
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Ana Tanase

Today’s Lesson plan (5) Jan 8th

 10 min Looking back

 Quiz: graded, will be discussed next week

 What did we learn before/during vacation?

 Theory for assignment 4

 Assignment 4 print-outs: who doesn’t have one yet?

 Work on assignment 4

 10 min Wrapping up

Retrospective assignment 3

 Nesting

 Optimization

 Submethods

 Run as an ‘Act’ loop

 (Greenfoot.stop)

 Generic solutions

Retrospective: Optimization

 Redundancy: why do we care?

Retrospective: submethods

 Submethods: why do we bother?

Retrospective: Run

 Greenfoot Run: a while loop

 When does this stop?

Retrospective: Run

 Greenfoot Run: a while loop

 Only stops if:

 User presses

 Calling Greenfoot.stop(); in the code

Retrospective: Generic solutions

Topics assignment 4

 Conditionals:

 boolean methods

 logical operators: ||, &&, !

 Return statements

 Nested if-then-else

 Modularization: Breaking problem down, solving

subproblems (using exsiting solutions), and combining to

solve the whole problem

 Method calls (from within other methods)

 Advantageous when testing

 Quality criteria for programs and code

Conditionals

 Conditionals:

 boolean methods

 logical operators: ||, &&, !

 || means OR

 fenceAhead () || borderAhead ()

 && means AND

 canMove () && eggAhead ()

 ! Means NOT

 ! eggAhead ()

Return Reminder

 Return:

 After a return, End follows immediately

 No more steps executed after a return

Jump Joyfully

Example with:

 Nested if-then-else

 Using return statements

 Complex Boolean statements

Jump Joyfully

Example with:

 Nested if-then-else

 Using return statements

 Complex Boolean statements

Jump up and down joyfully

If Mimi has a nest on each side,

she jumps up and down joyfully

Strategy:

Sketch a high-level flowchart for jumpJoyfully

Tip:

 First assume nestBehind and jumpUpAndDown exist

 Then: design, implement & test them separately

MyDodo methods:

boolean nestAhead () // returns true if nest in cell ahead

void turnLeft () // turns 90 degrees clockwise

void turnRight () // turns 90 degrees counterclockwise

void move () // step forward if possible

Sketch high-level flowchart

Test using: Nested if..then..else

Test using: conjugated Boolean &&

Compare:

 Which do you prefer?

 Why?

Now: design nestOnLeft

Finished high-level flowchart

 .. Now the Boolean nestBehind()

Draw the flowchart

Boolean nestBehind

Now: test nestOnLeft ()

Finished high-level flowchart

Designed nestBehind()

 … now test nestBehind()

What are we doing:

Testing small pieces before we use them!

Now: design and test jumpUpAndDown

Finished high-level flowchart

Designed and tested nestBehind()

 … now design and test jumpUpAndDown ()

Now: test the whole thing

Finished high-level flowchart

Designed and tested nestBehind()

Designed and tested jumpUpAndDown ()

 .. Now combine parts and test whole thing: jumpJoyfully

Now: enjoy and be proud

Finished high-level flowchart

Designed and tested nestBehind()

Designed and tested jumpUpAndDown ()

Combined parts and tested whole thing: jumpJoyfully

So, first start with high level design

Then implement small methods

Then test the whole thing

What did we just practice?

 Conditionals:

 boolean methods

 logical operators: ||, &&, !

 Return statements

 Nested if-then-else

 Modularization: Breaking problem down, solving

subproblems (using exsiting solutions), and combining to

solve the whole problem

 Method calls (from within other methods)

 Advantageous when testing

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combing these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions

Work on Assignment 4

Quality criteria of solution

 Correctness: does what it should, doesn’t what it
shouldn’t

 Efficiency: scale of (processor/memory/network) use is in
proportion to problem/solution

 Elegancy/smart: generic (can be used for more problems)

 Scalability / adaptability: easily adjusted
(modules/abstraction)

 Reliability: no crashes

 Maintainability: use of modules, comments, naming
conventions, logical initial/final situations

 Usability: user-friendly (error messages)

Quality criteria of code

 Readible: namingconventions, modules

 Testability: test modules separately

 Flexibility: easy add-on/replace modules

 Correctness: does what is expected

 Efficiency: economical with time/memory resources

Questions?

Wrapping up

Homework for Wednesday 8:30 January 13th:

 Assignment 4:

 All exercises

 ZIP code and ‘IN’ and email to

Renske.weeda@gmail.com

 Reflection/Evaluation: Tips & Tops

