
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Ana Tanase

Today’s Lesson plan (10)

 Retrospective

 Previous lesson

 Theory:

 Nested if.. then.. else

 Class constants

 Object types (and null)

 Lists and for-loops

 use Java Library Documentation to look for and use

existing Java (List) methods;

 Exercises

Retrospective

Steps for using instance variables

1. Declare instance variable in top of class:

private boolean iAmHatched;

2. Initialize (set intial value) in constructor:

iAmHatched = false;

3. Write public getter accessor method

public boolean getIsHatched (){

return iAmHatched;

}

4. Write public setter mutator method:

public void setHatched(){

iAmHatched = true;

}

Sit on the most valuable egg

Make a flowchart

You may assume the following methods exist:

 boolean eggOneStepAway(String color)

 void sitOnEggOneStepAway (String color)

Nested if-then-else

Nested if-then-else

Nested if-then-else => else-if

using else if

code simplified

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combining these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions

Another ex. of nested if-then-else

Class constants

 Variable whose value can’t change throughout the

program

 Recognized by static final

 When declared, immediately give value

 Can be private or public

Object types vs primitive types

14

Primitive Datatypes in Java

Truth values (booleans)
boolean: true and false.

 Integer values (integers)
int: -1, 0, 42, 123, -51

 Real values (reals)
double: -1.0, 0.0, 42.0,

2.1795, 6.02e23, 1.6e-19

 Characters
char: 'a','A','?','-', ' ' (= a “space”!)

Object types: Variables for objects

Variables can also contain objects

More precisely: Object variables point / refer to objects

The type of such a variable is the class the object

belongs to

Such a type is called an object type (or reference type)

Other types (int, boolean, ..) are called primitive types

Example:
Egg thisEgg = getEgg ();

A variable that can hold an Egg
object

Variables as References

So, variables can be used to remember another object.

 Via such a (reference) variable one object can

collaborate with (call methods of) another object.

Example:

In your mobile phone you have a list of Contacts.

A contact is a reference to a friend, family, ...
My Contacts

Alice

Bob

...

081-555-1212

Primitive types vs object types

 Primitive type stores value directly in variable:

 Eg. int nrOfEggs = 4;

 Object type refer (or points) to another object:

 Eg. Facebook doesn’t physically store your friends

 It stores your friends’ login names

Special value to indicate that a variable does

not refer to anything:

Sometimes methods return this value to say

that an object could not be found.

We can use this as follows:

Egg maybeEgg = getEgg ();

Egg maybeEgg = getEgg ();
if (maybeEgg != null) {

…
}

Variables containing null

null

getEgg returns null if our cell

does not contain an egg

Lists

 So far, variables can contain just a single object.

 Sometimes it is convenient to maintain a whole

collection of objects

 For this purpose we can use Lists. A list can be seen

as a sequence of variables: the elements of the list.

 A List grows and shrinks to match whatever you put in

the list: elements can be added, removed or changed.

Egg thisEgg = getEgg ();

A variable that can hold an Egg object

Lists (2)

Properties:

 A list may be empty.

 It’s a sequence → each element can be identified with

it’s position (index). The first element has index 0!

 It’s homogeneous: all the elements are of the same type.

Lists are objects themselves (not a primitive value)

 A variable holding a list object is declared as:

 List<ElemType> listVariable;

The type of each element

List example: how to use

Create a List of fruit names.
public static void listExample(){

List<String> fruitList = new ArrayList<String> ();

System.out.println (fruitList.size());

fruitList.add("apple");

fruitList.add("orange");

fruitList.add("banana");

System.out.println (fruitList.size());

System.out.println (fruitList.get(0));

System.out.println (fruitList.get(2));

fruitList.remove("apple");

System.out.println (fruitList.get(0));

}

Creates a new empty list

Initial size is 0

Add 3 elements

Size should be 3 now

Prints apple

Prints banana

Remove apple from the list

Prints orange

List example: homogeneous types

Create a List of fruit names (Strings).
public static void listExample(){

List<String> fruitList = new ArrayList<String> ();

fruitList.add("apple");

fruitList.add("orange");

fruitList.add("banana");

fruitList.add(13);

fruitList.add("broccoli");

fruitList.add("13");

}

Illegal: 13 is not a String

OK: “broccoli” is a String

OK: “13” is a String

List of objects

Create a List of fruit names (Strings).

public static void listExample(){

List<Fruit> fruit = new ArrayList<Fruit> ();

fruit.add(new Apple());

fruit.add(new Orange());

fruit.add(new Banana());

fruit.add(new Broccoli());

}
Now we have a list of Fruit

elements

OK: Apple ‘is a’ Fruit

Illegal: Broccoli is no Fruit

Useful List Methods

list.size() Number of items in list.

list.isEmpty() true if the list is empty.

Same as "list.size() == 0"

list.get(k) Get one element from list.

k = 0, 1, ..., list.size()-1

list.add(object) Append (add) object to the

end of the list.

list.remove(object) Remove object from a list

Lists: Examining elements

// count eggs that are hatched

List<Egg> eggList = getListOfEggsInWorld();

int nextEggIndex = 0;

int nrOfHatchedEggs = 0;

while(nextEggIndex < eggList.size()) {

Egg egg = eggList.get(nextEggIndex);

if (egg.isHatched()) {

nrOfHatchedEggs ++;

}

nextEggIndex++;

}

Using a while loop:

Method from class Dodo

Variable holding an index

Variable for counting

Lists: what do you need to know

 You don’t need to know how to create a list

 You do need to know how to manipulate and use lists

Intermezzo

 Continue working on assignments

 Finish assignment 6

 Assignment 7:

 Assignment 7 up to and incl 4.3.1

 You may skip 4.1 9d and 4.1 10

 After the intermezzo follows: Java Documentation

The for each loop

for each: a loop for examining all elements of a List

(recommended).

List<Egg> eggList = getListOfEggsInWorld();

int nrOfHatchedEggs = 0;

for (Egg egg: eggList) {

if (egg.isHatched()) {

nrOfHatchedEggs++;

}

}

"for each egg in eggList"

While vs for each loop

List<Egg> eggList = getListOfEggsInWorld();

int nextEggIndex = 0;

int nrOfHatchedEggs = 0;

while(nextEggIndex < eggList.size()) {

Egg egg = eggList.get(nextEggIndex);

if (egg.isHatched()) {

nrOfHatchedEggs ++;

}

nextEggIndex++;

}

List<Egg> eggList = getListOfEggsInWorld();

int nrOfHatchedEggs = 0;

for (Egg egg: eggList) {

if (egg.isHatched()) {

nrOfHatchedEggs++;

}

}

Java documentation

 How to find

 Google: “list is empty java”

 look for Oracle Documentation

 How to read

 Scroll down and find relevant method

 How to use

 Click on method name

List<Egg> eggList = getListOfEggsInWorld();

if (eggList.isEmpty()){

…

}

Java Library Documentation

 We make a list of eggs: List<Egg> eggList;

 Get the second element (at index 3) in the eggList

using: eggList.get (3);

 Returns element

of type <Egg>

 Index must be

within then list bounds

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combing these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions

Wrapping up

Homework for Wednesday 8:30 March 2nd:

 Assignment 7:

 Assignment 7 up to and incl 4.3.1

 You may skip 4.1 9d and 4.1 10

 email MyDodo.java and ‘IN’

to Renske.weeda@gmail.com

