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Abstract

Probabilistic graphical models, such as Bayesian networks, allow representing conditional
independence information of random variables. These relations are graphically represented
by the presence and absence of arcs and edges between vertices. Probabilistic graphical
models are nonunique representations of the independence information of a joint proba-
bility distribution. However, the concept of Markov equivalence of probabilistic graphical
models is able to offer unique representations, called essential graphs. In this survey paper
the theory underlying these concepts is reviewed.
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1 Introduction

During the past decade Bayesian-network structure learning has become an important area
of research in the field of Uncertainty in Artificial Intelligence (UAI). In the early years of
Bayesian-network research at the end of the 1980s and during the 1990s, there was considerable
interest in the process of manually constructing Bayesian networks with the help of domain
experts. In recent years, with the increasing availability of data and the associated rise of
the field of data-mining, Bayesian networks are now seen by many researchers as promising
tools for data analysis and statistical model building. As a consequence, a large number of
papers discussing structure learning related topics have been published during the last couple
of years, rendering it hard for the novice to the field to appreciate the relative importance of
the various research contributions, and to develop a balanced view on the various aspects of
the field. The present paper was written in an attempt to provide a survey of the issue lying
at the very heart of Bayesian-network structure learning: (statistical) independence and its
representation in graphical form.

The goal of structure learning is to find a good generative structure relative to the data
and to derive the generative joint probability distribution over the random variables of this
distribution. Nowadays, graphical models are widely used to represent generative joint prob-
ability distributions.

A graphical model is a knowledge-representation formalism providing a graph representa-
tion of structural properties of uncertain knowledge. Bayesian networks are special cases of
graphical models; they offer a representation that is both powerful and easy to understand,
which might explain their current high level of popularity among UAI, machine-learning and
data-mining researchers.

Structure learning consists of two main, interrelated, problems:

(i) the evaluation problem, and

(ii) the identification problem.

The evaluation problem amounts to finding a suitable way of judging the quality of generated
network structures. Using a scoring criterion we can investigate how well a structure with its
associated constraints fits the data. Note that a scoring criterion allows comparing structures
with each other in such way that a structure-ordering becomes possible. As we compare
Bayesian networks comprising the same vertices, scoring criteria are based only on relation-
ships modelled by means of arcs. One expects that the better the independence relations
implied by the graph representation match the knowledge hidden in the data the higher the
score obtained by a scoring criterion, and this should be taken as one of a set of requirements
when designing a scoring criterion.

The identification problem concentrates on finding efficient methods to identify at least
one, maybe more, network structures given a scoring criterion. The total number of possi-
ble graph representations for a problem grows superexponentially with the total number of
random variables [12]. As a consequence, the application of brute-force algorithms is com-
putationally speaking infeasible. Thus practical methods for learning Bayesian networks use
heuristic search techniques to find a graph with a high score in the space of all possible
network structures.

In this survey paper we do not go into details of network scoring criteria; rather we focus
on another, however closely related, important element in all modern research regarding the
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learning of Bayesian networks: the identification of Bayesian networks that represent the
same joint probability distribution, i.e. they are Markov equivalent. Exploiting the notion of
Markov equivalence can yield computational savings by making the search space that must
be explored more compact [4]. There are various proposals in the literature to represent
Markov equivalent Bayesian networks. One of them, a proposal by Andersson et al, [1],
uses a special type of graph, called an essential graph, to act as a class representative for
Bayesian networks that encodes the same probabilistic independence information. Markov
independence is therefore a key issue in learning Bayesian networks. This paper summarises
the theory underlying equivalence of graphical models in terms of the underlying independence
relationship.

The paper is organised as follows. In the next section, basic notions from graph theory
and the logical notion of (statistical) independence are introduced. These act as the basis for
the graph representation of independence information as described in Section 3. Equivalence
of Bayesian networks is studied in depth in Section 4, where we are also concerned with
the properties of essential graphs. The paper is rounded off with remarks with respect to
the consequences of the theory summarised in this paper for the area of Bayesian-network
structure learning.

2 Preliminaries

We start by introducing some elementary notions from graph theory in Section 2.1. Next,
we review the foundation of the stochastic (or statistical) independence relation as defined in
probability theory in Section 2.2. We assume that the reader has access to a basic textbook
on probability theory (cf. [6]).

2.1 Basic concepts from graph theory

This subsection introduces some notions from graph theory based on Ref. [5]; it can be skipped
by readers familiar with these notions.

Sets of objects will be denoted by bold, upright uppercase letters, e.g. V. For singleton
sets {X}, we will often only write the element X instead of the set {X}. A graph is defined
as a pair G = (V(G),E(G)), with V(G) a finite set of vertices, where a vertex is denoted by
an uppercase letter such as V , X and Y , and E(G) ⊆ V(G) ×V(G) is a finite set of edges.
A graph H = (V(H),E(H)) is called an induced subgraph of graph G = (V(G),E(G)) if
V(H) ⊆ V(G) and E(H) = E(G) ∩ (V(H) ×V(H)). A graph G = (V(G),E(G)) for which
it holds that for each (X,Y ) ∈ E(G): (Y,X) ∈ E(G), X 6= Y , is called an undirected graph
(UG). An edge (X,Y ) ∈ E(G) in an undirected graph is also denoted by X − Y and called
an undirected edge. However, we will usually refer to undirected edges simply as edges if this
will not give rise to confusion. A graph G = (V(G),A(G)) is called a directed graph if it
comprises a finite set of vertices V(G), but, in contrast to an undirected graph, contains a
finite set of arcs, by some authors called arrows or directed edges, A(G) ⊆ V(G)×V(G) for
which it holds that for each (X,Y ) ∈ A(G): (Y,X) 6∈ A(G). An arc (X,Y ) ∈ A(G) is also
denoted by X → Y in the following.

A route in a graph G is a sequence V1, V2, . . . , Vk of vertices in V(G), where either Vi →
Vi+1, or Vi ← Vi+1, and possibly Vi − Vi+1, for i = 1, . . . , k − 1, k ≥ 1; k is the length of
the route. Note that a vertex may appear more than once on a route. A section of a route
V1, V2, . . . , Vk is a maximal undirected subroute Vi − · · · − Vj , 1 ≤ i ≤ j ≤ k, k ≥ 1, where Vi
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resp. Vk is called a tail terminal if Vi−1 ← Vi resp. Vk → Vk−1, and Vi resp. Vk is called a head
terminal if Vi−1 → Vi resp. Vk ← Vk−1. A path in a graph is a route, where vertices Vi and
Vi+1 are connected either by an arc Vi → Vi+1 or by an edge Vi − Vi+1. A path is a directed
path, if it contains at least one arc. A trail in a graph is a route where each arc appears at
most once and, in addition, the vertices in each section of the trail appear at most once in the
section. A slide is a special directed path with V1 → V2 and Vi−Vi+1 for all 2 ≤ i ≤ k− 1. A
graph has a directed cycle if it contains a directed path, which begins and ends at the same
vertex, i.e. V1 = Vk.

A graph G = (V(G),E(G)) is called a chain graph if it contains no directed cycles. An
acyclic directed graph (ADG) is a chain graph that is a directed graph. Note that undirected
graphs are special cases of chain graphs as well. Due to the acyclicity property of chain graphs,
the vertex set of a chain graph can be partitioned into subsets V(1)∪V(2)∪· · ·∪V(T ), T ≥ 1,
such that each partition only consists of edges and if X → Y , then X ∈ V(i) and Y ∈ V(j),
i 6= j. Based on this we can define a total order ≤ on vertices in a chain graph, such
that if X ∈ V(i) and Y ∈ V(j), with i < j, then X < Y , and if i = j, then X = Y

(i.e. they are in the same V(i)). This order can be generalised to sets such that X ≤ Y

if for each X ∈ X and Y ∈ Y we have that X ≤ Y . Subsets V(1),V(2), . . . ,V(T ) are
called the chain components of the graph. A set of concurrent variables of V(t) is defined
as C(t) = V(1) ∪V(2) ∪ · · · ∪V(t), 1 ≤ t ≤ T . Any vertex X in an ADG that is connected
by a directed path to a vertex Y is called a predecessor of Y ; the set of predecessors of Y is
denoted by pr(Y ).

We say that the vertex X ∈ V(G) is a parent of Y ∈ V(G) if X → Y ∈ A(G); the set of
parents of Y is denoted by π(Y ). Furthermore, Y is then called X’s child ; the set of children
of vertex X is denoted by ch(X). Two vertices X,Y ∈ V(G) are neighbours, if there is an
edge between these two vertices. The boundary of vertex X ∈ V(G), denoted by bd(X), is the
set of parents and neighbours of X, while the closure of X, denoted by cl(X), is defined as
cl(X) = bd(X)∪ {X}. Note that the boundary of a vertex X in an undirected graph is equal
to its set of neighbours. The set of ancestors of a vertex X is the set of vertices α(X) ⊆ V(G)
where there exists a path from each Y ∈ α(X) to X, but there exists no path from X to Y ,
whereas the set of descendants of X, denoted by δ(X), is the set of vertices δ(X) ⊆ V(G),
where there exists a path from X to each Y ∈ δ(X), but no path from Y to X. The set of
non-descendants of X, denoted by δ̄(X), is equal to V(G)\(δ(X)∪{X}). If for some W ⊆ V

it holds that bd(X) ⊆W, for each X ∈W, then W is called an ancestral set. By an(W) is
denoted the smallest ancestral set containing W.

From the chain graph G we can derive the moral graph Gm by the following procedure,
called moralisation:

(i) add edges to all non-adjacent vertices, which have children in a common chain compo-
nent, and

(ii) replace each arc with an edge in the resulting graph.

A moral graph is therefore an undirected graph.
A chord is an edge or arc between two non-adjacent vertices of a path. A graph is called

chordal if every cycle of length k ≥ 4 has a chord.
As mentioned above, two vertices can be connected by an arc or an edge. If two distinct

vertices X,Y ∈ V(G) are connected but it is unknown whether by an edge or arc, we write
X · · · Y , where the symbol · · · denotes this connection.
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2.2 Axiomatic basis of the independence relation

We continue by providing the basic definition of (conditional) independence that underlies
almost all theory presented in this paper. The idea that conditional independence is a uni-
fying notion of relationships among components of many mathematical structures was first
expressed by Dawid [2].

Definition 1 (conditional independence) Let V be a set of random variables with X,Y,Z ⊆
V disjoint sets of random variables, and let P be a joint probability distribution defined on
V, then X is said to be conditionally independent of Y given Z, denoted by X ⊥⊥P Y | Z, if

P (X | Y,Z) = P (X | Z). (1)

Conditional independence can be also interpreted as follows: learning about Y has no effect
on our knowledge concerning X given our beliefs concerning Z, and vice versa. If Definition 1
does not hold, then X and Y are said to be conditionally dependent given Z, which is written
as follows:

X 6⊥⊥P Y | Z. (2)

We will often write X ⊥⊥P Y | Z instead of {X} ⊥⊥P {Y } | {Z}.
Next, we will introduce the five most familiar axioms, called the independence axioms

or independence properties, which the independence relation ⊥⊥P satisfies. An example is
provided for each of the axioms, freely following Ref. [3]. As the independence axioms are
valid for many different mathematical structures, and we are concerned in this paper with
independence properties represented by graphs—examples of such mathematical structures—
we will use graphs to illustrate the various axioms. However, a discussion on how such graphs
should be interpreted in the context of probability theory is postponed to the next section.
In the example graphs of this paper, the first set X in the triple X ⊥⊥P Y | Z is coloured
lightly grey, the second set Y is coloured medium grey and the set Z dark grey. If a vertex
in the graph does not participate in an independence property illustrated by the example, it
is left unshaded.

The independence relation ⊥⊥P satisfies the following independence axioms or indepen-
dence properties:1

• P1: Symmetry. Let X,Y,Z ⊆ V be disjoint sets of random variables, then

X ⊥⊥P Y | Z⇐⇒ Y ⊥⊥P X | Z.

If knowing X is irrelevant to our knowledge about Y given that we believe Z, then the
reverse also holds. An example is given in Figure 1(a).

• P2: Decomposition. Let X,Y,Z,W ⊆ V be disjoint sets of random variables, then

X ⊥⊥P Y ∪W | Z ⇒ X ⊥⊥P Y | Z ∧ X ⊥⊥P W | Z.

1Here and in the following we will always assume that the sets participating in the various independence
relations ⊥⊥ are disjoint, despite the fact that this is not strictly necessary. However, as disjoint and non-
disjoint sets bear a completely different meaning, and it does not appear to be a good idea to lump these two
meanings together, we have decided to restrict our treatment to disjoint sets, as this seems to offer the most
natural interpretation of (in)dependence.
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This property states that if both Y and W are irrelevant with regard to our knowledge
of X assuming that we believe Z, then they are also irrelevant separately. See the
example in Figure 1(b).

• P3: Weak union. Let X,Y,Z,W ⊆ V be disjoint sets of random variables, then

X ⊥⊥P Y ∪W | Z⇒ X ⊥⊥P W | Y ∪ Z ∧ X ⊥⊥P Y | Z ∪W.

It expresses that when learning about Y and W is irrelevant with respect to our knowl-
edge about X given our beliefs about Z, then W will remain irrelevant when our beliefs
do not only include Z but also Y (the same holds for W). The weak union relation is
illustrated by Figure 1(c).

• P4: Contraction. Let X,Y,Z,W ⊆ V be disjoint sets of random variables, then

X ⊥⊥P Y | Z ∧ X ⊥⊥P W | Y ∪ Z⇒ X ⊥⊥P W ∪Y | Z.

Contraction expresses the idea that if learning about Y is irrelevant to our knowledge
about X given that we believe Z and in addition learning about W does not change
our knowledge with respect to X either, then the irrelevance of W with respect to X

is not dependent on our knowledge of Y, but only on Z. The notion of contraction is
illustrated by Figure 1(d).

• P5: Intersection. Let X,Y,Z,W ⊆ V be disjoint sets of random variables, then

X ⊥⊥P Y | Z ∪W ∧ X ⊥⊥P W | Z ∪Y ⇒ X ⊥⊥P Y ∪W | Z.

The intersection property states that if learning about Y has no effect on our knowledge
about X assuming that we believe Z and W, knowing, in addition, that our knowledge
of W does not affect our knowledge concerning X if we also know Y, then learning about
Y and W together has also no effect on X. This property only holds for strictly positive
joint probability distributions. An example of the intersection property is shown in
Figure 1(e).

Any model satisfying the independence axioms P1 to P4 is called a semi-graphoid, whereas
any model of the axioms P1 to P5 is called a graphoid. Any joint probability distribution
P satisfies axioms P1 to P4, while a joint probability distribution only satisfies P5 if its
co-domain is restricted to the open interval (0, 1), i.e. it is a joint probability distribution
that does not represent logical relationships. A counterexample of the intersection property
is shown in Table 1. Here, each random variable can take values a or b. There are only four
possibilities, each having a probability equal to 1

4 , and the other possibilities have probability
equal to 0. It holds that X ⊥⊥P W | Z ∪Y and X ⊥⊥P Y | Z ∪W , however X 6⊥⊥P Y ∪W | Z.

The independence axioms P1 to P4 were first introduced by Pearl (cf. [10]); he claimed
that they offered a finite characterisation of the independence relation (Pearl’s famous “com-
pleteness conjecture”). This statement, however, was shown to be incorrect by Studený after
he discovered an axiom which indeed appeared to be a property of the independence relation,
yet could not be deduced from axioms P1 to P4 [13]. Subsequently, Studený proved that no
finite axiomatisation of the independence relation exists [14].

The five axioms mentioned above are well known by researchers in probabilistic graphical
models; however, there are a number of other axioms which are also worth mentioning. We
mention four of these axioms:
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Y

⇔

(a) Symmetry

X

Z

Y W

X

Z

Y W

X

Z

Y W
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(b) Decomposition

X

Z

Y W

X

Z

Y W

X

Z

Y W

⇒ ∧

(c) Weak union

X

Z

Y W

X

Z

Y W

X

Z

Y W

∧ ⇒

(d) Contraction

X

Z

Y W

X

Z

Y W

X

Z

Y W

∧ ⇒

(e) Intersection

Figure 1: Example graphs illustrating the following independence axioms: (a) Symmetry, (b)
Decomposition, (c) Weak union, (d) Contraction and (e) Intersection.
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X Y W Z

a a a a

a a a a

b a a a

b b b a

Table 1: Counterexample to the intersection property.

• P6: Strong union. Let X,Y,Z,W ⊆ V be disjoint sets of random variables, then

X ⊥⊥P Y | Z⇒ X ⊥⊥P Y | Z ∪W.

This property says that if learning about Y does no convey any knowledge with regard to
X given our beliefs concerning Z, then this knowledge concerning Y remains irrelevant
if our beliefs also include W. An example is shown in Figure 2(a).

It holds that strong union implies weak union [3].

• P7: Strong transitivity. Let X,Y,Z,W ⊆ V be disjoint sets of random variables, then

X 6⊥⊥P W | Z ∧ Y 6⊥⊥P W | Z⇒ X 6⊥⊥P Y | Z.

This property says that if based on our beliefs concerning Z, observing W will learn us
something about both X and Y, then our beliefs concerning Z already made X and Y

relevant to each other. Applying the equivalence a⇒ b ≡ ¬b⇒ ¬a, strong transitivity
can be rewritten to

X ⊥⊥P Y | Z⇒ X ⊥⊥P W | Z ∨ Y ⊥⊥P W | Z.

For an example see Figure 2(b).

• P8: Weak transitivity. Let X,Y,Z,W ⊆ V be disjoint sets of random variables, then

X 6⊥⊥P W | Z ∧ Y 6⊥⊥P W | Z⇒ X 6⊥⊥P Y | Z ∨ X 6⊥⊥P Y | Z ∪W.

Weak transitivity is an extension of strong transitivity and states that if X and Y are
separately dependent of W given our beliefs about Z, then it holds that knowledge ex-
change between X and Y is accomplished via Z or Z and W. Applying the equivalence
a⇒ b ≡ ¬b⇒ ¬a the above mentioned dependence relation can also be written as

X ⊥⊥P Y | Z ∧ X ⊥⊥P Y | Z ∪W⇒ X ⊥⊥P W | Z ∨ Y ⊥⊥P W | Z.

This property is illustrated in Figure 2(c).

It holds that strong transitivity implies weak transitivity [3].
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Z

Y W

⇒

(a) Strong union

X

Z

Y W

X

Z

Y W

X

Z

Y W

⇒ ∨

(b) Strong transitivity

X

Z

Y W

X

Z

Y W

X

Z

Y W

X

Z

Y W

∧ ⇒ ∨

(c) Weak transitivity

X

Z

Y

W

X

Z

Y

W

X

Z

Y

W

X

Z

Y

W∧ ⇒ ∨

(d) Chordality

Figure 2: Example graphs illustrating the following independence axioms: (a) Strong union,
(b) Strong transitivity, (c) Weak transitivity and (d) Chordality.
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• P9: Chordality. Let X,Y,Z,W ⊆ V be disjoint sets of random variables, then

X 6⊥⊥P Y | Z ∧ X 6⊥⊥P Y |W⇒ X 6⊥⊥P Y | Z ∪W ∨ Z 6⊥⊥P W | X ∪Y.

It implies that if learning about Y yields knowledge about X, having beliefs concerning
Z, and the same holds when we have beliefs about W, then our knowledge about Y is
still relevant to our knowledge about X if we know both Z and W, or our knowledge
about both Z and W makes Z and W exchange knowledge. It is equivalent to

X ⊥⊥P Y | Z ∪W ∧ Z ⊥⊥P W | X ∪Y ⇒ X ⊥⊥P Y | Z ∨ X ⊥⊥P Y |W.

An example of chordality is depicted in Figure 2(d).

3 Graphical representation of independence

In this section, we discuss the representation of the independence relation by means of graphs,
the rest of this paper will be devoted to this topic. In the previous section, the conditional
independence relationship was defined in terms of a joint probability distribution P . In
Section 3.1 closely related notions of graph separation are defined and informally linked to
conditional independence. In Section 3.2, various special Markov properties are introduced
and discussed, building upon the separation criteria from Section 3.1. Finally, in Section 3.3,
possible relationships between conditional (in)dependences in joint probability distributions
and the graph separation properties introduced earlier are established formally. This provides
a semantic foundation for the various types of graphs in terms of the theory of statistical
independence. Let G = (V(G),E(G)) be an undirected graph, and let V be a set of random
variables, such that there is a one-to-one correspondence V ↔ V(G) between V and V(G).
Due to this one-to-one correspondence we will normally not sharply distinguish between
random variables and vertices; the context will make clear whether random variables or
vertices are meant.

3.1 Graph separation and conditional independence

The independence relation defined earlier can be represented as a graphical model, where
arcs and edges represent the dependences, and absence of arcs and edges represents the
(conditional) independences. Arcs and edges represent roughly the same (in)dependence
information; however, there are some differences between the meaning of arcs and edges. The
actual interpretation is subtle, and is the topic of this and subsequent sections. In this section,
we provide the foundation for representing conditional independence statements by graphs,
and we cover the similarities between these principles for undirected, acyclic directed as well
as for chain graphs.

In an undirected graph G = (V(G),E(G)) two vertices X,Y ∈ V(G) are dependent if
X − Y ∈ E(G); if X and Y are connected by a single path containing an intermediate vertex
Z ∈ V(G), Z 6= X,Y , then X and Y are conditionally independent given Z. This is the
underlying idea of the following separation criterion (cf. [3]):

Definition 2 (u-separation) Let G = (V(G),E(G)) be an undirected graph, and X,Y,S ⊆
V(G) be disjoint sets of vertices. Then if each path between a vertex in X and a vertex
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Y

Z

X

W

P

Q

R T

Figure 3: Graphical illustration of u-separation. Vertex P and vertices {R, T} are u-separated
by vertices {Q,W}, while vertex P and vertices {R, T} are u-connected by Q.

in Y contains a vertex in S, then it is said that X and Y are u-separated by S, denoted
by X ⊥⊥G Y | S. Otherwise, it is said that X and Y are u-connected by S, denoted by
X 6⊥⊥G Y | S.

The basic idea of u-separation can be illustrated by Figure 3; for example, P is u-separated
from {R, T} by {Q,W}, i.e. P ⊥⊥G {R, T} | {Q,W}, whereas P and {R, T} are u-connected
by vertex Q, i.e. P 6⊥⊥G {R, T} | {Q}.

The independence relation represented by means of an ADG can be uncovered by means
of one of the following two procedures:

• d-separation, as introduced by Pearl (cf. [10]);

• moralisation, as introduced by Lauritzen (cf. [7]).

First we discuss d-separation based on Ref. [9]. Let the distinct vertices X,Y,Z ∈ V(G)
constitute an induced subgraph of the ADG G = (V(G),A(G)), with (X · · ·Z), (Y · · ·Z) ∈
A(G) and X and Y are non-adjacent. Because the direction of the arcs between X,Z and
Y,Z is unspecified, there are four possible induced subgraphs, which we call connections,
illustrated in Figure 4.2 These four possible connections offer the basis for the representation
of conditional dependence and independence in ADGs. The two serial connections shown in
Figure 4(a) and Figure 4(b) represent exactly the same independence information; this is also
the case for the divergent connection represented in Figure 4(c). Figure 4(d) illustrates the
situation where random variables X and Y are initially independent, but become dependent
once random variable Z is instantiated.

Let S ⊆ V(G), and X,Y ∈ (V(G) \ S) be distinct vertices, which are connected to each
other by the trail τ . Then τ is said to be blocked by S if one of the following conditions is
satisfied:

• Z ∈ S appears on the trail τ , and the arcs of τ meeting at Z constitute a serial or
divergent connection;

2The terminology used in Figure 4 varies in different papers. Here the meaning of serial connection cor-
responds to head-to-tail meeting, divergent connection to tail-to-tail meeting and convergent connection to
head-to-head meeting.
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• Z 6∈ S, δ(Z)∩S = ∅ and the arcs meeting at Z on τ constitute a convergent connection,
i.e. if Z appears on the trail τ then neither Z nor any of its descendants occur in S.

The notion of d-separation exploits this notion of blocking, taking into account that vertices
can be connected by more than one trail:

Definition 3 (d-separation) Let G = (V(G),A(G)) be an ADG, and let X,Y,S ⊆ V(G)
be disjoint sets of vertices. Then X and Y are said to be d-separated by S, denoted by
X ⊥⊥d

G Y | S, if each trail τ in G between each X ∈ X and each Y ∈ Y is blocked by S;
otherwise, X and Y are said to be d-connected by S, denoted by X 6⊥⊥d

G Y | S.

As an example, consider the graph in Figure 5(a), where the vertices Z and P are connected
by the following three trails: τ1 = Z → X → W ← P ; τ2 = Z → X → W → Q ← P and
τ3 = Z → X → W → R → T ← Q ← P . Then trail τ1 is blocked by S = {X,Y }; since
Y does not appear on this trail and the arcs on τ1 meeting at X form a serial connection.
As X blocks τ2 and τ3 following Definition 3, we conclude that S d-separates Z and P . On
the other hand, neither S′ = {Y,W} nor S′′ = {Y, T} block τ1, because X → W ← P is a
convergent connection, W ∈ S′; and T is a descendant of vertex W which occurs in S′′; it
also participates in a convergent connection with respect to τ3. Thus not every trail between
Z and P in G is blocked by S′ or S′′, and Z and P are d-connected by S′ or S′′.

Next, we discuss the procedure of moralisation. Recall that the procedure of moralisation
of a graph G consists of two steps:

(i) non-adjacent parents of a common chain component become connected to each other
by an edge, and

(ii) each arc becomes an edge by removing its direction, resulting in an undirected graph.

An example of moralisation is presented in Figure 5. Since acyclic directed graphs are chain
graphs, moralisation can also be applied to ADGs, where each chain component contains ex-
actly one vertex. Observe that during the first step of the moralisation procedure, there may
be extra edges inserted into the graph. Since edges between vertices create a dependence be-
tween random variables, vertices which became connected in the first step have a dependence
relation in the resulting undirected graph. For example, as X and P have a common child
W , and R and Q have a common child T , the graph in Figure 5(a) is extended by two extra
edges X−P and R−Q. The resulting graph after the first step of moralisation is depicted in
Figure 5(b). The moral graph, obtained by replacing arcs by edges, is shown in Figure 5(c).

X

Z

Y

(a) serial
connection

X

Z

Y

(b) serial
connection

X

Z

Y

(c) divergent
connection

X

Z

Y

(d) convergent
connection

Figure 4: The four possible connections for acyclic directed graph G = (V(G),A(G)) given
vertices X,Y,Z ∈ V(G) with arcs (X · · ·Z), (Y · · ·Z) ∈ A(G).
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Observe that moralisation transforms the independences and dependences represented by d-
separation (d-connection) into u-separation (u-connection). In the resulting moral graph, the
vertices X and P and the vertices R and Q have become dependent of one another, and
thus, some independence information is now lost. This independence information, however,
can still be represented in the underlying joint probability distribution such that it still holds
that Z ⊥⊥P P | Y . However, it is also possible to parametrise the moralisation procedure on
the vertices which potentially gives rise to extra dependences. This possibility is a consequence
of the meaning of a convergent connection X → Z ← Y , because X and Y are independent
if Z is not instantiated, and only become dependent if we know Z. If this is the case, and
if we also assume that we know X (or Y ), the dynamically created dependence between X

and Y gives rise to a type of reasoning known as explaining away [11]: Y (X) becomes less
or more likely if we know for certain that X (Y ) is the cause of Z.

The moralisation procedure takes the presence of created dependences into account by
means of the ancestral set, introduced in Section 2.1. Hence, this form of moralisation pre-
serves all relevant (independence) information represented in the original ADG. The cor-
respondence between d-separation and u-separation after moralisation is established in the
following proposition:

Proposition 1 Let G = (V(G),A(G)) be an acyclic directed graph with disjoint sets of
vertices X,Y,S ⊆ V(G). Then X and Y are d-separated by S iff X and Y are u-separated in
the moral graph Gm

an(X∪Y∪S), where an(X∪Y∪S) is the smallest ancestral set of X∪Y∪S.

Proof : See Ref. [5], page 72. �

Figure 6 illustrates Proposition 1 by means of the conditional independence Z ⊥⊥d
G P | {X,Y }

and the conditional dependence Z 6⊥⊥d
G P | {Y,W} represented in the graph shown in Figure

5(a). We start by investigating the conditional independence Z ⊥⊥d
P P | {X,Y }. The smallest

ancestral set of {Z} ∪ {P} ∪ {X,Y } is an({Z,P,X, Y }) = {Z,P,X, Y }; the graph depicted
in Figure 6(a) contains all vertices of an({Z,P,X, Y }) for the graph shown in Figure 5(a).
We see that vertex P is disconnected from the subgraph Y → Z → X. The moral graph of
this smallest ancestral set is shown in Figure 6(b). Observe that in graph (b) the vertices
Z and P are (unconditionally) independent, as there is no path between them. Therefore,
Z ⊥⊥d

G P | {X,Y } still holds, although now as Z ⊥⊥Gm P | {X,Y }, as in the original
graph in Figure 5(a). The situation where we wish to keep the conditional dependence
Z 6⊥⊥d

P P | {Y,W} is illustrated by Figures 6(c) and 6(d). In Figure 6(c) the subgraph
associated with the smallest ancestral set an(Z ∪ P ∪ {Y,W}) = {Z,P,X, Y,W} is shown,
and Figure 6(d) gives the resulting moral graph of Figure 6(c). In the graph (d) we can see
that vertices Z and P are connected by a path, therefore, the created dependence between X

and P is now represented in the moral graph of G.
Moralisation can also be applied to chain graphs; however, there is also another read-off

procedure, called c-separation, introduced by Studený and Bouckhaert [8]. The concept of
c-separation generalises both u-separation and d-separation.

The concept of c-separation takes into account the chain graph property that vertices
may be connected by either edges or arcs. Let G = (V(G),E(G)) be a chain graph and let σ

denote a section of the trail τ in G. Then σ is blocked by S ⊆ V(G), if one of the following
conditions holds:

• Z ∈ S appears on the section σ, where σ has one head and one tail terminal and every
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X
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P

Q

R T

(a)

Y

Z

X

W

P

Q

R T

(b)

Y

Z

X

W

P

Q

R T

(c)

Figure 5: An example of the moralisation procedure as applied to the graph shown in Figure
(a). Graph (b) depicts the resulting graph after application of the first step of moralisation.
Note that the vertices X and P and the vertices R and Q are non-adjacent parents of the same
child, therefore they became connected by an edge. Graph (c) results after changing the arcs
in graph (b) into edges. Applying the definition of d-separation, it holds that Z ⊥⊥d

G P | Y in
graph (a); however for the moral graph in (c) we have that Z 6⊥⊥Gm P | Y .
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Y

Z
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(a)

Y

Z

X P

(b)

Y

Z

X

W

P

(c)

Y

Z

X

W

P

(d)

Figure 6: Illustration of Proposition 1 with regard to the conditional independence Z ⊥
⊥d

G P | {X,Y } and the conditional dependence Z 6⊥⊥d
G P | {Y,W} which holds for the

graph G shown in Figure 5(a). The induced subgraph H of this graph shown in Figure
(a) above corresponds to an({Z,P,X, Y }); in (b) its associated moral graph is represented.
We see that the conditional independence Z ⊥⊥Hm P | {X,Y } still holds. Figure (c) above
shows the induced subgraph L of graph 5(a) corresponding to the smallest ancestral set of
{Z} ∪ {P} ∪ {Y,W}. The graph Lm in (d) is the moral version of this graph. We see that
the conditional dependence Z 6⊥⊥Lm P | {Y,W} holds for this moral graph. Hence, in both
cases, all relevant (in)dependence information is preserved.
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slide of the tail terminal is mediated by Z, or σ has two tail terminals and every slide
of at least one of the two tail terminals is mediated by Z;

• Z ∈ S does not appear on the section σ, where σ has two head terminals and Z 6∈ δ(σ).

Based on these conditions we define the c-separation as follows.

Definition 4 (c-separation) Let G = (V(G),E(G)) be a chain graph. Then two distinct
vertices X,Y ∈ V(G) are c-separated by S ⊆ (V(G)\{X,Y }), if at least one of the sections of
each trail τ between the vertices X and Y is blocked by S, written as X ⊥⊥κ

G Y | S. Otherwise,
X and Y are c-connected by S and we write X 6⊥⊥κ

G Y | S.

As an example we use the chain graph presented in Figure 7(a). We examine whether
Z ⊥⊥κ

G T | {X,Q,R} (i.e. we have S = {X,Q,R}). The following three trails between Z and
T will be investigated: τ1 = Z → X −W ← P → Q → T with sections σ11 = X −W and
σ12 = Q; τ2 = Z → X−W −Q→ T with section σ21 = X−W −Q and τ3 = Z → X−W →
R → T with sections σ31 = X −W and σ32 = R. In trail τ1 section X −W has two head-
terminals and because X ∈ S section σ11 does not block trail τ1. In contrast to σ11, σ12 has
one head and one tail terminal (the terminals are both equal to vertex Q) and slide P → Q is
mediated and therefore blocked by Q. Since a trail is blocked if at least one of its sections is
blocked by S, we conclude that trail τ1 is blocked by S = {X,Q,R}. Section X −W −Q in
trail τ2 has one head and one tail terminal, and satisfies the first blocking condition, because
the slides P → Q and Z → X −W − Q are both mediated by Q ∈ S. Therefore, trail τ2

is also blocked by S. This is also the case for trail τ3 with section X −W , which has one
head and one tail terminal and slides Z → X −W → R and P → Q −W → R are both
mediated by R ∈ S, thus τ3 is also blocked by S. There are also other trails between vertices
Z and T (e.g. Z → X −W −Q ← P → Q−W → R → T ), which are not mentioned here,
because their sections are the same as in trails τ1, τ2 and τ3. Therefore, these trails are also
blocked by S. Thus, following Definition 4, the conditional independence relation contains
Z ⊥⊥κ

G T | {X,Q,R}.

3.2 Markov properties of graphical models

The dependence and independence relations determined by a joint probability distribution
defined on the random variables corresponding to the vertices of a graph are graphically
represented by the so-called Markov properties. We start by examining Markov properties
for chain graphs, and next consider Markov properties for undirected and acyclic directed
graphs, as these are special cases of chain graphs.

Each chain Markov property introduced below is illustrated by an example based on the
chain graph shown in Figure 7(a). Vertices in the figures are presented using various shades
depending on the role they play in visualising conditional independence properties. As before,
we have that, for example, X ∈ V(G) is a vertex, while X ⊆ V(G) represents a set of vertices.

A chain graph G = (V(G),E(G)) is said to obey:

• the pairwise chain Markov property, relative to G, if for any non-adjacent disjoint pair
X,Y ∈ V(G) with Y ∈ δ̄(X):

X ⊥⊥κ
G Y | δ̄(X) \ {Y }. (3)
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Recall that δ̄(X) is the set of non-descendants of X. For the corresponding example
shown in Figure 7(b) it holds that δ̄(X) = {Z, Y, P,W} and therefore this property
expresses that X ⊥⊥κ

G Y | {Z,P,W}.

• the local chain Markov property, relative to G, if for any vertex X ∈ V(G):

X ⊥⊥κ
G δ̄(X) \ bd(X) | bd(X). (4)

Figure 7(c) illustrates this property by X ⊥⊥κ
G {Y, P} | {Z,W}.

• the global chain Markov property, relative to G, if for any triple of disjoint sets X,Y, Z

⊆ V(G):

X ⊥⊥κ
G Y | Z. (5)

Figure 7(d) includes the following example of the global chain Markov property: {X,W,

P,Q, R, T} ⊥⊥κ
G Y | Z.

• the block-recursive chain Markov property, relative to G, if for any non-adjacent disjoint
pair X,Y ∈ V(G):

X ⊥⊥κ
G Y | C(t∗) \ {X,Y }, (6)

where C(t) is the set of concurrent variables of V(t) and t∗ is the smallest t with
X,Y ∈ C(t). This is shown in Figure 7(e). The well-ordered partitioning of a chain
graph is not unique. In our example we take the following order of the partitioning:
{Y } < {Z} < {P} < {X,W,Q} < {R} < {T}, where corresponding to Section 2.1
V(1) = {Y }, V(2) = {Z}, . . . ,V(6) = {T} (hence, by this ordering t = 6). Then based
on this partitioning, the block-recursive chain Markov property states for example that
it holds that X ⊥⊥κ

G R | {Y,Z,W,P,Q} with t∗ = 5.

Based on the Markov properties for chain graphs, we will derive the related properties for
undirected graphs, followed by acyclic directed graphs. As before, the undirected Markov
properties are illustrated by means of figures. Here the graph in Figure 8(a) is taken as the
example undirected graph.

Let G = (V(G),E(G)) be an undirected graph. Due to the fact that undirected graphs
do not include arcs we cannot distinguish between ancestors and descendants of vertices; non-
descendants δ̄(X) in the chain Markov properties have to be replaced by the entire vertex
set V(G). In addition, the block-recursive chain Markov property makes no sense for the
undirected graphs, because they do not have directionality. The undirected graph G is said
to obey:

• the pairwise undirected Markov property, relative to G, if for any non-adjacent vertices
X,Y ∈ V(G):

X ⊥⊥G Y | V(G) \ {X,Y }. (7)

In this case the set of non-descendants δ̄(X) from the chain property case is replaced
by V(G). The example in Figure 8(b) shows that X ⊥⊥G Y | {Z,W,P,Q,R, T}.
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(a) The chain graph
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(b) Pairwise chain Markov property
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(c) Local chain Markov property
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(d) Global chain Markov property
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(e) Block-recursive Markov property

Figure 7: Graphical illustration of the chain Markov properties, taking the chain graph in (a)
as an example. Shown are (b): the pairwise chain Markov property X ⊥⊥κ

G Y | {Z,P,W};
(c): the local chain Markov property X ⊥⊥κ

G {Y, P} | {Z,W}; (d): the global chain Markov
property {X,W,P,Q,R, T} ⊥⊥κ

G Y | Z; (e): the block-recursive Markov property X ⊥⊥κ
G R |

{Y,Z,W,P,Q}.
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• the local undirected Markov property relative to G, if for any X ∈ V(G):

X ⊥⊥G V(G) \ cl(X) | bd(X), (8)

where bd(X) is the boundary or undirected Markov blanket (the minimal boundary) of X

and cl(X) is the closure of X defined in Section 2.1. As was mentioned above δ̄(X) of the
chain property is replaced by V(G). Observe that in the local chain Markov property
the expression δ̄(X) \ bd(X) does not contain the random variable X, which would not
be the case for V(G) \ bd(X). Therefore, the boundary set bd(X) is replaced by cl(X).
Graph (c) in Figure 8 depicts X ⊥⊥G {Y, P,Q,R, T} | {Z,W}, i.e. bd(X) = {Z,W}.

• the global undirected Markov property, relative to G, if for any triple of disjoint sets
X,Y, Z ⊆ V(G):

X ⊥⊥G Y | Z. (9)

For this property no changes need to be made with regard to the corresponding chain
Markov property. An example for this property is given in Figure 8(d); here:
{X,W,P,Q,R, T} ⊥⊥G Y | Z.

Finally we consider Markov properties for ADGs, i.e. directed Markov properties. These are
visualised using the ADG shown in Figure 9(a) as a basis. For the acyclic directed graph
G = (V(G),A(G)) the local and global directed Markov properties are derived from the
local, respectively global chain Markov properties, replacing the boundary by the parents of a
vertex. Furthermore, the local chain Markov property generalises the blanket directed Markov
property, and the ordered directed Markov property is derived from the block-recursive chain
Markov property. The ADG G is said to obey:

• the local directed Markov property, relative to G, if for any X ∈ V(G):

X ⊥⊥d
G (δ̄(X) \ π(X)) | π(X). (10)

Note that the set bd(X) from the chain property is replaced by π(X) and, in addition, the
expression δ̄(X)\bd(X) in the local chain Markov property is simplified to δ̄(X)\π(X).
This property is illustrated in Figure 9(b); it expressed the conditional independence
X ⊥⊥d

G {Y, P} | Z.

• the blanket directed Markov property, relative to G, which is derived from the local
Markov property for chain graphs if we assume that for any X ∈ V(G):

X ⊥⊥d
G V(G) \ (β(X) ∪X) | β(X), (11)

where β(X) is the directed Markov blanket, defined as follows:

β(X) = π(X) ∪ ch(X) ∪ {Y : ch(Y ) ∩ ch(X) 6= ∅;Y ∈ V(G)}. (12)

This property can be derived from the blanket undirected Markov property easily, as
X’s children, parents and children’s parents constitute the directed Markov blanket.
An example is given in Figure 9(c); here we have for example X ⊥⊥d

G {Y,Q,R, T} |
{Z,W,P}.
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(b) Pairwise undirected Markov property
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(d) Global undirected Markov property

Figure 8: Graphical illustration of the undirected Markov properties, taking the UG from
(a) as an example. Shown are: (b): the pairwise undirected Markov property X ⊥⊥G Y |
{Z,W,P,Q,R, T}; (c): the local undirected Markov property as X ⊥⊥G {Y, P,Q,R, T} |
{Z,W}; (d): the global chain Markov property {X,W,P,Q,R, T} ⊥⊥G Y | Z.
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• the global directed Markov property, relative to G, if for any triple of disjoint sets X,Y,

Z ⊆ V(G):

X ⊥⊥d
G Y | Z. (13)

This property need not be changed. Graph (d) in Figure 9 illustrates this property; for
example, we have: {X,W,P,Q,R, T} ⊥⊥d

G Y | Z.

• the ordered directed Markov property, relative to G, if for any X ∈ V(G):

X ⊥⊥d
G (pr(X) \ π(X)) | π(X), (14)

where pr(X) denotes the predecessor set of X. This property can be derived from the
block-recursive chain property by the following idea: the acyclicity of graph G provides
a well-ordering of its vertex set, in which each vertex can be seen as a chain component
containing exactly one element. Figure 9(e) gives an example; based on the well-ordering
Y < Z < P < X < W < Q < R < T it holds that X ⊥⊥d

G {Y, P} | Z.

3.3 D-map, I-map and P-map

In a graphical model it is not always the case that all independence information is represented,
and it may also not be the case that all dependence information is represented. In this section
the relationship between the representation of conditional dependence and independence by
joint probability distributions and graphs is explored.

Let ⊥⊥P be an independence relation defined on V for joint probability distribution P ,
then for each X,Y,Z ⊆ V, where X,Y and Z are disjoint:

• G is called an undirected dependence map, D-map for short, if

X ⊥⊥P Y | Z ⇒ X ⊥⊥G Y | Z,

• G is called an undirected independence map, I-map for short, if

X ⊥⊥G Y | Z ⇒ X ⊥⊥P Y | Z.

• G is called an undirected perfect map, or P-map for short, if G is both a D-map and an
I-map, or, equivalently

X ⊥⊥P Y | Z ⇐⇒ X ⊥⊥G Y | Z.

Observe that in a D-map each independence encoded in the joint probability distribution P

has to be represented in the graph G. Using the equivalence a ⇒ b ≡ ¬b ⇒ ¬a, it holds
for D-maps that each dependence encoded by the graph G has to be represented in the joint
probability distribution P . This does not mean that each dependence represented in the
joint probability distribution P is also discerned in the D-map. In contrast to D-maps, in
I-maps each independence relationship modelled in the graph G has to be consistent with
the joint probability distribution P and each dependence relationship represented in the joint
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Figure 9: Graphical illustration of the acyclic directed Markov properties, taking the ADG
shown in (a) as an example. Shown are (b): the local directed Markov property X ⊥⊥d

G

{Y, P} | Z; (c): the blanket directed Markov property X ⊥⊥d
G {Y,Q,R, T} | {Z,W,P}; (d):

the global directed Markov property {X,W,P,Q,R, T} ⊥⊥d
G Y | Z; (e): the ordered directed

Markov property X ⊥⊥d
G {Y, P} | Z.
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Figure 10: Given the joint probability distribution P (X,Y,Z,W ) = P (X | Z) P (Y | Z)P (W |
Z)P (Z) with conditional independence set: X ⊥⊥P {Y,W} | Z, Y ⊥⊥P {X,W} | Z and
W ⊥⊥P {X,Y } | Z, graph (a) is a D-map, graph (b) is neither a D-map nor an I-map, graph
(c) is an I-map, graph (d) is neither a D-map nor an I-map and graph (e) is a perfect map.

probability distribution P has to be present in the graph representation G. Clearly, a perfect
map is just a combination of a D-map and an I-map.

The notions of D-map, I-map and P-map can easily be adapted to similar notions for ADGs
and chain graphs, and thus we will not include the definitions here. Consider the following
example, illustrated by Figure 10. Let V = {X,Y,Z,W} be the set of random variables
with joint probability distribution: P (X,Y,Z,W ) = P (X | Z)P (Y | Z)P (W | Z)P (Z).
The associated conditional independence set consists of three members: X ⊥⊥P {Y,W} | Z,
Y ⊥⊥P {X,W} | Z and W ⊥⊥P {X,Y } | Z. Then, the graph in Figure 10(a) is a D-map of
P whereas graph (b) is not a D-map of P , since it describes a dependence Y →W , which is
not in P . Graph (b) is also not an I-map, since it does not include the arc Z → Y . Graph
(c) is an I-map of P but not a perfect map, because it includes the dependence Y → W ,
which is not part of P . Graph (d) is not an I-map by the fact that it does not represent the
dependence between vertices Z and W (i.e. it does not contain arc Z →W ) and it is also not
a D-map. Graph (e) is a perfect map of the joint probability distribution P . In the remainder
of this section we investigate the correspondence between the above-mentioned properties of
conditional independence and undirected, respectively, directed perfect maps. The following
theorem establishes conditions for the existence of an undirected perfect map for any joint
probability distribution.

Theorem 1 The conditional independence relations associated with a joint probability dis-
tribution P need to satisfy the necessary and sufficient conditions of (i) symmetry, (ii) de-
composition, (iii) intersection, (iv) strong union, and (v) strong transitivity, to allow their
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representation as an undirected perfect map.

As mentioned above, any joint probability distribution obeys the semi-graphoid properties
(symmetry, decomposition, weak union and contraction). According to Theorem 1 in addi-
tion to the properties of symmetry and decomposition, the properties of intersection, strong
union and strong transitivity should hold, which however, are not semi-graphoid properties.
Thus, not every joint probability distribution will have a corresponding undirected graphical
representation as a perfect map. Furthermore, for directed perfect maps we have a number
of necessary conditions, but these are not always sufficient.

Theorem 2 Necessary conditions for the conditional independence relations associated with
a joint probability distribution P to allow representation as a directed perfect map are: (i)
symmetry, (ii) contraction, (iii) decomposition, (iv) weak union, (v) intersection, (vi) weak
transitivity, and (vii) chordality.

Theorem 2 indicates that similar to the undirected case, the independence relations corre-
sponding to a joint probability distribution need not always allow representation as a directed
perfect map. In many practical situations, it will not be possible to find a perfect map of a
joint probability distribution. Therefore we wish to focus on graphical representations that
are as sparse as possible, and thus do not encode spurious dependences, which is something
offered by minimal I-maps.

Definition 5 (minimal I-map) A graph is called a minimal I-map of the set of indepen-
dence relations of the joint probability distribution P , if it is an I-map and removing any arc
of the graph will yield a graph which is no longer an I-map.

Minimising the number of arcs in a graphical model is not only important for representation
reasons, i.e. in order to keep the amount of probabilistic information that has to be specified
to the minimum, but also for computational reasons. It has been shown that every joint prob-
ability distribution P for which the conditional independence relations satisfy the conditions
of symmetry, decomposition, and intersection has a minimal undirected I-map, whereas any
joint probability distribution P with associated conditional independence relations satisfying
the conditions of symmetry, decomposition, weak union and contraction has a minimal di-
rected I-map representation [3]. This implies that each graphoid has a corresponding minimal
undirected I-map, as well as a minimal directed I-map, and each semi-graphoid has a min-
imal directed I-map as graphical representation. As for every joint probability distribution
the semi-graphoid properties hold, we can conclude that each joint probability distribution
has a directed minimal I-map.

4 Equivalence of Bayesian networks

In this section we return to the question which acted as the main motivation for writing this
paper: how can equivalence of Bayesian networks be characterised best? It appears that
in particular the concept of essential graphs plays a pivotal role in this. Before discussing
essential graphs, we start by reviewing the definition of a Bayesian network in Section 4.1.
Subsequently, in Sections 4.2 and 4.3, the equivalence relation on Bayesian networks which
forms the basis for the concept of essential graphs will be studied.
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4.1 Bayesian networks

Formally, a Bayesian network is a pair B = (G,P ), where G = (V(G),A(G)) is an acyclic
directed graph and P is a joint probability distribution defined on a set of random variables
X. As before, we assume that there is a one-to-one correspondence between the vertices
V(G) and the random variables X associated with P , i.e. V(G) ↔ X. Therefore, we will
indistinguishably use V(G) both to refer to vertices of the graph G and random variables of
the associated joint probability distribution P of B. Which of these two interpretations is
intended will become clear from the context.

As mentioned above, the set of arcs A(G) describes the dependence and independence
relationships between groups of vertices in V(G) corresponding to random variables. If a
joint probability distribution P admits a recursive factorisation then P can be defined on the
set of random variables V(G) as follows:

P (V(G)) =
∏

V ∈V(G)

P (V | π(V )). (15)

Equation (15) implies that a joint probability distribution over a set of random variables
can be defined in terms of local (conditional) joint probability distributions P (V | π(V )).
Considerable research efforts have been made to exploit the structure of such a joint proba-
bility distribution for achieving computational savings. A Bayesian network is by definition
a directed I-map.

What is interesting about Bayesian networks, and which is a main difference between
directed and undirected graphical models, is that by instantiating vertices in the directed
structure independences may change to dependences, i.e. stochastic independence has specific
dynamic properties. In Section 3.1 we have called the type of reasoning associated with
this ‘explaining away’. This dynamic property is illustrated by Figure 4(d), where random
variables X and Y are independent of one another if random variable Z is unknown, but as
soon as Z becomes instantiated, a dependence between X and Y is created. However, similar
to undirected graphs, part of the independence information represented in the graphical part
of a Bayesian network is static. The structure of a Bayesian network allows reading off
independence statements, essentially by using the notions of d-separation and moralisation
treated in the previous section.

Our motivation to study the Markov properties associated with graphs arises from our
wish to understand the various aspects regarding the representation of independence in
Bayesian networks. The following proposition establishes a very significant relationship be-
tween Markov properties on the one hand, and joint probability distributions on the other
hand; it is due to Lauritzen [5]:

Proposition 2 If the joint probability distribution admits a recursive factorisation according
to the acyclic directed graph G = (V(G),A(G)), it factorises according to the moral graph
Gm and therefore obeys the global Markov property.

Proof : See Ref. [5], page 70. �

Proposition 2 implies an important correspondence between a recursive factorisation according
to graph G and the global Markov property. This proposition can be extended resulting in
the following theorem, also by Lauritzen [5]:
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Theorem 3 Let G = (V(G),A(G)) be an acyclic directed graph. For the joint probability
distribution P the following conditions are equivalent:

• P admits a recursive factorisation according to G;

• P obeys the global directed Markov property, relative to G;

• P obeys the local directed Markov property, relative to G;

• P obeys the ordered directed Markov property, relative to G.

Proof : See Ref. [5], page 74. �

Theorem 3 establishes the relation between a recursive factorisation of joint probability
distribution P and the directed Markov properties introduced in Section 3.2, and therefore
explains why the Markov properties and their relations are relevant in the context of Bayesian
networks and thus to structure learning.

4.2 The equivalence relation on acyclic directed graphs

In this section we introduce some notions required to study equivalence among Bayesian
networks. We start by the definition of Markov constraints [15].

Definition 6 (Markov constraints) Let G = (V(G),A(G)) be an ADG. Then the Markov
independence constraints, Markov constraints for short, are the set of independence relations
defined by the global directed Markov property.

The Markov independence constraints allow us to define an equivalence relation on ADGs,
as follows:

Definition 7 (Markov equivalent) Two ADGs are Markov equivalent if they have the
same set of Markov constraints.

However, this definition is far removed from a procedural recipe: it is difficult to imagine
how we can actually determine whether two ADGs are equivalent without enumerating all
triples in the independence relations defined using these graphs. However, the following two
definitions allow us to look at the problem from a different, and practically more useful, angle.

Definition 8 (skeleton) Let G be an ADG. The undirected version of G is called the skeleton
of G.

For example, the graph in Figure 11(b) is the skeleton of graph (a).

Definition 9 (immorality) An induced subgraph in an ADG G with X,Y,Z ∈ V(G) is
called an immorality, if the graph contains the arcs X → Z and Y → Z, and vertices X and
Y are non-adjacent.

Definition 9 implies that the concept of immorality is equivalent to that of convergence con-
nection (cf. Figure 4(d)); both describe conditional dependence between random variables.
(Immorality is synonymous with v-structure introduced by Verma and Pearl (cf. [15]).) How-
ever, immoralities are also the smallest induced subgraphs for the representation of conditional
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Figure 11: An acyclic directed graph (a) and its skeleton (b).

dependence. Observe that if the direction of one or both arcs of an immorality is reversed, the
conditional dependence would turn into conditional independence, and thus would destroy
the original meaning of the graph. Therefore to keep the independence relation defined on
the random variables unchanged, it is not allowed to reverse the direction of these arcs.

Definition 10 (essential arcs) Arcs that cannot be reversed without changing the condi-
tional dependence and independence relations are called essential arcs.

By Definition 10 both arcs of an immorality are essential arcs.
Applying Definition 8 and Definition 9, Markov equivalence is redefined in terms of the

concepts of skeleton and immoralities by the following theorem, originally introduced by
Verma and Pearl, which establishes the connection between these notions (cf. [15]):

Theorem 4 Two ADGs are Markov equivalent with each other if and only if they have the
same skeleton and they consist of the same set of immoralities.

An example of Markov equivalence is given in Figure 12. Graph (a), (b) and (c) are
equivalent by Theorem 4, but graph (d) is not equivalent to graphs (a), (b) and (c) since it
contains, in contrast to the other graphs, the immorality X → Z ←W .

Let us try to explain why Theorem 4 plays a significant role in the field of structure
learning. Recall that an immorality describes an independence relationship between random
variables and it is also the smallest induced subgraph reflecting conditional dependence. The
purpose of structure learning is to find the relations between the random variables of the
problem domain based on the data. Thus, if we have the entire set of independence relation-
ships (the Markov constraints) or the entire set of dependence relationships over the random
variables our aim has been achieved. In the graphical representation of dependence there are
two kinds of dependences that can be distinguished:

(i) static, and

(ii) dynamic dependence.

By static dependences we mean the existence of a direct connection (i.e. an arc or edge)
between vertices. Since the joint probability distribution on two static dependent random
variables X → Y is the same as Y → X, according to Bayes’ theorem, this dependence
can be represented by an arc. In contrast to static dependences, dynamic dependences are
conditionally dependent on the instantiation of random variables associated with vertices with
convergent connections. Therefore, these arcs have to preserve their direction. This is exactly
what is said by Theorem 4.

27



X Y

Z

W

(a)

X Y

Z

W

(b)

X Y

Z

W

(c)

X Y

Z

W

(d)

Figure 12: An example of Markov equivalence. Graph (a), (b) and (c) are equivalent since
they have the same skeleton and the same set of immoralities. Graph (d) has also the same
skeleton as graph (a), (b) and (c), but graph (d) also contains an immorality X → Z ← W

which does not occur in the other graphs. Therefore graph (d) is not equivalent to graph (a),
(b) and (c).

4.3 Essential graphs

Taking Theorem 4 as a foundation, in this section we will study the important problem
of equivalence of ADGs. Recall that equivalent ADGs have the same immoralities, and
these immoralities consist of essential arcs, which in each equivalent ADG have the same
direction. In contrast, if one wishes to build an ADG from a skeleton and a collection of
immoralities, there are normally different choices possible for edges which do not participate
in an immorality, to the extent that choices that give rise to a directed cycle or to a new
immorality are not allowed. We can therefore conclude that the difference between equivalent
ADGs is entirely based on the difference in the direction of their non-essential arcs.

It now appears that classes of Markov equivalent ADGs can be uniquely described by
means of chain graphs, called essential graphs, which thus act as class representatives [1];
they are defined as follows:

Definition 11 (essential graph) Let [G] denote the equivalence class of ADGs that are
Markov equivalent. The essential graph G∗ is then the smallest graph larger than any of the
ADGs G in the equivalence class [G]; formally:

G∗ :=
⋃
{G | G ∈ [G]}. (16)
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Figure 13: The four possible induced subgraphs, where arc X → Y is strongly protected.

This definition implies that any of the non-essential arcs in any of the ADGs G ∈ [G] is
replaced by an edge (which means that to the arc (X,Y ) ∈ A(G) an arc (Y,X) is added),
and this explains why an essential graph is as large or larger than any of the members of
the equivalence class [G] which it represents. Of course, as an essential graph is a chain
graph, it may not be (and usually is not) an ADG, and therefore usually not a member of
the equivalence class it represents.

It has been established that if an arc is part of a particular subgraph with a specific
structure, then we know that the arc must be essential. There are four different (sub)graphs
where X → Y will always be an essential arc; these are shown in Figure 13. As mentioned
above, a serial or divergent connection mirrors conditional independence, while a convergent
connection reflects a potential dependence relationship between random variables (see Figure
4). Clearly, it is not allowed to express a dependence represented in the ADGs of an equiv-
alence class as an independence in the associated essential graph, and vice versa. This is
illustrated by the subgraphs (a) and (b) in Figure 13. Case (a) means that we have a serial
connection, which would be turned into convergent connection if the direction of X → Y is
reversed. Therefore X → Y is an essential arc. In contrast, changing the direction of X → Y

in case (b) would destroy an immorality, as a convergent connection would be changed into
a serial connection. Even though any graph G ∈ [G] is acyclic, reversing an arc might create
a directed cycle. Clearly, reversing the direction of such arcs is not allowed, i.e. it is also an
essential arc. This is shown in Figure 13(c). Finally, in case (d) X → Y is an essential arc
and the two other essential arcs Z1 → Y and Z2 → Y are participating in the immorality
Z1 → Y ← Z2 (i.e. they are irreversible), the direction of the arc X → Y cannot be reversed
to ensure that vertices Z1 and Z2 will not become dependent when conditioning on X.

Definition 12 (strongly protected) An arc X → Y is called strongly protected if it is part
of one of the four induced subgraphs shown in Figure 13.

In the next part of this section we turn our attention to the characterisation of essential
graphs G∗. First of all we consider two of the most significant properties of essential graphs.

Lemma 1 The essential graph G∗ representing the equivalence class [G] is a chain graph,
i.e. G∗ comprises no directed cycles.

Proof : In this proof we suppose that the essential graph G∗ has a directed cycle and then
show that this assumption results in a contradiction.
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Figure 14: The directed cycle (a) and the reduced variant (b).

Suppose that G∗ has a directed cycle X,Y,Z1, . . . , Zk ≡ X with k ≥ 2. Observe that this
directed cycle has at least: (i) one arc, which follows from the definition of directed cycle
and (ii) one edge, otherwise some G ∈ [G] would have a directed cycle which does not fit
their property of acyclicity. Thus the cycle can be written as X → Y,Z1, . . . , Zk ≡ X, with
k ≥ 2, as shown in Figure 14(a). Because there is at least one edge inside this cycle, assume
that this is the edge Zi−1 − Zi in G∗ with i ≤ k. Due to the fact that Zi−2 and Zi−1 can be
connected by an edge (i.e. Zi−2−Zi−1) or by an arc directioned into Zi−1 (i.e. Zi−2 → Zi−1)
there must exist at least one G ∈ [G] with substructure Zi−2 → Zi−1 ← Zi (deduced from
Zi−2 → Zi−1 −Zi). As this cannot be an immorality there has to be a connection Zi−2 · · ·Zi

(hence, the open possibility for either an edge or an arc directed to Zi is denoted by · · ·).
But this means that there is a smaller cycle such that X → Y,Z1, . . . , Zi−2, Zi, . . . , Zk ≡ X,
with k ≥ 2. If we continue to reduce this directed cycle using the same idea, we observe that
X → Y · · ·Z1 · · ·Z2 ≡ X which is equivalent to X → Y · · ·Z · · ·X with Z1 = Z. Figure 14(b)
depicts the reduced variant of the original directed cycle in Figure 14(a).

Next we show that X → Y · · ·Z · · ·X cannot be an induced subgraph of the essential
graph G∗. Our assumption says that G∗ contains a directed cycle. Then there exist four
possible structures in G∗ deduced from X → Y · · ·Z · · ·X, shown in Figure 15. For each of
these cases there exists at least one G ∈ [G] equivalent to G∗ containing a directed cycle,
thus contradicting the acyclicity property: case (a) ∃G ∈ [G] containing arc Y → Z; case (b)
∃G ∈ [G] containing arc Z → X; case (c) ∃G ∈ [G] containing arcs Y → Z and Z → X; case
(d) is already a directed cycle.
Due to the fact that each G ∈ [G] should be an ADG, G∗ cannot contain any of the substruc-
tures from Figure 15; therefore, the essential graph is an chain graph, which completes our
proof. �

The essential graph has another very important property which is stated in the following
lemma.
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Lemma 2 Let G∗ be the essential graph which represents the equivalence class [G] and let
V(t) be a the chain component of G∗, then V(t) is chordal.

Proof : Suppose that there is an undirected cycle with k ≥ 4 in chain component V(t), t ≤ T .
Then there should exists at least one ADG G ∈ [G], which by its property of being acyclic
should consist of an immorality. Since G∗ has to represent each immorality of [G], thus the
assumption above results in a contradiction. Therefore the chain components of the graph
G∗ are chordal. �

Lemma 1 and Lemma 2 concern two fundamental properties of essential graphs. In addition,
an essential graph is meant to preserve dependence information from the ADGs it represents.
As mentioned above, immoralities are meant to represent conditional dependence information.
To preserve these immoralities in an essential graph, the concept of strongly protected arcs
have been introduced. In the following lemma, this notion is used to further characterise
essential graphs.

Lemma 3 Let G∗ be the essential graph corresponding to the equivalence class [G]. Then
each arc in G∗ is a strongly protected arc.

Proof : Suppose that X → Y is not a strongly protected arc in G∗. This means that its
direction is reversible. Thus, there exists a graph G ∈ [G] with arc X ← Y . But then G∗

should comprise X − Y , leading to a contradiction. �

As was discussed above in relationship to Figure 13(a) and 13(b) it is not permitted that
an immorality is changed into a divergent or serial connection, and vice versa.

Lemma 4 Let G∗ be the essential graph corresponding to the equivalence class [G]. Then G∗

cannot contain the structure X → Y − Z as an induced subgraph.

Proof : Suppose X → Y − Z is an induced subgraph in G∗. Then, there exists a G ∈ [G]
such that X → Y ← Z. But this is an immorality which should be included in G∗, leading
to a contradiction; this completes the proof. �

Combining the lemmas (1), (2), (3) and (4) leads to a full characterisation of essential graphs
in the next theorem.

Theorem 5 Let G∗ be the essential graph corresponding to the equivalence class [G]. Then
G∗ satisfies the following four conditions:

X Y

Z

(a)

X Y

Z

(b)

X Y

Z

(c)

X Y

Z

(d)

Figure 15: The possible graphs obtained by replacing the symbol · · · in X → Y · · ·Z · · ·X
by an edge or an arc, taking the requirement into account that the resulting graph should
contain a directed cycle.
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• G∗ is a chain graph;

• each chain component of G∗ is chordal;

• each arc in G∗ is strongly protected;

• there exists no induced subgraph X → Y − Z in G∗.

Proof : The lemmas 1, 2, 3 and 4 are used subsequently to prove the statements mentioned
above, exactly in this order.

5 Conclusions

This paper is meant as a guide to the field of probabilistic graphical models, where in particular
we have tried to offer a balanced view of the various issues involved in the study of stochastic
dependence and independence, and its role in Bayesian-network structure learning. As there
are many different ways in which (in)dependence information can be represented, e.g. as a
joint probability distribution, as logical statements, or in the form of different types of graphs,
we have focused on the relationships between these different representations.

There were a number of key results given attention to in the paper that are worth recalling.
The independence relation may be looked upon as a logical relation, where special properties
of the relation can be defined axiomatically. Unfortunately, the Independence relation does
not permit finite axiomatisation. Nevertheless, there are a number of axioms that are worth
knowing, as they support our understanding of the nature of independence; the most familiar
axioms were covered in the paper.

The subtle differences between representing stochastic independence using undirected,
acyclic directed and chain graphs was another related topic also studied in this paper. The
process of moralisation transforms acyclic directed graphs and chain graphs into undirected
graphs, which allows us to determine the semantic relationships between these different graph-
ical ways to represent stochastic independence. Linked to this topic, a number of reading-off
methods specific for particular types of graph were discussed, which supported reasoning
about the independence information represented in a graph solely in terms of the graph
structure.

Ways to identify and represent Markov equivalence in Bayesian networks were the last
topics studied. In particular, the concept of the essential graph yields a significant insight
into this matter, as an essential graph summarises a class of Markov equivalent networks,
and thus renders it possible to determine which arcs in a Bayesian network are really sig-
nificant. Bayesian networks contain static and dynamic dependences. For the case of static
dependences changing directionality of arcs has no effect on the dependences in the entire
network, as long as it does not give rise to the creation of immoralities. On the other hand,
dynamic dependences are captured by the structure of the immoralities and as these cannot
be changed without changing the meaning of a probabilistic graphical model, we have to
maintain the direction of arcs in this case. Therefore, the equivalent relation on Bayesian
networks is defined in terms of the structure of the skeleton and the associated set of im-
moralities contained in the graphs. The concept the of essential graph has given rise to much
research activity, in particular in areas devoted to the development of algorithms for searching
the equivalence space of Bayesian networks (instead of the entire space of Bayesian networks)
to determine the Bayesian network that best fits the data from a given domain. What is clear
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is that probabilistic graphical models offer a rich and complicated landscape of probabilistic
representations, which will remain a topic of research in the future.
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