
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Ana Tanase

Today’s Lesson plan (4)

 20 min Quiz

 10 min Looking back

 What did we learn last week?

 Discuss problems / homework (and handing-in)

 Blocks of theory and exercises / unplugged

 10 min Wrapping up

 Next class: Fri Jan 8th (NOT next week)

Swap Puzzle level 3

Describe a strategy

 In Java: square1 = square2;

 Which means: square 1 getsPieceFrom square2

Swap Puzzle level 3

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combing these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions

Discuss problems / homework

 Only hand in (via email):

 MyDodo.java

 Document with answers to only (IN) questions

 Any problems? Please email!

public … methodName(…) {

step1();

step2();

step3();

}

flowchart code

Sequence

flowchart

code

Selection (choice, if..then..else)

public … methodName(…) {

if(check ()) {

step1a();

}else{

step1b();

}

}

public … methodName(…) {

while (check ()) {

doSomething ();

}

}

flowchart

code

Repetition (iteration, loop)

Challenge & problem

You must perform two aspects well:

1) Create a problem-solving

algorithm (a disciplined

and creative process)

2) Formulate that algorithm in

terms of a programming

language (a disciplined and

very precise process)

Always check that your algorithm is correct by running/testing the

implementation!

We use a systematic approach

Today:

 Greenfoot Run: ‘Act’ in a while loop

 Greenfoot.stop()

 Parameters

 Submethods: a method call in a method

 Boolean expressions (NOT, OR, AND)

Greenfoot Run

 Run is a special Greenfoot feature

 Run: Act called repeatedly

 Act in a while loop

>Run: built –in iteration

Can only be interrupted by:

- Pressing ‘Pause’

- Calling Greenfoot.stop()

>Run: calling act repeatedly

What if your void act() contains a while-loop?

Example: hatching a row of eggs

Iteration in act

Start Initial situation

move

End Final situation

ACT

NOT
Border
Ahead

True

False

foundEgg

hatchEgg

True

False

ACT

Act in Run

Start

move

End

RUN

NOT
Border
Ahead

True

False

foundEgg

hatchEgg

True

False

NOT
Stop

True

 One loop is

superfluous

 Try to eliminate

the act loop: Keep

your act as

simple/small as

possible.

No iteration in act

Start

move

End

ACT

NOT
Border
Ahead

TrueFalse

foundEgg

hatchEgg
False

Greenfoot.stop

The golden-promise:

 Don’t put too much work in the act method.

 Avoid time-consuming while-loops or while-loops

with ‘visible effects’.

JAVA: Printing to screen(console)

 Printing text to the screen (console) with:

System.out.println (“Hello“);

 Print a variable studentName to the screen with:

System.out.println (studentName);

 Print a combination of text and variable:

System.out.println (“Hello ” + studentName);

 Example code:

studentName = “Jack”;

System.out.println (“Hello ” + studentName);

Outputs to screen: “Hello Jack”

Unplugged Songwriting

 Parameters

 Submethods

Songwriting: Parameters & Submethods

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a cow

E-I-E-I-O

With a moo moo here

And a moo moo there

Here a moo, there a moo

Everywhere a moo moo

Old MacDonald had a farm

E-I-E-I-O

….

Song goes on for (just about) ever

More generic: Finding parameters

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a cow

E-I-E-I-O

With a moo moo here

And a moo moo there

Here a moo, there a moo

Everywhere a moo moo

Old MacDonald had a farm

E-I-E-I-O

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a <ANIMAL>

E-I-E-I-O

With a <SOUND> <SOUND> here

And a <SOUND> <SOUND> there

Here a <SOUND> , there a <SOUND>

Everywhere a <SOUND> <SOUND>

Old MacDonald had a farm

E-I-E-I-O

More generic: Using parameters

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a <ANIMAL>

E-I-E-I-O

With a <SOUND> <SOUND> here

And a <SOUND> <SOUND> there

..

Old MacDonald had a farm

E-I-E-I-O
System.out.println(“Old MACDONALD had a farm”);

System.out.println(“E-I-E-I-O”);

System.out.println (“And on his farm he had a “ + animal);

System.out.println(“E-I-E-I-O”);

System.out.println(“With a “ + sound + “ ” + sound+ “here”);

System.out.println(“And a “ + sound + “ ” + sound + “there”);

…

System.out.println(“Old MACDONALD had a farm”);

System.out.println(“E-I-E-I-O”);

Introducing parameters

Generic: Using parameters

More generic: finding repetition

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a cow

E-I-E-I-O

With a moo moo here

And a moo moo there

Here a moo, there a moo

Everywhere a moo moo

Old MacDonald had a farm

E-I-E-I-O

Defining submethods [1]

public void printOldMcHadFarm () {

System.out.println(“Old MACDONALD had a farm”);

}

public void singOldMcDonaldChorus (String animal, String sound) {

printOldMcHadFarm ();

System.out.println("E-I-E-I-O");

System.out.println("And on his farm he had a " + animal);

System.out.println("E-I-E-I-O");

…
}

Why submethods [1]: easy to change

 Change in 1 place

 From:

public void printOldMcHadFarm () {

System.out.println(“Old MACDONALD had a farm”);

}

 Into:

public void printOldMcHadFarm () {

System.out.println(“Old McDonald had a farm”);

}

Defining submethod with arguments

public void printHadAnimal (String animal) {

System.out.println(“And on his farm he had a “ + animal);

}

public void singOldMcDonaldChoruss (String animal, String sound) {

printOldMcHadFarm();

printEIEIO();

printHadAnimal (animal);

printEIEIO ();

…

printOldMcHadFarm();

printEIEIO ();

}

Why submethods [2]: easy to read

public void singOldMcDonald (String animal, String sound) {

printOldMcHadFarm();

printEIEIO();

printHadAnimal (animal);

printEIEIO ();

printWithSound (sound);

printAndSound (sound);

printOldMcHadFarm();

printEIEIO ();

}

Why submethods and arguments

 More generic:

 Less code

 Less mistakes

 Easier to read / understand

 Code can be used for more (… animals)

 Easier to change

 Easier to reuse

Your turn!

The wheels on the bus go round and round,

round and round,

round and round.

The wheels on the bus go round and round,

all through the town.

 The doors on the bus go open and shut.

 The wipers on the bus go Swish, swish, swish

On paper:

 Find parameters and replace text

 Find and use submethods

 Write method to print song using parameters & submethods

Boolean quiz

 Answer questions on paper (incl your name)

 Hand-in

 Papers will be shuffled

 Teacher chooses paper and reads last statement

 If this is you…. DON’T SAY A THING

 Everyone stands

 Teachers reads statements:

 If True about you: stay standing

 If False about you: sit down

Answer the following

1. What is your favorite number?

2. What is the color of your bicycle?

3. What is your favorite color?

4. What month were you born?

5. Do you have siblings?

6. What is the last digit of your phone number?

7. What is something about you that people here don’t

know and can’t tell by looking at you?

Boolean Quiz

Boolean statements

What it’s about:

 In English, an

 “or” is often an “exclusive or”

 such as “You can have chicken or fish.”

 In English, you only get to pick one

 But with Boolean logic you could have

 chicken, fish, or both!!

 A || B means: (A or B) or (A and B)

True or False?

 Booleans can be true or false

 Boolean statements can be made very complex using

combinations:

 NOT: !

 AND: &&

 OR: ||

For example: (A || B) && ! ((A && B) || C)

 Careful: Often a source of errors!

Modifying code

 After each MINOR adjustment

 Compile

 Test if it still works

 If you do too much at once, and then get an error…

 … you’re doomed to get frustrated!

 Remember, from our first lesson:

 Expect to make mistakes! Learn from them.

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combing these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions

Questions?

Wrapping up

Homework for Wednesday 8:30 Jan.6th 2016:

 Assignment 3: finish

 Assignment 4 up to and incl 5.2.2

Hand in:

 Via email : MyDodo.java and ‘IN’

to Renske.weeda@gmail.com

(Flowcharts: op paper in pigeonhole or photo/scan and

paste into document)

