effects. The natural progression at this point is
to address the issue of compiling expressions with multiple inter-
pretations, such as demo, in a modular manner. Our modular com-
piler will currently compile demo to the following code sequence
(written using Haskell list notation for simplicity):

> comp demo []
[SET 0, MARK [GET]

[SET 1, GET, THROW, ADD, UNMARK]]

The above code is associated with the global approach to state,
as the SET operation within the catch-block cannot be reversed
when the THROW instruction is encountered. To model the behaviour
associated with the local approach to state, two additional opera-
tions are required as seen in the following:

> comp demo []
[SET 0, MARK [RESTORE, GET]

[SAVE, SET 1, GET, THROW, ADD, UNMARK]]

The SAVE operation records the current value of the state on the
stack, and in turn the RESTORE operation restores the state to its
previous value before handler code is executed.

Both of the above results are valid, corresponding to compiling
demo with respect to a particular ordering of effects. However, a
modular compiler is only capable of generating one such program
in any particular session, as the compilation algebra class is only
parameterised by the source and target signatures, with no extra
information available concerning the intended semantics.

Clearly, there is a need for a more flexible compilation algebra
that is aware of the context of an argument expression. To do this,
we must allow the compilation algebra to examine the monad in
which the expression is evaluated, as the semantics are defined by
the order in which certain monad transformers are applied.

9. Monadic Parameterisation
In this section, we propose two techniques for directing the modular
compilation of an expression by inspecting its underlying semantic
monad. As we have seen, in our framework we make use of monads
that have been constructed by applying a sequence of transformers
to a base monad. Taking advantage of the fact that monad trans-
formers are defined as newtypes, we can inspect their constructors
at the type level, giving rise to our first technique:

Technique 1. Type-Level Monadic Parameterisation

class (Functor f, Functor g, Monad m)
=> Comp f g m where

comAlg :: f (m () -> Fix g -> Fix g)
-> m () -> Fix g -> Fix g

In the above, the compilation algebra class is parameterised by a
monad. The algebra carrier then includes a monadic computation
as an argument, however this computation is parameterised by the
void type () to indicate that the monad is not explicitly used in the
compilation process, but rather used as a context reference.

In this manner, multiple instances of a compilation algebra can
be defined for a single source signature by pattern-matching upon
constructors associated with monad transformers. This allows for
expressions such as demo (defined in the previous section) to be
compiled using different schemes for different orderings of effects.
For example, compilation schemes for the two different orderings
of exceptions and state can now be defined as follows:

instance (EXCEPT :<: g, Monad m) =>
Comp Except g (ErrorT (StateT s m)) where
comAlg (Throw) = _ -> throw
comAlg (Catch x h) = \m c -> mark (h m c)

(x m (unmark c))

instance (EXCEPT :<: g, Monad m) =>
Comp Except g (StateT s (ErrorT m)) where
comAlg (Throw) = _ -> throw
comAlg (Catch x h) = \m c -> mark (h m c)

(save (x m (restore $ unmark c)))

An advantage of this technique is that that we only need to match on
constructors associated with monad transformers that cause seman-
tics to differ. To illustrate, consider a commutative monad trans-
former T, i.e. a transformer that can be applied in any order. If T
were to appear between ErrorT and StateT in the above, we can
abstract over T using a generic variable t of type MonadT, allow-
ing the programmer to focus on the task of defining compilation
algebras only for non-commutative orderings.

Conversely, however, the monadic computation that appears in
the carrier of the algebra allows for effectful operations to be man-
ifested by calling its associated methods. The user must be careful
to not use any monadic operations when defining a compilation al-
gebra for a particular signature, as we define compilation to be an
effect-free mapping between modular source and target languages.
Further, this computation cannot be removed from the carrier, as it
must be threaded through to subexpressions.

To address this concern, we require a way to provide the
compilation algebra with information concerning the ordering of
monad transformers, without explicitly passing around the result-
ing monad. Our solution to this issue is to use GADTs to reify a
monad, representing it as a sequence of constructors. We capture
this notion with the datatype MTList, defined as follows:

data ST = IntT | BoolT | ...

data MTList m where
Err :: MTList m

-> MTList (ErrorT m)
Sta :: ST -> MTList m

-> MTList (StateT ST m)
Id :: MTList Identity

Using the auxiliary datatype ST of state types to reify monad
transformer parameters, an instance of MTList m represents the
monad m by applying the appropriate constructors to Id. To illus-
trate, the two monads LocalM and GlobalM that are defined in the
previous section can be reified as follows:

local :: MTList (StateT s (ErrorT Identity))
local = Sta IntT (Err Id)

global :: MTList (ErrorT (StateT s Identity))
global = Err (Sta IntT Id)

There are two points to be made concerning the above. Firstly,
we use the variable s to abstract over the parameter type of the
state monad transformer, highlighting that it is the structure of the
underlying representation that we are concerned with as opposed
to the types involved in its definition. Secondly, the ordering of the
monad transformers can now by examined at the function level by
using pattern matching on the data constructors Sta and Err.

We can now replace the monadic computation m () in the
carrier of the compilaton algebra with its reified representation
MTList m. In doing this, we eliminate the concern that effectful
operations may ‘leak’ into the compilation process by removing

the possibility of invoking any monadic operations. This leads to
the definition of our second technique.

Technique 2. Function-Level Monadic Reification

class (Functor f, Functor g)
=> Comp f g where
comAlg :: f (MTList m -> Fix g -> Fix g)

-> MTList m -> Fix g -> Fix g

By performing case analysis on the MTList argument, we can
now define multiple compilation schemes within a single compila-
tion algebra instance, as seen in the following:

instance (EXCEPT :<: g) =>
Comp Except g where
comAlg (Throw) = _ -> throw
comAlg (Catch x h) = \m c -> case m of

(Err (Sta s t)) -> mark (h m c)
(x m (unmark c))

(Sta s (Err t)) -> mark (h m c)
(save (x m (restore $ unmark c)))

Particularly important in the above is that the compilation al-
gebra is no longer parameterised by a monad m, highlighting the
fact that a modular compiler is informed by a monad, rather than
defined in terms of one. However, the use of MTList to reify the
context comes at the cost of being unable to abstract over commu-
tative monad transformers, as is possible when using the first tech-
nique. The user can still abstract over a base monad using this sec-
ond technique, but must explicitly define any intermediate monad
transformers that are applied between a conflicting pair.

Both of these techniques are potential solutions for the issue of
modular compilation in the presence of noncommutative effects.
We highlight that modular compiler instances exist for all of the
other features described up to this point, and can be found in the
associated code on the authors’ websites. In the next section, we
discuss how the techniques and extensions we have discussed up to
this point apply to executing modular code produce by a modular
compiler on a modular virtual machine.

10. A Modular Virtual Machine
In previous work [9], we defined a modular virtual machine in
terms of an execution algebra targeting a stateful computation,
parameterised by a modular datatype Stack, as follows:

type StackT m a = StateT Stack m a

class (Monad m, Functor f) => Exec f m where
exAlg :: f (StackT m ()) -> StackT m ()

By defining Stack as a modular datatype, functions over Stack
were defined as folds, resulting in significant amounts of boiler-
plate. To illustrate, consider the modular implementation of stack-
based addition that adds the top two numbers on a stack [9]:

extract :: Stack -> Integ Stack
extract = fromJust . match in

add :: Monad m => StackTrans m ()
add = do x <- pop; y <- pop

case (extract x, extract y) of
(VAL n _, VAL m _) -> push (n + m)

The extract operation in the above explicitly describes the
type of value which we can pop off of the top of the stack. Such
stack-based operations are conceptually simple, however the need
to write them in terms of folds and monads leaves much to be

desired. In order to eliminate this overhead, in our new library for
building modular compilers we simply use the Haskell list type to
represent stacks, rather than a modular datatype of modular values.

There are two reasons for this change. Firstly, the stack may
be considered to be an auxiliary structure, as the real work is
done by the compilation and execution algebras upon the source
and target languages, which we have already defined in a modular
manner. As we have demonstrated in previous work, it is possible
to construct a modular stack, however the amount of boilerplate
required when extending a (modular) source language with new
features quickly becomes prohibitive, and detracts from the main
task at hand. Secondly, while the two representations of the stack
are equivalent, we feel that it is easier for a user to conceptualise
stack-based operations in terms of lists. This, combined with access
to the Haskell library functions, improves the overall extensibility
of our modular compilation framework.

More important than the choice of representation type for the
stack is the fact that the stack transformer StackT is defined by
applying the state transformer to a base monad m. In our original
presentation, the intent of the monad m was to help execute modular
code in the presence of noncommutative effects. However, as we
have seen in the previous section, by inspecting the ordering of
monad transformers when compiling a modular source expression,
we have solved this issue, and the monad is no longer required.

In section 6, we defined a semantics for lambda terms modelled
using de Bruijn indices according to the call-by-value evaluation
scheme. To execute such terms on a modular virtual machine,
we define a compilation algebra mapping between lambda terms
and the instruction set LAMBDA associated with the Zinc Abstract
Machine, a call-by-value variant of the Krivine machine [8]. This
compilation scheme is captured by the following function C:

C[n] = [IND n]
C[λ t] = [CLS (C[t] ++ [RET])]
C[f x] = C[x] ++ C[f] ++ [APP]

The instructions of the Zinc Abstract Machine (IND, CLS, RET and
APP) usually operate upon a pair of lists, the first representing an
environment and second representing a stack. In this article we also
make use of a third list, representing a state stack.

The resulting modular execution algebra class and associated
data structures are defined in the following manner:

data VALUE e where
...

newtype StateM s a
= S { runSM :: s -> (a, s) }

type EnvZ = [VALUE ()]
type StackZ = [VALUE ()]
type StateZ = [VALUE ()]
type ZAM = StateM (EnvZ, StateZ, StackZ) ()

class Functor f => Execute f where
exAlg :: f ZAM -> ZAM

In the above, the type VALUE of data that is manipulated on the stack
is defined as a GADT. We omit the definition of the constructors
here, as we shall see them in use shortly. In turn, the state trans-
former StateM is defined in a similar manner to the state monad
transformer, but without the presence of a monad m.

Further, the type synonym ZAM is defined as a stateful compu-
tation parameterised by a triple of lists defined over VALUE, and
finally we define the execution algebra class, targeting the modular
representation of the Zinc Abstract Machine.

In previous work, the instructions that are executed upon a vir-
tual machine have had intuitive operational transitions. For exam-
ple, the PUSH operation pushes a value onto the top of a stack. How-
ever, the operational transitions associated with the instructions of
the Zinc Abstract Machine are more complicated, and are defined
by a transition relation on (Code,Env,Stack) triples:

Code Env Stack Code Env Stack
IND n; c e s → c e (e !! n); s
CLS k; c e s → c e [k, e]; s
APP; c e v; [d, f]; s → d v; f c; e; s
RET; c e v; d; f; s → d f v; s

In the above, the notation [c, e] is shorthand for a closure
consisting of a code fragment c and associated environment e.
Instantiating the resulting execution algebra is straightforward:

instance Execute LAMBDA where
exAlg (IND i c) = S $ \(e, s, stk) ->

runSM c (e, s, (e !! i):stk)
exAlg (CLS k c) = S $ \(e, s, stk) ->

runSM c (e, s, (CLO k e):stk)
exAlg (RET c) = S $ \(e, s, stk) ->

case stk of (v:(CLO k e’):stk’) ->
runSM k’ (v:e’, s, ((CTN c e):stk’))
where k’ = fold exAlg k

exAlg (APP c) = S $ \(e, s, stk) ->
case stk of (v:(CTN c’ e’):stk’) ->
runSM c’ (e’, s, v:stk’)

It is worth noting that had the representation of the stack types
not been changed to lists, the amount of boilerplate required to
implement the necessary operations upon the stacks would dwarf
the definition of the above algebra.

One final, important point must be addressed. By changing
the carrier of the execution algebra to ZAM, new algebra instances
must be defined for existing features. As we have seen previously,
the virtual machine only requires the use of a single stack when
executing terms supporting arithmetic and error handling, with the
exception of the newly-introduced SAVE and RESTORE operations
that make use of the state stack. These ‘new’ instances of the
execution algebra are defined in the following manner:

instance Execute ARITH where
exAlg (PUSH n c) = S $ \(e, s, stk) ->
runSM c (e, s, (NUM n):stk)
exAlg (ADD c) = S $ \(e, s, stk) ->
case stk of ((NUM n):(NUM m):stk’) ->
runSM c (e, s, ((NUM (n + m)):stk’))

instance Execute EXCEPT where
exAlg (THROW c) = S $ \(e, s, stk) ->

case dropWhile (not . isHAN) stk of
((HAN h):stk’) -> runSM h’ (e, s, stk’)
where h’ = fold exAlg h

exAlg (MARK h c) = S $ \(e, s, stk) ->
runSM c (e, s, (HAN h):stk)
exAlg (UNMARK c) = S $ \(e, s, stk) ->

case dropWhile (not . isHAN) stk of
((HAN _):stk’) -> runSM c (e, s, stk’)

exAlg (SAVE c) = S $ \(e, s, stk) ->
case s of ((NUM n):_) ->
runSM c (e, s, (REC n):stk)

exAlg (RESTORE c) = S $ \(e, s, stk) ->
case dropWhile (not . isREC) stk of

((REC n):stk’) ->
runSM c (e, ((NUM n):s), stk’)

instance Execute STATE where
exAlg (GET c) = S $ \(e, s, stk) ->
case s of z@((NUM n):_) ->
runSM c (e, z, (NUM n):stk)

exAlg (SET n c) = S $ \(e, s, stk) ->
runSM c (e, ((NUM n):s), stk)

Our modular virtual machine is now defined by folding the
algebra over an initial triple of empty stacks:

exec :: Execute f => Fix f -> ZAM
exec f = S $ _ ->

runSM (fold exAlg f) ([], [], [])

In section 6, we saw an example of the idea that lambda terms can
be interpreted according to more than one evaluation scheme. In
particular, we showed how both the call-by-value and call-by-name
schemes are implemented. The Zinc Abstract Machine executes
lambda terms in a manner corresponding to call-by-value, however
its instruction set can be used in the definition of an alternative
compilation scheme K, equivalent to the Krivine machine [8],
which is defined recursively as follows:

K[n] = [IND n, APP]
K[λ t] = [POP] ++K[t]
K[f x] = [CLS(K[x])] ++K[f]

The only instruction that we have not yet specified the behaviour
for is POP, and this simply moves the topmost value of the stack
onto the environment stack. The resulting execution algebra that
executes lambda terms with respect to call-by-name is defined over
the instruction set LAMBDA’ (to avoid constructor naming conflicts,
as seen in section 6) in the following manner:

instance Execute LAMBDA’ where
exAlg (IND’ i c) = S $ \(e, s, stk) ->
runSM c (e, s, (e !! i):stk)

exAlg (CLS’ k c) = S $ \(e, s, stk) ->
runSM c (e, s, (CLO k e):stk)

exAlg (APP’ c) = S $ \(e, s, stk) ->
case stk of (v:(CTN c’ e’):stk’) ->
runSM c’ (e’, s, v:stk’)

exAlg (POP c) = S $ \(e, s, (v:stk)) ->
runSM c (e, v:s, stk)

11. Related Work
In this section we briefly review a range of previous work that is
related to our approach to the implementation of compilers in a
modular manner. We consider a number of categories of related
work, each described in a separate subsection.

Modular Interpreters and Monad Transformers. Whilst the
work we present here is primarily focussed on the process of com-
pilation between modular languages, a key source of inspiration
has been the work of Liang, Hudak and Jones [22]. This article in-
troduced the idea of defining the syntax of a language in a modular
manner, but did not consider how this approach could be exploited
further to define the meaning of programs using fold operators.
It also discussed the issue of combining different effects by com-
bining their underlying monads, giving rise to the notion of base
monads, monad transformers, and noncommutative effects.

Modular Compilers Based on Monad Transformers. There is a
long line of previous work on generating compilers starting from
interpreters by using the technique of partial evaluation [19, 21, 35].

Harrison and Kamin showed how a modular compiler can be devel-
oped by applying partial evaluation to a modular interpreter that is
structured using the monadic approach summarised above. In par-
ticular, by writing the interpreter in continuation-passing style [26]
and then partially evaluating, we can obtain a compiler and asso-
ciated virtual machine. However, the use of monad transformers in
this work was primarily for the purpose of introducing intermediate
data structures in the virtual machine, whereas in our setting these
are used explicitly to model individual language features. More-
over, Harrison’s work did not consider the issue of noncommutative
effects, or the role that types can play in structuring and informing
the development of a modular compiler.

Compilation as Metacomputation. Extending their previous
work, Harrison and Kamin identified that metacomputations (com-
putations producing computations) naturally arise in the compi-
lation process [14]. Metacomputations can be classified into two
distinct varieties capturing different aspects of the behaviour of a
program: static, such as code generation and optimisation, and dy-
namic, such as stack and state manipulation. This ‘staging’ of a
program can readily be implemented using monads constructed us-
ing transformers. The notions of static and dynamic metacomputa-
tions correspond, respectively, with the compilation and execution
algebras that we implement using the à la carte technique.

Modular Compilers & Their Correctness Proofs. Harrison’s
PhD thesis consolidates the work of the two items above by describ-
ing the construction and verification of reusable compiler building
blocks (RCBBs) for various features of a source language. Two dis-
tinct approaches to RCBBs are proposed, namely as metacomputa-
tions and monadic code generators. The approach to the latter is
similar to that taken in this article, in the sense that for each in-
dividual feature a function compile :: Source -> m Target
is defined. The correctness of a compiler can then be verified by
proving relations between the standard and compilation semantics
of any given RCBB. The thesis concludes by describing limitations
on the combinations of RCBBs for a non-trivial language in much
the same way as the usage of monad transformers in our own work
dictates the need to consider multiple compilation schemes.

Monatron. The standard monad transformer library in Haskell
[13] suffers from the problem of requiring a quadratic number of
instance declarations to lift monadic operations through each pos-
sible monad transformer. Jaskelioff’s Monatron library [16] solves
this problem by lifting operations through monad transformers in
a uniform manner, underpinned by ideas from Plotkin and Power’s
algebraic theory of effects [15, 25]. As an application, Jaskelioff’s
PhD thesis [17] describes how Monatron can be used to both define
a modular interpreter for a multi-feature language and to implement
a modular operational semantics for the language [18]. It would be
interesting to consider how this approach could be adapted to the
development of modular compilers.

Eff. The recently developed language Eff of Bauer and Pret-
nar [4] presents another approach to handling noncommutative ef-
fects, based upon the algebraic theory of effects. Whereas in our
approach we explicitly define each monad and monad transformer,
in the algebraic approach one specifies the operations that are pro-
vided and their desired properties, rather than how they are actually
implemented. In this manner, the issue of combining behaviours be-
comes one of combining mathematical specifications, rather than
combining concrete implementations. These ideas are realised in
Eff via the notion of handlers, which describe how particular ef-
fects are implemented, and can be applied by the user in different
orders to manifest different semantics of noncommutative effects.
A Haskell library based upon the ideas that underlie the Eff lan-
guage has been implemented by Visscher [32].

Compositional Datatypes. Recent work by Bahr and Hvitved [2,
3] extends the à la carte technique in a range of directions, includ-

ing alternative recursion schemes, generic programming, datatypes
with holes (zippers) and mutual recursion. Building upon this work,
it was then shown how languages with variable binding can also
be implemented in the same setting, using Chlipala’s parametric
higher-order abstract syntax (PHOAS) [6]. However, the use of
PHOAS requires higher-order folds [23], which adds significantly
to the overall complexity of the approach, and Bahr’s work has not
yet considered the issue of non-commutative effects, or the prob-
lem of developing modular compilers. As noted in the next section,
it will be interesting to consider how Bahr’s extensions to the à la
carte technique can be combined with our own to to support multi-
ple axes of modularity in the implementation of compilers.

12. Conclusions
In this article we have described a number of extensions and im-
provements to a framework for defining compilers that are modu-
lar with respect to the various features provided by a source lan-
guage. In particular, we have demonstrated how generalised alge-
braic datatypes allow for increased flexibility and type-safety when
targeting modular languages, how variable binding and mutable
state can be handled in our modular framework, and how the is-
sue of noncommutative effects such as exceptions and state can
be resolved by pattern matching on the structure of the underlying
monad transformers either at the type or the value level.

However, this is by no means the end of the modular compi-
lation story, and much remains to be done. We briefly outline a
number of directions for further work below.

Additional Computational Features. We wish to investigate the
extension of our framework with support for additional features,
in particular other forms of control flow such as recursion and
continuations. In the case of recursion, we expect to benefit from
Bahr’s work in this area [2]. Furthermore, it would be interesting to
see how one might exploit the algebraic theory of effects to give a
principled understanding of how easy it may be to integrate a new
feature based upon the new operations that it provides.

Attribute Grammars. The Utrecht University Attribute Gram-
mar Compiler (UUAGC) [29] is a Haskell preprocessor which sim-
plifies the construction of catamorphisms over tree-like structures,
whilst taking advantage of inherited attributes that are passed down
the tree, such as environments, and synthesised attributes that are
passed up the tree, such as computed results. Moreover, the ability
of the UUAGC to define the constructors of a datatype in multiple
distinct locations and define its attributes and semantics separately
provides an alternative approach to modular programming. We in-
tend to examine the extent to which the UUAGC system is suitable
for generating modular compilers.

Indexed Type Families. In Haskell, the indexed type family
extension [5], which permits ad-hoc overloading of datatypes, may
prove useful in explicitly declaring a link between the signature
functors of a source and target language for a particular effect.
For example, in section 5 we defined an evaluation algebra that
mapped terms that are constructed from the source functor Arith
into terms constructed from the target functor ARITH. At present,
we are capable of compiling into any target language, provided it
supports the requisite signatures. Declaring a type family with a
functional dependency in order to define a mapping from a source
language Fix f to a target language Fix (Target f) would ensure
that the target language is minimal, and remove the requirement
that the user define the target language in advance.

Automatic Context Inference. A recent observation [31] is that
it may be possible to use the ordering of signature functors in the
type of an expression to automatically infer the monadic context
within which we wish to evaluate it. For example, from a term with
signature (Arith :+: Except :+: State), we might infer that
it is to be evaluated in a monad that is built up from the identity

monad corresponding to Arith by first applying the exception
monad transformer, and then applying the state monad transformer.
Such an interpretation may be useful as the default behaviour,
which the user could override if they wished.

Modular Correctness Proofs. If one constructs compilers in a
modular manner, it is natural to ask if the proof of correctness of
such a compiler can also be structured in a modular manner. A
suitable starting point for such an exploration would be Acerbi’s
encoding [1] of our previous work on modular compilers in the Coq
theorem prover, combined with the use of metatheory à la carte
(MTC) [11], a recent Coq library designed for reasoning about
modular definitions using Mendler-style catamorphisms [24].

Alternative Target Languages. At present, we compile into a
stack-based target language. It would also be useful to consider how
our framework can be adapted to other forms of target language, in
particular register-based languages such as LLVM [20], which is
used as the target language for many imperative language compil-
ers, or logic-based languages such as System F [27], a variant of
which is used as the target language for GHC.

Acknowledgments
We would like to thank Conor McBride for suggesting how to im-
plement the lambda-calculus as an evaluation algebra by using a
monadic context in the value type, and Wouter Swierstra, Ohad
Kammar and Michael Gale for their useful comments and sugges-
tions. We are also grateful to the Software Technology Group in
Utrecht for their hospitality during a two-week visit.

References
[1] M. Acerbi. Personal Communication, May 2011.

[2] P. Bahr and T. Hvitved. Parametric Compositional Data Types. Uni-
versity of Copenhagen, June 2011.

[3] P. Bahr and T. Hvitved. Compositional Data Types. In Proceedings of
the seventh ACM SIGPLAN workshop on Generic programming, WGP
’11, pages 83–94, New York, NY, USA, Sept. 2011. ACM.

[4] A. Bauer and M. Pretnar. Programming with Algebraic Effects and
Handlers. CoRR, abs/1203.1539, 2012.

[5] M. M. T. Chakravarty, G. Keller, S. P. Jones, and S. Marlow. Asso-
ciated types with class. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’05, pages 1–13, New York, NY, USA, 2005. ACM.

[6] A. Chlipala. Parametric higher-order abstract syntax for mechanized
semantics. In Proceedings of the 13th ACM SIGPLAN international
conference on Functional programming, ICFP ’08, pages 143–156.
ACM, 2008.

[7] A. Church. An Unsolvable Problem Of Elementary Number Theory.
American Journal of Mathematics, 58(2):345–363, 1936.

[8] P. L. Curien. The λρ-Calculus: An Abstract Framework For Environ-
ment Machines. Rapport de Recherche LIENS-88-10, Ecole Normale
Supérieure, Paris, France, 1988.

[9] L. E. Day and G. Hutton. Towards Modular Compilers For Effects.
In Proceedings of the 12th international conference on Trends in
Functional Programming, TFP’11, pages 49–64, Berlin, Heidelberg,
2012. Springer-Verlag.

[10] N. G. de Bruijn. Lambda Calculus Notation with Nameless Dummies,
a Tool for Automatic Formula Manipulation, with Application to the
Church-Rosser Theorem. Studies in Logic and the Foundations of
Mathematics, 133:375–388, 1994.

[11] B. Delaware, B. C. d. S. Oliveira, and T. Schrijvers. Metatheory
à La Carte. In Proceedings of the 40th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’13, pages 207–218, New York, NY, USA, 2013. ACM.

[12] S. Diehl, P. Hartel, and P. Sestoft. Abstract Machines For Program-
ming Language Implementation, 2000.

[13] A. Gill. mtl: Monad classes, using functional dependen-
cies. http://hackage.haskell.org/package/mtl-2.1.2, June
2012.

[14] W. L. Harrison and S. N. Kamin. Compilation as Metacomputation:
Binding Time Separation in Modular Compilers. In In 5th Mathemat-
ics of Program Construction Conference, MPC 2000, Ponte de, 1998.

[15] M. Hyland, G. Plotkin, and J. Power. Combining effects: sum and
tensor, 2003.

[16] M. Jaskelioff. Monatron: An Extensible Monad Transformer Library.
In Implementation and Application of Functional Languages, 2008.

[17] M. Jaskelioff. Lifting of Operations in Modular Monadic Semantics.
PhD thesis, University of Nottingham, 2009.

[18] M. Jaskelioff, N. Ghani, and G. Hutton. Modularity and Implementa-
tion of Mathematical Operational Semantics. In Proceedings of the
Workshop on Mathematically Structured Functional Programming,
Reykjavik, Iceland, July 2008.

[19] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice Hall International, 1993.

[20] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of
the international symposium on Code generation and optimization:
feedback-directed and runtime optimization, CGO ’04, pages 75–,
Washington, DC, USA, 2004. IEEE Computer Society.

[21] P. Lee. Realistic Compiler Generation. MIT Press, 1989.
[22] S. Liang, P. Hudak, and M. Jones. Monad Transformers and Modular

Interpreters. In Proceedings of the 22nd ACM Symposium on Princi-
ples of Programming Languages. ACM Press, 1995.

[23] E. Meijer and G. Hutton. Bananas In Space: Extending Fold and
Unfold To Exponential Types. In Proceedings of the 7th SIGPLAN-
SIGARCH-WG2.8 International Conference on Functional Program-
ming and Computer Architecture. ACM Press, La Jolla, California,
June 1995.

[24] N. P. Mendler. Inductive Types and Type Constraints in the Second-
Order Lambda Calculus. Ann. Pure Appl. Logic, 51(1-2):159–172,
1991.

[25] G. Plotkin and J. Power. Computational effects and operations: An
overview, 2002.

[26] J. C. Reynolds. Definitional interpreters for higher-order program-
ming languages. In Reprinted from the proceedings of the 25th ACM
National Conference, pages 717–740. ACM, 1972.

[27] J. C. Reynolds. Towards A Theory Of Type Structure. In Programming
Symposium, Proceedings Colloque sur la Programmation, pages 408–
423, London, UK, UK, 1974. Springer-Verlag.

[28] T. Sheard. Languages of the future. In In OOPSLA 04: Companion
to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages 116–119.
ACM Press, 2004.

[29] S. D. Swierstra, P. R. A. Alcocer, J. Saraiva, D. Swierstra, P. Azero,
and J. Saraiva. Designing and Implementing Combinator Languages.
In Third Summer School on Advanced Functional Programming, vol-
ume 1608 of LNCS, pages 150–206. Springer-Verlag, 1999.

[30] W. Swierstra. Data Types à la Carte. Journal of Functional Program-
ming, 18:423–436, July 2008.

[31] W. Swierstra. Personal Communication, March 2013.
[32] S. Visscher. The Control.Effects library for haskell, May 2012.
[33] P. Wadler. Monads for Functional Programming. In M. Broy, editor,

Proceedings of the Marktoberdorf Summer School on Program Design
Calculi. Springer–Verlag, 1992.

[34] P. Wadler. The Expression Problem. Available online at:
http://tinyurl.com/wadler-ep, 1998.

[35] M. Wand. Deriving target code as a representation of continuation
semantics. ACM TOPLAS, 4(3):496–517, July 1982.

