
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Ana Tanase

Today’s Lesson plan (3)

 10 min Looking back

 What did we learn last week?

 Discuss problems / homework (and handing-in)

 Answers PRE-task

 Sneak preview

 Blocks of theory/unplugged and exercises

 10 min Wrapping up

 Homework

 Next week: quiz

Discuss problems / homework

 Problems handing-in?

 We’re missing:

 Assignment 1:

 Martijn & Jelmer

 (ex 5.5 until the end) Lieke & Mats

 Tim

 Assignment 2:

 Martijn & Jelmer

 Bram & Tim

 Please still hand-in!

Discuss problems / homework

 Problems handing-in?

 Where to find assignments and hand-in homework?

 Assignments posted on magister

 Class appointment

 Homework due Wednesday on today’s date or next week??

 Hand-in: email to Renske.weeda@gmail.com

 Paper: pigeon hole “Renske Smetsers”

 PAX students: paper during Thursday’s INF class

mailto:Renske.weeda@gmail.com

Discuss problems / homework

 Give instructions from object’s (myDodo’s) perspective

 i.e. moveForward (instead of moveRight)

Discuss problems / homework

 Method call vs. Method declaration

 Demo of steps to writting new code:

 Adding a method to turn myDodo to the left

 Tip: Dodo has a turnRight method

Challenge & problem

You must perform two aspects well:

1) Create a problem-solving

algorithm (a disciplined

and creative process)

2) Formulate that algorithm in

terms of a programming

language (a disciplined and

very precise process)

Always check that your algorithm is correct by running/testing the

implementation!

We use a systematic approach

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combing these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions

Discuss problems / homework

 Getter vs. setter methods

 A class has it’s own:

 Methods

 Data

 No other object may touch/change this (safe idea!!!)

 Want info: ask the object with a get method

 Want to change data: ask the object with a set

method

 Object changes/gives data (if you are allowed)

Getter vs. Setter methods

 getNrOfEggs:

 Question

 Dodo, tell me how many eggs you have laid

 setNrOfEggs;

 Statement

 Dodo: this is the number of eggs you have to do

something with

Types
 Say which types you want to use only:

 When you declare something

 Eg: a method declaration

int getNrOfEggsNeeded () {

…. // this is how eggs Mimi must retrieve

}

 Afterwards, when you use a method:

 DON’T ‘declare’, just USE it!

 Also in flowcharts!

 using a method in code:

while (nrEggsFound < getNrOfEggsNeeded ()) {

findMoreEggs();

}

Pre-task (discuss answers)

Sneak preview

What did we learn last week?

 Parameters, signatures, method calls, results

 Mutator / accessor methods

 Flowcharts

Accessor methods (questions)

public boolean canMove() {

if (! borderAhead ()) {

return true;

} else {

return false;

}

}

17

flowchart code

Start Initial situation:
Dodo is standing in

the world

return false

CAN MOVE

NOT
border
Ahead

True False

return true

End
Final situation:
equal to initial

situation

Mutator methods (behavior)

public void act() {

move();

if (foundFood()) {

eatFood();

goHome();

}

}

18

Start Initial situation:
searching for food

Einde

Final situation:
Still searching for food or

heading home

SEARCH FOR
FOOD

foundFood?
True

FalseeatFood

move

goHome

flowchart code

Anatomy of a method (1)

Signature: first line of a method declaration (up to {)

public void jump(int distance) {

}

Anatomy of a method (3)

What answer (value) is returned?

void = nothing returned

int = returns an integer (0, 1, 2, ...)

etc. a method can return anything

public void jump(int distance) {

}

Anatomy of a method (3)

Name of this method

public void jump(int distance) {

}

Anatomy of a method (4)

Parameters for passing info to

this method (here one).

public void jump(int distance) {

}

Parameter type: the kind

of information passed

Parameter name

Anatomy of a method (5)

public boolean canJump(int distance) {

<< body >>

}

Return a boolean (true or false)

Today’s Lesson Goals

 Checking and assigning values

 Algorithms & flowcharts:

 Sequences

 Selection (if-then-else)

 Repetition (While)

 Structured code modification & debugging

 Quality of a solution

Counting

 Starts at….

Unplugged: Swap puzzle

What it’s about:

 Coming up with an algorithm

 Looking/planning ahead

 Efficiency

 Testing

Swap Puzzle

 Pieces start on different (non-white) color

 A piece can move to an empty adjacent square

 Can jump over an adjacent piece of other color onto an

empty square

 Method to use: getsThePieceFrom

Step 1: Square 1 GETS THE PIECE FROM Square 0

 Solve the puzzle in the least amount of steps

 Write down the steps

Swap Puzzle level 1

Swap Puzzle level 2

Challenge:

Most efficient algorithm?

- What to count/compare with?

- How to test?

Swap Puzzle level 2

Assigning values

 SQUARE 1 GETS THE PIECE FROM SQUARE 2

 Means:

Set SQUARE 1 to (value of) SQUARE 2

 In Java code:

square1 = square2;

Swap Puzzle level 3

 Which pair can find the algorithm with min. # steps?

 Less writing?

 Use: sq1 = sq2

 Which means: square 1 getsPieceFrom square2

 When you’re sure you know (and tested):

 Check that it can’t be done faster (count #steps)

 Check your steps

 Hold op your hand

 Challenge: class will execute your steps

Swap Puzzle level 3

Swap puzzle: what its about

 Describing your steps => algorithm!

 Series of actions to get the job done

 Algorithm? Then you’ll still have solution next week

 Importance of testing:

 before: step through your answer (like processor)

 after: don’t assume it works, check it!

 Efficiency

 Think of a solution that works, then check efficiency

 Looking ahead vs. trail and error

 Consider all possible moves

 Necessary when the puzzle gets harder

Swap-puzzle and assigning values

Assigning values using =

 SQUARE 1 GETS THE PIECE FROM SQUARE 2

 Means:

Set SQUARE 1 to (value of) SQUARE 2

 In Java code:

square1 = square2;

Check value using ==

 In Java, to check if square1 is red:

if (square1 == red) {

…

}

Checking values

 ! Means NOT

 && Means AND

 || Means OR

Java building blocks (for specifying behaviour)

Control structures:
constructions to compose programs,

37

 Sequence

 Selection (Choice)

 Repetition

Who are

you?

I’m Mimi

Specifying behavior

Control structures:
constructions to compose programs,

like:

 Sequence: stepA; stepB; …

 Selection: if (check()) then stepsThen else stepsElse

 Repetition: while (check()) stepsWhile

public … methodName(…) {

step1();

step2();

step3();

}

flowchart code

Sequence

public … methodName(…) {

while (check ()) {

doSomething ();

}

}

flowchart

code

Selection (choice, if..then..else)

public … methodName(…) {

while (check ()) {

doSomething ();

}

}

flowchart

code

Repetition (iteration, loop)

Turn to North

 Algorithm

 Flowchart

 Code

 Given the method: boolean facingNorth()

Challenge & problem

You must perform two aspects well:

1) Create a problem-solving

algorithm (a disciplined

and creative process)

2) Formulate that algorithm in

terms of a programming

language (a disciplined and

very precise process)

Always check that your algorithm is correct by running/testing the

implementation!

We use a systematic approach

Steps in making a solution

1. Think -> Algorithm

2. Flowchart

3. Code

public .. methodName(…) {

step1();

step2();

step3();

}

Debugging (fixing mistakes)

1. Remove compile errors

2. Check if code represents flowchart

3. Check if flowchart represents algorithm

4. Check for thinking-errors in your algorithm

public .. methodName(…) {

step1();

step2();

step3();

}

Modifying code

 After each MINOR adjustment

 Compile

 Test if it still works

 If you do too much at once, and then get an error…

 … you’re doomed to get frustrated!

 Remember, from our first lesson:

 Expect to make mistakes!

Questions?

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combing these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions

Wrapping up

Homework for Wednesday 8:30 December 9th:

 Assignment 2:

 All ex. incl diagnostic test 6.1 and 6.2

 Renske.weeda@gmail.com

 Assignment 3: up to and including 5.1

 ZIP code and ‘IN’ and email to

 Flowcharts: on paper in pigeonhole or photo/scan and

paste into document

 All course downloads on:

http://www.cs.ru.nl/~sjakie/Greenfoot/Kandinsky/

 Next week: Quiz

 Reflection/Evaluation

• Assignment 2:

• All ex. incl diagnostic test 6.1 and 6.2

• Renske.weeda@gmail.com

• Assignment 3: up to and including 5.1

Wrapping up

 Quiz: what to expect?

 Assignment 1 & 2

 Difference between accessor/mutator methods

 Signature of a method (incl parameters, results)

 Types (such as int, boolean, String, void)

 Inheritance (class diagram)

 Explain flowcharts: sequence, selection, repetition

 Transform an algorithm into flowchart

 Reflection/evaluation: tips/tops

