
Proof and Definition in Logic and Type Theory

Proof and Definition in Logic and Type Theory

Robin Adams
robin@cs.rhul.ac.uk

Royal Holloway, University of London

14 November 2008

Proof and Definition in Logic and Type Theory

Introduction

A system of logic consists of:

a formal language in which the statements of mathematics
can be written;

a set of rules by which some of these statements can be
proved.

I will talk about how three classes of system of logic:

predicate logic

type theory

logic-enriched type theory

handle two questions

Definition How are new objects (sets, functions, . . .)
introduced into the language?

Proof Which steps in a proof are acceptable?

Logic turns philosophical disagreements into formal questions.

Proof and Definition in Logic and Type Theory

Definition and Proof

Definition and proof are interleaved in a body of mathematics.

If we have proved ∃!xφ[x], we are allowed to define a to be
the unique object such that φ[a].

If we have defined an object a such that φ[a], we can prove
∃xφ[x].

A foundation of mathematics fixes:

which methods of definition are acceptable;

which methods of proof are acceptable.

Changing the axioms will change:

the set of theorems

the set of definable objects

but should not change the acceptable methods of definition.

The methods of definition and methods of proof should be
separate — but they are not in predicate logic or type theory.

Proof and Definition in Logic and Type Theory

Methods of Definition and Proof

Methods of Definition

Introduction of Sets For which predicates φ[x] can we introduce
the set {x : φ[x]}?

Definiton by Recursion Can we always assume a function defined
by primitive recursion

f (x , 0) = g(x) f (x , y + 1) = h(x , y , f (x , y))

is total?

Methods of Proof

Excluded Middle Can we assume φ ∨ ¬φ for every statement φ?

Induction For which predicates φ[x] can we prove ∀xφ[x] by
induction?

Proof and Definition in Logic and Type Theory

Predicate Logic

Includes first-order, second-order, . . . logic.
Example

PA
A language is specified by:
a set of primitive function symbols 0, ′, +, ×
a set of primitive relation symbols =, ≤
The formulas are built up by ∧, ∨, ¬, →, ∀, ∃
A theory is given by:
a set of axioms x ′ = y ′ → x = y

x ′ 6= 0
...

a set of rules of deduction
φ→ ψ φ

ψ
Predicate logic emphasises proof — no primitive mechanism for
definition.

Proof and Definition in Logic and Type Theory

Definition in Predicate Logic

Definition is performed by extending the language and the theory.

If T is a theory over L and T ` ∀x∃!yφ[x , y], form
language L′ = L+ {f }

theory T ′ = T + {∀xφ[x , f (x)]}

T ′ is a conservative extension of T .

Example

Let GCD(a, b, c) be the formula

c | a ∧ c | b ∧ ∀x(x | a→ x | b → x | c)

Theorem of PA: ∀x∀y∃!zGCD(x , y , z).
We may safely add a function symbol gcd and the axiom
GCD(a, b, gcd(a, b)).

Other ways of extending systems are possible.
Advantage: Beautiful, simple, generally applicable metatheory
(model theory, proof theory).
Disadvantages:

Definition mechanisms can be awkward to implement.
Criteria for definition must be given in terms of provability.

Proof and Definition in Logic and Type Theory

Functions Definable in Peano Arithmetic

A function f : N→ N is:
term definable by t[x] t[n] denotes f (n)

positive integer polynomials

expressible by φ[x , y] φ[n, f (n)] is true
φ[n,m] is false for other m

arithmetic functions

representible by φ[x , y] φ[n, f (n)] is provable
¬φ[n,m] is provable for other m

recursive functions

definable by φ[x , y] φ[n, f (n)] is provable
¬φ[n,m] is provable for other m
∀x∃!yφ[x , y] is provable

recursive functions

Proof and Definition in Logic and Type Theory

Methods of Proof affect Methods of Definition

RCA0 is a system of second-order arithmetic. Its language deals
with:

natural numbers

sets of natural numbers.

The sets definable in RCA0 are exactly the recursively enumerable
sets.
If we add Σk -induction, we obtain bounded Σk -abstraction:

{x ≤ n | φ[x]}

can be proved to exist for φ[x] a Σk -formula.

Proof and Definition in Logic and Type Theory

Type Theory

Language deals with judgements
M : A M = N : A

M is an object of type A M and N are equal objects of type A.

Objects Types

Natural numbers 0, s0, ss0, . . . N
Pairs 〈a, b〉 A× B

Functions λx .b[x] A→ B

Variables x A

Vectors 〈〉 : Vec(A, 0) Vec(A, n)
l :: a : Vec(A, sn)

〈a, b〉 Σx : A.B[x]

λx .b[x] Πx : A.B[x]

one object if a = b I (A, a, b)
no objects if a 6= b

Universe N, N× N, N→ N, . . . U

Proof and Definition in Logic and Type Theory

Proof in Type Theory

Handled by propositions-as-types. Identify
all types / members of a universe Prop with propositions
objects with proofs

Type Proposition

I (A, a, b) a = b
A× B A ∧ B
A→ B A→ B

Σx : A.B[x] ∃x : A.B[x]
Πx : A.B[x] ∀x : A.B[x]

Possible due to Curry-Howard isomorphism.
Heyting Semantics

A proof of A ∧ B consists of a proof of A and a proof of B.

A proof of A ∨ B is either a proof of A or a proof of B.

A proof of A→ B is a function that takes a proof of A and
returns a proof of B.

Proof and Definition in Logic and Type Theory

Definition Affects Proof

If we add: we get:

definition by recursion proof by induction
functions on types second-order logic

‘freeze’ and ‘unfreeze’ classical logic
We cannot change the logic without changing the objects, or vice
versa.

Proof and Definition in Logic and Type Theory

Logic-Enriched Type Theories

A logic-enriched type theory (LTT) consists of:

a type theory

a separate set of formulas

a set of rules that determine which formulas are provable.
It thus has two ‘worlds’ — the logical world and the type
theory world.
These two worlds interact but can be modified separately.

Proof and Definition in Logic and Type Theory

Predicativism

A definition is impredicative if it involves a certain kind of
circularity:

quantifying over all sets when defining a set
quantifying over all real numbers when defining a real number.

Example: The definition of the least upper bound of a set of reals
is impredicative, as it involves quantifying over all real numbers.
Predicativism is the view that impredicative definitions are
illegitimate.
How can we restrict our methods of definition so that
impredicative definitions are ruled out? Weyl’s solution (1914):

Divide mathematical objects into categories.
Divide categories into basic and ideal categories.

Natural numbers form a basic category.
For any category A, the sets of As form an ideal category.

When defining a set, we may only quantify over the basic
categories.

Proof and Definition in Logic and Type Theory

ACA0
Weyl’s Foundation as a System of Predicate Logic

ACA0 is “a modern formulation of Weyl’s system” (Feferman).

Two sorts: natural numbers and sets of natural numbers
(second-order language).

Axioms:
Peano’s axioms
Restricted induction φ[0]→ ∀x(φ[x]→ φ[x ′])→

∀xφ[x] for φ[x] arithmetic
Arithmetic Comprehension Axiom {x : φ[x]} exists

for φ[x] arithmetic

Conservative extension of PA.
Shortcomings: Weyl uses

sets of sets

definition of sets by recursion

full induction

Proof and Definition in Logic and Type Theory

LTTW
Weyl’s Foundation as a Logic-Enriched Type Theory

Type Theory World

Universe U (objects are the basic
categories)

N
×
→

Set(A)

Logical World

Universe prop (objects are the
arithmetic formulas)

=

∧,∨,¬,→
∀, ∃

All Weyl’s results can be formalised in LTTW— checked by proof
assistant Plastic.

Proof and Definition in Logic and Type Theory

Functions Definable in LTTW

A function f : N→ N is:
term definable by t : N→ N t[n] = f (n) : N

⊇ ε0-recursive functions

set definable by S : Set(N× N) 〈n, f (n)〉 ∈ S is provable
¬〈n,m〉 ∈ S is provable for other m
∀x∃!y〈x , y〉 ∈ S is provable

recursive functions

Proof and Definition in Logic and Type Theory

ACA0 is Embeddable in LTTW

Define a mapping
Formulas of ACA0 −→ Formulas of LTTW

= =
∧ ∧
∨ ∨
...

...
∀x ∀x : N
∃x ∃x : N
∀X ∀X : Set(N)
∃X ∃X : Set(N)

But LTTW goes further:

has types Set(Set(N)), . . .

allows definition by recursion in Set(A)

allows full induction

Proof and Definition in Logic and Type Theory

Conclusion

Logic-enriched type theories are systems of logic in which the
mechanisms for definition and proof are separate.
This allows them to capture some foundations of mathematics
better than predicate logic or type theory.
Aim: Produce a hierarchy of LTTs (similar to hierarchy in Reverse
Mathematics) that capture a variety of foundations.
Next step: Nelson’s predicativism/ultra-finitism

