Kindergarten Cop: Profiling-based
Dynamic Nursery Resizing for GHC

Henrique Ferreiro Laura Castro

Department of Computer Science,
University of A Corufia

{hferreiro,|castro}@udc.es

Abstract

In this paper, we will describe a new method for dynamic nursery
resizing during the execution of Haskell programs under GHC.
Our method is novel in that it relies on the memory profile of
the program being run, as recorded in previous runs of the same
program. It will, therefore, be able to make informed decisions
about the nursery size, based on the expected amount of live and
accessed data in each phase of the program execution. We will
present the evaluation of our method on a set of synthetic and
realistic benchmark programs.

1. Introduction

Compared to traditional imperative programming, lazy functional
programming offers many benefits to programmers, such as very-
high level of abstraction, referential transparency, transparent use
of infinite data-structures and implicit sharing of data. However,
we know that nothing comes for free. One of the main problems
when it comes to lazy functional programs is their runtime be-
haviour —in particular, they tend to do many more memory allo-
cations than equivalent imperative programs, yielding a need for
frequent garbage collections. Garbage collection (GC) becomes a
real issue when we start parallelising functional programs. While
by no means easy, parallelising actual computation done by a pro-
gram is under control of programmer. However, programmer can
do very little to parallelise GC, as it is completely under control
of runtime system. Ultimately, the performance of the GC can be a
significant limiting factor for achieving a good performance in both
sequential and parallel functional programs. Therefore, a mecha-
nism is needed that reduces the amount of time a program spends
in garbage collection while not significantly increasing the time it
spends in computation.

In a generational GC, one of the most used GC algorithms, a
standard mechanism for reducing GC time is tuning the size of the
nursery (the space where young objects are allocated), as most of
the GC time is spent collecting the young generation. A large nurs-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

Copyright © ACM [to be supplied]...$15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Vladimir Janjic David Castro
Kevin Hammond

School of Computer Science,
University of St Andrews

{vj32,dc84}@st-andrews.ac.uk,
kh@cs.st-andrews.ac.uk

ery results in fewer GCs, but may also ruin the cache behaviour of a
program. A small nursery results in good cache behaviour, but fre-
quent GCs that can, depending on the amount of live data that needs
to be copied, be quite expensive. Therefore, some compromise is
needed. Current trends [? ? ?] focus on dynamically changing the
nursery size while the program is running, and the decisions are
usually made based on the maximum total heap size as indicated
by the user and the various stats about previous GCs in the same
program run (such as the amount of live data). The main drawback
of these methods is that they are done without taking into account
foreknowledge about the program itself, which can be obtained us-
ing profiling.

In this paper, we will present a new method for dynamically
changing the nursery size in Haskell programs. Our method will be
novel in that it uses the program’s memory profile from previous
runs to estimate its memory behaviour. In this way, if we know in
advance what stage the program is entering (e.g. in terms of how
much data will be allocated, how much of it will be survive the
next GC and how much will actually be accessed), we can make
informed decisions about nursery sizing before the program enters
that stage, rather than as a response to programs behaviour after
it enters the stage. Our method will also focus on increasing the
potential for parallelisation of programs, rather than reducing their
sequential runtime, which means that we will make some nursery
sizing decisions that may be considered bad in purely sequential
settings. We will also present an implementation of our method in
the state-of-the-art GHC Haskell compiler, an evaluation of how
it affects the program’s parallel potential and performance, and
a comparison with the state-of-the-art methods for dynamically
changing the nursery size.

The specific research contributions of this paper will be:

we will describe a novel algorithm for dynamically resizing the
nursery, based on a previous profile of the program;

we will describe the implementation of our algorithm in the
GHC Haskell compiler and

we will present the evaluation of our method on a set of bench-
marks and realistic Haskell programs.

2. Background

In the rest of the text, we will use the following terminology. In a
generational GC, the nursery or the allocation area is the memory
area in the heap where new objects are allocated. It is part of
the young generation. When the nursery is full, a minor GC is
triggered, which only affects the young generation. During GC, the
surviving objects are promoted to the next generation. Sometimes,

objects from the nursery are promoted to the young generation prior
to being promoted further, in order to avoid a problem known as
premature promotion. When the occupancy of older generations
surpass a given limit, a GC for that generation and all of the
younger ones is triggered. A major GC is a GC where all of the
generations are collected.

2.1 GHC

The Glasgow Haskell Compiler is a state-of-the-art compiler and
parallel runtime system for the pure lazy functional language
Haskell [?]. It achieves great flexibility by using a lightweight
thread model, where multiple logical Haskell threads are mapped
into one single OS thread which runs concurrently with others.

2.2 Garbage Collection in GHC

GHC currently uses a generational, stop-the-world garbage collec-
tor [?]. There have been attempts to introduce concurrent and per-
core garbage collectors [?], but they were abandoned.

By default, GHC uses two generations, a fixed allocation area
size and a dynamic heap size. This behaviour can be changed
via command-line flags, by specifying the number of generations,
minimum size of the allocation area, minimum and maximum heap
size and automatic heap sizing. If there is more than one generation
and no heap size hints are provided, the size of the allocation area
will remain fixed. On the other hand, in the case of automatic heap
sizing or providing a size hint, the allocation area is dynamically
adjusted after every GC. If the user specifies the maximum heap
size with the —H runtime flag, then the nursery is resized according
to the following formula:

H—-N
1+p’

where NN is calculated as the amount of memory needed for the
next GC, i.e. twice the amount of the current live data, and p is
the percentage of live data allocated since the last GC and is also
used to approximate its value in the future. Essentially, this formula
results in the nursery that is as large as possible, with a boundary in
the calculated total amount of needed memory, which is provided
by the user with the -H parameter, or calculated at each major GC
as twice the amount of live data. In practice, resizing the nursery in
this way may be bad, because it does not take into account cache
behaviour which requires a small nursery. Also, the nursery size
may be increased even when the amount of copied data is small
(meaning the the GC cost may be insignificant).

Our aim in this paper is to improve the formula for the new
allocation area size after GC, so that it takes into account not
only information about previous GCs in the same program run, but
also information about the memory profile of the same program
in previous runs. In this way, we can choose the best nursery size
accounting for the future (rather than previous) behaviour of the
program.

2.3 A Motivating Example

In order to test our hypothesis, we have written an example program
that has two phases with very different memory behaviours. In the
first phase, the survival rate of newly created objects is high, which
means that the amount of live data is also high. In the second phase,
the completely opposite memory behaviour occurs —most of the
data becomes garbage soon after it is created, which means there is
very little live data. The code of our program is shown below

long :: Int -> Int -> Int
long n m = sum (foldll (zipWith’ (+)) 1)
where
1 = take n (repeat [1..m])

25 | N

20 |- N

15| N

Live data (MB)

0 1 2 3 4)
Allocation (GB)

Figure 1. Object survival in an artificial example program.

f x = long 5 (mem*10000) + long (time*x1000000) 1

main = print $ show $ take 10 (map £ [1..])

This code runs 10 iterations of two calls to the function long.
This function, for n lists of m elements [T14, T2, . . ., Tmi], 1 <
t < n computes a new list [y1, Y2, ..., ym], where yr, = xp1 +
Tk2 + -+ + Tkn, and then sums this list. In order to achieve
the memory behaviour we want, we force the evaluation of every
sum before computing the final addition. In this way, the two lists
being summed at any one time are always kept in memory until the
addition of the resulting list. The function £ calls the function long
two times: the first time for a small number of very long lists, and
the second time for a large number of small lists. mem and time
are constants used to tune, respectivelly, the size and the amount of
lists being summed.

Figure 1 shows the amount of live data against the total amount
of allocated data for the first three iterations of function £. Note that
the = axis in the figure is not the time from the beginning of the
program execution, therefore it is not true that the program spends
much less time in the phases that have a large amount of live data
(large spikes in the figure). Actually, the amount of time that the
program spends in each of the two phases is much bigger, because
of the GC time.

To check the influence that the nursery size has on the program
execution time, we have used the ghc-gc-tune tool to run our
program with different nursery and heap sizes. If a nursery size
is provided (-A GHC runtime flag), then the nursery has a fixed
size for the whole program execution. On the other hand, if a
minimum heap size (-H GHC runtime flag) is provided, the size
of the nursery changes dynamically as described in Section 2.2.
Figure 2 shows the execution times with different combinations
of nursery and heap sizes. From the figure we can observe that
program execution time is highly dependent on the nursery. We can
also see that setting the nursery size to small values results in bad
execution time, mainly due to too frequent GCs. Similarly, setting
it to values too high, the reduced GC time cannot compensate the
increase in mutator time, due to increasing cache misses. We tried
using the automatic nursery size but it wasn’t close to the numbers
in the lower part of the graph.

Figure 3 was constructed to compare the runtime behaviour of
different nursery sizes, and check the hypothesis that a dynamic

T
35 N
30 - .
g
) 25 N
=
=)
20 N
15 N
| | | | |
16kB 128kB 2MB 16MB 256MB
Nursery size parameter
Figure 2. Effect of nursery size parameters.
T
—-A2m
——-A64m
600 - —
E 00|
2 |
=
=)
200 - I \
O - |
| | | | | |

Allocation (GB)

Figure 3. Comparison of different nursery sizes.

nursery size is needed for different stages of a program’s execution.
It shows the elapsed time of each segment of execution between
GCs (GC time included) using the best case size, the black line,
and one of the worst ones, —A64m, shown in brown. What we
want to show in this figure is that, although we discovered that
the globally optimal nursery size was 2MB, in some phases of the
program execution, it would be beneficial to have a nursery of a
different size, as is clear because of the lower elapsed runtime of
the 64MB version at the spikes in the figure.

Lastly, Figure 4 shows a zoomed view of the automatic nursery
sizing algorithm in one of the phases with a big amount of live data.
We plotted the amount of copied data on top of it, in order to find
out the relation between the amount of live data and the chosen
nursery size.

As we described in Section 2.2, the dynamic nursery resizing
algorithm in GHC uses a formula that, given a fixed heap size,
estimates the amount of space that will be needed in the next GC
and then uses the rest of the heap size for the nursery. This means
that the nursery size is inversely proportional to the amount of
data that survives each GC. We can see that in the first change

I I T T
—— Nursery size |, |
20 |-|—— Copied data “ “ s
15 1
an
= 10| 8
5 [|
0 [|
| | |

| |
1.86 1.88 1.9 1.92 1.94
Allocation (GB)

Figure 4. Automatic resizing of the nursery, run with -H.

that happens after 1.86GB, where an increase in the amount of
copied data made the nursery size smaller. The opposite behaviour
happens at the end of the plot. What occurs in between, is that three
spikes in copied memory force major collections, updating the heap
suggested size. This inmediately increases the nursery size, which
then keeps decreasing because of a significant rate of survivors in
the nursery, which accumulate in the total live data.

Summarising this, the main problem with the current behaviour
of the nursery resizing policy is that it tries to maximise the nursery
size instead of making it proportional to the rate of survivors in each
GC. Additionally, it uses a target heap size which is only updated
at each major collection, rendering its results useless after some
iterations of minor collections.

As a first step to fix this problem, we developed a tool which
analyses the liveness information of a previous run of the program
to find out different stages in the program in which to use different
nursery sizes. When used with the example with presented here,
it detects the stages of the program with a high percentage of sur-
vivors and writes a profile with a nursery size suggestion which
avoids repeated collections on live data by accumulating the allo-
cated memory in that phases so that a GC is triggered once the
stage is over and there is little amount of live data. Using this tech-
nique, we were able to get an speedup of 22.74% against the best
execution presented above.

3. Algorithm for Dynamically Changing
Allocation Area Size

4. Evaluation
5. Related Work

Most generational garbage collectors use two generations: nursery
and mature space. Appel garbage collector [?] dynamically tunes
the size of the nursery area to be the size of the free space in heap,
and divides the nursery into the allocation area and the reserved
area. Only nursery GCs are performed until the nursery becomes
smaller than some predeterminated value, in which case the GC
is performed on the whole heap. Velasco et al. [?] aim to improve
this strategy by giving more space from the nursery to the allocation
area than to the reserved area. After each collection, they use one
of the two strategies to decide on the proportion of nursery space to
give to the allocation area — average, where average ratio between

the data copied and the allocation area size over last collections is
given to the allocation area, and the worst, where the worst ratio is
given to the allocation area.

Guan et al. [?] consider three different policies for dynamic
nursery resizing in a HotSpot generational garbage collector: GC
Ergonomic Policy (measuring GC pause time and throughput in
each collection and adjusting the nursery size accordingly), Fixed
Ratio Policy (keeping the same ratio between the nursery and the
mature space) and Heap Availability Policy (similar to the policy
considered by Velasco). Their conclusion is that in most of the
cases, Heap Availability Policy brings the best results. Anderson [?
] describes another method of dynamic resizing (in the context of
functional languages), where they measure the time it takes to do
GC on a nusersy (normalised by nursery size) in each collection,
and half the nursery size if this time becomes too significant. White
et al. [?] propose a strategy for adaptive resizing of the whole heap
based on control theory.

6. Conclusions and Future Work

References

