
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Ana Tanase

Today’s Lesson plan (4)

 20 min Quiz

 10 min Looking back

 What did we learn last week?

 Discuss problems / homework (and handing-in)

 Blocks of theory and exercises / unplugged

 10 min Wrapping up

 Next class: Fri Jan 8th (NOT next week)

Swap Puzzle level 3

Describe a strategy

 In Java: square1 = square2;

 Which means: square 1 getsPieceFrom square2

Swap Puzzle level 3

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combing these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions

Discuss problems / homework

 Only hand in (via email):

 MyDodo.java

 Document with answers to only (IN) questions

 Any problems? Please email!

public … methodName(…) {

step1();

step2();

step3();

}

flowchart code

Sequence

flowchart

code

Selection (choice, if..then..else)

public … methodName(…) {

if(check ()) {

step1a();

}else{

step1b();

}

}

public … methodName(…) {

while (check ()) {

doSomething ();

}

}

flowchart

code

Repetition (iteration, loop)

Challenge & problem

You must perform two aspects well:

1) Create a problem-solving

algorithm (a disciplined

and creative process)

2) Formulate that algorithm in

terms of a programming

language (a disciplined and

very precise process)

Always check that your algorithm is correct by running/testing the

implementation!

We use a systematic approach

Today:

 Greenfoot Run: ‘Act’ in a while loop

 Greenfoot.stop()

 Parameters

 Submethods: a method call in a method

 Boolean expressions (NOT, OR, AND)

Greenfoot Run

 Run is a special Greenfoot feature

 Run: Act called repeatedly

 Act in a while loop

>Run: built –in iteration

Can only be interrupted by:

- Pressing ‘Pause’

- Calling Greenfoot.stop()

>Run: calling act repeatedly

What if your void act() contains a while-loop?

Example: hatching a row of eggs

Iteration in act

Start Initial situation

move

End Final situation

ACT

NOT
Border
Ahead

True

False

foundEgg

hatchEgg

True

False

ACT

Act in Run

Start

move

End

RUN

NOT
Border
Ahead

True

False

foundEgg

hatchEgg

True

False

NOT
Stop

True

 One loop is

superfluous

 Try to eliminate

the act loop: Keep

your act as

simple/small as

possible.

No iteration in act

Start

move

End

ACT

NOT
Border
Ahead

TrueFalse

foundEgg

hatchEgg
False

Greenfoot.stop

The golden-promise:

 Don’t put too much work in the act method.

 Avoid time-consuming while-loops or while-loops

with ‘visible effects’.

JAVA: Printing to screen(console)

 Printing text to the screen (console) with:

System.out.println (“Hello“);

 Print a variable studentName to the screen with:

System.out.println (studentName);

 Print a combination of text and variable:

System.out.println (“Hello ” + studentName);

 Example code:

studentName = “Jack”;

System.out.println (“Hello ” + studentName);

Outputs to screen: “Hello Jack”

Unplugged Songwriting

 Parameters

 Submethods

Songwriting: Parameters & Submethods

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a cow

E-I-E-I-O

With a moo moo here

And a moo moo there

Here a moo, there a moo

Everywhere a moo moo

Old MacDonald had a farm

E-I-E-I-O

….

Song goes on for (just about) ever

More generic: Finding parameters

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a cow

E-I-E-I-O

With a moo moo here

And a moo moo there

Here a moo, there a moo

Everywhere a moo moo

Old MacDonald had a farm

E-I-E-I-O

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a <ANIMAL>

E-I-E-I-O

With a <SOUND> <SOUND> here

And a <SOUND> <SOUND> there

Here a <SOUND> , there a <SOUND>

Everywhere a <SOUND> <SOUND>

Old MacDonald had a farm

E-I-E-I-O

More generic: Using parameters

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a <ANIMAL>

E-I-E-I-O

With a <SOUND> <SOUND> here

And a <SOUND> <SOUND> there

..

Old MacDonald had a farm

E-I-E-I-O
System.out.println(“Old MACDONALD had a farm”);

System.out.println(“E-I-E-I-O”);

System.out.println (“And on his farm he had a “ + animal);

System.out.println(“E-I-E-I-O”);

System.out.println(“With a “ + sound + “ ” + sound+ “here”);

System.out.println(“And a “ + sound + “ ” + sound + “there”);

…

System.out.println(“Old MACDONALD had a farm”);

System.out.println(“E-I-E-I-O”);

Introducing parameters

Generic: Using parameters

More generic: finding repetition

Old MACDONALD had a farm

E-I-E-I-O

And on his farm he had a cow

E-I-E-I-O

With a moo moo here

And a moo moo there

Here a moo, there a moo

Everywhere a moo moo

Old MacDonald had a farm

E-I-E-I-O

Defining submethods [1]

public void printOldMcHadFarm () {

System.out.println(“Old MACDONALD had a farm”);

}

public void singOldMcDonaldChorus (String animal, String sound) {

printOldMcHadFarm ();

System.out.println("E-I-E-I-O");

System.out.println("And on his farm he had a " + animal);

System.out.println("E-I-E-I-O");

…
}

Why submethods [1]: easy to change

 Change in 1 place

 From:

public void printOldMcHadFarm () {

System.out.println(“Old MACDONALD had a farm”);

}

 Into:

public void printOldMcHadFarm () {

System.out.println(“Old McDonald had a farm”);

}

Defining submethod with arguments

public void printHadAnimal (String animal) {

System.out.println(“And on his farm he had a “ + animal);

}

public void singOldMcDonaldChoruss (String animal, String sound) {

printOldMcHadFarm();

printEIEIO();

printHadAnimal (animal);

printEIEIO ();

…

printOldMcHadFarm();

printEIEIO ();

}

Why submethods [2]: easy to read

public void singOldMcDonald (String animal, String sound) {

printOldMcHadFarm();

printEIEIO();

printHadAnimal (animal);

printEIEIO ();

printWithSound (sound);

printAndSound (sound);

printOldMcHadFarm();

printEIEIO ();

}

Why submethods and arguments

 More generic:

 Less code

 Less mistakes

 Easier to read / understand

 Code can be used for more (… animals)

 Easier to change

 Easier to reuse

Your turn!

The wheels on the bus go round and round,

round and round,

round and round.

The wheels on the bus go round and round,

all through the town.

 The doors on the bus go open and shut.

 The wipers on the bus go Swish, swish, swish

On paper:

 Find parameters and replace text

 Find and use submethods

 Write method to print song using parameters & submethods

Boolean quiz

 Answer questions on paper (incl your name)

 Hand-in

 Papers will be shuffled

 Teacher chooses paper and reads last statement

 If this is you…. DON’T SAY A THING

 Everyone stands

 Teachers reads statements:

 If True about you: stay standing

 If False about you: sit down

Answer the following

1. What is your favorite number?

2. What is the color of your bicycle?

3. What is your favorite color?

4. What month were you born?

5. Do you have siblings?

6. What is the last digit of your phone number?

7. What is something about you that people here don’t

know and can’t tell by looking at you?

Boolean Quiz

Boolean statements

What it’s about:

 In English, an

 “or” is often an “exclusive or”

 such as “You can have chicken or fish.”

 In English, you only get to pick one

 But with Boolean logic you could have

 chicken, fish, or both!!

 A || B means: (A or B) or (A and B)

True or False?

 Booleans can be true or false

 Boolean statements can be made very complex using

combinations:

 NOT: !

 AND: &&

 OR: ||

For example: (A || B) && ! ((A && B) || C)

 Careful: Often a source of errors!

Modifying code

 After each MINOR adjustment

 Compile

 Test if it still works

 If you do too much at once, and then get an error…

 … you’re doomed to get frustrated!

 Remember, from our first lesson:

 Expect to make mistakes! Learn from them.

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combing these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions

Questions?

Wrapping up

Homework for Wednesday 8:30 Jan.6th 2016:

 Assignment 3: finish

 Assignment 4 up to and incl 5.2.2

Hand in:

 Via email : MyDodo.java and ‘IN’

to Renske.weeda@gmail.com

(Flowcharts: op paper in pigeonhole or photo/scan and

paste into document)

