
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Ana Tanase

Today’s Lesson plan (10)

 Retrospective

 Previous lesson

 Theory:

 Nested if.. then.. else

 Class constants

 Object types (and null)

 Lists and for-loops

 use Java Library Documentation to look for and use

existing Java (List) methods;

 Exercises

Retrospective

Steps for using instance variables

1. Declare instance variable in top of class:

private boolean iAmHatched;

2. Initialize (set intial value) in constructor:

iAmHatched = false;

3. Write public getter accessor method

public boolean getIsHatched (){

return iAmHatched;

}

4. Write public setter mutator method:

public void setHatched(){

iAmHatched = true;

}

Sit on the most valuable egg

Make a flowchart

You may assume the following methods exist:

 boolean eggOneStepAway(String color)

 void sitOnEggOneStepAway (String color)

Nested if-then-else

Nested if-then-else

Nested if-then-else => else-if

using else if

code simplified

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combining these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions

Another ex. of nested if-then-else

Class constants

 Variable whose value can’t change throughout the

program

 Recognized by static final

 When declared, immediately give value

 Can be private or public

Object types vs primitive types

14

Primitive Datatypes in Java

Truth values (booleans)
boolean: true and false.

 Integer values (integers)
int: -1, 0, 42, 123, -51

 Real values (reals)
double: -1.0, 0.0, 42.0,

2.1795, 6.02e23, 1.6e-19

 Characters
char: 'a','A','?','-', ' ' (= a “space”!)

Object types: Variables for objects

Variables can also contain objects

More precisely: Object variables point / refer to objects

The type of such a variable is the class the object

belongs to

Such a type is called an object type (or reference type)

Other types (int, boolean, ..) are called primitive types

Example:
Egg thisEgg = getEgg ();

A variable that can hold an Egg
object

Variables as References

So, variables can be used to remember another object.

 Via such a (reference) variable one object can

collaborate with (call methods of) another object.

Example:

In your mobile phone you have a list of Contacts.

A contact is a reference to a friend, family, ...
My Contacts

Alice

Bob

...

081-555-1212

Primitive types vs object types

 Primitive type stores value directly in variable:

 Eg. int nrOfEggs = 4;

 Object type refer (or points) to another object:

 Eg. Facebook doesn’t physically store your friends

 It stores your friends’ login names

Special value to indicate that a variable does

not refer to anything:

Sometimes methods return this value to say

that an object could not be found.

We can use this as follows:

Egg maybeEgg = getEgg ();

Egg maybeEgg = getEgg ();
if (maybeEgg != null) {

…
}

Variables containing null

null

getEgg returns null if our cell

does not contain an egg

Lists

 So far, variables can contain just a single object.

 Sometimes it is convenient to maintain a whole

collection of objects

 For this purpose we can use Lists. A list can be seen

as a sequence of variables: the elements of the list.

 A List grows and shrinks to match whatever you put in

the list: elements can be added, removed or changed.

Egg thisEgg = getEgg ();

A variable that can hold an Egg object

Lists (2)

Properties:

 A list may be empty.

 It’s a sequence → each element can be identified with

it’s position (index). The first element has index 0!

 It’s homogeneous: all the elements are of the same type.

Lists are objects themselves (not a primitive value)

 A variable holding a list object is declared as:

 List<ElemType> listVariable;

The type of each element

List example: how to use

Create a List of fruit names.
public static void listExample(){

List<String> fruitList = new ArrayList<String> ();

System.out.println (fruitList.size());

fruitList.add("apple");

fruitList.add("orange");

fruitList.add("banana");

System.out.println (fruitList.size());

System.out.println (fruitList.get(0));

System.out.println (fruitList.get(2));

fruitList.remove("apple");

System.out.println (fruitList.get(0));

}

Creates a new empty list

Initial size is 0

Add 3 elements

Size should be 3 now

Prints apple

Prints banana

Remove apple from the list

Prints orange

List example: homogeneous types

Create a List of fruit names (Strings).
public static void listExample(){

List<String> fruitList = new ArrayList<String> ();

fruitList.add("apple");

fruitList.add("orange");

fruitList.add("banana");

fruitList.add(13);

fruitList.add("broccoli");

fruitList.add("13");

}

Illegal: 13 is not a String

OK: “broccoli” is a String

OK: “13” is a String

List of objects

Create a List of fruit names (Strings).

public static void listExample(){

List<Fruit> fruit = new ArrayList<Fruit> ();

fruit.add(new Apple());

fruit.add(new Orange());

fruit.add(new Banana());

fruit.add(new Broccoli());

}
Now we have a list of Fruit

elements

OK: Apple ‘is a’ Fruit

Illegal: Broccoli is no Fruit

Useful List Methods

list.size() Number of items in list.

list.isEmpty() true if the list is empty.

Same as "list.size() == 0"

list.get(k) Get one element from list.

k = 0, 1, ..., list.size()-1

list.add(object) Append (add) object to the

end of the list.

list.remove(object) Remove object from a list

Lists: Examining elements

// count eggs that are hatched

List<Egg> eggList = getListOfEggsInWorld();

int nextEggIndex = 0;

int nrOfHatchedEggs = 0;

while(nextEggIndex < eggList.size()) {

Egg egg = eggList.get(nextEggIndex);

if (egg.isHatched()) {

nrOfHatchedEggs ++;

}

nextEggIndex++;

}

Using a while loop:

Method from class Dodo

Variable holding an index

Variable for counting

Lists: what do you need to know

 You don’t need to know how to create a list

 You do need to know how to manipulate and use lists

Intermezzo

 Continue working on assignments

 Finish assignment 6

 Assignment 7:

 Assignment 7 up to and incl 4.3.1

 You may skip 4.1 9d and 4.1 10

 After the intermezzo follows: Java Documentation

The for each loop

for each: a loop for examining all elements of a List

(recommended).

List<Egg> eggList = getListOfEggsInWorld();

int nrOfHatchedEggs = 0;

for (Egg egg: eggList) {

if (egg.isHatched()) {

nrOfHatchedEggs++;

}

}

"for each egg in eggList"

While vs for each loop

List<Egg> eggList = getListOfEggsInWorld();

int nextEggIndex = 0;

int nrOfHatchedEggs = 0;

while(nextEggIndex < eggList.size()) {

Egg egg = eggList.get(nextEggIndex);

if (egg.isHatched()) {

nrOfHatchedEggs ++;

}

nextEggIndex++;

}

List<Egg> eggList = getListOfEggsInWorld();

int nrOfHatchedEggs = 0;

for (Egg egg: eggList) {

if (egg.isHatched()) {

nrOfHatchedEggs++;

}

}

Java documentation

 How to find

 Google: “list is empty java”

 look for Oracle Documentation

 How to read

 Scroll down and find relevant method

 How to use

 Click on method name

List<Egg> eggList = getListOfEggsInWorld();

if (eggList.isEmpty()){

…

}

Java Library Documentation

 We make a list of eggs: List<Egg> eggList;

 Get the second element (at index 3) in the eggList

using: eggList.get (3);

 Returns element

of type <Egg>

 Index must be

within then list bounds

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combing these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions

Wrapping up

Homework for Wednesday 8:30 March 2nd:

 Assignment 7:

 Assignment 7 up to and incl 4.3.1

 You may skip 4.1 9d and 4.1 10

 email MyDodo.java and ‘IN’

to Renske.weeda@gmail.com

