Algorithmic Thinking and
 Structured Programming (in Greenfoot)

Teachers:
Renske Smetsers-Weeda
Sjaak Smetsers
Ana Tanase

Today's Lesson plan (13)

Warming-up:
■Present your Dodo's race algorithm to the class
\square Reflection: Have you been using Computational Thinking?

Core:
\square Recursion and BlueJ

Wrapping-up:

- What to expect on final test
-Course survey

Computational thinking

\square Working in a structured manner:

- Break problems down into subproblems
- Design, solve and test solutions to subproblems
- Combine (sub)solutions to solve the problem
\square Analyzing the quality of a solution
\square Reflecting on the solution chosen and proces
\square Generalizing and reuse of existing solutions

Different programming environment (as opposed to Greenfoot) Same language: Java

Recursion

- A smaller part of oneself is embedded in itself \square Many natural phenomena are recursive

(a) Trees

(b) Infinite mirror images

(c) dominos

Sometimes, it is easier to solve a given problem using recursion

Recursive Definitions

- In a recursive definition, an object is defined in terms of itself (but then smaller).
\square We can recursively define sequences, functions, sets, ...
a Recursion is a principle closely related to mathematical induction.

Ex. 1: The handshake problem

Question: There are n people in the room.
If each person shakes hands once with every other person, what will the total number of handshakes be?

Ex. 1: The handshake problem (cont'd)

- There is a trick to know the total number
- If there are two people, only one handshake
let $\mathbf{h}(\mathbf{n})$ calculate the number of handshakes needed, \mathbf{n} 'the number of people' is 2 ,
$\mathbf{h (2)}$ 'the number of handshakes for 2 people' equals 1.
so $h(2)=1$

Ex. 1: The handshake problem (cont'd)

- There is a trick to know the total number
- If there are two people, only one handshake

$$
h(2)=1
$$

- If there are three people, treat it as having one more person added to the two people, and $h(3)=h(2)+2$ shakes hands with them (2 extra handshakes)
let $\mathbf{h}(\mathbf{n})$ calculate the number of handshakes needed, n 'the number of people' is 3 ,
$\mathrm{h}(3)$ 'the number of handshakes' for 3 people equals:
- the number of handshakes needed for 2 people, so $\mathbf{h}(2)$
- plus two more handshakes, so + 2
so $h(3)=h(2)+2$

Ex. 1: The handshake problem (cont'd)

- There is a trick to know the total number
- If there are two people, only one handshake

$$
h(2)=1
$$

- If there are three people, treat it as having one more person added to the two people, and $h(3)=h(2)+2$ shakes hands with them (2 extra handshakes)
- If there are four people, treat it as having one more person added to the three people, and $h(4)=h(3)+3$ shakes hands with them (3 extra handshakes)
let $\mathbf{h}(\mathbf{n})$ calculate the number of handshakes needed,
\mathbf{n} 'the number of people' is 4 ,
$\mathrm{h}(4)$ 'the number of handshakes' for 4 people equals:
- the number of handshakes needed for 3 people, so h(3)
- plus two more handshakes, so +3
so $h(4)=h(3)+3$

Ex. 1: The handshake problem (cont'd)

- There is a trick to know the total number
- If there are two people, only one handshake
- If there are three people, treat it as having one more person added to the two people, and $h(3)=h(2)+2$ shakes hands with them (2 extra handshakes)
- If there are four people, treat it as having one more person added to the three people, and $h(4)=h(3)+3$ shakes hands with them (3 extra handshakes)
\square We can generalize the total number of handshakes into a formula:

$$
\begin{array}{lr}
h(n)=h(n-1)+(n-1) & \text { if } n>=2 \\
h(n)=0 & \text { otherwise }
\end{array}
$$

Ex. 2: Factorial function

- Recursion is useful for problems that can be represented by a simpler version of the same problem
- Example: the factorial function

$$
6!=6 * \underbrace{5 * 4 * 3 * 2 * 1}_{5!}
$$

We could write:

$$
6!=6 \text { * } 5!
$$

Ex. 2: Factorial function

In general, we can express the factorial function as follows:

$$
n!=n *(n-1)!
$$

Is this correct? Well... almost ...
The factorial function is only defined for positive integers. So we should be a bit more precise:

$$
\begin{aligned}
& \mathrm{n}!=\mathrm{n} *(\mathrm{n}-1)! \\
& \mathrm{n}!=1
\end{aligned}
$$

(if n is larger than 1)
(if n is equal to 1)

Recursion

- Recursion is one way to decompose a task into smaller subtasks
- Each of these subtasks is a simpler example of the same task
- The smallest example of the same task has a nonrecursive solution
\square The factorial function
- $\mathrm{n}!=\mathrm{n}$ * $(\mathrm{n}-1)$! (simpler subtask is ($\mathrm{n}-1$)!)
- $1!=1 \quad$ (the simplest example is n equals 1)

How many pairs of rabbits can be produced from a single pair in a year's time?

- Assumptions:
- Each new pair of rabbits becomes fertile at the age of one month
- Each pair of fertile rabbits produces a new pair of offspring every month;
- None of the rabbits dies in that year.
- How the population develops:
- We start with a single pair of (newborn) rabbits;
- After 1 month, the pair of rabbits become fertile
- After 2 months, there will be 2 pairs of rabbits
- After 3 months, there will be 3 pairs $(2+1=3)$

- After 4 months, there will be 5 pairs (since the following month the original pair and the pair born during the first month will both produce a new pair and there will be 5 in all $(2+3=5)$.

Monthly rabbit population: $1,1,2,3,5, \ldots$

Population growth in nature

- Leonardo Pisano (nickname: Fibonacci) proposed the sequence in 1202 in The Book of the Abacus.

Monthly rabbit population: 1, 1, 2, 3, 5, \ldots

How many pairs of rabbits can be produced from a single pair in a year's time?

- Can you generalize the total number of pairs into a formula?
- Monthly rabbit population: $1,1,2,3,5, \ldots$

\square Reminder. Our handshake formula:

$$
\begin{array}{ll}
h(n)=h(n-1)+(n-1) & \text { if } n>=2 \\
h(n)=0 & \text { otherwise }
\end{array}
$$

Fibonacci

\square Fibonacci numbers:
$0,1,1,2,3,5,8,13,21,34$,
where each number is the sum of the preceding two example: $f(2)=f(1)+f(0)$

$$
f(3)=f(2)+f(1)
$$

-Recursive definition:

- $\mathbf{F}(0)=0 \quad$ (Fibonacci number at $0^{\text {th }}$ position)
- $F(1)=1 \quad$ (Fibonacci number at $1^{\text {st }}$ position)
- F (number) $=F($ number-1) $+F$ (number-2)

Fractals: self-similar patterns

Self-Similarity in Fractals

- Exact
- Example Koch snowflake curve
- Starts with a single line segment
- On each iteration replace each segment by
- As one successively zooms in the resulting shape is exactly the same

Self-similarity in Nature

Blued and recursion

- BlueJ is environment (IDE) for Java programming (as an alternative for Greenfoot).
- In this assignment you will experiment with recursion.

Drawing trees:

- Using recursion typically less effort than 'by hand'
\square Recursive definition is the basis for animated movies and games.

Getting started with BlueJ

How to call a tree-drawing method

1. Right-click on the TreePainter class and select 'new TreePainter()'

2. An empty canvas is created. Move it aside (don't click it away).
treePain1:
TreePainter
3. In the bottom of the screen, right-click on the instance you just created:
4. Choose one of the methods to draw a tree.
5. Each time you wish to draw a new tree, repeat the steps above. You can keep multiple canvases open at a time.

Canvas orientation

- Coordinates are as you are accustomed to in math (opposed to Greenfoot)
\square Origin $(0,0)$ is in the bottom left corner
- Always starts facing East
- After turning 90 degrees (counterclockwise), pointer faces North

Understanding drawSimpleTree

void drawSimpleTree(double length, double beginX , double beginY, double dir)

Tinker ("play around with") assignment:

- Run, view and analyze the code
\square Try to figure out how it works.

Calculating coordinates and angles

Method is given beginX, beginY, length and dir Must calculate endX and endY and new direction

Calculate \times coordinate for end of branch:
a double endX = beginX + length * Math.cos (dir);

Calculate y coordinate for end of branch:
a double endY = beginY + length * Math.sin (dir);

Calculate next angle:

- dir + bendAngleSimpleTree
a double bendAngleSimpleTree = 22.0/180 * Math.PI; (uses 22 degrees and then turns degrees into radians)

drawSimpleTree method explained

The first time method is called with the trunk information:

```
public void drawSimpleTree() {
    drawSimpleTree( 180, CANVAS_WIDTH/2, 50, Math.PI/2 );
}
```

After drawing the trunk, the method calls itself 2 times, each time with a shorter branch and a new direction: void drawSimpleTree(double length, double beginX, double beginY, double dir)
drawLine(beginX, beginY, endX, endY);
double lengthSubTree = length * shrinkFactorSimpleTree; // shrink branch drawSimpleTree (lengthSubTree, endX , endY, dir + bendAngleSimpleTree); drawSimpleTree (lengthSubTree, endX, endY, dir - bendAngleSimpleTree);
\}
The algorithm stops when the branches become too small (shorter than length 2)

drawPurpleTree method explained

More variation:

- Use of colors
\square Define colors using RGB (Red-Green-Blue) color space setPenColor (0, 128, 255);

Tinker assignment:

Hex: \# 0080FF
Red: 0
Green: 128
Blue: 255

- Experiment with a different (more natural) pen color
- Tip: Google "RGB table"

drawFullBodyTree method explained

More variation for an even more natural look:

- Branch thickness
- Algorithm:
- If branch length is long (tree trunk and main branches)
- Branch is drawn thick
- else, the length is short (small branches \& leaves)
- Branch is drawn thin (with minimum of 1 pixel)

Tinker assignment:

- Run, view and analyze the code.
- Experiment with a different length and treeLengthWitdthRatio

drawMinorRandomTree explained

More variation for an even more natural look:
\square Randomness

- getRandomNumber (60, 90)
returns a random int between 60 and 90
- Algorithm:
- Branch length is shrinked by a shrinkFactor
- between 60\% and 90\%
- subtree is drawn

drawNaturalTree

Assignment: Write your own tree method

- Add more variation for a more natural look:
- Combining branch thickness and use of colors
- More randomness of angles and lengths
- Incorporate randomness in colors
- Use appropriate colors, i.e. different (random) shades of green/brown, but not hot-pink
- Randomness in branches:
- Occasionally leave out a branch
- Occasionally draw one branch in front of the other
- .. What else can you draw? (a Christmas tree???)
- Write a new method
- Copy the code from drawSimpleTree
- Add code, inspired from:
- drawPurpleTree
- drawFullBodyTree
- drawMinorRandomTree

Questions?

Wrapping up

- Final test: what to expect (next sheet)

Final assignment: send us your MyDodo.java file
Final course survey: http://goo.gl/forms/VH8uQbEkRS

Test: what to expect

- During testweek
- Theory in assignments 1 through 7
\square Similar to the quizzes
- A bit of theory
\square Algorithms, flowcharts and code:
- Designing
- Analyzing
- Writing

Thank You!!

And as a final remark:

Thank you all!
 We really enjoyed teaching you ()

After handing in MyDodo.java and passing the final test: Hand in USB stick

- You will get a certificate from the RU
- Be sure to include this on your CV!!

