
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Ana Tanase

Today’s Lesson plan (13)

Warming-up:

 Present your Dodo’s race algorithm to the class

 Reflection: Have you been using Computational

Thinking?

Core:

 Recursion and BlueJ

Wrapping-up:

 What to expect on final test

 Course survey

Computational thinking

 Working in a structured manner:

 Break problems down into subproblems

 Design, solve and test solutions to subproblems

 Combine (sub)solutions to solve the problem

 Analyzing the quality of a solution

 Reflecting on the solution chosen and proces

 Generalizing and reuse of existing solutions

BlueJ

Different programming environment (as opposed to Greenfoot)

Same language: Java

Recursion

 A smaller part of oneself is embedded in itself

 Many natural phenomena are recursive

5

(a) Trees (b) Infinite mirror images (c) dominos

Sometimes, it is easier to solve a given problem using recursion

6

Recursive Definitions

 In a recursive definition, an object is defined in

terms of itself (but then smaller).

 We can recursively define sequences, functions,

sets, ...

 Recursion is a principle closely related to

mathematical induction.

Ex. 1: The handshake problem

Question: There are n people in the room.

If each person shakes hands once with every other

person, what will the total number of handshakes be?

Four people

A B

A C

B C

A D

B D

C D

Three people

A B

A C

B C

Two people

A B

7

Ex. 1: The handshake problem (cont’d)

 There is a trick to know the total number

 If there are two people, only one handshake h(2) = 1

8

let h(n) calculate the number of handshakes needed,

n ‘the number of people’ is 2,

h(2) ‘the number of handshakes for 2 people’ equals 1.

so h(2) = 1

Ex. 1: The handshake problem (cont’d)

 There is a trick to know the total number

 If there are two people, only one handshake

 If there are three people, treat it as having one

more person added to the two people, and

shakes hands with them (2 extra handshakes)

h(2) = 1

h(3) = h(2) + 2

9

let h(n) calculate the number of handshakes needed,

n ‘the number of people’ is 3,

h(3) ‘the number of handshakes’ for 3 people equals:

• the number of handshakes needed for 2 people, so h(2)

• plus two more handshakes, so + 2

so h(3) = h(2) + 2

Ex. 1: The handshake problem (cont’d)

 There is a trick to know the total number

 If there are two people, only one handshake

 If there are three people, treat it as having one

more person added to the two people, and

shakes hands with them (2 extra handshakes)

 If there are four people, treat it as having one

more person added to the three people, and

shakes hands with them (3 extra handshakes)

10

let h(n) calculate the number of handshakes needed,

n ‘the number of people’ is 4,

h(4) ‘the number of handshakes’ for 4 people equals:

• the number of handshakes needed for 3 people, so h(3)

• plus two more handshakes, so + 3

so

h(2) = 1

h(3) = h(2) + 2

h(4) = h(3) + 3

h(4) = h(3) + 3

Ex. 1: The handshake problem (cont’d)

 There is a trick to know the total number

 If there are two people, only one handshake

 If there are three people, treat it as having one

more person added to the two people, and

shakes hands with them (2 extra handshakes)

 If there are four people, treat it as having one

more person added to the three people, and

shakes hands with them (3 extra handshakes)

h(2) = 1

h(3) = h(2) + 2

h(4) = h(3) + 3

h(n) = h(n-1) + (n-1) if n >= 2

h(n) = 0 otherwise
11

 We can generalize the total number of handshakes

into a formula:

Ex. 2: Factorial function

 Recursion is useful for problems that can be

represented by a simpler version of the same problem

 Example: the factorial function

6! = 6 * 5 * 4 * 3 * 2 * 1

We could write:

6! = 6 * 5!

12

5!

Ex. 2: Factorial function

In general, we can express the factorial function as follows:

n! = n * (n-1)!

Is this correct? Well… almost …

The factorial function is only defined for positive integers. So

we should be a bit more precise:

n! = n * (n-1)! (if n is larger than 1)

n! = 1 (if n is equal to 1)

13

Recursion

 Recursion is one way to decompose a task into

smaller subtasks

 Each of these subtasks is a simpler example of the

same task

 The smallest example of the same task has a non-

recursive solution

 The factorial function

 n! = n * (n-1)! (simpler subtask is (n-1)!)

 1! = 1 (the simplest example is n equals 1)

14

How many pairs of rabbits can be produced

from a single pair in a year's time?

 Assumptions:

 Each new pair of rabbits becomes fertile at the age of one month

 Each pair of fertile rabbits produces a new pair of offspring every
month;

 None of the rabbits dies in that year.

 How the population develops:

 We start with a single pair of (newborn) rabbits;

 After 1 month, the pair of rabbits become fertile

 After 2 months, there will be 2 pairs of rabbits

 After 3 months, there will be 3 pairs (2+1=3)

 After 4 months, there will be 5 pairs (since the following month
the original pair and the pair born during the first month will both
produce a new pair and there will be 5 in all (2+3=5).

15

Monthly rabbit population: 1, 1, 2, 3, 5, …

Population growth in nature

 Leonardo Pisano (nickname: Fibonacci) proposed the sequence in

1202 in The Book of the Abacus.

16

creation

Monthly rabbit population: 1, 1, 2, 3, 5, …

How many pairs of rabbits can be produced

from a single pair in a year's time?

 Can you generalize the total number of pairs into a
formula?

 Monthly rabbit population: 1, 1, 2, 3, 5, …

 Reminder. Our handshake formula:

17

h(n) = h(n-1) + (n-1) if n >= 2

h(n) = 0 otherwise

Fibonacci

Fibonacci numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

where each number is the sum of the preceding two

example: f(2) = f(1) + f(0)

f(3) = f(2) + f(1)

Recursive definition:
 F(0) = 0 (Fibonacci number at 0th position)

 F(1) = 1 (Fibonacci number at 1st position)

 F(number) = F(number-1)+ F(number-2)

18

Self-Similarity in

Fractals

• Exact

• Example Koch

snowflake curve

• Starts with a single line

segment

• On each iteration

replace each segment

by

• As one successively

zooms in the resulting

shape is exactly the

same

Fractals: self-similar patterns

Self-similarity in Nature

BlueJ and recursion

 BlueJ is environment (IDE) for Java programming (as

an alternative for Greenfoot).

 In this assignment you will experiment with recursion.

Drawing trees:

 Using recursion typically less effort than ‘by hand’

 Recursive definition is the basis for animated movies

and games.

Getting started with BlueJ

How to call a tree-drawing method
1. Right-click on the TreePainter class and select ‘new TreePainter()’

2. An empty canvas is created. Move it aside (don’t click it away).

3. In the bottom of the screen, right-click on the instance you just created:

4. Choose one of the methods to draw a tree.

5. Each time you wish to draw a new tree, repeat the steps above. You can keep multiple canvases

open at a time.

Canvas orientation

 Coordinates are as you are accustomed to in math

(opposed to Greenfoot)

 Origin (0,0) is in the bottom left corner

 Always starts facing East

 After turning 90 degrees (counterclockwise),

pointer faces North

Understanding drawSimpleTree

void drawSimpleTree(double length, double beginX , double beginY, double dir)

Tinker (“play around with”) assignment:

 Run, view and analyze the code

 Try to figure out how it works.

Calculating coordinates and angles

Method is given beginX, beginY, length and dir

Must calculate endX and endY and new direction

Calculate x coordinate for end of branch:

 double endX = beginX + length * Math.cos (dir);

Calculate y coordinate for end of branch:

 double endY = beginY + length * Math.sin (dir);

Calculate next angle:

 dir + bendAngleSimpleTree

 double bendAngleSimpleTree = 22.0/180 * Math.PI;
(uses 22 degrees and then turns degrees into radians)

drawSimpleTree method explained

The first time method is called with the trunk information:
public void drawSimpleTree() {

drawSimpleTree(180, CANVAS_WIDTH/2, 50, Math.PI/2);

}

After drawing the trunk, the method calls itself 2 times,

each time with a shorter branch and a new direction:
void drawSimpleTree(double length, double beginX , double beginY, double dir)

….

drawLine(beginX, beginY, endX, endY);

double lengthSubTree = length * shrinkFactorSimpleTree; // shrink branch

drawSimpleTree (lengthSubTree, endX , endY, dir + bendAngleSimpleTree);

drawSimpleTree (lengthSubTree, endX , endY, dir - bendAngleSimpleTree);

}

The algorithm stops when the branches become too small

(shorter than length 2)

drawSimpleTree code tracing

drawPurpleTree method explained

More variation:

 Use of colors

 Define colors using RGB (Red-Green-Blue) color space

setPenColor (0, 128, 255);

Tinker assignment:

 Experiment with a different (more natural) pen color

 Tip: Google “RGB table”

drawFullBodyTree method explained

More variation for an even more natural look:

 Branch thickness

 Algorithm:

 If branch length is long (tree trunk and main branches)

 Branch is drawn thick

 else, the length is short (small branches & leaves)

 Branch is drawn thin (with minimum of 1 pixel)

Tinker assignment:

 Run, view and analyze the code.

 Experiment with a different length and treeLengthWitdthRatio

drawMinorRandomTree explained

More variation for an even more natural look:

 Randomness

 getRandomNumber(60, 90)

returns a random int between 60 and 90

 Algorithm:

 Branch length is shrinked by a shrinkFactor

 between 60% and 90%

 subtree is drawn

drawNaturalTree

Assignment: Write your own tree method

 Add more variation for a more natural look:

 Combining branch thickness and use of colors

 More randomness of angles and lengths

 Incorporate randomness in colors

 Use appropriate colors, i.e. different (random) shades of

green/brown, but not hot-pink

 Randomness in branches:

 Occasionally leave out a branch

 Occasionally draw one branch in front of the other

 .. What else can you draw? (a Christmas tree???)

 Write a new method

 Copy the code from drawSimpleTree

 Add code, inspired from:

 drawPurpleTree

 drawFullBodyTree

 drawMinorRandomTree

Questions?

Wrapping up

- Final test: what to expect (next sheet)

- Final assignment: send us your MyDodo.java file

- Final course survey: http://goo.gl/forms/VH8uQbEkRS

http://goo.gl/forms/VH8uQbEkRS

Test: what to expect

 During testweek

 Theory in assignments 1 through 7

 Similar to the quizzes

 A bit of theory

 Algorithms, flowcharts and code:

 Designing

 Analyzing

 Writing

Thank You!!

And as a final remark:

Thank you all!

We really enjoyed teaching you

After handing in MyDodo.java and passing the final test:

- Hand in USB stick

- You will get a certificate from the RU

- Be sure to include this on your CV!!

