A Weighted Type Error Slicer

Kanae Tsushima Kenichi Asai
Ochanomizu University Ochanomizu University
JSPS Research Fellow
tsushima.kanae@is.ocha.ac.jp asai@is.ocha.ac.jp

Extended abstract submitted to IFL2013

Abstract. This extended abstract presents how to make weighted type
error slices. In standard type error slices, each part of a type error slice
looks to be at the same level as far as the source of the type error goes.
However, when a type error slice is large, to search the source of the type
error from it is hard work. To this end, we extend type error slices with
the weights that mean the likelihood of each expression being the source
of a type error. We use majority vote of subexpressions and obtain which
subexpression looks to be the source of the type error. Using weights we
can narrow the area of a program to search the source of the type error
and reduce the burden of programmers for type debugging.

1 Overview

When a compiler returns a type error message, programmers often have to search
the source of the type error by hand. To do that, type error slices are useful for
programmers, because type error slices narrow the area for type debugging. A
type error slice includes all parts that relate to one type conflict. Therefore we
can surely find the source of a type error in a type error slice. To explain what
is a type error slice, let us consider the following ill-typed program written in

OCaml:

let f n 1st = List.map (fun x -> x ~ n) 1st in

(f 2.0 [3.0; 4.00)

In this program, the types of 2.0 and ~ conflict. Because this program contains
parts that require these two conflicting types to be the same type, type error
occurs. In this program, we passed 2.0 (of type float) to the function f as
the first argument. The type of the first argument of f is forced to be string
through application of ~ (in x ~ n). This flow of unifying types contributes the
type conflict between 2.0 and ~. If two conflicting types and the flow of unifying
the two types appear in the program, surely type error occurs. The following
program represents a type error slice of the previous example:

let fn...=... (fun ... => ... “n) ... in
(£ 2.0 ...)



The parts abstracted by “...” do not contribute to this type conflict. Since this
slice includes all the parts related to the type conflict, programmers can locate
the source of the type error by debugging only this type error slice. As described
above, type error slices can reduce the burden on programmers. However, if the
original program is huge, its slice could be large.

To overcome this problem, we want to know which part is likely the source
of the type error. When we look at a type error slice of an ill-typed program,
we might conclude that each part has an equal chance of being the source of
the type error. For example, in the previous slice, 2.0 and ~ look to be at the
same level as far as the source of the type error goes. This conclusion, however,
is not necessarily true as implied by the following observation. In the previous
example, we can consider another slice:

let £ ... 1st = List.map (fun x -> x ~ ...) lst in

(f ... [3.0; 4.0)

The point here is that this slice includes “~” but not “2.0.” To see this clearly,
let us consider the following slice:

let £ ... ... = ... (fun ... => ... = ...) ... in
£ ... ...)

This slice is the intersection of the previous two slices. Because this slice is well-
typed, it is not a type error slice. Although this slice may not include the source
of the type error, it does include suspicious parts of the source. In this example
" is suspicious to be the source of the type error, because it is included in both
the slices. This observation about the intersection of several type error slices
suggests that each part of a type error slice has a different chance of being the
source of the type error.

2 Owur approach

The intersections of type error slices are very intuitive and produce good results.
However, to obtain such intersections, we have to obtain the type error slices first.
The computational complexity needed to obtain a type error slice of an ill-typed
program is O(n?), where n is the size of the program. Furthermore, to obtain
all slices, we have to repeat this calculation n! times. Thus, the computational
complexity needed to obtain an intersection for a large program would be large.
We thus need a way to reduce this cost and in the following, we introduce an
approach to obtain the likelihood of each expression being the source of a type
error.

2.1 Brief overview

Let us consider the program [1;2;truel]. Because two elements of this list are
numbers and one element is a boolean, we expect the minority true is wrong.



This is the key point of our approach. The problem is how we can obtain such
information. The main ideas that we will exploit are abstraction of programs
and majority vote.

First, we abstract one part of the program and infer its type. The result of
doing this for the above example is shown in the table below.

abstracted program|well-typed?

[1; 2; ..] o
[1; ..; true] X
[..; 2; truel X

If an abstracted program is ill-typed, its subprograms may contribute to the
type error. For example, because [1; ..; true] is ill-typed, its subprograms
1 and true contribute to the type error. Therefore, we count the number of
contributions of each subprogram. The following table is the result of doing so.

abstracted program‘contributions

1 1
2 1
true 2

This table shows us the likelihood of each expression being the source of a type
error. From this, we know that true has a higher probability of being the source
of the type error than 1 or 2 has. This result is what we anticipated.

We apply this idea to simply typed lambda-calculus extended with let poly-
morphism. To obtain better weights, we extend this idea to use the context that
does not contain type error slices.

2.2 The point and contribution

Our approach has two main points. One is that we use the compiler’s type
inferencer to construct a type error slicer. Many type error slicers [1] use a tailor-
made type unification. Although it has a certain flexibility, its results may not
correspond to those of the compiler’s type inferencer, and it has low scalability.
In contrast, by using the compiler’s inferencer we can make a type error slicer
that has maintainability and high scalability. This contribution is the same with
Schilling’s approach [2].

The other point is that we can obtain weighted type error slices. The weights
are the likelihoods of the expressions being the source of a type error. They can
help programmers to reduce their burden during debugging.

References

1. Haack, C., J. B. Wells. “Type Error Slicing in Implicitly Typed Higher-Order Lan-
guages,” Science of Computer Programming - Special issue on 12th European sym-
posium on programming (ESOP’03), Volume 50 Issue 1-3 (2004).

2. Schilling, T. “Constraint Free Type Error Slicing,” Proceedings of the 12th interna-
tional conference on Trends in Functional Programming (TFP’11), pp. 1-16 (2012).



