
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Ana Tanase

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combing these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions

Today’s Lesson plan (2)

 15 min Pre-test: what DID you already know?

 Blocks of theory and exercises

 Finish assignment 1

 Begin assignment 2

 10 min Wrapping up

 Saving work

 Handing-in

 Plenary reflection

Last weeks homework:

 Methods:

 Mutator methods such as void move()

 Accessor methods such as boolean canMove()

 Result types such as int, boolean, void

 Java is an Object Oriented Programming (OOP)

language

 In OOP, objects (such as MyDodo) have:

 Methods (what it can do)

 States (what it knows / is)

Objects and classes

 Every objects belongs to a class.

 a class provides the blueprint for objects

 Mimi is an instance (or object) of the MyDodo class

Class diagram =>

Inheritance

 Class diagram

 Mimi is a MyDodo, so:

 Mimi can perform MyDodo methods, such as:

 void move()

 But a MyDodo is a Dodo

 Mimi can also perform all Dodo methods too!

 void layEgg()

 MyDodo is a subclass of Dodo

 Dodo is a super class of MyDodo

Exercise: inheritance

Imagine a new Dodo species: IntelligentDodo

 Sketch the class diagram

 Which is subclass? Which is super class?

Exercise: inheritance

Imagine a new Dodo species: IntelligentDodo

 What methods does IntelligentDodo get for free from her super

class?

 If we write a new IntelligentDodo method: void readBook()

Which classes can perform that method (more than one answer

is possible):

a) IntelligentDodo

b) MyDodo

c) Dodo

d) Actor

e) Mimi

State of an object

 Every object has a state: its data

 3 Egg objects

 have the same methods (can do the same things)

 but are different objects (or instances)

 Each can have an own state

 for example: different coordinates

Exercise: state of an object

 Drag an Egg object into the world

 Right-click on that egg and choose ‘Inspect’

 What is the x-coordinate of the egg?

 What is the y-coordinate of the egg?

 Move the egg to the bottom-left corner

 What are the coordinates of the bottom-left corner?

0 or 1 Results

 A method can return one result:

 Example: int getNrOfEggsHatched()

 Returns an int (whole number) as a result

 A method can have NO results

 void move()

 Returns a void (nothing) as a result

 A method cannot return more than one result

0 or more Parameters

A method can have:

 zero parameters:

 Example: move()

 Has no parameters

 one parameter:

 Example: jump (int distance)

 Has one parameter: distance

 Type of the parameter: int

 more than one parameter:

 Example: turn (int direction, int time)

 Has two parameters: direction and time

Generic methods and parameters

 Method with parameters can be used for more things

 jump(1): Mimi jumps 1 place forward

 jump(2): Mimi jumps 2 places forward

 jump(100): Mimi jumps 100 places forward

 Method without parameters can only be used for 1

thing:

 move(): Mimi moves 1 place forward

 Generic: method with parameters is more generic,

because it can be used in more situations.

 We LIKE generic methods! They’re SMART.

Types

 Results and parameters have types

 Examples:

Signature

Intermezzo: Assignment

 Download and unzip the scenario 2 at

http://www.cs.ru.nl/~S.Smetsers/Greenfoot/Kandinsky/

 Class will continue in 15 minutes

Algorithm

 Algorithm: precise set of instructions

 For a certain problem (initial situation)

 Always leads to exact same outcome (final

situation)

 Like a recipe, but more precise

 Program code: algorithm written specifically for a

computer

Language ambiguous

“Time flies like an arrow”

What could this mean?

Language ambiguous

“Time flies like an arrow”

 Time moves fast, like an arrow moves fast

 Measure the speed of flies which resemble arrows

 Measure the speed of flies in the same way you would

measure the speed of an arrow

 Insects of a type known as 'time flies' are fond of

arrows

 "Flies like an arrow" is the name of an American Indian.

Time him

Flowchart: visualize algorithm

Flowchart: Key:

Exercise: Flowchart

 Flowchart visualizing the algorithm boolean canMove():

 What are A, B, C and D?

Compiling, running & testing code

 Need compiling:

 Compile:

 Fix error messages

 Test:

 Right-click on object & choose method to test

 Check if works as expected

 i.e. Compare initial and final situation with flowchart

 Not OK? Check if code is same as flowchart

 Still not OK? Check if flowchart same as algorithm

Naming conventions

 Use meaningful names

 Letters/numbers: No space, comma, strange character

 Methods:

 As a command

 lowerCaseCamel

 Example: canMove

 Parameters:

 One or more nouns

 lowerCaseCamel

 Example: nrOfEggs

Exercise: naming conventions

Come up with names for the following:

1. A method which makes Mimi lay an egg

2. A parameter indicating how many eggs Mimi must lay

What types would those have?

Error messages

 Syntax error:

 Example: typo

 Compiler doesn’t understand and complains

 Shown at bottom of Greenfoot screen

 Logical error:

 Example: Dodo turns left instead of right

 Compiler doesn’t complain, but program doesn’t do

what you expect

 Much harder to find

Exercise: error message

1. Open MyDodo, find the act() method

2. Delete the semi-colon ‘;’

3. Compile

4. What error message do you get?

5. Replace semi-colon ‘;’ and recompile

 Repeat the above for:

1. Remove a bracket ‘(’

2. Remove a curly bracket ‘{’

3. Change the spelling of a parameter

Wrapping up

Save your work! Discuss how/when to finish off and who

will turn it in.

Homework:

 Download scenario 2 at

http://www.cs.ru.nl/~S.Smetsers/Greenfoot/Kandinsky/

 Finish Assignment 1:

 5.5 until and incl 5.10

 Diagnostic test 6.1 and check own answers 6.2

 Assignment 2: Until and incl 5.1 (lots of reading)

 Hand in to Magister before Wednesday 8:30

 ALSO: 5.1.2 ex 4 into pigeon hole (or photo)

