
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Ana Tanase

Today’s Lesson plan (7)

 Mid-Task

 Flowcharts (Real world example)

 Unplugged activity: sorting algorithms and efficiency

 Retrospective

 Theory: counter in while loop

 Assignments

 Next week (Feb 5th): Quiz

Flowcharts: Real world example

Unplugged

 Sorting algorithms and efficiency

Sort cards: Bogo Sort

Sort algorithms

Goal: Sort cups using only a balance

Sort algorithms (in pairs, 3 minutes)

 Goal: Sort cups using only a balance

 order: lightest to heaviest

 nr of steps?

 Describe an algorithm (with a flowchart) using basic

instructions which a 4-year-old should be able to follow:

 getCup (thirdCup)

 determineLightestCup (thirdCup, seventhCup)

Sort algorithms: efficiency (2 minutes)

 Efficiency: Write down how many steps if you have:

 10 cups

 20 cups

 100 cups

Sort algorithms

 Share:

 What did you come up with?

 Efficiency

Quick sort: divide and conquer

1) Select a card at random

2) Divide collection into two groups:

A) larger than selected card

B) smaller than selected card

3) Give each pile of cards to another team

& sit back and relax

4) Other teams repeat steps 1-3

When are we done?

Quick sort: divide and conquer

0) If you have 0 or 1 card, then STOP

1) Select a card at random

2) Divide collection into two groups:

A) larger than selected card

B) smaller than selected card

3) Give each pile of cards to another team

Other teams repeat steps 1-3

Result: cards sorted from smallest to largest

Method: divide and conquer (recursive algorithm)

Quick sort summary

 Divide and conquer: Recursive programming

 Simple instructions

 Complexity n*log(n))

Quick sort summary

 Complexity O(n*log(n)): purple curve

How much better is QuickSort?

https://www.youtube.com/watch?v=aXXWXz5rF64

https://www.youtube.com/watch?v=aXXWXz5rF64

Computational thinking

 Working in a structured manner:

 Breaking problems down into subproblems

 Design, solve and test solutions to subproblems

 Combining these (sub)solutions to solve problem

 Analyzing the quality of a solution

 Reflecting about the solution chosen and proces

 Generalizing and re-use of existing solutions

Today’s Lesson plan (7)

 Mid-Task

 Flowcharts (Real world example)

 Unplugged activity: algorithm efficiency

 Retrospective

 Theory: counter in while loop

 Assignments

 Next week (Feb 5th): Quiz

Retrospective

 Variables and Operators:

 Assignment: =, +=, …

 Arithmetic: +,-,*, ++, …

 Comparisons: <, ==, <= …

 Tracing code

Variables and Values

Assigning values

eggsPerBasket = 6;

totalEggs = eggsPerBasket + 3;

eggsPerBasket = eggsPerBasket - 2;

eggsPerBasket++; //increase value by 1

Comparing values

if (totalEggs <= 6){

…

}

CODE VALUE OF a VALUE OF

b

VALUE of

temp

12 4 12

4 4 12

4 12 12

Variable Swapping strategy

Topics for today (finish assignment 5)

 Counter in while-loop

 Algorithms & efficiency

Variables and repetitions

Use variables to remember things.

 to repeat something several times

 to remember how many times you already did it

(or how times you still have to do it)

Repetition

Example: Mimi moves random times

Sketch how would you make Mimi move forward a random
number of 0-9 cells (jumpRandomly method) using:

 getRandomNumber(10)

 a variable to remember how many moves must be
made

 Dodo’s move() method

GetRandomNumber(N) will

give a random number
between 0 and N (N not

included)

Nested if … then … else statements

End

nrCellsToJump
equals 1

True

False

move

move

move
move

move

set nrCellsToJump to getRrandomNumber(10)

nrCellsToJump
equals 2

True

move

nrCellsToJump
equals 3

True

False

False

getRandomNumber(10)
returns a number that

has to be remembered

public void jumpRandomly () {
int nrCellsToJump = Greenfoot.getRandomNumber(10);
if (nrCellsToJump == 1){

move();
} else if (nrCellsToJump == 2){

move();
move();

} else if (nrCellsToJump == 3){
move();
move();
move();

}
...

}

Move a random number of times

Mind the difference:

= (assignment)

== (comparison)

getRandomNumber(10)
returns a number that has to

be remembered

We use a (local) int variable

with name nrCellsToJump
to store the random number

… alternative with while and counter

End

nrOfCellsMoved is
less than

nrCellsToJump

True

False

move

Set nrOfCellsMoved to 0

increase nrOfCellsMoved by 1

New variable nrOfCellsMoved

stores how many moves have

been made so far

set nrCellsToJump to getRrandomNumber(10)

public void jumpRandomly () {
int nrCellsToJump = Greenfoot.getRandomNumber(10);
int nrCellsMoved = 0;
while (nrCellsMoved < nrCellsToJump){

move ();
nrCellsMoved = nrCellsMoved + 1;

}

}

… alternative with counter and while

To store how many moves have

been made so far.

The current value of

nrCellsMoved...

... incremented and assigned to

nrCellsMoved

Comparing with(out) counter & while
public void jumpRandomly () {

int nrCellsToJump = Greenfoot.getRandomNumber(10);
if (nrCellsToJump == 1){

move();
} else if (nrCellsToJump == 2){

move();
move();

} else if (nrCellsToJump == 3){
move();
move();
move();

}
...

}

public void jumpRandomly () {
int nrCellsToJump = Greenfoot.getRandomNumber(10);
int nrCellsMoved = 0;
while (nrCellsMoved < nrCellsToJump){

move ();
nrCellsMoved = nrCellsMoved + 1;

}
}

Questions?

Quiz Next week

 Date: Feb 5th

 Topics:

 Operators

 Conditions

 Return statements

 Nesting

 Decomposition/abstraction

 Flowcharts

 Variables

 Tracing code

Wrapping up

Quiz on Feb 5th

Homework for Wednesday 8:30 Feb 3rd:

 Assignment 5:

 FINISH assignment 5

 ZIP code and ‘IN’ and email to

Renske.weeda@gmail.com

