
Algorithmic Thinking

and

Structured Programming

(in Greenfoot)

Teachers:

Renske Smetsers-Weeda

Sjaak Smetsers

Ana Tanase

Today’s Lesson plan (8)

 Quiz

 Retrospective

 Previous lesson

 Task

 Blocks of theory and exercises/unplugged:

Nonogram puzzels

 Generic algorithm?

 How to represent the solution (for storing the picture)?

 Transfer: ideas for any real-world applications?

Real-world applications

 How does a fax work?

 Which computer applications store pictures?

 How can computers store pictures if they can only use

digits 0 and 1 (=bits)?

Run length coding (Nonogram variation)

 Pixels (PICture ELements)

 Representation:

 First number: white

 Second number: black

 Third number: white

 ….

Run Length Coding

 Representation as binary number

 More efficient way to represent?

 choose an optimal number of bits

 For example: max 3 bits (=seven white/black)

So 1 white, 7 black, 2 white

would be: 001 111 010

which is 1 shorter than: 0111111100

Just 1 bit,..but for big pics this does make a difference!

So, more bits to represent a chunk => smaller overall

pic size

Decimal Binary

1

2

1

01

5

7

101

111

Run Length Coding

 But then (if you choose for 3 bits), how would you

represent a run of 12 black pixels?

 Use 4 bits so (12 binary): 1100

 Which is definately shorter than: 0 111111111111

 But what happens to:

would become: 0001 0111 0010

which is 2bits longer than: 0111111100 !!!!!!!

Works well when large parts of picture are completely

black or completely white

Decimal Binary

1

2

1

01

5

7

12

101

111

1100

Run Length Coding

So, your algorithm can result in

 Awesome compression

OR

 Horrible expansion

This depends on:

 Representation: choice of #bits to store

 Data: bit-lengths in the picture

Compression Algorithms

Fax machine: Compression algorithm: run length coding

 When:

 Image characteristics:

 Large blocks of white (margins)

 Large blacks of black (horizontal line)

 Why:

 Save space

 transmission time / bandwith

 Easy bit-parity (error checking and correcting)

Compression Algorithms

Many more different compression techniques:

 Photographs / Pictures (JPG)

 Music (MP3)

 Text (ZIP)

 Lossy: compression losing some info (eg. MP3)

 Lossless: compression allowing full recovery (eg. ZIP)

Greenfoot fax

 http://greenroom.greenfoot.org/resources/4

Text compression

 Characters encoded using ASCII: 8 bits per char

 Text often has repeating letters

 ‘EFFICIENCY’ 10 chars

10* 8 = 80 bits for representation

 Compression idea:

 Highest freq letters shortest representation

 Lowest freq letters longer representation

Hufmann Coding

Coding table:

Unique coding for ‘EFFICIENCY’:

00 10 10 01 110 01 00 1100 110 1101

26 bits (vs. 80 with ASCII) 80% reduction!!

Of course you must still send decoding table

But definately viable for large texts!

E I F C N Y

00 01 10 110 1100 1101

Topics for assignment 6

 Constructors, instance variables

 Access modifiers: private, public (protected):

information hiding

 Getter/setter methods

Instance variables vs. Local variables

Demo

 Create an object using new (drag)

 Explain effect on method variables

Variable Scope (lifetime)

 What happens to variable nrCellsMoved after this

method?

Variable Scope (lifetime)

 After the method, nrCellsMoved is destroyed!

 So we can’t use nrCellsMoved in another method….

 Unless, we use instance variables.

Instance variables

 To store (remember) values for longer periods of time

 Outside of method:

 ‘normal’ method variables loose their values

 Use instance variables when using same variable by two

different methods

 When act is called again:

 Only instance variables are stored

 All other values are lost

 You can even ‘inspect’ object value at all times

How Objects are Created

new MyDodo ();

Java creates object in

memory

// constructor's job is to

// initialize a new object

public MyDodo() { ... }

initialize state of object

by invoking constructor

The Constructor

 When Java creates a new object, it calls the class's

constructor.

public class MyDodo extends Dodo

{

private int myNrOfEggsHatched;

public MyDodo(int init_direction) {

super (init_direction);

myNrOfEggsHatched = 0;

}

…

}

The constructor has the
same name as the class.

Instance variable

super() calls the

constructor of Dodo.

Constructor (2)

 The purpose of a

Constructor is to

initialize the state of a

new object... Prepare

the object to start work.

 A class may have

several constructors,

ONLY ONE is called,

and object prepared

accordingly.

public class MyDodo extends Dodo

{

private int myNrOfEggsHatched;

public MyDodo() {

super (EAST);

myNrOfEggsHatched = 0;

}

public MyDodo(int init_direction) {

super (init_direction);

myNrOfEggsHatched = 0;

}

Class code

Visibility of variables / methods

Getter method

int myAge is private, no one needs to know… so…

private int myAge;

But… if myAge needs to asked for a (real) reason:

public int getMyAge() {

if (youHavePermissionToKnow ()){

return myAge() ;

} else {

return 0;

}

}

To call (object Teacher) from another method, use:

Teacher.getMyAge()

Setter method

String myPassword is private, so:

private string myPassword;

But… if myPassword needs to be changed for a (real) reason:

public void setMyPassword (string newPassword) {

myPassword = newPassword;

}

How to call (object Teacher) from another method, call:

Teacher.setMyPassword (“doorbell”);

Questions?

Wrapping up

Homework for Wednesday 8:30 Feb 17th:

 Assignment 6:

 FINISH assignment 6 up to and incl 5.3

(you may advance if you wish

-> less homework next time)

 ZIP code and ‘IN’ and email to

Renske.weeda@gmail.com

