
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Ana Tanase

Today’s Lesson plan (8)

 Quiz

 Retrospective

 Previous lesson

 Task

 Blocks of theory and exercises/unplugged:

Nonogram puzzels

 Generic algorithm?

 How to represent the solution (for storing the picture)?

 Transfer: ideas for any real-world applications?

Real-world applications

 How does a fax work?

 Which computer applications store pictures?

 How can computers store pictures if they can only use

digits 0 and 1 (=bits)?

Run length coding (Nonogram variation)

 Pixels (PICture ELements)

 Representation:

 First number: white

 Second number: black

 Third number: white

 ….

Run Length Coding

 Representation as binary number

 More efficient way to represent?

 choose an optimal number of bits

 For example: max 3 bits (=seven white/black)

So 1 white, 7 black, 2 white

would be: 001 111 010

which is 1 shorter than: 0111111100

Just 1 bit,..but for big pics this does make a difference!

So, more bits to represent a chunk => smaller overall

pic size

Decimal Binary

1

2

1

01

5

7

101

111

Run Length Coding

 But then (if you choose for 3 bits), how would you

represent a run of 12 black pixels?

 Use 4 bits so (12 binary): 1100

 Which is definately shorter than: 0 111111111111

 But what happens to:

would become: 0001 0111 0010

which is 2bits longer than: 0111111100 !!!!!!!

Works well when large parts of picture are completely

black or completely white

Decimal Binary

1

2

1

01

5

7

12

101

111

1100

Run Length Coding

So, your algorithm can result in

 Awesome compression

OR

 Horrible expansion

This depends on:

 Representation: choice of #bits to store

 Data: bit-lengths in the picture

Compression Algorithms

Fax machine: Compression algorithm: run length coding

 When:

 Image characteristics:

 Large blocks of white (margins)

 Large blacks of black (horizontal line)

 Why:

 Save space

 transmission time / bandwith

 Easy bit-parity (error checking and correcting)

Compression Algorithms

Many more different compression techniques:

 Photographs / Pictures (JPG)

 Music (MP3)

 Text (ZIP)

 Lossy: compression losing some info (eg. MP3)

 Lossless: compression allowing full recovery (eg. ZIP)

Greenfoot fax

 http://greenroom.greenfoot.org/resources/4

Text compression

 Characters encoded using ASCII: 8 bits per char

 Text often has repeating letters

 ‘EFFICIENCY’ 10 chars

10* 8 = 80 bits for representation

 Compression idea:

 Highest freq letters shortest representation

 Lowest freq letters longer representation

Hufmann Coding

Coding table:

Unique coding for ‘EFFICIENCY’:

00 10 10 01 110 01 00 1100 110 1101

26 bits (vs. 80 with ASCII) 80% reduction!!

Of course you must still send decoding table

But definately viable for large texts!

E I F C N Y

00 01 10 110 1100 1101

Topics for assignment 6

 Constructors, instance variables

 Access modifiers: private, public (protected):

information hiding

 Getter/setter methods

Instance variables vs. Local variables

Demo

 Create an object using new (drag)

 Explain effect on method variables

Variable Scope (lifetime)

 What happens to variable nrCellsMoved after this

method?

Variable Scope (lifetime)

 After the method, nrCellsMoved is destroyed!

 So we can’t use nrCellsMoved in another method….

 Unless, we use instance variables.

Instance variables

 To store (remember) values for longer periods of time

 Outside of method:

 ‘normal’ method variables loose their values

 Use instance variables when using same variable by two

different methods

 When act is called again:

 Only instance variables are stored

 All other values are lost

 You can even ‘inspect’ object value at all times

How Objects are Created

new MyDodo ();

Java creates object in

memory

// constructor's job is to

// initialize a new object

public MyDodo() { ... }

initialize state of object

by invoking constructor

The Constructor

 When Java creates a new object, it calls the class's

constructor.

public class MyDodo extends Dodo

{

private int myNrOfEggsHatched;

public MyDodo(int init_direction) {

super (init_direction);

myNrOfEggsHatched = 0;

}

…

}

The constructor has the
same name as the class.

Instance variable

super() calls the

constructor of Dodo.

Constructor (2)

 The purpose of a

Constructor is to

initialize the state of a

new object... Prepare

the object to start work.

 A class may have

several constructors,

ONLY ONE is called,

and object prepared

accordingly.

public class MyDodo extends Dodo

{

private int myNrOfEggsHatched;

public MyDodo() {

super (EAST);

myNrOfEggsHatched = 0;

}

public MyDodo(int init_direction) {

super (init_direction);

myNrOfEggsHatched = 0;

}

Class code

Visibility of variables / methods

Getter method

int myAge is private, no one needs to know… so…

private int myAge;

But… if myAge needs to asked for a (real) reason:

public int getMyAge() {

if (youHavePermissionToKnow ()){

return myAge() ;

} else {

return 0;

}

}

To call (object Teacher) from another method, use:

Teacher.getMyAge()

Setter method

String myPassword is private, so:

private string myPassword;

But… if myPassword needs to be changed for a (real) reason:

public void setMyPassword (string newPassword) {

myPassword = newPassword;

}

How to call (object Teacher) from another method, call:

Teacher.setMyPassword (“doorbell”);

Questions?

Wrapping up

Homework for Wednesday 8:30 Feb 17th:

 Assignment 6:

 FINISH assignment 6 up to and incl 5.3

(you may advance if you wish

-> less homework next time)

 ZIP code and ‘IN’ and email to

Renske.weeda@gmail.com

