
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Ana Tanase

Today’s Lesson plan (7)

 Mid-Task

 Flowcharts (Real world example)

 Unplugged activity: sorting algorithms and efficiency

 Retrospective

 Theory: counter in while loop

 Assignments

 Next week (Feb 5th): Quiz

Flowcharts: Real world example

Unplugged

 Sorting algorithms and efficiency

Sort cards: Bogo Sort

Sort algorithms

Goal: Sort cups using only a balance

Sort algorithms (in pairs, 3 minutes)

 Goal: Sort cups using only a balance

 order: lightest to heaviest

 nr of steps?

 Describe an algorithm (with a flowchart) using basic

instructions which a 4-year-old should be able to follow:

 getCup (thirdCup)

 determineLightestCup (thirdCup, seventhCup)

Sort algorithms: efficiency (2 minutes)

 Efficiency: Write down how many steps if you have:

 10 cups

 20 cups

 100 cups

Sort algorithms

 Share:

 What did you come up with?

 Efficiency

Quick sort: divide and conquer

1) Select a card at random

2) Divide collection into two groups:

A) larger than selected card

B) smaller than selected card

3) Give each pile of cards to another team

& sit back and relax

4) Other teams repeat steps 1-3

When are we done?

Quick sort: divide and conquer

0) If you have 0 or 1 card, then STOP

1) Select a card at random

2) Divide collection into two groups:

A) larger than selected card

B) smaller than selected card

3) Give each pile of cards to another team

Other teams repeat steps 1-3

Result: cards sorted from smallest to largest

Method: divide and conquer (recursive algorithm)

Quick sort summary

 Divide and conquer: Recursive programming

 Simple instructions

 Complexity n*log(n))

Quick sort summary

 Complexity O(n*log(n)): purple curve

How much better is QuickSort?

https://www.youtube.com/watch?v=aXXWXz5rF64

https://www.youtube.com/watch?v=aXXWXz5rF64

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combining these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions

Today’s Lesson plan (7)

 Mid-Task

 Flowcharts (Real world example)

 Unplugged activity: algorithm efficiency

 Retrospective

 Theory: counter in while loop

 Assignments

 Next week (Feb 5th): Quiz

Retrospective

 Variables and Operators:

 Assignment: =, +=, …

 Arithmetic: +,-,*, ++, …

 Comparisons: <, ==, <= …

 Tracing code

Variables and Values

Assigning values

eggsPerBasket = 6;

totalEggs = eggsPerBasket + 3;

eggsPerBasket = eggsPerBasket - 2;

eggsPerBasket++; //increase value by 1

Comparing values

if (totalEggs <= 6){

…

}

CODE VALUE OF a VALUE OF

b

VALUE of

temp

12 4 12

4 4 12

4 12 12

Variable Swapping strategy

Topics for today (finish assignment 5)

 Counter in while-loop

 Algorithms & efficiency

Variables and repetitions

Use variables to remember things.

 to repeat something several times

 to remember how many times you already did it

(or how times you still have to do it)

Repetition

Example: Mimi moves random times

Sketch how would you make Mimi move forward a random
number of 0-9 cells (jumpRandomly method) using:

 getRandomNumber(10)

 a variable to remember how many moves must be
made

 Dodo’s move() method

GetRandomNumber(N) will

give a random number
between 0 and N (N not

included)

Nested if … then … else statements

End

nrCellsToJump
equals 1

True

False

move

move

move
move

move

set nrCellsToJump to getRrandomNumber(10)

nrCellsToJump
equals 2

True

move

nrCellsToJump
equals 3

True

False

False

getRandomNumber(10)
returns a number that

has to be remembered

public void jumpRandomly () {
int nrCellsToJump = Greenfoot.getRandomNumber(10);
if (nrCellsToJump == 1){

move();
} else if (nrCellsToJump == 2){

move();
move();

} else if (nrCellsToJump == 3){
move();
move();
move();

}
...

}

Move a random number of times

Mind the difference:

= (assignment)

== (comparison)

getRandomNumber(10)
returns a number that has to

be remembered

We use a (local) int variable

with name nrCellsToJump
to store the random number

… alternative with while and counter

End

nrOfCellsMoved is
less than

nrCellsToJump

True

False

move

Set nrOfCellsMoved to 0

increase nrOfCellsMoved by 1

New variable nrOfCellsMoved

stores how many moves have

been made so far

set nrCellsToJump to getRrandomNumber(10)

public void jumpRandomly () {
int nrCellsToJump = Greenfoot.getRandomNumber(10);
int nrCellsMoved = 0;
while (nrCellsMoved < nrCellsToJump){

move ();
nrCellsMoved = nrCellsMoved + 1;

}

}

… alternative with counter and while

To store how many moves have

been made so far.

The current value of

nrCellsMoved...

... incremented and assigned to

nrCellsMoved

Comparing with(out) counter & while
public void jumpRandomly () {

int nrCellsToJump = Greenfoot.getRandomNumber(10);
if (nrCellsToJump == 1){

move();
} else if (nrCellsToJump == 2){

move();
move();

} else if (nrCellsToJump == 3){
move();
move();
move();

}
...

}

public void jumpRandomly () {
int nrCellsToJump = Greenfoot.getRandomNumber(10);
int nrCellsMoved = 0;
while (nrCellsMoved < nrCellsToJump){

move ();
nrCellsMoved = nrCellsMoved + 1;

}
}

Questions?

Quiz Next week

 Date: Feb 5th

 Topics:

 Operators

 Conditions

 Return statements

 Nesting

 Decomposition/abstraction

 Flowcharts

 Variables

 Tracing code

Wrapping up

Quiz on Feb 5th

Homework for Wednesday 8:30 Feb 3rd:

 Assignment 5:

 FINISH assignment 5

 ZIP code and ‘IN’ and email to

Renske.weeda@gmail.com

