
Algorithmic Thinking 

and 

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Ana Tanase

Sjaak Smetsers



Course

 Algorithmic Thinking: 

Solving computational problems

 Structured Programming: 

Object Oriented programming

in Java using the

Greenfoot environment

Not just with a PC,

Also with pen-and-paper

2



Course expectations

 Moral 1: Don’t give up

 programs usually don’t run perfectly the first time, 

you will make mistakes

 expect to make mistakes

 learn from them

 Moral 2: Work smart

 think ahead (like an architect) 

 build strong and sturdy

 reuse your solution in following exercises 

(instead of rebuilding)



Introduction

 3 teachers:

 2 teachers / master students

 1 lecturer RU

 What brings us here?

 We love computer science education

 Scientific research on learning computer science



Introduction

 HAVO / VWO?

 TTO?

 Programming experience?



Organization

 Masterclass

 Beginners course

 Course is in English

 If English becomes a problem, please let us know.

 Try to speak as much English as possible!

 14 lessons: 2 hours a week

 Homework

 At least 1 hour a week

 Magister (deadline: Wednesday 8:30)



Final Grade

 Homework: must be a pass

 3 Quizes: each 10% of final mark (Dec, Jan, Feb)

 Test: 70% of final mark (beginning of April)

 Extra credit (max 10%):

 Outstanding work on Dodo’s Race (final project)

 Advanced students who complete extra Sokoban 

project (assignment 8)



Today’s Lesson plan

 10 min Introduction

 Course goal & expectations

 Today’s lesson goal

 35 min Computational Thinking

 10 min Greenfoot introduction

 50 min Get Dodo to work: Assignment 1

 10 min Wrapping up

 Saving work

 Plenary reflection



Today’s Lesson

 Computing is about….

… solving problems (for people).

 Problem solving concepts:

 Algorithms

 Efficiency



21st century skill: computational thinking

 Working in a structured manner: 

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combing these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions



Locked-in syndrome

 Patient is ‘locked-in’ body:

 Totally paralyzed

 All mental abilities intact

 But can only blink

 It can happen to anyone, suddenly (stroke)

 Doctors can’t do much

 Rehabilitation (if possible) up to 20 years

 Can you come up with a way to communicate?



Example: count blinks

A: 1 blink

B: 2 blinks

C: 3 blinks

…

Z: 26 blinks



Algorithm: count blinks

Algorithm: precise description of solution:

which steps (and in which order)

This algorithm has 2 parts:

 The patient: blinking (correct) number of times

 The helper:

 Counts number of blinks

 Writes letter down when blinking stops

A: 1 blink

B: 2 blinks

C: 3 blinks

…

Z: 26 blinks



Improved algorithm

Improved algorithm:

 The helper: Reads out letter

 The patient: Blinks when correct

 The helper: Writes down letter



Locked-in: finding solutions

5 minutes:

 Get in pairs

 Decide on a better way to communicate

 Can you come up with a solution that really works?

 Try it out!

Communicate the message “JAVA” to each other

 Write down:

 The algorithm…

 It is better because….

 When does it (not) work? Problems? Challenges?



Locked-in: sharing solutions

Describe:

 The algorithm

 Why is your solution better?

 Problems / Challenges?



Algorithm: count blinks

Problems/ Challenges:
A: 1 blink

B: 2 blinks

C: 3 blinks

…

Z: 26 blinks Word/sentence end: punctuation

 Blink by accident?

 LOTS of blinks (for example: puzzel)

 What to do if you miscount? 

 Numbers and smilies?



Efficiency: examining solutions

 How long does it take? How to measure?

 Don’t use time (not stable)

 Use how much work needed: number of blinks/Q’s

 Best case scenario: What is the fewest blinks/Q’s needed?

 Worst case scenario: What is the most blinks/Q’s needed?

 Example for a 4-letter word:

 Best case: AAAA is 4x1=4 blinks

 Worst case: ZZZZ is 4x26=104 blinks

 Average: 54 blinks

A: 1 blink

B: 2 blinks

C: 3 blinks

…

Z: 26 blinks



Locked-in: examine your solution

 Best case scenario: fewest blinks needed?

 Worst case scenario: most blinks needed?

 Example for a 4-letter word:

 Best case: AAAA is 4x1=4 blinks

 Worst case: ZZZZ is 4x26=104 blinks

 Average case: 54 blinks

2 minutes: Determine how well your solution works in best 

and worst case.

A: 1 blink

B: 2 blinks

C: 3 blinks

…

Z: 26 blinks



Possible improvements

 More modes: short/long blinks

 Word prediction:

 antel -> antelope

 T9 (only 10 possibilities)

 Most frequent letters first (Huffman coding)

 Dividing possibilities in half

 Man / woman

 Hair / bald

 Glasses / no glasses



Transfer of a solution

Using Who-Is-It strategy for Locked-in solution:

Before N?

Before T?Before F?

Yes

Before D?

Is it A?

Is it B?A

B C

No

Yes

Yes

Yes

NoNo

No

No

NoYes

Yes

Worst case:

Amount of work = 5x nrLetters

Before W?

Is it T?

Is it U?T

U V

No

NoYes

Yes

Yes No



Search algorithms

Worst–case:

 First algorithm: work = 26 x nr letters 

 Improved algorithm: work = 5 x nr letters

Imagine Google searching through data:

 First algorithm: work = 1 million steps

 Improved algorithm: work = 20 steps



Locked-in: summing up

 We developed an algorithm

 Precise steps that both people agree on to 

communicate

 We evaluated algorithms

 How much work is needed

 Limits: how good/bad it could possibly be

 Problem similar to how 2 computers communicate over 

a network: they can only send 0s and 1s



Locked-in: real solutions

 0:00 – 0:46

 https://www.youtube.com/watch?v=WQIWc3uE4LU

 1.25 – 1.55

 https://www.youtube.com/watch?v=A3uEMyVnThI

https://www.youtube.com/watch?v=WQIWc3uE4LU
https://www.youtube.com/watch?v=A3uEMyVnThI


Other real solutions



Computational thinking

 Finding creative solutions

 Reuse solutions from other problems

 Describing steps precisely

 Before building a solution, think about:

 Efficiency

 Assumptions / conditions 

 Does it solve the problem? (final situation)

 It’s not just about computers…

Computing is about… solving problems for people



Greenfoot and Java

Greenfoot environment:

- Visualize and test your algorithms

- Gives immediate feedback

- You write real Java code



28

Mimi the Dodo

 Demo



Where we are going

And the end of the course you will be able to:

 program in Java

 use Java docs

 reuse other’s work

… and make just about anything your creative mind can

think of!



Where we are going

Final assignment: Dodo’s race.

Who can come up with the best algorithm

and make the smartest Dodo?

How?

1) Algorithmic Thinking

2) Structured Programming Course Goals



Assignments: how to work

 Read the theory

 Do the exercises (all code and ‘IN’ must be handed in)

 Work in pairs (same strength)

 First read and think about answer individually

 Discuss answer together

 Switch ‘driver’ every exercise (so, about every 10 min)

 Expect to get stuck occasionally

 Stuck? Explain to your partner what you are trying to do 

and why you think it doesn’t work

 Can’t figure it out together => raise your hand 



Pair programming

 Why?

 Discuss problems together

 You can help and learn from each other

 Less mistakes, smarter solutions, faster

 More fun

 How?

 Together: discuss algorithm, debug

 Driver: types (code & answers to hand IN questions)

 The other: thinks about strategy, draws flowcharts, 

reviews code, advises, writes answers to questions

 Switch ‘driver’ every exercise or 15 minutes



Assignment 1

1. Get into pairs

2. Open (Word) document for hand‘(IN)’ questions

3. Other questions: jot down on instruction paper

4. Make sure you have a place to save your work

5. Download and unzip the scenario at 

http://www.cs.ru.nl/~S.Smetsers/Greenfoot/Kandinsky/

 Hand in on Magister before Wednesday 8:30



Wrapping up

Save your work! Discuss how/when to finish off and who 

will turn it in.

Homework:

 Finish Assignment 1: until and including 5.4

 Instructions on saving and handing in: 7 and 8

 In Magister before Wednesday 8:30

Reflection:

 What did you learn today?

Any other questions?


