
Algorithmic Thinking 

and 

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Ana Tanase

Sjaak Smetsers



Course

 Algorithmic Thinking: 

Solving computational problems

 Structured Programming: 

Object Oriented programming

in Java using the

Greenfoot environment

Not just with a PC,

Also with pen-and-paper

2



Course expectations

 Moral 1: Don’t give up

 programs usually don’t run perfectly the first time, 

you will make mistakes

 expect to make mistakes

 learn from them

 Moral 2: Work smart

 think ahead (like an architect) 

 build strong and sturdy

 reuse your solution in following exercises 

(instead of rebuilding)



Introduction

 3 teachers:

 2 teachers / master students

 1 lecturer RU

 What brings us here?

 We love computer science education

 Scientific research on learning computer science



Introduction

 HAVO / VWO?

 TTO?

 Programming experience?



Organization

 Masterclass

 Beginners course

 Course is in English

 If English becomes a problem, please let us know.

 Try to speak as much English as possible!

 14 lessons: 2 hours a week

 Homework

 At least 1 hour a week

 Magister (deadline: Wednesday 8:30)



Final Grade

 Homework: must be a pass

 3 Quizes: each 10% of final mark (Dec, Jan, Feb)

 Test: 70% of final mark (beginning of April)

 Extra credit (max 10%):

 Outstanding work on Dodo’s Race (final project)

 Advanced students who complete extra Sokoban 

project (assignment 8)



Today’s Lesson plan

 10 min Introduction

 Course goal & expectations

 Today’s lesson goal

 35 min Computational Thinking

 10 min Greenfoot introduction

 50 min Get Dodo to work: Assignment 1

 10 min Wrapping up

 Saving work

 Plenary reflection



Today’s Lesson

 Computing is about….

… solving problems (for people).

 Problem solving concepts:

 Algorithms

 Efficiency



21st century skill: computational thinking

 Working in a structured manner: 

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combing these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions



Locked-in syndrome

 Patient is ‘locked-in’ body:

 Totally paralyzed

 All mental abilities intact

 But can only blink

 It can happen to anyone, suddenly (stroke)

 Doctors can’t do much

 Rehabilitation (if possible) up to 20 years

 Can you come up with a way to communicate?



Example: count blinks

A: 1 blink

B: 2 blinks

C: 3 blinks

…

Z: 26 blinks



Algorithm: count blinks

Algorithm: precise description of solution:

which steps (and in which order)

This algorithm has 2 parts:

 The patient: blinking (correct) number of times

 The helper:

 Counts number of blinks

 Writes letter down when blinking stops

A: 1 blink

B: 2 blinks

C: 3 blinks

…

Z: 26 blinks



Improved algorithm

Improved algorithm:

 The helper: Reads out letter

 The patient: Blinks when correct

 The helper: Writes down letter



Locked-in: finding solutions

5 minutes:

 Get in pairs

 Decide on a better way to communicate

 Can you come up with a solution that really works?

 Try it out!

Communicate the message “JAVA” to each other

 Write down:

 The algorithm…

 It is better because….

 When does it (not) work? Problems? Challenges?



Locked-in: sharing solutions

Describe:

 The algorithm

 Why is your solution better?

 Problems / Challenges?



Algorithm: count blinks

Problems/ Challenges:
A: 1 blink

B: 2 blinks

C: 3 blinks

…

Z: 26 blinks Word/sentence end: punctuation

 Blink by accident?

 LOTS of blinks (for example: puzzel)

 What to do if you miscount? 

 Numbers and smilies?



Efficiency: examining solutions

 How long does it take? How to measure?

 Don’t use time (not stable)

 Use how much work needed: number of blinks/Q’s

 Best case scenario: What is the fewest blinks/Q’s needed?

 Worst case scenario: What is the most blinks/Q’s needed?

 Example for a 4-letter word:

 Best case: AAAA is 4x1=4 blinks

 Worst case: ZZZZ is 4x26=104 blinks

 Average: 54 blinks

A: 1 blink

B: 2 blinks

C: 3 blinks

…

Z: 26 blinks



Locked-in: examine your solution

 Best case scenario: fewest blinks needed?

 Worst case scenario: most blinks needed?

 Example for a 4-letter word:

 Best case: AAAA is 4x1=4 blinks

 Worst case: ZZZZ is 4x26=104 blinks

 Average case: 54 blinks

2 minutes: Determine how well your solution works in best 

and worst case.

A: 1 blink

B: 2 blinks

C: 3 blinks

…

Z: 26 blinks



Possible improvements

 More modes: short/long blinks

 Word prediction:

 antel -> antelope

 T9 (only 10 possibilities)

 Most frequent letters first (Huffman coding)

 Dividing possibilities in half

 Man / woman

 Hair / bald

 Glasses / no glasses



Transfer of a solution

Using Who-Is-It strategy for Locked-in solution:

Before N?

Before T?Before F?

Yes

Before D?

Is it A?

Is it B?A

B C

No

Yes

Yes

Yes

NoNo

No

No

NoYes

Yes

Worst case:

Amount of work = 5x nrLetters

Before W?

Is it T?

Is it U?T

U V

No

NoYes

Yes

Yes No



Search algorithms

Worst–case:

 First algorithm: work = 26 x nr letters 

 Improved algorithm: work = 5 x nr letters

Imagine Google searching through data:

 First algorithm: work = 1 million steps

 Improved algorithm: work = 20 steps



Locked-in: summing up

 We developed an algorithm

 Precise steps that both people agree on to 

communicate

 We evaluated algorithms

 How much work is needed

 Limits: how good/bad it could possibly be

 Problem similar to how 2 computers communicate over 

a network: they can only send 0s and 1s



Locked-in: real solutions

 0:00 – 0:46

 https://www.youtube.com/watch?v=WQIWc3uE4LU

 1.25 – 1.55

 https://www.youtube.com/watch?v=A3uEMyVnThI

https://www.youtube.com/watch?v=WQIWc3uE4LU
https://www.youtube.com/watch?v=A3uEMyVnThI


Other real solutions



Computational thinking

 Finding creative solutions

 Reuse solutions from other problems

 Describing steps precisely

 Before building a solution, think about:

 Efficiency

 Assumptions / conditions 

 Does it solve the problem? (final situation)

 It’s not just about computers…

Computing is about… solving problems for people



Greenfoot and Java

Greenfoot environment:

- Visualize and test your algorithms

- Gives immediate feedback

- You write real Java code



28

Mimi the Dodo

 Demo



Where we are going

And the end of the course you will be able to:

 program in Java

 use Java docs

 reuse other’s work

… and make just about anything your creative mind can

think of!



Where we are going

Final assignment: Dodo’s race.

Who can come up with the best algorithm

and make the smartest Dodo?

How?

1) Algorithmic Thinking

2) Structured Programming Course Goals



Assignments: how to work

 Read the theory

 Do the exercises (all code and ‘IN’ must be handed in)

 Work in pairs (same strength)

 First read and think about answer individually

 Discuss answer together

 Switch ‘driver’ every exercise (so, about every 10 min)

 Expect to get stuck occasionally

 Stuck? Explain to your partner what you are trying to do 

and why you think it doesn’t work

 Can’t figure it out together => raise your hand 



Pair programming

 Why?

 Discuss problems together

 You can help and learn from each other

 Less mistakes, smarter solutions, faster

 More fun

 How?

 Together: discuss algorithm, debug

 Driver: types (code & answers to hand IN questions)

 The other: thinks about strategy, draws flowcharts, 

reviews code, advises, writes answers to questions

 Switch ‘driver’ every exercise or 15 minutes



Assignment 1

1. Get into pairs

2. Open (Word) document for hand‘(IN)’ questions

3. Other questions: jot down on instruction paper

4. Make sure you have a place to save your work

5. Download and unzip the scenario at 

http://www.cs.ru.nl/~S.Smetsers/Greenfoot/Kandinsky/

 Hand in on Magister before Wednesday 8:30



Wrapping up

Save your work! Discuss how/when to finish off and who 

will turn it in.

Homework:

 Finish Assignment 1: until and including 5.4

 Instructions on saving and handing in: 7 and 8

 In Magister before Wednesday 8:30

Reflection:

 What did you learn today?

Any other questions?


