
banner above paper title

A Critical Analysis of Parallel Functional Profilers

Majed Al Saeed, Patrick Maier, Phil Trinder and Lilia Georgieva
Department of Computer Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland

{mmaa10,P.Maier,P.W.Trinder,L.Georgieva}@hw.ac.uk

Abstract
We report a critical comparative evaluation of two functional pro-
filers, ThreadScope and EdenTV, alongside four important impera-
tive profilers. The comparison is based on the SICSA Concordance
benchmark, covers both shared and distributed-memory parallel
languages, and is performed on common parallel architectures.

We compare the runtime overheads of, and amount of profiling
data generated by, the profilers analysed by whether the parallelism
is shared/distributed memory and whether the profiler is impera-
tive/functional, and tracing/summative. We systematically compare
the profilers for usability and data presentation, and find that the re-
sults reflect the design philosophy and maturity of the profilers.

Keywords Parallel Profiling, Profiling Overhead, Profiling Data
Size, Performance Visualisation.

1. Introduction
The manycore revolution has both made parallelism mainstream,
and sparked interest in functional languages. The underlying
memory model has a big influence on parallel languages: in
shared-memory languages computations can share state, but in
a distributed-memory language computations must communicate
any common state.

Profiling has always been a key element of effective parallel
programming: it is essential that the programmer understands the
parallel behaviour in order to improve it. In languages that provide
high-level parallelism, like most parallel functional languages, pro-
filing is especially important. The high level abstractions mean that
the conceptual gap between the program and parallel performance
is greater.

In general profiling entails data collection, analysis and presen-
tation. Data may be collected by tracing execution against time, or
as some summary of the execution. A key challenge is to collect as
much useful information for the programmer, with minimal intru-
sion on the parallel behaviour being observed. A profiler that signif-
icantly changes the parallel behaviour is no use. Presentation aims
to provide understandable information to the programmer. Sum-
mative data is typically reported as text, and tracing data is often
visualised as a number of graphical views.

The paper makes the following research contributions.

[Copyright notice will appear here once ’preprint’ option is removed.]

• We evaluate two parallel Haskell profilers, GHC-PPS and
EdenTV, in comparison with four important profilers for im-
perative languages. The comparison covers both shared and
distributed memory parallel languages, and is performed on
common parallel architectures. The comparison uses a pub-
lished benchmark, namely the Concordance application set as
the first Multicore Challenge [30]. The GHC Parallel Profil-
ing System (GHC-PPS) performs tracing profiling of shared-
memory parallel Haskell, and EdenTV performs tracing profil-
ing of the Eden distributed-memory parallel Haskell. The im-
perative profilers are the tracing and graphical Score-P/Vampir
for OpenMP/MPI/CUDA and two summative profilers mpiP
for MPI and ompP for OpenMP (Sections 2 and 3).

• We compare the amount of profiling data generated by the pro-
filers analysed by whether the parallelism is shared/distributed
memory and whether the profiler is imperative/functional, and
tracing/summative. The study reveals some interesting results,
e.g. both functional tracing profilers generate one or two or-
ders of magnitude less data than the imperative tracing profilers
(Section 4).

• We investigate the runtime overheads of the profilers, again
analysed by whether the parallelism is shared/distributed mem-
ory and whether the profiler is imperative/functional, and trac-
ing/summative. The study reveals some interesting results, e.g.
both tracing functional profilers induce overheads an order of
magnitude less than the imperative tracing profilers. A more
complete account of our studies is available as a technical re-
port [1](Section 5).

• We systematically compare the profilers for usability and data
presentation, and find that the results reflect the design philoso-
phy of the tools. Summative tools report a small set of key data
with minimal intrusion. The functional tracing profilers provide
more information together with some graphical visualisation
with little more intrusion. Vampir offers the greatest range of
information at the cost of significant intrusion (Section 6).

2. Background
This section briefly outlines the profiling process and introduces
the functional and imperative profilers we study.

2.1 Performance Profiling Process
Performance profiling is broken into different stages where the
output of one stage is the input for the next [6, 22]. As shown in
Figure 1, the process consists of data collection, data analysis and
data presentation.

Data Collection. The profiling process starts by collecting perfor-
mance data from the executing program. The data collection pro-
cess can take different forms e.g. statistical profiling, sampling or
tracing. Statistical profiling counts and times various events during
the program execution and derives statistics from these. Sampling

short description of paper 1 2013/7/31

Data Collection

Profiling data

Execution

Presentation Analysis

Figure 1. Performance Profiling Process.

takes snapshots at different time intervals of the execution. Tracing
records execution events against time. Tracing is the most used ap-
proach for collecting more detailed and comprehensive information
about the behaviour of the executing program. However, tracing is
more intrusive than sampling and profiling. Tracing is implemented
by either instrumenting the runtime system or the parallel applica-
tion to emit trace events during the execution. A trace event consists
of time stamp and a string that describes it. The emitted trace events
will be stored in what is called a trace file.

Data Analysis. Next in the process is the analysis of performance
data. The collected data, in particular trace events can consist of
millions of trace events. In order to understand what happened
during the execution these trace events need to be analysed. The
analysis process starts by reading the raw trace events. After that
the trace events can be sorted, categorised or grouped. In addition,
counters and statistics can be derived. The results can be shown to
the user instantly, saved into a file or feed to a presentation tool for
visualisations.

Presentation. Presenting the performance data is about trans-
forming the trace events into a form that reflects the execution
behaviour of the parallel program. The data presentation can be
graphical or text based. In the graphical case data presentation
graphs such as Gantt charts or Kiviat diagrams are used to map
trace events to a physical or logical computation resource e.g. a
processor or a thread. In contrast, the text based presentation uses
summaries, tables and statistics to provide information about the
execution behaviour of the program.

2.2 Shared and Distributed Memory Profiling
Parallel performance profiling depends on the programming model
of the profiled program. In distributed-memory parallelism, dif-
ferent processes work together to solve a problem communicat-
ing by messages passing. In addition, the processes may be lo-
cated in physically separate places. In contrast, shared-memory
parallelism, processes collaboratively solve a problem by reading
from and writing to space shared between all the processes. Thus,
distributed-memory profiling poses several challenges absent in the
shared-memory model: For instance, how to profile highly scalable
systems, monitor communication, manage multiple trace files, syn-
chronise trace events and resolve different clock rates. Therefore,
profiling distributed-memory parallelism is more challenging than
shared-memory parallelism.

2.3 Imperative Profiling
For decades imperative parallel languages have been supported by
a variety of performance analysis tools. Early profilers, like Para-
Graph [17], Pablo [32] and XPVM [21] provided parallel pro-
grammers with useful information about the parallel execution.
Nonetheless, the field of parallel profiling is continuing and fac-
ing new challenges e.g. larger and highly scaled parallel systems
and high-level parallel languages. These challenges encourage the
research community to develop advanced performance tools like
Vampir [40], Scalasca [11, 34] and TAU [36].

2.3.1 Score-P and Vampir
Score-P. Score-P [35] is a performance measurement infrastruc-
tures for parallel programming. Score-P is highly scalable and can
support high-performance computing (HPC) facilities. It equips its
users with tools for profiling, event tracing and online analysis of
parallel application. In addition, Score-P can work with a number of
performance analysis tools e.g. Vampir [40], Scalasca [11, 34]and
TAU [36]. Score-P made this possible by adopting standardised
output formats such as the Open Trace Format (OTF) [20], the
CUBE4 profiling formats [10] and using instrumentation tools like
Opari2 [28].

Vampir. Vampir [4, 29, 40] is a Graphical User Interface (GUI)
which provides the capability to read, analyse and present graph-
ically the performance monitoring data (see Figure 2) for differ-
ent parallel imperative languages e.g. C or Fortran with MPI or
OpenMP or CUDA. Vampir provides its users with multiple views
in order to help them to understand the execution behaviour of their
parallel programs with the capability to work on large scale com-
puting infrastructures e.g. HPC.

Figure 2. Screenshot of Vampir Visualising a Score-P Trace File.

2.3.2 mpiP
mpiP [41] is a profiler for MPI applications. mpiP monitors the
performance of MPI by collecting statistical information about MPI
functions from the MPI profiling layer. mpiP does not capture all
MPI calls, it avoids communication during profiling, and it can
limit the profiling scope to reduce the profiling overhead. mpiP has
no GUI and does not provide performance graphs but outputs text
profiles to show statistical information about the execution of the
parallel program.

2.3.3 ompP
ompP [8, 9] is a performance analysis tool for shared-memory
programming with OpenMP. ompP monitors the performance of
the OpenMP application by collecting statistical data from the
parallel execution. ompP is similar in spirit to mpiP [41], it has no
GUI and it does not present performance graphs, instead it presents
the performance information in a text profile.

2.4 Functional Profilers
Parallel functional languages also have been supported by perfor-
mance analysis tools. hpcpp [33] was one of the earliest attempts
to profile a parallel Haskell. GranSim [14, 23], on the other hand,
was the first performance analysis tool for the parallel implementa-
tions of the Glasgow Haskell Compiler (GHC) i.e. GpH-GUM [39]

short description of paper 2 2013/7/31

and GpH [31]. In addition, GranSim provided a variety of perfor-
mance graphs such as overall activity, threads activity and granular-
ity profile. Other variants of GranSim also had been developed, for
example, GranSim-CC [15] for cost-centre profiling and GranSim-
SP [19] to relate threads to the strategies which they were created
with. Influenced by GranSim, more current parallel Haskells profil-
ers have been developed utilising GUI i.e. EdenTV [3] and Thread-
Scope [38].

2.4.1 Eden Tracing and EdenTV
Eden Tracing. Eden tracing is the performance monitoring tool
for the parallel Haskell Eden [24]. The runtime of GHC-Eden
[12] is instrumented to produce trace events. This is can be acti-
vated from the runtime options. Previously, Eden tracing was im-
plemented by using the Pablo Toolkit [32] and adopting its Self-
Defining Data Format (SDDF) [2] for the trace files. On the other
hand, Eden currently is adopting the new GHC-PPS Tracing and
uses its GHC event log format (GHC-ELF) [18].

EdenTV. The Eden Trace Viewer (EdenTV) [3] is a post-mortem
visualisation tool which provides the capability to read, analyse and
present graphically the performance monitoring data (trace file)
of the parallel functional language Eden [24] from the level of
the parallel runtime system. Two versions of the tool have been
implemented: the first one was in Java; the current version [37]
is implemented in Haskell and includes more features than the
previous one (see Figure 3).

Figure 3. Screenshot of EdenTV Visualising an Eden Trace File.

2.4.2 GHC-PPS and ThreadScope
GHC-PPS. The GHC Parallel Profiling System (GHC-PPS) [18]
is the current performance analysis tools for Glasgow Haskell
Compiler (GHC) on multicores [16]. The GHC-PPS consists of
tracing facility, analysis tools [13] and a GUI for browsing the trace
events called ThreadScope [38]. The GHC-PPS tracing is built into
the GHC runtime. To monitor the performance of a program, trac-
ing flags are added to both the compilation and the execution op-
tions (known as event logging in the Haskell community). This
will produce a trace file (eventlog). The analysis tools are a Haskell
library (GHC-Events) for reading and processing eventlogs. The
library is extensible, so user of the GHC-PPS can develop custom
analysis tools to satisfy their needs.

ThreadScope. ThreadScope [38] is the post-mortem trace anal-
yser for (GHC-SMP) [16]. It is the standard tool to read, analyse
and display performance data generated by the GHC-PPS (see Fig-
ure 4).

Figure 4. Screenshot of ThreadScope Visualising a GHC Trace
File.

3. Experimental Methodology
3.1 Experimental Setup
The profilers are measured on a Beowulf cluster comprising 32-
nodes, each node comprising two Intel quad-core processors (Xeon
E5504) running at 2.00GHz, sharing 4MB of L3 cache and 12GB
of RAM. The machines are connected via Gigabit Ethernet and run
Linux (CentOS 6.3 x86 64).

3.2 Concordance Benchmark Versions
The profilers are compared using implementations of the same
Concordance benchmark that was published as Phase I of the
SICSA MultiCore Challenge [30]. The Concordance benchmark
takes as input a text file and an integer (N). It processes the text
file to find all sequences of words in the text, up to the length of N,
together with the number of occurrences of this sequence and a list
of start indices. As the profilers work on different languages we ob-
tained four parallel implementations of a Concordance benchmark
application i.e. Eden, GHC-SMP, MPI and OpenMP, developed for
the SICSA MultiCore Challenge.

3.3 Measurements
We will use the Concordance benchmarks to measure the profiling
data size and the profiling runtime overhead of the profiling tools.
This is by profiling the execution of a Concordance application
that matches the parallel platform of each profiling tool. We will
report the median of 5 executions. In addition, we will use different
metrics for measurements. Firstly, we will study how the increase
in the computation size changes the performance of the these tools.
Secondly, we will evaluate how the increase in the number of PEs
affects these profilers.

To increase the computation size, we will use different sizes of
input files. The SICSA MultiCore Challenge provides two input
files: the smallest files is 35 KB and the largest is 4300 KB. In or-
der to carry out the experiments we needed more input files with
a gradual increase in size. Therefore, we used the 4300 KB file to
produce files with different sizes starting with 100 KB and increas-
ing the size by a factor of 2 until reaching 3200 KB. Our analysis
will be based on the data sets 100 KB to 3200 KB. However, for
completeness we also included the 35 KB and the 4300 KB files in
the experiment as they are the standard set of input in the SICSA
MultiCore Challenge.

Similarly, we will increase the number of PEs by a factor of 2
starting by 1 PE until reaching 8 PEs as this is the maximum num-
ber of cores on our system. However, the MPI Concordance imple-

short description of paper 3 2013/7/31

mentation requires a minimum of 2 PEs in to work: one as master
and the other as worker. As consequence, this study will report the
results based on the number of workers used in the computation.
This is because, the master job is devoted to distributing work and
waiting until all the workers have finished their jobs. Therefore, we
do not think that it will introduce a significant profiling runtime
overhead or a significant increase in the profiling data size. In addi-
tion, we will include the 6 PEs to the experiment. This is to validate
our measurements for 8 PEs, as using all the available cores on a
machine is known to sometimes perturb performance.

4. Profiling Data Size
This section investigates the amount of profiling data generated by
the profilers.

4.1 Profiling Data Size in Relation to Computation Size
Score-P (MPI). Figure 5(a) shows how the tracing data size of
Score-P changes as the input size increases. On the 1 PE curve the
data size grows by 2991% from 23449.6 KB at 100 KB to 724889.6
KB at 3200 KB. Similarly, the data sizes of 2 PEs, 4 PEs, 6 PEs
and 8 PEs increase from 100 KB to 3200 KB by about 3000%.
As a result, we can say that the tracing data size of profiling MPI
with Score-P increases substantially as the input size increases.
Increasing the input size by a factor of 2 will result in a significant
increase to the size of the trace file that ranges between 96% and
103%.

Eden Tracing. Figure 5(b) shows the how tracing data size of
Eden tracing changes as the input size increases. All the curves
show an increasing data size. On 1 PE the tracing data size grows
by 2699% from 69.5 KB at 100 KB to 1945.6 KB at 3200 KB.
Similarly, the trace data sizes of 2 PEs, 4 PEs, 6 PEs and 8 PEs
increase from 100 KB to 3200 KB by 2946%, 7339%, 13309%
and 30876% respectively. Therefore, the tracing data size increases
dramatically as the input size gets bigger. Increasing the input size
by a factor of 2 causes a change in the size of tracing data. The
change ratios caused by the increase range between 39% and 528%.
The ratios appear to be uniform on 1 and 2 PEs between 82% and
109% but beyond that the ratios are noisy.

Score-P (OpenMP). The increase in the profiling data size of
profiling OpenMP with Score-P is similar to profiling MPI with
Score-P. The data size grows by 3000% as the computation size
increased from 100 KB to 3200 KB. The tracing data size of
profiling OpenMP with Score-P increases dramatically as the input
size increases. Our results show that increasing the input size by a
factor of 2 will result in a significant increase to the trace data size
that ranges between 93% and 103%.

GHC-PPS. Figure 5(c) shows how the tracing data size of GHC-
PPS changes as the input size increases. Again, all the curves show
an increase in data size. On 1 PE the tracing data size grows by
7032% from 42.80 KB at 100 KB to 1024.00 KB at 3200 KB.
Similarly, the tracing data sizes of 2 PEs, 4 PEs, 6 PEs and 8 PEs
increase from 100 KB to 3200 KB by 1659%, 3087%, 4762%, and
2007% respectively. Consequently, we can say that the tracing data
size increases dramatically as the input size gets bigger. Our results
show that increasing the input size by a factor of 2 will result in a
significant increase to the trace data size that ranges between 48%
and 216%.

mpiP. Figure 5(d) shows that the profiling data size of mpiP does
not change as the input size increases.

ompP. Our results show that the profiling data size of ompP does
not change as the input size increases. This is expected because
ompP is a summative profiler like mpiP; the graph for ompP can be
found in the technical report [1].

4.2 Profiling Data Size in Relation to Number of Processing
Elements (PEs)

Score-P (MPI). Figure 6(a) shows how the tracing data size of
MPI Score-P changes as the number of PEs increases. On the 100
KB curve the tracing data size grows slightly by about 6.6% from
23449.6 KB at 1 PE to 24985.6 KB at 8 PE. Similarly, the tracing
data size of the 200 KB, 400 KB, 800 KB, 1600 KB and 3200
curves increase slightly by about 6.1%, 6.5%, 7.6%, 8.2% and 8.2%
respectively. Therefore, we can say that increasing the input size
will result in a slight increase to the tracing data size when profiling
MPI with Score-P. Increasing the number of PEs by a factor of 2
will result in a slight increase to the size of the tracing data that
ranges between 1.5% and 3.1%.

Eden Tracing. Figure 6(b) depicts how the increase in the num-
ber of PEs changes the trace data size of Eden tracing. All curves
show an increase in data size. On the 100 KB curve the tracing data
size increases by about 141% from 69.5 KB at 1 PE to 167.6 KB at
8 PEs. Likewise, the tracing data size of the 200 KB, 400 KB, 800
KB, 1600 KB and 3200 curves increase by about 632%, 2103%,
3222%, 3116% and 2568% respectively. However, we noticed that
the 35 KB, 100 KB, and 200 KB curves tail off at 4 PEs, and may
even decrease beyond 4 PEs. We think that the input size is too
small to effectively use more than 4 PEs, and that the data points at
35 KB, 100 KB and 200 KB beyond 4 PEs should be disregarded.
Increasing the number of PEs by a factor of 2 increases the data
size significantly by between 97% and 420%.

Score-P (OpenMP). The increase in the profiling data size of
profiling OpenMP with Score-P is similar to profiling MPI with
Score-P. Increasing the number of PEs only results in a slight
increase in the profiling data size. Increasing the number of PEs
by a factor of 2 will result in a slight increase to the size of the
tracing data size between 0.0% and 4.0%.

GHC-PPS. Figure 6(c) shows how the increase in the number
of PEs affects the tracing data size of GHC-PPS. As the Figure
demonstrates, increasing the number of PEs results in an increase
in the tracing data size. On the 100 KB curve the tracing data size
increases by 581.1% from 42.8 KB at 1 PE to 291.5 KB at 8 PEs.
Similarly, the tracing data sizes of the 200 KB, 400 KB, 800 KB,
1600 KB and 3200 curves increased by 434%, 559%, 537%, 475%
and 500% respectively. We noticed that the smallest data inputs i.e.
35 KB, 100 KB and 200 KB, remained fairly steady after 2 PEs,
however, they showed an unexpected increase at 8 PEs. As noted
above for Eden tracing, this effect is likely caused by the input
being too small, and the data points at 35 KB, 100 KB and 200
KB beyond 2 PEs should be disregarded. Increasing the number of
PEs by a factor of 2 will result in increase to the tracing data that is
ranging between 46% and 155%.

mpiP. Figure 6(d) illustrates how the increase in the number of
PEs changes the size of the profiling data of mpiP. Increasing the
number of PEs results in an increase in the summative data size.
For all curves the summative data size increases by 88% from 9.4
KB at 1 PE to 17.7 KB at 8 PEs. Increasing the number of PEs by a
factor of 2 changes the profiling data by between 11.7% and 37.2%.

ompP. Our results shows that increasing the number of PEs
changes the size of the profiling data of ompP. The results of ompP
are similar to the results of mpiP; the graph for ompP can be found
in the technical report [1]. For all the data sets the profiling data
size increased by about 55% from 5.3 KB at 1 PE to 8.2 KB at
8 PEs. Increasing the number of PEs by a factor of 2 changes the
profiling data size by between 7.5% and 24.2%.

short description of paper 4 2013/7/31

 8192

 16384

 32768

 65536

 131072

 262144

 524288

1048576

 25 35 50 100
 200

 400
 800

 1600
 3200

 4300
 6400

Tr
ac

e
Fi

le
 S

iz
e

(K
B

)

Input File Size (KB)

1 PE(s)
2 PE(s)
4 PE(s)
6 PE(s)
8 PE(s)

(a) Score-P (MPI)

 16

 64

 256

 1024

 4096

 16384

 65536

262144

 25 35 50 100
 200

 400
 800

 1600
 3200

 4300
 6400

Tr
ac

e
Fi

le
 S

iz
e

(K
B

)

Input File Size (KB)

1 PE(s)
2 PE(s)
4 PE(s)
6 PE(s)
8 PE(s)

(b) Eden Tracing

 16

 32

 64

 128

 256

 512

1024

2048

4096

8192

 25 35 50 100
 200

 400
 800

 1600
 3200

 4300
 6400

Tr
ac

e
Fi

le
 S

iz
e

(K
B

)

Input File Size (KB)

1 PE(s)
2 PE(s)
4 PE(s)
6 PE(s)
8 PE(s)

(c) GHC-PPS

 8

 16

 32

 25 35 50 100
 200

 400
 800

 1600
 3200

 4300
 6400

S
um

m
at

iv
e

D
at

a
Fi

le
 S

iz
e

(K
B

)

Input File Size (KB)

1 PE(s)
2 PE(s)
4 PE(s)
6 PE(s)
8 PE(s)

(d) mpiP

Figure 5. Profiling Data Size in Relation to Computation Size.

4.3 Profiling Data Size Discussion
This section compares the profiling data size of the parallel profilers
reported in sections 4.1 and 4.2. The goal of this comparison is to
see how the functional profilers compare to the imperative profilers
in terms of profiling data size. Because of the shortage of space,
we will only report the comparison results on increasing the input
size with a fixed number of 4 PEs. Comparisons with other fixed
numbers of PEs, and comparisons with fixed input sizes show
similar results, which can be found in the technical report [1].

Figure 7 compares 6 profiling tools in terms of how increasing
the input size changes the profiling data size on a fixed number
of PEs. Table 1 demonstrates how the profiling data size of these
profiling tools are compared to each other in terms of minimum,
mean and maximum values of the profiling data size for each line
from Figure 7.

We base the following comparison on the mean values from
Table 1(a) and Table 1(b). We observe that the profiles generated
by Score-P are about two orders of magnitude bigger than those
generated by the functional profilers, which in turn are two to
three orders of magnitude bigger than the data generated by the
summative profilers.

Distributed Memory: Imperative vs Functional. We are com-
paring the profiling data sizes of the distributed-memory profilers
Score-P (MPI) and Eden tracing. According to Table 1(a) the mean
profiling data size of Score-P (MPI) is 316428.8 KB whereas the

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

1048576

4194304

 25 35 50 100
 200

 400
 800

 1600
 3200

 6400

Tr
ac

e
Fi

le
 S

iz
e

(K
B

)

Input File Size (KB)

ompP
Score-P (OpenMP)

mpiP
Score-P(MPI)
Eden Tracing

GHC-PPS

Figure 7. Synopsis of Profiling Data Sizes in Relation to Compu-
tation Size (on 4 PEs).

mean profiling data size of Eden tracing is 8014.4 KB. The func-
tional Eden tracing generates significantly smaller profiles than the
imperative Score-P (MPI).

Shared Memory: Imperative vs Functional. Comparing the pro-
filing data sizes of the shared-memory profilers Score-P (OpenMP)

short description of paper 5 2013/7/31

 8192

 16384

 32768

 65536

 131072

 262144

 524288

1048576

1 PE 2 PEs 4 PEs 6 PEs 8 PEs

Tr
ac

e
Fi

le
 S

iz
e

(K
B

)

Processing Elements

35 KB
100 KB
200 KB
400 KB
800 KB

1600 KB
3200 KB
4300 KB

(a) Score-P (MPI)

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

1 PE 2 PEs 4 PEs 6 PEs 8 PEs

Tr
ac

e
Fi

le
 S

iz
e

(K
B

)

Processing Elements

35 KB
100 KB
200 KB
400 KB
800 KB

1600 KB
3200 KB
4300 KB

(b) Eden Tracing

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

1 PE 2 PEs 4 PEs 6 PEs 8 PEs

Tr
ac

e
Fi

le
 S

iz
e

(K
B

)

Processing Elements

35 KB
100 KB
200 KB
400 KB
800 KB

1600 KB
3200 KB
4300 KB

(c) GHC-PPS

 8

 16

 32

1 PE 2 PEs 4 PEs 6 PEs 8 PEs

S
um

m
at

iv
e

D
at

a
Fi

le
 S

iz
e

(K
B

)

Processing Elements

35 KB
100 KB
200 KB
400 KB
800 KB

1600 KB
3200 KB
4300 KB

(d) mpiP

Figure 6. Profiling Data Size in Relation to Number of PEs.

(a) Distributed-Memory Profilers

Imperative Functional
Summative Tracing Tracing

mpiP Score-P (MPI) Eden Tracing

Min 12.9 9420.8 96.7

Mean 12.9 316428.8 8014.4

Max 12.9 1012121.6 28160.0

Profiling Data
Siz e (KB)

(b) Shared-Memory Profilers

Imperative Functional
Summative Tracing Tracing

ompP Score-P (OpenMP) GHC-PPS

Min 6.6 13619.2 65.9

Mean 6.6 445952.0 1228.7

Max 6.6 1468006.4 3686.4

Profiling Data
Siz e (KB)

Table 1. Minimum, Mean and Maximum Profiling Data Sizes (on
4 PEs).

and GHC-PPS, we find an even larger difference between the func-
tional and the imperative profilers. The mean profiling data size of
GHC-PPS is 1228.7 KB whereas the mean profiling data size of
Score-P (OpenMP) is 445952 KB, see Table 1(b).

Trace Based vs Summative. As Figure 7 and Table 1 illustrate,
the summative profiling tools require significantly smaller storage
space for the profiling data than trace based profiling tools. This is
expected since the summative profiling tools only summarise the
parallel execution behaviour in a text format. This type of profiling
tools does not require large storage space.

5. Runtime Overheads of Profiling
This section investigates the runtime overheads of the profilers.

5.1 Runtime Overhead in Relation to Computation Size
Score-P (MPI). Figure 8(a) shows how the relative runtime over-
head of Score-P (MPI) changes as the input size increases. The
data is noisy with overhead curves rising slightly as the input size
increases from 100 KB to 3200 KB. Overall, the relative runtime
overhead of Score-P (MPI) remains between 124% and 219%.

Eden Tracing. Figure 8(b) shows the relative runtime overhead
of Eden tracing. The data is very noisy, with curves fluctuating
extremely as the input size increases. It is difficult to determine
how increasing the input data size can affect the overhead change as
the overhead decreased in some cases and increased in other cases.
However, the majority of curves show that the overhead decreases
as the input size increases. Overall, the relative runtime overhead
of Eden tracing remains between 0.25% and 23%.

short description of paper 6 2013/7/31

 64

 128

 256

 25 35 50 100
 200

 400
 800

 1600
 3200

 4300
 6400

O
ve

rh
ea

d
%

Input File Size (KB)

1 PE(s)
2 PE(s)
4 PE(s)
6 PE(s)
8 PE(s)

(a) Score-P (MPI)

 0.2

 0.5

 1.0

 2.0

 4.0

 8.0

16.0

32.0

 25 35 50 100
 200

 400
 800

 1600
 3200

 4300
 6400

O
ve

rh
ea

d
%

Input File Size (KB)

1 PE(s)
2 PE(s)
4 PE(s)
6 PE(s)
8 PE(s)

(b) Eden Tracing

 128

 256

 512

1024

2048

 25 35 50 100
 200

 400
 800

 1600
 3200

 4300
 6400

O
ve

rh
ea

d
%

Input File Size (KB)

1 PE(s)
2 PE(s)
4 PE(s)
6 PE(s)
8 PE(s)

(c) Score-P (OpenMP)

 0.5

 1.0

 2.0

 4.0

 8.0

16.0

32.0

64.0

 25 35 50 100
 200

 400
 800

 1600
 3200

 4300
 6400

O
ve

rh
ea

d
%

Input File Size (KB)

1 PE(s)
2 PE(s)
4 PE(s)
6 PE(s)
8 PE(s)

(d) GHC-PPS

Figure 8. Relative Runtime Overhead in Relation to Computation Size.

Score-P (OpenMP). Figure 8(c) shows the change of relative
runtime overhead of Score-P (OpenMP). There is a drop of all
curves as the input size increases. On 1 PE the overhead decreases
by about 761% points from 1266% at 100 KB to 505% at 3200 KB.
Similarly, the overheads of the 2 PEs, 4 PEs and 6 PEs decrease
from 100 KB to 3200 KB by 765% points, 836% points, 611%
points and 92% points respectively. However, the 8 PEs curve is
an outlier and we think that this is because of 8 is the maximum
number of cores on our system. The relative runtime overhead
of profiling with Score-P (OpenMP) decreases as the input size
increases from 100 KB to 3200 KB. Overall, the relative runtime
overhead remains between 269% and 1266%.

GHC-PPS. Figure 8(d) shows how the relative runtime overhead
of GHC-PPS changes as the input size increases. The data is noisy;
all curves fluctuate widely. To some degree, there is a decreasing
pattern as the input sizes increases. The relative runtime overhead
of profiling with GHC-PPS declines as the input size increases from
100 KB to 3200 KB. Overall, the runtime relative overhead remains
between 0.50% and 19.70%.

mpiP. The runtime overhead graphs for mpiP and ompP can be
found in the technical report [1]. The graphs for mpiP show that
the relative runtime overhead of mpiP grows by between 57%
and 233% points as the input size increases. Overall, the relative
runtime overhead remains between 135% and 378%.

ompP. The graphs for the relative runtime overhead of ompP
are noisy. Similar to GHC-PPS, they overhead decreases as the
input size increases. Overall, the relative runtime overhead remains
between 0.35% and 14.96%.

5.2 Profiling Overhead in Relation to Number of PEs
Score-P (MPI). Figure 9(a) shows how the relative runtime over-
head of Score-P (MPI) changes as the number of PEs increases. As
the Figure illustrates, the data is noisy beyond 4 PEs. It appears that
changing the number of PEs does not change the relative overhead
but increases variability.

Eden Tracing. Figure 9(b) shows how the relative runtime over-
head of Eden tracing [3] changes as the number of PEs increases.
The data is noisy; Eden tracing appears to contribute significant
variability to the overheads. However, there is a trend towards in-
creasing relative overheads as the number of PEs increases.

Score-P (OpenMP). Figure 9(c) shows how the relative runtime
overhead of Score-P (OpenMP) changes as the number of PEs
increases. As the Figure demonstrates, the data is fairly steady up
to 6 PEs, where increasing the number of PEs does not increase the
relative overhead. The sudden drop in relative overheads on 8 PEs
for the smaller input sizes 35 KB, 100 KB and 200 KB are outliers,
possibly caused by too little work.

GHC-PPS. Figure 9(d) shows the relative runtime overhead of
GHC-PPS [18]. The data is noisy; similar to Eden tracing, GHC-

short description of paper 7 2013/7/31

 64

 128

 256

1 PE 2 PEs 4 PEs 6 PEs 8 PEs

O
ve

rh
ea

d
%

Processing Elements

35 KB
100 KB
200 KB
400 KB
800 KB

1600 KB
3200 KB
4300 KB

(a) Score-P (MPI)

0.2

0.5

1.0

2.0

4.0

8.0

16.0

32.0

1 PE 2 PEs 4 PEs 6 PEs 8 PEs

O
ve

rh
ea

d
%

Processing Elements

35 KB
100 KB
200 KB
400 KB
800 KB

1600 KB
3200 KB
4300 KB

(b) Eden Tracing

 128

 256

 512

1024

2048

1 PE 2 PEs 4 PEs 6 PEs 8 PEs

O
ve

rh
ea

d
%

Processing Elements

35 KB
100 KB
200 KB
400 KB
800 KB

1600 KB
3200 KB
4300 KB

(c) Score-P (OpenMP)

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

1 PE 2 PEs 4 PEs 6 PEs 8 PEs

O
ve

rh
ea

d
%

Processing Elements

35 KB
100 KB
200 KB
400 KB
800 KB

1600 KB
3200 KB
4300 KB

(d) GHC-PPS

Figure 9. Relative Runtime Overhead in Relation to Number of PEs.

PPS appears to contribute significant variability to the overheads.
However, unlike with Eden tracing, there is no clear trend showing
an increase in relative overheads with increasing number of PEs.

mpiP. The runtime overhead graphs for mpiP and ompP can be
found in the technical report [1]. The graphs for mpiP are similar
to those for Score-P (MPI) and show that the relative runtime
overhead of mpiP [41] does not change as the number of PEs
increases. However, like Score-P, mpiP contributes to variability
in the overheads.

ompP. The overhead graphs for ompP show a picture similar to
the one for GHC-PPS. The data is noisy, with high variability in
overheads; there is no clear trend towards an increase in overheads
with increasing number of PEs.

5.3 Runtime Overhead Discussion
In this section we will discuss the results presented in sections 5.1
and 5.2. The aim of this discussion is to compare the functional
profilers to the imperative profilers in terms of relative runtime
overhead. Because of space constraints, we will only report the
comparison results on increasing the computation size with a fixed
number of 4 PEs. Comparisons with other fixed numbers of PEs,
and comparisons with fixed input sizes show similar results, which
can be found in the technical report [1].

Figure 10 shows a comparison of the relative runtime overhead
between 6 profiling tools. To demonstrate how the overheads of

 0.2

 1.0

 4.0

16.0

64.0

256.0

1024.0

4096.0

 25 35 50 100
 200

 400
 800

 1600
 3200

 4300
 6400

O
ve

rh
ea

d
%

Input File Size (KB)

ompP
Score-P(OpenMP)

mpiP
Score-P(MPI)
Eden Tracing

GHC-PPS

Figure 10. Synopsis of Relative Runtime Overheads in Relation to
Computation Size (on 4 PEs.)

these profiling tools compare to each other we also summarised
the minimum, mean, and maximum values of the relative overhead
for each curve from Figure 10 into Table 2(a) and Table 2(b). In

short description of paper 8 2013/7/31

(a) Distributed-Memory Profilers

Imperative Functional
Summative Tracing Tracing

mpiP Score-P (MPI) Eden Tracing

Min 133.00% 163.00% 2.64%

Mean 295.88% 173.88% 9.40%

Max 361.00% 194.00% 23.00%

Overhead
%Value

(b) Shared-Memory Profilers

Imperative Functional
Summative Tracing Tracing

ompP Score-P (OpenMP) GHC-PPS

Min 0.44% 313.00% 1.87%

Mean 5.22% 873.50% 10.53%

Max 9.21% 1813.00% 30.00%

Overhead
%Value

Table 2. Minimum, Mean and Maximum Relative Runtime Over-
heads (on 4 PEs).

this comparison we will use the mean value from the table for each
curve.

The figures show that profilers are clearly divided into two
groups, one with high overheads (over 100%) and one with low
overheads (below 25%). The group with high overheads comprises,
in increasing order of overheads, Score-P (MPI), mpiP and Score-P
(OpenMP). The latter has a mean relative overhead of 873%, which
is surprising for a shared-memory profiler. The group with low
overheads comprises both functional profilers and ompP. Because
relative overheads for these profilers are already low, they are also
more susceptible to perturbations, resulting in higher variability of
overheads.

Distributed Memory: Imperative vs Functional. We first com-
pare the relative runtime overheads of the distributed-memory pro-
filers Score-P (MPI), mpiP and Eden tracing. Table 2(a) shows
the mean overheads of Score-P (MPI), mpiP and Eden tracing
as 173.88%, 295.88% and 9.40%, respectively. Thus, the relative
overhead of both Score-P and mpiP is more than an order of mag-
nitude higher than the overhead of Eden.

Shared Memory: Imperative vs Functional. We next compare
the relative runtime overheads of the shared-memory profilers
Score-P (OpenMP), ompP and GHC-PPS. The mean overheads
of Score-P (OpenMP), ompP and GHC-PPS are 873.50%, 5.2%
and 10.5%, respectively, see Table 2(b). Surprisingly, the overhead
of Score-P (OpenMP) is almost two orders of magnitude higher
than GHC-PPS and ompP.

Trace Based vs Summative. Finally, we compare the relative
runtime overheads of summative profilers to the overheads of trace
based profilers. Here, the picture is not clear cut. The summative
ompP has the lowest overhead (5.2%), yet this is closely followed
by the trace based Eden (9.4%) and GHC-PPS (10.5%). Despite
being a summative profiler, the overheads of mpiP (295%) are as
high as the overheads for the trace bases Score-P (173% on MPI).

6. Data Presentation and Visualisation
In this section we will present a comparison between the perfor-
mance data presentation tools of functional profilers and imperative
profilers i.e. EdenTV [3], ThreadScope [38] Vampir [40], mpiP [41]
and ompP [8]. We will critically compare the main features and fa-
cilities of these tools. In particular, we are trying to see how the vi-
sualisation tools of parallel Haskells i.e. EdenTV and ThreadScope,

compare to Vampir, the well established technology which is used
by mainstream manufacturers for visualising the performance data
of imperative parallel languages. Table 3 summaries how visualisa-
tion tools of functional profilers compare to imperative profilers.

Features

V
am

pi
r

m
pi

P

om
pP

E
de

nT
V

T
hr

ea
dS

co
pe

Dis tributed Memory + + - + -

Shared Memory + - + - +

Hybrid + - + - -

GU I + - - + +

Graphs + - - + +

Text Profile + + + + +

- + + + +

Interoperabi li ty + N/A N/A - -

Heterogenei ty + - + - -

Scalabil i ty + + N/A - N/A

U
sa

bi
li

ty Zooming + - - + +

Fi ltering + - - - -

Find + - - - -

Machines + + N/A + -

Processes + - N/A + N/A

Threads + - + + +

Synchronisation + - + - -

Messages + + - + -

Communications + - - + -

Overal l Act ivi ty + - - - +

+ - - - -

Imperative
Profilers

Funct ional
Profilers

Pr
og

ra
m

m
in

g
M

od
el

D
at

a
Pr

es
en

ta
ti

on
So

ft
w

ar
e

Pr
op

er
ti

es
 License

(Open Source)

V
is

ua
li

sa
ti

on

D
is

pl
ay

s/
V

ie
w

s

Two Profiles
Comparison

Table 3. Synopsis of Visualisation Tools.

6.1 Programming Model
As Table 3 (Programming Model) illustrates, there are differences
between these tools. Vampir can visualise the performance data of
multiple programming models e.g. MPI, OpenMP, MPI+OpenMP
or MPI+Accelerator. mpiP can only support MPI. ompP mainly
supports OpenMP but can also profile hybrid applications e.g.
MPI+OpenMP. EdenTV only supports the distributed-memory
parallel Eden. Likewise, ThreadScope only supports the shared-
memory Haskell (GHC-SMP).

In terms of the variety of programming models and parallel lan-
guages that these tools support, we can say that Vampir is more
flexible. Moreover, we have noticed that EdenTV and ThreadScope
are both visualisation tools for two parallel variants of the general
purpose programming language Haskell, which are Eden and GHC-
SMP respectively. Nonetheless, EdenTV cannot present the parallel
behaviour of GHC-SMP and ThreadScope cannot present the par-
allel behaviour of Eden.

short description of paper 9 2013/7/31

6.2 Presentation of Performance Data
Vampir, EdenTV and ThreadScope provide the user with a browser
to visualise graphically the performance data. However, mpiP and
ompP do not provide such a facility to the user; instead the perfor-
mance data is summarised into a text file which can be read by any
standard text editor. We think that presenting the performance data
graphically is important because graphs can help the user to quickly
identify any performance problems. Text based visualisation is use-
ful for presenting statistical information e.g. ratios, counters and
repetitive patterns about the parallel behaviour.

We found that Vampir, EdenTV and ThreadScope all provide
both types graphical views and textual views to their users. How-
ever, mpiP and ompP only present statistical information in the
form of text profiles which we think is a shortcoming of these two
tools.

6.3 Software Properties
Performance Visualisation tools are Software systems which are
used by programmers to tune and improve the behaviour of their
parallel programmes. A software system has properties that can
make it the ideal choice for its users. Here we will compare these
visualisation tools based on their software properties (see Table 3
(Software Properties)).

License. As Table 3 illustrates, the only proprietary visualisation
tools is Vampir; mpiP, ompP, EdenTV and ThreadScope are all
open source software.

Interoperability. Interoperability is the property of the software
system to be able to work with the products (outputs) of other
software systems. Here our concern is the ability of the visualisa-
tion tool to process trace files from different trace generation tools.
We found that Vampir is the only interoperable tool. Vampir can
process trace files of the format OTF2 which is the standard trace
format adopted by performance monitoring tools e.g. Score-P and
VampirTrace. In contrast, EdenTV and ThreadScope are not inter-
operable visualisation tools. The is because EdenTV can only pro-
cess trace files generated by GHC-Eden. Similarly, ThreadScope
cannot process trace format other than GHC-ELF. Therefore, both
EdenTV and ThreadScope are not interoperable tools.

Heterogeneity. Heterogeneity is the ability of the visualisation
tools to visualise the performance of heterogeneous parallel appli-
cations e.g. MPI+OpenMP+CUDA. We found that, Vampir and
ompP are the only tools that present performance information
of heterogeneous applications. ompP can only profile OpenMP
applications or hybrids of MPI+OpenMP. In contrast, Vampir is
more heterogeneous since it can support hybrid applications of
different paradigms e.g. MPI+Accelerator+Threads, MPI+CUDA,
PGAS+CUDA and MPI+PGAS. On the other hand, mpiP, EdenTV
and ThreadScope are not heterogeneous.

Scalability. Scalability is the ability of the visualisation tool to
show the performance of executions on a large number of pro-
cessors. In particular, scalability is an important issue for visual-
ising the performance of distributed-memory applications since the
number of processors on distributed-memory is growing exponen-
tially. However, scalability is not such a critical issue for shared-
memory applications because the number of processors in a sin-
gle shared-memory machine is limited and typically small. There-
fore, we compared the imperative visualisation tools for distributed
memory with the functional visualisation tools for distributed mem-
ory, i.e. Vampir and mpiP vs EdenTV.

Vampir is designed to target scalability. Vampir can scale to
a large number of processors and can process large numbers of
execution events e.g. up to 220,000 cores and up to 1012 recorded
events. In addition, mpiP can scale up to 65536 processes [41].

However, we could not find any publication claiming EdenTV to
be scalable or revealing the maximum number of processors it
can handle. On the other hand, we have used EdenTV to profile
a Concordance application on a Beowulf cluster and found that
increasing the number of processors significantly increased the size
of the trace file. When the trace file becomes too big to fit into main
memory, EdenTV will not be able to open it. Therefore, EdenTV is
not scalable.

6.4 Usability
We will focus on three main facilities which we think important to
help identify performance problems. These are zooming in and out
the performance graphs, filtering the performance data to show a
particular group of events in the performance graphs and finding a
specific event in a performance graph. As Table 3 (Usability) illus-
trates, all profiling tools with GUI provide zooming facilities i.e.
Vampir, EdenTV and ThreadScope. However, the graph zooming
of EdenTV and ThreadScope is quite basic. In contrast, Vampir has
more advanced zooming facilities, for example, the user can use the
mouse to select a specific part of the performance graph to be mag-
nified on the screen. Moreover, Vampir is the only profiling tool
that provides filtering and finding facilities. In terms of the variety
of performance graphs, each profiling tool provides a selection of
views, see Table 3 (Displays/Views). However, we emphasise that
Vampir provides more views than the other profiling tools.

6.5 Summary
We found that functional profilers provide good facilities for iden-
tifying parallel performance problems. However, comparing them
with imperative profilers shows that functional profilers can bene-
fit from lessons learned from developing imperative profilers. Our
study shows that imperative profilers are more advanced, support
different programming models, provide more facilities and have
adopted standardised formats. In addition, scalability is an impor-
tant feature of imperative distributed-memory profilers. However,
we found that scalability has not been considered in EdenTV. Fi-
nally, even though EdenTV and ThreadScope are both visualisa-
tion tools for two variants of the functional language Haskell, they
have different trace file extentions which make them incompatible
systems.

7. Related Work
Chung et al. [5] investigate how to reduce the cost of tracing by
tracing by selectively recording only certain classes of events us-
ing a set of standard HPC profiling tools. They evaluate their ap-
proach with an experimental study of the cost of five profiling tools:
IBM HPCT, Paraver, KOJAK, TAU and mpiP. Similar to our work,
they use two metrics to characterise the profiling tools: the runtime
overheads and the size of the collected profiling data. There are a
number of differences between their study and our work. Firstly,
[5] is restricted to one programming model, imperative program-
ming with MPI, whereas we cover a range of different program-
ming models (shared vs distributed memory) and paradigms (im-
perative vs functional). However, [5] uses 4 benchmark applica-
tions, whereas we are limited to one because it is difficult to find
multiple and similar benchmarks for all the programming models
we consider. Finally, [5] investigates the cost of profiling on larger
scales than we do. We were limited to small numbers of processors,
because we compare profiling tools for both distributed and shared
memory, inheriting the low processor limit of shared-memory ar-
chitectures.

Malony et al. [26] investigate overhead compensation in a pro-
totype extension of the TAU [36] profiling tool. They performed
experiments to evaluate the performance of their tool, measuring

short description of paper 10 2013/7/31

the runtime overhead but not the data size of profiles. However,
they did not vary the computation size or the number of PEs in
their experiments. They also did not compare their results with the
overheads of other profilers.

Jones Jr. et al. [18] introduce the GHC parallel profiling sys-
tem and the ThreadScope visualizer to the Haskell community. To
demonstrate the overheads of parallel profiling, the paper presents
the runtime overheads and trace file sizes of two microbenchmarks
(parallel Fibonacci and parallel quicksort). However, the authors do
not investigate the impact of computation size and number of cores
on the cost of profiling, nor do they compare their overheads with
those of other profiling tools.

8. Discussion
We have evaluated two functional profilers, GHC-PPS and EdenTV,
alongside four important imperative profilers. The comparison is
based on the SICSA Concordance benchmark [30], covers both
shared and distributed-memory parallel languages, and is per-
formed on common parallel architectures.

Unsurprisingly the summative profilers generate far less profil-
ing data. More interestingly both functional tracing profilers gen-
erate one or two orders of magnitude less data than the imperative
tracing profilers. While generating so much data may intrude on
the parallel execution, the benefit is that tools like Score-P/Vampir
can provide additional information to assist the programmer. (Sec-
tion 4).

Both tracing functional profilers induce very low runtime over-
heads: an order of magnitude less than the imperative tracing pro-
filers. Indeed the functional profiler overheads are no more than a
factor of two greater than the imperative summative profilers, i.e.
296% for mpiP compared with 9.4% for EdenTV, and 5.2% for
ompP compared with 10.5% for GHC-PP (Section 5).

Comparing the profilers for usability and data presentation, we
see that the functional profilers are relatively immature compared
with tools like Vampir for popular imperative technologies. The re-
sults also reflect the profiler design philosophies: summative tools
provide key information with minimal intrusion. The functional
profilers provide more information and some graphical visualisa-
tion, Vampir offers the greatest range of information, and the most
sophisticated and usable visualisation tools (Section 6).

Functional profilers could be improved in a number of ways.
Currently the data collection and visualisation options are relatively
modest, and both could be improved to reflect leading tools like
Vampir. Functional profiling architectures could better exploit tech-
niques proven by tools like Vampir. For example instead of differ-
ent visualisation tools to visualise two variants of parallel Haskell
one tool can be designed to visualise multiple variants. Similarly,
instead of producing different trace formats for each Haskell vari-
ant, a standard format is needed which can capture monitoring
data from a more generic abstract unit of computation resource.
While GHC-PPS represents a move in this direction, it is closely
entwined with GHC and has a relatively simple model of com-
putation resources. It is unclear how much profiling technologies
can be shared by the various parallel Haskell DSLs like the Par
Monad [27], Cloud Haskell [7], and HdpH [25].

Interesting challenges lie ahead: functional profilers must soon
address the issues of scalability and heterogeneity. The scalabil-
ity challenge is to collect useful information as the number of
cores grows exponentially and the bandwith available to each core
shrinks. The challenge of heterogeneity is to profile a program exe-
cuting on a range of compute resources, e.g. multicores and GPUs.

References
[1] M. Al Saeed, P. Trinder, and P. Maier. Critical Analysis of Parallel

Functional Profilers. School of Mathematical & Computer Sciences,
Heriot-Watt University, Scotland, UK, EH14 4AS, June 2013. HW-
MACS-TR-0099.

[2] R. A. Aydt. The Pablo Self-Defining Data Format. Department
of Computer Science, University of Illinois, Urbana, Illinois 61801,
1999.

[3] J. Berthold and R. Loogen. Visualizing Parallel Functional Program
Runs: Case Studies with the Eden Trace Viewer. In In Parallel
Computing: Architectures, Algorithms and Applications. Proceedings
of the International Conference ParCo 2007, Jülich, Germany, Sept.
2007.

[4] H. Brunst, D. Kranzlmüller, and W. Nagel. Tools for Scalable Parallel
Program Analysis - Vampir NG and DeWiz. In Z. Juhász, P. Kac-
suk, and D. Kranzlmüller, editors, Distributed and Parallel Systems,
volume 777 of The Kluwer International Series in Engineering and
Computer Science, pages 93–102. Springer US, 2005. ISBN 978-0-
387-23096-2.

[5] I.-H. Chung, R. E. Walkup, H.-F. Wen, and H. Yu. MPI Performance
Analysis Tools on Blue Gene/L. In SC 2006 Conference, Proceedings
of the ACM/IEEE, page 16, nov. 2006.

[6] A. Couch. Locating performance problems in massively parallel
executions. Proceedings of the IEEE, 81(8):1116–1125, aug 1993.
ISSN 0018-9219.

[7] J. Epstein, A. P. Black, and S. Peyton-Jones. Towards Haskell in the
Cloud. In Haskell ’11, Tokyo, Japan, pages 118–129. ACM Press,
2011.

[8] K. Fürlinger and M. Gerndt. ompP: A Profiling Tool for OpenMP. In
M. Mueller, B. Chapman, B. de Supinski, A. Malony, and M. Voss, ed-
itors, OpenMP Shared Memory Parallel Programming, volume 4315
of Lecture Notes in Computer Science, pages 15–23. Springer Berlin /
Heidelberg, 2008.

[9] K. Fürlinger and S. Moore. OpenMP-centric Performance Analysis of
Hybrid Applications. In Proceedings of the 2008 IEEE International
Conference on Cluster Computing (CLUSTER 2008), pages 160–166,
Tsukuba, Japan, Sept. 2008.

[10] M. Geimer, B. Kuhlmann, F. Pulatova, F. Wolf, and B. J. N. Wylie.
Scalable Collation and Presentation of Call-Path Profile Data with
CUBE. In Proc. of the Conference on Parallel Computing (ParCo),
Aachen/Jülich, Germany, pages 645–652, September 2007. Minisym-
posium Scalability and Usability of HPC Programming Tools.

[11] M. Geimer, F. Wolf, B. J. N. Wylie, E. brahm, D. Becker, and B. Mohr.
The Scalasca performance toolset architecture. Concurrency and
Computation: Practice and Experience, 22(6):702–719, 2010. ISSN
1532-0634.

[12] Ghc-Eden. The Parallel Haskell Compilation System.
http://www.mathematik.uni-marburg.de/ eden/. Accessed
on: May 2013.

[13] Ghc-Events. An Analysing Tool for Haskell Event Logs.
http://www.haskell.org/haskellwiki/Ghc-events. Ac-
cessed on: May 2013.

[14] K. Hammond, H.-W. Loidl, and A. Partridge. Visualising Granularity
in Parallel Programs: A Graphical Winnowing System for Haskell. In
Proceedings of the Glasgow Workshop on Functional Programming.
Springer, July 1995.

[15] K. Hammond, H.-W. Loidl, and P. Trinder. Parallel Cost Centre
Profiling. In Proceedings of the Glasgow Workshop on Functional
Programming, Ullapool, Scotland, Sept. 1997.

[16] T. Harris, S. Marlow, and S. P. Jones. Haskell on a Shared-Memory
Multiprocessor. In Proceedings of the 2005 ACM SIGPLAN workshop
on Haskell, Haskell ’05, pages 49–61, New York, NY, USA, 2005.
ACM. ISBN 1-59593-071-X.

[17] M. Heath and J. Etheridge. Visualizing the performance of parallel
programs. Software, IEEE, 8(5):29–39, sept. 1991. ISSN 0740-7459.
doi: 10.1109/52.84214.

short description of paper 11 2013/7/31

[18] D. Jones Jr., S. Marlow, and S. Singh. Parallel performance tuning
for Haskell. In Proceedings of the 2nd ACM SIGPLAN symposium on
Haskell, Haskell ’09, pages 81–92, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-508-6.

[19] D. J. King, J. Hall, and P. Trinder. A strategic profiler for Glasgow
Parallel Haskell. In The Proceedings of the International Workshop on
the Implementation of Functional Languages (IFL’98), London, Sept.
1998.

[20] A. Knpfer, R. Brendel, H. Brunst, H. Mix, and W. Nagel. Introducing
the Open Trace Format (OTF). In V. Alexandrov, G. Albada, P. Sloot,
and J. Dongarra, editors, Computational Science ICCS 2006, volume
3992 of Lecture Notes in Computer Science, pages 526–533. Springer
Berlin Heidelberg, 2006. ISBN 978-3-540-34381-3.

[21] J. Kohl and G. A. Geist. The PVM 3.4 tracing facility and XPVM 1.1.
In Proceedings of the Twenty-Ninth Hawaii International Conference
on System Sciences, volume 1, pages 290–299 vol.1, 1996.

[22] E. Kraemer and J. Stasko. The Visualization of Parallel Systems: An
Overview. Journal of Parallel and Distributed Computing, 18(2):105–
117, 1993. ISSN 0743-7315.

[23] H.-W. Loidl. Granularity in Large-Scale Parallel Functional Pro-
gramming. PhD thesis, Department of Computing Science, University
of Glasgow, Mar. 1998.

[24] R. Loogen, Y. Ortega-Mallén, and R. Peña-Marı́. Parallel Functional
Programming in Eden. Journal of Functional Programming, 15(3):
431–475, 2005.

[25] P. Maier and P. Trinder. Implementing a High-Level Distributed-
Memory Parallel Haskell in Haskell. In A. Gill and J. Hage, editors,
Implementation and Application of Functional Languages, volume
7257 of Lecture Notes in Computer Science, pages 35–50. Springer
Berlin Heidelberg, 2012. ISBN 978-3-642-34406-0.

[26] A. D. Malony, S. Shende, A. Morris, and F. Wolf. Compensation of
Measurement Overhead in Parallel Performance Profiling. Interna-
tional Journal of High Performance Computing Applications, 21(2):
174–194, May 2007. ISSN 1094-3420.

[27] S. Marlow, R. Newton, and S. Peyton Jones. A Monad for Determin-
istic Parallelism. In Haskell ’11, Tokyo, Japan, pages 71–82. ACM
Press, 2011.

[28] B. Mohr, A. D. Malony, S. Shende, and F. Wolf. Design and prototype
of a performance tool interface for OpenMP. The Journal of Super-
computing, 23:105–128, 2002.

[29] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach.
VAMPIR: Visualization and Analysis of MPI Resources. Supercom-
puter, 12:69–80, 1996.

[30] Phase I The SICSA MultiCore Challenge. Concordance application.
www.macs.hw.ac.uk/sicsawiki/index.php/Challenge PhaseI,
2010. Accessed on: November 2012.

[31] R. F. Pointon, P. W. Trinder, and H.-W. Loidl. The De-
sign and Implementation of Glasgow Distributed Haskell. In
IFL’00 — Intl. Workshop on the Implementation of Functional
Languages, volume 2011 of Lecture Notes in Computer Science,
pages 53–70, Aachen, Germany, Sept. 2000. Springer. URL
http://www.macs.hw.ac.uk/ dsg/gph/papers/ps/ifl00.ps.

[32] D. A. Reed, R. A. Aydt, T. M. Madhyastha, R. J. Noe, K. A. Shields,
and B. W. Schwartz. An Overview of the Pablo Performance Analysis
Environment. Department of Computer Science, University of Illinois,
1304 West Springfield Avenue, Urbana, IL 61801, 1992.

[33] C. Runciman and D. Wakeling. Profiling Parallel Functional Compu-
tations (Without Parallel Machines). In Glasgow Workshop on Func-
tional Programming, pages 236–251. Springer, 1993.

[34] Scalasca. The Scalasca Performance Toolset.
http://www.scalasca.org/. Accessed on: May 2013.

[35] Score-P. Scalable Performance Measurement Infrastructure for Par-
allel Codes. http://www.vi-hps.org/projects/score-p. Ac-
cessed on: January 2013.

[36] S. S. Shende and A. D. Malony. The TAU Parallel Performance Sys-
tem. International Journal of High Performance Computing Applica-
tions, 20(2):287–311, 2006.

[37] B. Struckmeier. Implementierung eines Werkzeugs zur Visualisierung
und Analyse paralleler Programmläufe in Haskell. Master’s thesis,
Philipps-Universität Marburg, Germany, In German, 2006.

[38] ThreadScope. A Graphical Timeline Browser for GHC Trace
Files. http://www.haskell.org/haskellwiki/ThreadScope,
2013. Accessed on: May 2013.

[39] P. W. Trinder, K. Hammond, J. S. Mattson Jr., A. S. Partridge, and S. L.
Peyton Jones. GUM: a Portable Parallel Implementation of Haskell.
In PLDI ’96, Philadelphia, USA, pages 78–88. ACM Press, 1996.

[40] Vampir. Performance Optimization. http://www.vampir.eu/.
Accessed on: January 2013.

[41] J. Vetter and C. Chambreau. mpiP: Lightweight, Scalable MPI Pro-
filing. http://mpip.sourceforge.net/. Accessed on: September
2012.

short description of paper 12 2013/7/31

