
On Predicting the Impact of Resource
Redistributions in Streaming Applications

Merijn Verstraaten
Heriot-Watt University

m.verstraaten@hw.ac.uk

Sven-Bodo Scholz
Heriot-Watt University
s.scholz@hw.ac.uk

Abstract
We propose a method for black box performance modelling of
executions of data-parallel operations on shared memory multi-
core systems. In particular, we predict runtimes of data-parallel
operations from two inputs: a given input characteristics such as the
size of the input and the numbers of cores that can be exclusively
used for the task.

The paper describes the rationale as well as the technical details
of the approach. We discuss several design choices of the technique
and we experimentally explore their implications. We also discuss
an online implementation of the proposed approach and we show
that the model can be used very effectively in a streaming context.

1. Introduction
With the omnipresence of multi-core machines the ability to predict
the runtime of programs or even parts of programs as a function
of the amount of resources provided rapidly gains in importance.
The better such predictions are the more effectively resources can
be shared between competing parties. Whether we look at several
applications that run on a shared infrastructure such as a cloud
service or we look at a single application that tries to stream its
data through existing compute resources, an effective mapping of
resources is not possible without being able to predict the effect of
additional resources.

Traditionally, runtime prediction builds on cost models and is
tightly coupled to compiler infrastructures. However, this is prob-
lematic for several reasons: it requires all parts of an application to
go through the same compiler, ruling out the use of library-based
legacy code; it requires the entire compiler tool chain to be cost
aware, including high-level as well as low level code transforma-
tions; it requires a suitable precise cost model of the hardware being
used; the list goes on.

In this paper, we try to take a radically different approach. It is
based on the idea of using a streaming based approaches to coor-
dinate parallel programs. In such a setting, we can use runtime ob-
servations of previous stream-processing operations to predict the
behaviour of future invocations of the same operations. This allows
for a black-box performance model that does not require intimate

[Copyright notice will appear here once ’preprint’ option is removed.]

interaction with the compiler tool-chain. Instead, a rather minimal-
istic interaction with the runtime system suffices. In previous work
(Sykora and Scholz 2013), we have shown that this can be done
effectively whenever the individual operations have input indepen-
dent execution times. In this paper, we extend our previous model
by taking input dependent runtimes into account. The only restric-
tion we still impose is that the sequential runtime can be predicted
as a polynomial of some predictor value and that such a predictor
value can be computed from the input.

Our paper is structured as follows: Section 2 provides some
of the background this work is based on. Section 3 provides our
runtime model and some experimental validation for it. Section 4
presents related work before Section 5 concludes.

2. Modelling Data-Parallel Black Box
Components

In the introduction we mentioned the desirability of being able to
keep using existing legacy code. In our research we have been
investigating the possibilities of using a coordination language to
construct programs by combining existing components together.
Within this coordination framework we then try to apply statistical
tools and methods to the problem of optimising concurrent and
parallel programs. This with the goal to create and environment
where it is possible to reuse legacy code without all the painstaking
manual optimisation.

2.1 Coordination
Our research takes place within the context of the declarative co-
ordination language S-NET (Grelck et al. 2008, 2010). S-NET lets
programmers specify programs by composing black-box computa-
tional components together into a streaming network.

This approach exposes the data dependencies of the computa-
tions and provides a framework in which the behaviour of the vari-
ous computational components can be analysed independently.

There are no technical restrictions on which language is used
to implement these components, and, as mentioned in the introduc-
tion, the ability to (re)use existing components is one of the driving
motivations behind the design of the S-NET language and the work
discussed in this paper.

Most of our research, including that discussed in this paper,
has been centered around components implemented in (a subset
of) ANSI C and SAC (Single Assignment C) (Grelck and bodo
Scholz; Grelck et al. 2007), a purely functional array programming
language, well-suited to exposing data parallelism in matrix and
vector computations. However, we believe that there is no funda-
mental reason why the results could not be generalised to include
other languages and approaches.

1 2013/8/22

2.2 Data-Parallelism
Using a data parallel language like SAC to implement an S-NET
component results in the exposure of an additional level of con-
currency, the internal data parallelism of that component. This is
important, because it means that the benefit of allocating additional
computational resources to a component depends on the amount of
parallelism that component exposes.

In other words, effectively scheduling an S-NET network that
includes data parallel components on parallel hardware requires
that the scheduler can predict the benefit of allocating additional
resources to a component.

As mentioned in the introduction, we want to approach this in
an implementation agnostic way, as this means our approach will
be applicable to all components, regardless of implementation. This
would allow the use of existing legacy components without losing
out on more advanced scheduling functionality.

In Sykora and Scholz (2013) it was shown that a naive model
that only considers the data parallelism of components can already
result significant latency and throughput improvements. In this
paper we will generalise the simple Amdahl model from that paper
to one that also accounts for variations in workload sizes, allowing
for more accurate predictions in environments where workloads
change over time.

2.3 The Simple Amdahl Model
Since the desire is to have an implementation agnostic model, we
need to consider which information can be obtained from data par-
allel components without requiring implementation specific details.
Obvious candidates are the observed runtime, the input to the com-
ponent and the number of processing units it is executing on.

Amdahl’s law states that the speedup of an algorithm is depen-
dent on the fraction of the algorithm that can be parallelized. If, for
simplicity’s sake, we restrict ourself to components whose paral-
lelism is independent of their input, we have the following simple
model. Given a sequential runtime Tseq and a parallel fraction α,
the parallel runtime on p processing units is given by:

Tp =
αTseq

p
+ (1− α)Tseq

The main idea from Sykora and Scholz (2013) is the following.
If we have a network of components with statically known sequen-
tial runtimes, we can approximate the parallelism α of each compo-
nent by varying the number of processing units they are executing
on, measuring this parallel runtime and solving the above formula
for α and Tseq .

We can then use the obtained αs and sequential runtimes to
make determine how different resource allocations will affect
throughput and latency.

This approach meets our requirement of being implementation
agnostic. The only information necessary are the measured run-
times and the number of processing units used, both should be read-
ily available for most environments/languages. Despite it’s remark-
able simplicity Sykora and Scholz (2013) shows that this model lets
us obtain significant improvements in latency and throughput of a
network.

The utility of the model is rather limited, as it breaks down in
the presence of varying sequential runtimes. Most interesting algo-
rithms and components have sequential runtimes that are dependent
on their input, causing the runtime to vary when the inputs vary. To
handle these scenarios we need to extend the model to account for
the variation in runtime.

3. A New Extended Amdahl Model
The simple Amdahl model discussed in the previous section con-
siders the observed runtimes and the number of processing units
used, however, it ignores the input values. If we want to model
components whose runtime depends on their input, we cannot ig-
nore this source of information.

In many cases the programmers/user of a component has some
cost model describing how the runtime of a component relates to
the inputs of that component. For example, the runtime of adding
two vectors depends linearly on the length of those vectors.

In all likelihood only some characteristics of the input will have
an impact on the runtime of a component, such as the size of a
vector or matrix. We introduce the term predictor value to refer to
that part of the information in an input value that determines the
component’s runtime.

If the programmer/users of a component were to give us a func-
tion that maps input values to a suitable predictor value, we can
then use this predictor value in our model to describe input depen-
dent effects on the runtime by modelling the sequential runtime as
a function of a predictor value.

3.1 The Model
If we model the sequential runtime as a function Tseq(x) of some
predictor value x, we can generalise our earlier Amdahl model of
the parallel runtime to be a function of the same predictor x:

Tp(x) =
αTseq(x)

p
+ (1− α)Tseq(x)

This model requires the following implementation agnostic pa-
rameters:

1. A function mapping inputs to predictor values.

2. A function modelling the sequential runtime.

3. The parallelisable fraction of the algorithm.

Having programmers explicitly specify a function modelling
the sequential runtime Tseq or providing the value for the parallel
fraction α is undesirable, as obtaining accurate estimates of these
from a component is likely to be infeasibly complex. We do assume
that providing a function that maps inputs to predictor values is
feasible, as programmers and users should, in most cases, be aware
which information in the input values impacts the runtime.

To obtain an estimate of Tseq and α we restrict ourselves to
algorithms whose complexity can be described by a polynomial of
known degree k over the provided predictor value. We can then use
this information to estimate the values of Tseq and α based on the
observed behaviour of the component, our knowledge of k and the
predictor values. This should keep the approach general enough to
work for any component, regardless of its implementation.

Our restriction to algorithms with a polynomial complexity of
known degree keeps the model simple enough to remain tractable,
as polynomial regression is a well-known and understood problem.
At the same time, the restriction is sufficiently general that many
interesting algorithms can still be modelled.

3.2 Sanity-checking the Model
Let us start by reviewing the assumptions we have made so far:

1. Parallelism is independent of input.

2. Sequential runtime is dependent on predictor value of input.

3. Runtime is described by a polynomial of known degree of a
predictor.

Our model should describe any component meeting these cri-
teria. As an initial validation of the model we see how well we

2 2013/8/22

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500

Ti
m

e
(s

)

Predictor Value

Actual runtimes
Best fit

Figure 1. Approximation of sequential runtime.

can model a naive implementation of matrix multiplication. We use
a simple S-NET network consisting of two components. The first
components allocates an N × N matrix of random elements and
sends this matrix to the component we are modelling. This second
component is a simple SAC implementation of matrix multiplica-
tion that multiplies the input matrix with itself.

There are several reasons for choosing matrix multiplication.
Firstly, the algorithm is simple to implement and its behaviour is
well understood. Secondly, its complexity isO(n3) where n relates
to the number of rows/columns. That way, we can use the array
size as predictor value, which gives us a runtime described by a
polynomial of degree 3. Lastly, due to the memory intensiveness
of the algorithm, it is very sensitive to the memory hierarchy it
operates on, making it a worst case scenario from a modelling
perspective.

All experiments were performed on a 48-core system of four
12-core AMD Opteron(tm) 6172 2.1 GHz processors and a total of
128 GB of memory. We tried a large range of different predictor
values, each running 10 times for each allocation of cores to the
SAC component. The core allocations measured are 1, 2, 4, 8, 16,
32, 40 and 471 cores.

The first step in validating our model is to obtain an estimate of
Tseq and to see how well it matches the actual sequential runtime
of our algorithm. As mentioned above, the complexity of matrix
multiplication tells us that we are looking for a polynomial of
degree three. We also know that our predictor value is the length
of one side of each matrix.

Armed with this information we can use least squares polyno-
mial regression to estimate Tseq from a set of predictor values and
observed runtimes. Our observation dataset covers a range of pre-
dictor values from 50 to 2500. Figure 1 shows a plot of both our
estimate for Tseq , the green line, and the actual observed runtimes,
the red crosses. As shown by the graph, our estimated Tseq matches
the observed runtimes almost perfectly.

An accurate approximation of Tseq is sufficient to help us ap-
proximate the value of α. Since we know the number of processing
units used and the observed runtime, finding α for a specific data-
point is a matter of solving:

Tp(x) =
αTseq(x)

p
+ (1− α)Tseq(x)

Here p is the number of cores, x the predictor value and Tp(x)
the observed runtime, resulting in:

α =
p

1− p
∗ Tp(x)

Tseq(x)

1 The use of 47 instead of 48 cores is to avoid any unpredictable interaction
between the S-NET runtime system and our data parallel components.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 500 1000 1500 2000 2500

Average
Clamped

Highest
Actual runtime

Figure 4. Approximation of parallel runtime on 47 cores.

Solving α for all predictor values and all numbers of cores
produces the graph shown in Figure 2. The graph shows that there
is a significant amount of noise in the values found for predictors
below 500, with a particularly excessive peak at 400. Aside from
this, the values of α appear to quickly converge on a single value.

The scale of Figure 2 makes it rather hard to see whether the αs
do indeed converge to a small range of values. Figure 3 contains
a magnification of the plot, where we see that the αs quickly
converge on a value close to 1.

One explanation for the inaccuracy and noise for the sub 500
measurements is that the sequential runtime at 400 is 6̃0 ms, while
our measurement error is approximately 5 ms. This noise represents
a significant fraction of the sequential runtime and an even bigger
fraction of parallel runtimes. This results in approximations of
α that can be off by significant amounts at the low end of the
spectrum.

While the above shows that α quickly converges, there are
two questions still unanswered. One, how should we aggregate the
various differing estimates of α into a single value for use in our
model? Two, how accurate are the predictions that we make based
on our aggregated α value?

It may seem a natural choice to simply average all α values.
Unfortunately, the significant errors in the α estimates for small
runtimes result in very big errors once we try to predict runtimes
for larger numbers of cores.

Since it doesn’t make sense to have parallelizable fraction big-
ger than 100% or smaller than 0% we could clamp our αs between
0 and 1 and then take the average. The graph in Figure 4 plots the
observed runtimes on 47 cores, together with our runtime predic-
tions. As the red and green line show, both the overall average and
the average of clamped αs produce results that are off by a consid-
erable margin.

We can conclude that averaging αs is not a good enough aggre-
gation method for estimating α. If we look back at Figure 2 and
Figure 3 we see that most of the noise is happening for small pre-
dictor values. This makes sense when we look at our extended Am-
dahl model. Sinceα is multiplied with Tseq any error inαwill scale
linearly with the sequential runtime; in this example that means it
scales cubically with our predictor value. At the same time, the ef-
fect of wrong estimates for the sequential fraction of our algorithm
becomes more pronounced as the number of processing units in-
creases.

Based on these observations, we decided to only consider α
values from datapoints at the highest number of cores and with the
highest predictor value and average these. The blue line in Figure 4
shows the results of using the α obtained this way. As the graph
shows, this method of estimating α is significantly more accurate
than the other approaches.

3 2013/8/22

-20

-15

-10

-5

 0

 5

 0 500 1000 1500 2000 2500

Al
ph

a

Predictor Value

2 cores
4 cores
8 cores

16 cores
32 cores
40 cores
47 cores

Figure 2. Values of α.

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000 2500

Al
ph

a

Predictor Value

2 cores
4 cores
8 cores

16 cores
32 cores
40 cores
47 cores

Figure 3. Values of α closeup.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 500 1000 1500 2000 2500

1 core
2 cores
4 cores
8 cores

16 cores
32 cores
40 cores
47 cores

Figure 5. Mispredictions in percent of predicted time.

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 500 1000 1500 2000 2500

1 core
2 cores
4 cores
8 cores

16 cores
32 cores
40 cores
47 cores

Figure 6. Misprediction in absolute time.

Figure 5 and Figure 6 illustrate the predictions errors for differ-
ent predictor value and core combinations in percent of predicted
time and absolute time, respectively. For predictor values below
500 we see that there is simply too much noise in the results to
obtain very useful predictions. However, as we move to higher pre-
dictions we see that our mispredictions quickly drop from about
50% to within 10% of the observed runtime.

A 50% misprediction sounds absurdly large, but given the small
overall runtimes at the low end of the graph it ends up at a mispre-
diction of less than 200 milliseconds, as shown in Figure 6. For the
worst prediction, 4 cores with a predictor value of 2500, the error
amounts to only slightly more than 1 second on wallclock runtime
of well over 15 seconds.

We believe that a prediction accuracy to within 10% will prove
to sufficiently accurate to be useful, especially since the generality
of the model lets us use it, regardless of the implementation details
of a component.

3.3 Pushing the Limits
The naive version of matrix multiply that we used so far already
puts a lot of pressure on the memory subsystem. To further increase
potential effects of the cache hierarchy when looking at different
problem sizes, we also investigate the effect of a more sophisticated
implementation of matrix multiply which enforces blocking. As
blocking vastly improves the temporal locality, we expect to see
much more pronounced cache effects. We look at three different
variations, using block sizes of 16 × 16, 32 × 32 and 64 × 64
elements.

These blocked implementations are much more prone to var-
ious cache effects, introducing an additional source of noise and

variation in the computation. We are interested in seeing how badly
these effects end up influencing our prediction accuracy.

Because the optimisation decreases the runtime by a significant
amount we expect more noise for smaller predictor values and
increased the maximum predictor value to produce a non-trivial
amount of work for the 47 cores to do.

We can use the same evaluation as in subsection 3.2 to validate
our model’s accuracy. In Figure 7 and Figure 8 we see the measured
and predicted runtimes on 1 and 47 cores, respectively. We use the
same aggregation method for α as explained in the last section.

We observe a number of jumps in the actual runtimes, we have
managed to trace some of these back to cache thresholds being
exceeded. Other jumps we have not yet managed to explain ade-
quately, but seem to stem from more complicated cache interac-
tions.

The more interesting aspect to observe is that, even in the pres-
ence of complicated cache effects, our predicted runtimes manage
to approximate the observed runtimes with surprising accuracy.

In Figure 9 and Figure 10 we revisit the misprediction graphs,
the former showing mispredictions in percent of the predicted time,
the latter showing mispredictions in seconds.

While the spread of mispredictions in Figure 9 is bigger than for
our naive version, the vast majority of errors is still within 20% or
10%. And due to the shorter runtimes in the optimised version this
again translates sub-second errors, as illustrated by Figure 10.

There are some large peaks Figure 10, but upon closer inspec-
tion these are not as dramatic as they seem at first. With a single
core sequential runtime of 450 seconds, a misprediction of 25 sec-
onds boils down to a prediction error of 5̃%. We consider this ac-
curate enough to be useful for our scheduling purposes.

4 2013/8/22

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1000 2000 3000 4000 5000 6000

Ti
m

e
(s

)

Predictor Value

Actual runtimes
Best fit

Figure 7. Approximation of sequential runtime.

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000 6000

Highest
Actual runtime

Figure 8. Approximation of parallel runtime.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 2000 3000 4000 5000 6000

1 core
2 cores
4 cores
8 cores

16 cores
32 cores
40 cores
47 cores

Figure 9. Misprediction in percent of predicted time.

-10

-5

 0

 5

 10

 15

 20

 25

 1000 2000 3000 4000 5000 6000

1 core
2 cores
4 cores
8 cores

16 cores
32 cores
40 cores
47 cores

Figure 10. Misprediction in absolute time.

3.4 Online Model Approximation
The main purpose of this work is to use it as a basis for resource
scheduling in a streaming context. In that context, any attempt to
try all possible combinations of predictor values and numbers of
processing units for each component quickly becomes prohibitively
expensive. Instead, we look for an online technique to continuously
improve our predictor as computation results become available.

The main challenge here lies in the fact that we need to approx-
imate the polynom for the sequential runtime and the α value from
the same measurements and that we do not want to apply our least
squares fitting for incresing amounts of data points.

Assuming that we have a reasonably good approximation for the
polynom, approximating α incrementally can be achieved through
a running average. The only thing to consider is that our running av-
erage should only consider datapoints that match the current “high-
est” datapoint when it comes to predictor value and number of
cores. Additionally, when we encounter a datapoint that is higher
than the current maximum, this running average needs to be re-
set to this. Currently we prefer higher core numbers over higher
workloads, but whether this approach is something we still have to
investigate.

It is possible to solve the least squares polynomial regression for
Tseq in constant space too. We note that for an arbitrary polynomial
of degree k:

y = akx
k + · · ·+ a2x

2 + a1x+ a0

we can compute the least squares polynomial regression using:

~a = (XTX)−1XT ~y

where, assuming n data points with n ≥ k + 1:

~a =

a0
a1
...
an

 ~y =

y0
y1
...
yn

X =

1 x1 x21 · · · xk1
1 x2 x22 · · · xk2
...

...
...

. . .
...

1 xn xn2 · · · xkn

To see how we can solve ~a in constant space, we observe that:

XTX =

∑

1
∑
x · · ·

∑
xk∑

x
∑
x2 · · ·

∑
xk+1

...
...

. . .
...∑

xk
∑
xk+1 · · ·

∑
x2k

XT ~y =

∑
y∑
xy
...∑
xky

BothXTX andXT ~y only contain sums over all x and y values,

meaning it’s possible to incrementally update these matrices as data
points come in. As we saw in the earlier formula ~a can be solved
by inverting XTX and then multiplying with XT ~y. This approach
results in constant space usage to approximate Tseq , since both
matrices have a constant size determined by the order k of the
polynomial being approximated. This means we only need to store
k(k + 1) values to solve Tseq .

5 2013/8/22

3.5 Evaluation of Online Model Approximation
To test the methods described in the previous section we take the
datapoints from experiments in the earlier sections, shuffle them
into a random order and treat them as incoming datapoints. For
every incoming point we compare the our predicted time with the
actual observed time and then update the model.

Our expectation was a graph that starts out with a big range of
mispredictions and then narrows as our approximation becomes
better. However, what we find is that the model converges so
quickly that we barely see any narrowing of the misprediction
range, it stays almost constant from the beginning.

To verify that this streaming approach is actually an improve-
ment over simply taking the first possible estimate of Tseq we re-
run our experiment, this time without updating our approximation.
This shows that the prediction errors of the incremental approach
are clustered significantly tighter.

In Figure 11 and Figure 12 we show the difference in mispre-
dictions as percent of the predicted time. The former shows the re-
sults of stopping at the first approximation of Tseq , the latter shows
the results of incrementally adjusting our model. We see that the
incremental approach has a smaller average error and reduces the
number and the range of outliers.

Figure 13 and Figure 14 show the same comparison, but this
time with the misprediction plotted as an absolute time. The incre-
mental approach reduces outliers from close to 40 seconds to within
3 seconds. Where the 3 seconds is just a single datapoint, all others
falling within 1 second.

The marked improvement in prediction accuracy while using
an incremental approach leads us to believe that this is the right
approach, especially considering the very small number resource
consumption of the approach.

4. Conclusion
In this paper we present the extended Amdahl model, an imple-
mentation agnostic model for predicting the effect of resource al-
locations for data parallel algorithms and components. Our work is
motivated by the need for making informed resource allocations in
the presence of multiple data parallel components.

The extended model is a generalisation of previous work in
Sykora and Scholz (2013). The simple Amdahl model discussed in
that paper shows that significant throughput and latency improve-
ments can be achieved by simply observing the runtimes and par-
allel behaviour of components with constant sequential runtimes.

The main contribution of this work is the generalisation from
constant sequential runtimes to a model that can handle sequential
runtimes that are dependent on the inputs of a component.

We demonstrate that, in the presence of a well-chosen predictor
value and polynomial of known order, using least squares poly-
nomial regression is sufficiently accurate to predict the sequential
runtime of a component. In addition, we show that using this ap-
proximation of the sequential runtime we can find an approxima-
tion of the algorithm’s parallel fraction enabling us to predict the
parallel runtimes for inputs with an accuracy of within 10% of the
actual runtime.

Another contribution of this paper is the insight that it is both,
worthwhile and feasible, to construct and update the extended Am-
dahl model on the fly. This approach eliminates the need to bench-
mark or otherwise set up the model in advance, lending itself to an
auto-tuning like implementation.

We believe that this model is sufficiently accurate for making
informed resource allocation decisions. The introduction of predic-
tor values and the abstract notions of complexity on these opens up
the applicability of this approach to a wide range of algorithms, far
beyond what could be achieved with our previous Amsahl-based

model. At the same time the model is sufficiently general that it
should work for almost all kinds of data-parallel components re-
gardless of the concrete implementation language or runtime sys-
tem used, far beyond our particular streaming setting in the context
of S-Net and SaC.

Acknowledgments
This work has been supported from EU-funded FP-7 project “Asyn-
chronous and Dynamic Virtualization through performance ANaly-
sis to support Concurrency Engineering (ADVANCE)” under con-
tract no. IST-248828.

References
C. Grelck and S. bodo Scholz. Sac: A functional array language for

efficient multithreaded execution. International Journal of Parallel
Programming, page 2006.

C. Grelck, S.-B. Scholz, and A. Shafarenko. Coordinating Data Parallel
SAC Programs with S-Net. In 21st IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS’07), Long Beach, USA. IEEE
Computer Society Press, 2007.

C. Grelck, S.-B. Scholz, and A. Shafarenko. A gentle introduction to S-Net:
Typed stream processing and declarative coordination of asynchronous
components. Parallel Processing Letters, 18(2):221–237, 2008.

C. Grelck, A. S. (eds):, F. Penczek, C. Grelck, H. Cai, J. Julku,
P. Hölzenspies, S. Scholz, and A. Shafarenko. S-Net Language Re-
port 2.0. Technical Report 499, University of Hertfordshire, School
of Computer Science, Hatfield, England, United Kingdom, 2010. URL
http://www.snet-home.org/?page_id=7.

J. Sykora and S.-B. Scholz. Towards self-adaptive concurrent software
guided by on-line performance modelling. In Proc. 2nd HiPEAC Work-
shop on Feedback-Directed Compiler Optimization for Multi-Core Ar-
chitectures, 2013.

6 2013/8/22

http://www.snet-home.org/?page_id=7

-1

-0.5

 0

 0.5

 1

 1.5

 0 200 400 600 800 1000 1200 1400 1600

Prediction error

Figure 11. Static model: Mispredictions over time, in percent of pre-
dicted time.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

Prediction error

Figure 12. Incremental model: Mispredictions over time, in percent
of predicted time.

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600

Prediction error

Figure 13. Static model: Mispredictions over time, in absolute time.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000 1200 1400 1600

Prediction error

Figure 14. Incremental model: Mispredictions over time, in absolute
time.

7 2013/8/22

	Introduction
	Modelling Data-Parallel Black Box Components
	Coordination
	Data-Parallelism
	The Simple Amdahl Model

	A New Extended Amdahl Model
	The Model
	Sanity-checking the Model
	Pushing the Limits
	Online Model Approximation
	Evaluation of Online Model Approximation

	Conclusion

