
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Ana Tanase

Today’s Lesson plan (11)

 Retrospective

 Previous lesson

 Theory: tasks

 Theory NP-C: Travelling Salesman problem

 Explanation: Dodo’s race

Retrospective

 Nested if-then-else => else-if

 class constant

 declare and use List variables (with primitive or object

types)

 object types (vs. primitive types)

 assigning values to object types (vs. primitive types)

 Null

 List methods (i.e. getting and deleting elements)

 for-each-loop

 use Java Library Documentation to look for and use

existing Java (List) methods;

Topics for assignment (rest of 7)

 Splitting complex algorithm into subalgorithms (Dodo’s

race)

 Implementing sequence of subalgorithms in Greenfoot

 Swapping elements in a list

 Note: some of the subalgorithms you may have already

implemented)

 NPC: Travelling salesman problem

 Dodo’s race

Remembering things

Splitting complex into subalgorithms

Manufacturing paper clips

 Day 1: Buy steel wire

 Day 2: Cut wire into pieces

 Day 3: Bend the clips

 Day 4: Pack them

 Day 5: Ship the packages

What happens if you’ve forgotten what

you did the day before?

Keep track of the day number (or the current

task)

Start

End

Day 1: Buy wire

Day 2: Cut wire

Day 3: Bend clips

Day 4: Pack

Day 5: Ship

Manufacturing paper clips (2)
Start

Buy wireday is 1?

Cut wireday is 2?

Bend clipsday is 3?

Packday is 4?

Shipday is 5?

day++

Stop

day++

day++

day++

day++

End

true

true

true

true

true

false

false

false

false

false

Manufacturing paper clips (3)

public void makePaperClips() {
if (myCurrentTask == 1) {

buyWire();
} else if (myCurrentTask == 2) {

cutWire();
} else if (myCurrentTask == 3) {

bendClips();
} else if (myCurrentTask == 4) {

packClips();
} else if (myCurrentTask == 5) {

shipPackages();
}

}

private int myCurrentTask;

Instance variable

Greenfoot: subalgorithms in sequence

NP-Complete problems

 In search of efficient solutions

Muddy City

The Muddy City challenge

Problem:

 City has no roads

 Rain? Muddy boots!

 Not too much money: also want to build swimmingpool

Solution:

 Pave some streets

 Just enough for everyone to get around

 Cheap as possible (road length is price)

Your Muddy City: solutions

What did you come up with?

 How much will it cost?

 What was your strategy?

Muddy City Graph

Muddy city

Model: make a map

(abstraction)

Strategy 1:

- Start with full map

- Remove expensive streets

Strategy 2:

- Try all possibilities and decide which is best

Strategy 3:

- Draw houses and add in streets, cheapest first

Muddy city

Strategy 1: Removing expensive streets

- Takes some effort

Strategy 2: Try all possibilities and decide which is best

- Brute force

- Lots of computation

Strategy 3: Draw in cheapest links

- Kruskal

- Efficient algorithm

Greedy Algorithm

1. Draw the houses (as nodes)

2. Sort the values (street lengths) into a list

3. Create a graph (in CS terms) by:

a) For each element in the list

b) Select cheapest link

c) If no closed circuit will be made, draw link

d) Remove value from list (whether drawn or not)

Kruskal (1956)

Optimal solution can be found:

n houses => (n-1) streets

Efficient: in polynomial time in O(log n)

Muddy city: what it’s about

 Minimal spanning tree problem

 Connecting all nodes

 Minimal totaal length

 Efficient algorithms do exist

 Networks:

 Power networks

 Gas Pipelines

 Computer networks

 Telephone networks

NS price map:

More complex: shortest route

People interested in shortest (not cheapest) route when

travelling:

 by car

 airplane

Searching for the best route seams like a similar

problem (to cheapest route), however:

 Convenience!

 Shorter more important than cheaper

Travelling Salesman problem

 Finding the shortest route passing by all houses

 No efficient method to find optimal solution is EXISTS!

 NP-Complete

 Cannot be calculated in polynomial time.

Brute-force algorithm:

 Always finds best solution

 Algorithm is easy to describe (and thus implement)

 Long time to solve: not efficient

 5 houses: (5-1)! /2 = 12 paths 10 sec

 12 houses: (12-1)! /2=19958400 paths >31yr

 Imagine scheduling for the whole country!

 Or re-scheduling after a snow-storm or power failure…

Graph coloring

 No adjacent countries same color

 Minimum #colors?

How many colors do you need?

Solution to graph coloring

Graph coloring

 Any map can be colored with 4 colors

 Theorem took 120 years to prove!

 But can it be done better?

 No efficient algorithm known for minimum #colors!

Dominating Sets

Goal: Max distance from house

to mailbox is 1.5 blocks

 Where to place a mailbox?

 What is the minimum number

of mailboxes you will need?

Minimum Dominating Sets

 Strategies for placing?

 What is minimum # of mailboxes needed?

Possible strategy?

 Try all possibilities? Brute force

 Number of possibilities: 2#intersections

 Big city? You’ll be here for a while!

 Efficiency: exponential

 No efficient algorithm known to determine the

minimum set!

Minimal solution: 6

 If you know the solution

 Creating the map is easy

 Next step: connect all the dots

Minimum Dominating Sets

 Brute force: try all possibilities

 Possibilities: 2#intersections

 Lots of intersections? Lots of work!!

Similar real-life situations

Stationing:

 Ambulances (max 15’)

 Placing stores, ice-cream trucks

 Army base-stations, watch towers, marine ships

Comparable optimization problems

 Travelling Salesman problem

 Minimum dominating sets

 Graph coloring

 Scheduling processes

Best timetable for 30 teachers & 800 students?

Takes years to solve!

By then you’ll be out of school

 In all cases:

 Optimal solution hard to find

 However, easy to check if a solution is optimal

Similar problems

 NP-Complete problems:

 Graph-coloring

 Minimum Dominating sets

 Travelling Salesman problem

 All these problems have been proved to be similar

 You solve one, then you solve them all!

 Are you looking for eternal fame? (Turing Award)

Efficiency

 Trying to find better solution than brute force

Dodo’s race (goal)

Who can make Dodo the smartest?

 Competition in class on March 18th

 everyone’s program will be run!

Highest score in

max 40 moves WINS!

1 point

5 points

Dodo’s race (rules)

Ground rules:

 Maximum steps: 40

 15 blue eggs: each worth 1 point

 1 Golden Egg: worth 5 points

 Mimi only moves using move()

 Max 1 move() per act()

 Competition will be held in a new world

 Highest score wins

Presentation: March 18th

 Presentation:

 Present (describe) your algorithm to the class (2

minutes)

 Test your algorithm against classmates

 Who will make the smartest Dodo?

 Think about efficiency (vs brute force)!

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combining these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting on the solution chosen and proces

 Generalizing and re-use of existing solutions

 Maps are an abstraction of reality

Wrapping up

Homework for Wednesday 8:30 March 9th:

 Assignment 7:

 Finish assignment 7 up to and including 4.3.7

 ZIP code and ‘IN’ and email to

Renske.weeda@gmail.com

 If you want extra credit: do all of 4.4 and next week

extra credit assignment (you may choose what you

want to do)

 Next week’s plans:

 in class- no theory (work on 4.4 – Dodo’s race)

