

Teachers:

Renske Smetsers-Weeda Sjaak Smetsers Ana Tanase

Today's Lesson plan (6)

- Looking back
 - Retrospective last lesson

- Blocks of theory and exercises
 - Variables and Operators
 - Tracing code
 - Quiz demo

Retrospective: assignment 4

- Conditionals:
 - boolean methods
 - logical operators: ||, &&, !
- Nested if-then-else
- Return statements
- Modularization: Breaking problem down, solving subproblems (using exsiting solutions), and combining to solve the whole problem
 - Method calls (from within other methods)
 - Simplifies testing

What we will learn today:

- Variables
- Operators:
 - Assignment: =, +=, ...
 - Arithmetic: +,-,*, ++, ...
 - Comparisons: <, ==, ...
- Tracing code

4

Objects *know* stuff, too

An object knows/remembers things (properties or state)

homeHill

Ant

homeHill carryingFood

act()

haveFood()

headHome()

smellPheromone()

Variables

- When executed, programs need to store information.
 - Examples: user input, calculated values, object states, etc.
- This information can vary: we use the term variable to describe an element of a program which stores information.
- Variables contain data such as numbers, booleans, letters, texts, ...
 - Think of them as places to store data.
 - They are implemented as memory locations.
- The data stored by a variable is called its value.
 - The value is stored in the memory location.

```
int nrEggsFound = 0;
```

A variable of type **int** with name nrEggsFound

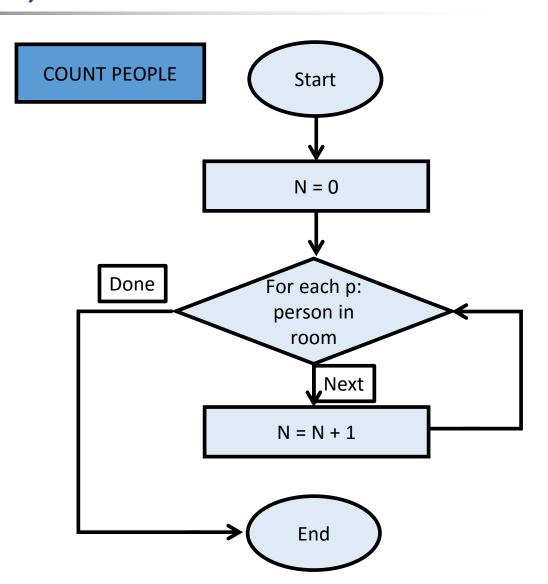
Variables (2)

□ Its value can be changed.

Pronounced as 'becomes'

This done in an assignment statement:

```
nrEggsFound = 15;
```


- Two kinds of variables:
 - Local variables
 - Instance variables

Variables (3)

Counting using a variable For-loop

Film (20:00-25:00)

Na

Naming and Declaring Variables

indicate, announce

- Choose names that are helpful such as count or speed, but not c or s.
- When you declare a variable, you provide its name and type.

```
int numberOfBaskets;
int eggsPerBasket;
```

- A variable's type determines what kinds of values it can hold (int, double, char, etc.).
- Any variable must be declared before it is used.

Examples

Examples
 int numberOfEggs, nrOfStepsTaken;
 double average;
 char pressedKey;

Film (until 1:30)

Assigning and Changing a Value

We can change the value of a variable as often as we wish. To assign a value, use:

```
variableName = some expression;

variable assign to expression

Memory

wormsEaten = 0;
wormsEaten = wormsEaten + 1;

1
```

Variables and Values

Variables int numberOfBaskets int eggsPerBasket int totalEggs Assigning values eggsPerBasket = 6; totalEggs = eggsPerBasket + 3; eggsPerBasket = eggsPerBasket - 2; eggsPerBasket = eggsPerBasket ++; //inc by 1

Operators

- Operators:
 - Assignment: =, +=, ...
 - Arithmetic: +,-,*, ++, ...
 - Comparisons: <, ==, ...

Tracing code (ex 5.1.1)

Instructions ex 5.1.1:

- FIRST think!! And write down what you expect
- THEN check using Greenfoot
- DISCUSS together if different than expected!
- Example, what does nrOfEggsFound become?

```
int nrOfEggsFound = 3;

if ( nrOfEggsFound >=3 ) {
    nrOfEggsFound --;
} else {
    nrOfEggsFound ++;
}
```

Tracing code (ex 5.1.1) int nrOfEggsFound = 3;

```
if ( nrOfEggsFound >=3 ) {
    nrOfEggsFound --;
} else {
    nrOfEggsFound ++;
}
```

CODE	VALUE OF nrOfEggsFound
Initialization:	3
int nrOfEggsFound = 3;	
If- branch	2
nrOfEggsFound;	
Final situation	2

Values are overwritten

Variable values are copied and overwritten

```
int a = 12;
int b = 4;
```

Values are overwritten

CODE		VALUE OF a	VALUE OF b
	nt a = 12; nt b = 4;	12	4
Assign value:	o = a;	12	12

Code Tracing: why bother?

- Research shows:
 - Many students make mistakes understanding and using variables;
 - Just a few types of bugs account for the majority of students' mistakes;
 - Learning debugging strategies saves a lot of time finding bugs;
 - Debugging helps learn about code constructs.

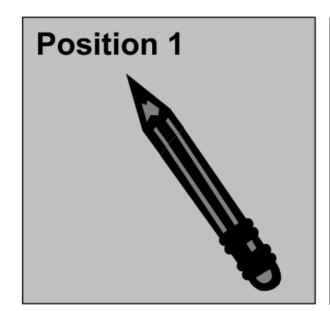
Get started on ex 5.1.1

Quiz demo

Quiz (discuss)

Swapping

- Computer can only do one thing at a time
- Variable values are copied and overwritten

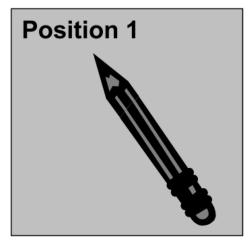

So, how to swap the contents of 2 variables?

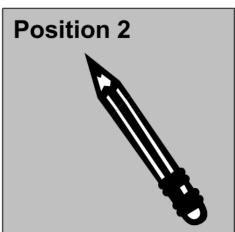
SITUATION	VALUE OF a	VALUE OF b
Initial situation	4	12
Final situation	12	4

Swapping

Imagine 2 pencils in front of you.

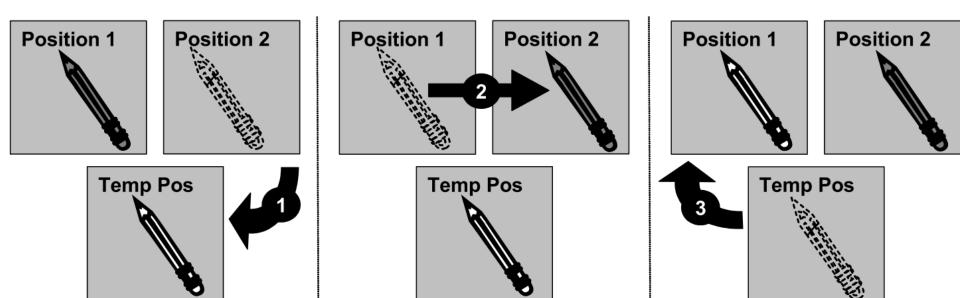
How do you swap them?





Swapping

A computer can only perform 1 action at a time:


- You only have one hand
- A hand can pick up one thing at a time
- Keep in mind: when a variable is assigned a new value, the old value is replaced and cannot be accessed later. (the previous method will result in 2 copies of the same value.)
- How do you swap them?

- One of the pencils could be moved to the temporary position;
- the second pencil could be moved to its new location;
- finally the first pencil could be moved from the temporary position to its new position.

Swapping strategy

- Variable values are copied and overwritten
- □ To swap, you need an additional 'temp' variable

Swapping strategy

CODE	VALUES
int a = 12;	a == 12
int b = 4;	b == 4
<pre>int temp = a;</pre>	temp == 12
a = b;	a == 4 b == 4
	temp == 12
b = temp;	a == 4 b == 12 temp == 12

```
int a = 12;
int b = 4;

int temp = a;
a = b;
b = temp;
```

Swapping strategy

```
int a = 12;
int b = 4;

int temp = a;
a = b;
b = temp;
```

CODE	VALUE OF a	VALUE OF b	VALUE of temp
<pre>int a = 12; int b = 4; int temp = a;</pre>	12	4	12
a = b;	4	4	12
b = temp;	4	12	12

Variable Scope (lifetime)

```
public int walkAndCountSteps() {
    int stepsTaken=0;
    while( canMove() ) {
        stepsTaken++;
        move();
    return stepsTaken;
```

isEven

Write a method boolean isEven (int inputValue)

Which

- receives an integer inputValue
- returns True or False accordingly

You may not use %

□ Tip: you may use a while

isEven (for positive values)

```
public boolean isEven( int inputValue ) {
     while ( inputValue > 0 ){
          inputValue = inputValue - 2;
     if (inputValue == 0){
         return true;
     } else {
         return false:
```

Swapping strategy (tracing)

CODE	LOOP NR	VALUE OF inputValue	Return VALUE
<pre>while (inputValue > 0) { inputValue = inputValue - 2; }</pre>	0	4	
	1	2	
	2	0	
<pre>if (inputValue == 0) {</pre>			
return true;			
} else {		0	true
return false;			
}			

Testing cases

For which values of inputValue must you test?

Continue with the assignments

Homework for Wednesday 8:30 January 27th:

- Assignment 5:
 - UNTIL AND INCL 5.1.5

Computational thinking

- Working in a structured manner:
 - Breaking problems down into subproblems
 - Design, solve and test solutions to subproblems
 - Combing these (sub)solutions to solve problem
- Analyzing the quality of a solution
- Reflecting about the solution chosen and proces
- Generalizing and re-use of existing solutions

Questions?

Wrapping up

Quiz on Feb 5th
No class next Friday (January 22nd)

Homework for Wednesday 8:30 January 27th:

- Assignment 5:
 - UNTIL AND INCL 5.1.5
 - ZIP code and 'IN' and email to Renske.weeda@gmail.com