
BACHELOR THESIS

CAPABILITY OF KERBEROS

MATTHIJS MEKKING

JUNE 2006





Contents

1 Introduction 5
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The Kerberos Protocol 7
2.1 Term definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Kerberos 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Protocol description . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Realms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Limitations of Kerberos 4 . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Environmental shortcomings . . . . . . . . . . . . . . . . . . 15
2.3.2 Technical deficiencies . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Kerberos 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Ticket flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Protocol description . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Side protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.4 Compatibility support for Kerberos 4 . . . . . . . . . . . . . 22

3 Kerberos services 23
3.1 List of Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 The necessary elements . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 The authentication part . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Granting tickets . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Accessing the application . . . . . . . . . . . . . . . . . . . . 34

4 Kerberos limitations 37
4.1 Kerberos vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Kerberos assumptions . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Replay attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.3 Time attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.4 Scope of tickets . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3





Chapter 1

Introduction

Kerberos is a well-known authentication system created at MIT, that has been
adapted in many software applications. However, it was not the intention to build a
system that reached world wide use in the first place. Still, they have made a good
design and the system combines the right security aspects with nice functionality.
Since the beginning of Kerberos, in 1988, there have been many publications about
the subject. Those describe the general ideas and the operation of the system.
Also, many publications report to have found bugs in the system. Over the years,
Kerberos has evolved to become more secure and more accessible, by providing
more functionality. But few reports have given an exact overview of what Kerberos
is actually capable of. In this study, I shall try to create a list of all the services
that Kerberos provides and look at which security measures it takes.

The services can be provided thanks to elements in the Kerberos procotol. For
example, the element ‘encryption key’ will contribute to the service ‘confidentiality’
and ‘integrity’ of messages sent over the network. How are the services and security
aspects provided? Which elements contribute to which services? For all Kerberos
elements, I shall try to find out which service they contribute to.

1.1 Outline

First of all, in chapter 2, a comprehensive introduction to the Kerberos system is
given. I shall discuss its origin, how the protocol works, known flaws and bugs and
its evolution to the latest Kerberos version.

In chapter 3, a list of services that Kerberos provides is being described. Also,
we shall look at the security vulnerabilities it encounters . The protocol will be
described again in this chapter, but at a more detailed level. I shall relate every
element of the protocol to a service or security measure.

Chapter 4 deals with the vulnerabilities that still exists in the latest version of
Kerberos. It will be followed by a small overview of this thesis.

5





Chapter 2

The Kerberos Protocol

The question I shall try to answer is: ‘What services does Kerberos provide?’. How-
ever, Kerberos is a rather complex system, and to identify all services out of the
blue is quite difficult. That is why I shall first devote a chapter to describe how
Kerberos has evolved. We shall mainly look at the protocol, but also some social
and implementation aspects will be discussed. So, the focus of this paper lays on
protocol level. If implementation features or drawbacks are mentioned, then these
refer to the MIT implementation. The most common used versions are Kerberos 4
and Kerberos 5 [Sta03]. Kerberos 5 was developed to improve Kerberos 4, which
still had some security flaws. Also different implementations of Kerberos were de-
veloped, for example Heimdal, that could communicate with the MIT Kerberos 5
version. The Kerberos 4 flaws and improvements will be pointed out in the section
2.3. Section 2.4 will describe the new elements of Kerberos 5 with respect to version
4.

2.1 Term definitions

In this paper, there are some terms that can be interpreted ambiguously. Therefore,
we shall define these terms first:

User and client
Kerberos deals with users that request services. There are two terms that are used
for users: ‘users’ and ‘clients’. In general, when this paper states that a client makes
contact to a server to access a particular service, it is not the physical person who
makes the contact, but a program running on that person’s computer. In this paper,
the term user refers to the actual person.

Application servers and services
Typically, a user will request a service, for example list his e-mails. This is a service
that is handled by an application that runs on a certain server. This server will be
called the ‘application server’. So when a user is requesting a service, the client is
communicating with the application server.

Principals
Kerberos uses the term ‘principals’ to identify users and application servers. A

7



8 2. The Kerberos Protocol

principal is a uniquely named client or application server that participates in the
Kerberos network communication.

Tickets
Tickets are used to give users access to services. There are two different kind of
tickets. One can be used to request services and tells the Kerberos server that the
use has been authenticated. This one is called the ticket-granting ticket. The other
can be used to access a certain service, and is called the application ticket or the
service ticket. Many properties apply to both tickets. Only in this case, the study
will refer to both tickets with the term ’tickets’. In all other situations the study
will state which type of ticket is being discussed. However, in the protocols the
term ’TGT’ is used for the ticket-granting ticket, and ’Ticket’ is used for the service
ticket.

C = client
AS = authentication server
AP = application server
TGS = ticket-granting server
TGT = ticket-granting ticket
T icket = ticket to prove identity of the user to the application server
Authx,y = authenticator of x to y
IDx = identifier of x
Realmx = The environment in which x is located
Px = password of x
NAx = network address of workstation of x
Kx = secret key shared by AS and x
Ky,x = secret key shared by y and x
SK = session key that can be used for one connection only
TSx = Timestamp, where x identifies the timestamp
LTx = Lifetime, where x identifies the lifetime
Noncex = A random value to be repeated, to assure the response is fresh, with
x identifying the nonce
Seq = A sequence number

Figure 2.1: Protocol denotations

In the next section there will also be some protocol denotations. They are defined
in figure 2.1. You can choose to look at them now, or while reading this thesis, when
an abbreviation is not clear.

2.2 Kerberos 4

2.2.1 Motivation

The development of Kerberos started at MIT as part of the Athena project [Koh91].
There was need for an authentication system that is secure in an open environment,
with network connections to other machines. In this environment, relying on the
host operating system, host addresses and physical security is not sufficient. This is
because in such an environment, opponents can easily tamper with data sent over



2.2. Kerberos 4 9

the network. To solve these problems, their own authentication system needed to be
developed. It evolved from version 1 to version 3 for internal use during this project.
Version 4 was also primarily designed for use by Project Athena, but has achieved
widespread use. The Kerberos model is based in part on Needham and Schroeders
trusted third-party authentication protocol [Nee78] and on modifications suggested
by Denning and Sacco [Den81]. The idea of Kerberos is that services can verify the
identities of users in an open, unprotected network and users can also verify the
identity of services.

The first report on Kerberos listed the following requirements for Kerberos, that
are essential to succeed the project [Sta03]:

• Secure
For Kerberos, this means that a network eavesdropper, who is unauthorized
to access the Kerberized services, should not be able to retrieve information,
which can be used to retrieve access or information about the services. This
means that no information may be obtained by the opponent that can be
used to impersonate a user, or that service requests and responses can’t be
read. We shall see that this requirement is met by trust on tickets. Tickets
are given to a user, so that he is able to prove he is authentic.

• Reliable
Kerberos should be available all the time. If the Kerberos server is not avail-
able, then all Kerberized services are also not available. This requirement is
met by installing several backup servers, and is not really a protocol issue.

• Transparent
The user should not be aware of the authentication process taking place (with
the exception of entering his password). The protocol gives the impression
that the user should do many actions, but these actions are being made by a
program that runs on the client’s workstation. Also this requirement is not a
protocol issue.

• Scalable
Kerberos should be capable of supporting a large number of clients and ser-
vices. Since Kerberos 4 has been widely used, this requirement can be con-
sidered met. However, some functionality (for example key exchanges) lead
to heavy computation when the number of services and clients grew. With
Kerberos 5, some of these efficiency problems have been solved.

The intention is to use Kerberos in a small, well managed environment. With the
development of Kerberos 5 and further, some suggestions for adaptation were made,
in order to make Kerberos usable for large public environments. However, the pro-
tocols are currently not being considerated an Internet standard [Koh93]. To au-
thenticate users, Kerberos makes use of symmetric keys. But the protocol itself has
no suggestion to exchange these keys, so key exchange becomes an implementation
or organizational decision.

2.2.2 Protocol description

To understand the protocol, we follow the strategy by Bill Bryant of Project Athena [Bry88]
by building up the protocol step by step. First, we shall look at a rather simple
authentication dialogue (figure 2.2). In this dialogue the risk of impersonation is
considered. An attacker can pretend to be another user and obtain unauthorized



10 2. The Kerberos Protocol

(1) C → AS : IDC + PC + IDAP

(2) AS → C : T icket

(3) C → AP : IDC + T icket

with

T icket = EKAP
[IDC + NAC + IDAP ]

Threats/problems prevented:
• Authenticate users: APs can check if a user is authentic

• Key management: AS lowers the number of needed keys and passwords

New or remaining threats/problems:
• IP spoofing: The ticket can be stolen, the opponent can adapt the identity of

C and alter the IP address to the network address of C

• Usability of tickets: For every new service, a new ticket has to be issued

• Password sniffing: password is sent unencrypted over the network

Figure 2.2: Dialogue 1, a rather simple dialogue

services. This should not be considered as to be the weakest link. One way to counter
this threat, is that each server can be adapted in such a way that they can confirm
the identity of users. This is however a rather clumsy solution, because then each
server needs to store a password file. Imagine that someone needs to change his
password, then he has to change it for every server independently. So let’s try a dif-
ferent approach. In the first dialogue the authentication server (AS) is introduced.
This server knows all passwords of all principals and stores them in a centralized
database, and shares a unique secret key with each application server (AP). In the
highlighted boxes, I sum the threats and problems that have been taken care of,
and also sum new problems that are being introduced by the protocols.

The first dialogue we shall look at starts with the client (C) requesting access to
an AP. He authenticates himself to the AS with his identity, his password and the
identity of the AP. The AS checks the credentials and whether the user has per-
mission to access the AP. If so, the user gets an application ticket that is encrypted
with the secret key shared by the AS and the AP. This prevents the user or an
attacker to modify the ticket, and the AP knows that the ticket could only have
been made by the AS. To prove that the user is authentic, the application ticket
consists of three elements:

• IDC

The identity of C, in order to indicate that the ticket is indeed issued on
behalf of C.

• IDAP

The identity of the AP, to make sure that the AP has decrypted the ticket
correctly.

• NAC

The network address of C. NAC is included to prevent someone from stealing
the ticket, copies the identity of C and present himself to the AP. Without
the network address, the attacker would have a valid ticket. However, with



2.2. Kerberos 4 11

the threat of IP spoofing, this threat still remains.

There are two particular problems that we encounter in dialogue 1. The first is the
usability of the ticket. For every different application server, the user needs to ask for
a new ticket. This means that the user needs to enter his password again. We would
like to minimize this. The second problem is that the password is sent unencrypted
over the network in message (1). A new dialogue (figure 2.3) is suggested, that
overcomes these two problems.

Once per user logon session
(1) C → AS : IDC + IDTGS

(2) AS → C : EKC
[TGT ]

Once per type of service
(3) C → TGS : IDC + IDAP + TGT

(4) TGS → C : T icket

Once per service session
(5) C → AP : IDC + T icket

with

TGT = EKT GS
[IDC + NAC + IDTGS + TS1 + LT1]

T icket = EKAP
[IDC + NAC + IDAP + TS2 + LT2]

Threats/problems prevented:
• Usability of tickets: Password has to be entered only once a working session

• Password sniffing: Password is no longer sent over the network

New or remaining threats/problems:
• Replay attacks: An opponent could steal the ticket and use it to access services

unauthorized

• IP spoofing: The TGT or service ticket could still be captured and the IP

address could be forged to the network address of C, with a man-in-the-middle

attack

Figure 2.3: Dialogue 2, a much more secure dialogue

In the new dialogue, a ticket-granting server (TGS) is introduced. This server issues
application tickets to clients who have been authenticated to the AS. In this case,
the user logs in, requesting a ticket-granting ticket (TGT). He receives the TGT
encrypted with a key derived from the client’s password. The user can only generate
the key to decrypt the ticket, if he knows the right password, which is known to the
AS and himself only. This once per user logon session prevents sending the password
over the network.

With the TGT, we can minimize the number of password requests. Because the
TGT verifies that the user is authenticated, he does not need to give his password
anymore, and the TGS can provide him with a ticket for the AP. The user does this
by sending his identity, the identity of the AP and his TGT. The TGS checks the
TGT, and if it is valid, C will receive a ticket for the AP. Now the user can request
a service (5) the same way he did in figure 2.2.

The tickets are extended with a timestamp and a lifetime to prevent an attacker from



12 2. The Kerberos Protocol

stealing one ticket and reuse it after the legitimate user has left the workstation.
Tickets would have a typical lifetime of the length of a working day (e.g., eight
hours).

The second dialogue is already much more secure, but still problems remain. First of
all, although the tickets are provided with a timestamp and lifetime, replay attacks
remain a threat. Someone could steal the TGT and forge the network address and he
will receive application tickets unauthorized. Also, he could capture the application
ticket and uses it before expiration, giving him access to the corresponding service.
We could reduce this risk by shortening the lifetime. However, a short lifetime will
introduce the problem of many password requests. The user will need to enter his
password again, if the lifetime has exceeded. The second problem is something we
mentioned in the beginning: with both dialogues, the AP still cannot prove its
identity to the user. Kerberos 4 takes care of these problems.

For the Kerberos protocol, it is necessary to have server clocks and client clocks that
register the same time. The Network Time Protocol (NTP) [Mil89] can be used to
synchronize the clocks.

Authentication Service
(1) C → AS : IDC + IDTGS + TS1

(2) AS → C : EKC
[KC,TGS + IDTGS + TS2 + LT2 + TGT ]

Ticket-granting Service
(3) C → TGS : IDAP + TGT + AuthC,TGS

(4) TGS → C : EKC,T GS
[KC,AP + IDAP + TS4 + T icket]

Client/Server Service
(5) C → AP : T icket + AuthC,AP

(6) AP → C : EKC,AP
[TS5 + 1]

with

TGT = EKT GS
[KC,TGS + IDC + NAC + IDTGS + TS2 + LT2]

T icket = EKAP
[KC,AP + IDC + NAC + IDAP + TS4 + LT4]

AuthC,TGS = EKC,T GS
[IDC + NAC + TS3]

AuthC,AP = EKC,AP
[IDC + NAC + TS5]

Threats/problems prevented:
• Replay attacks: An opponent can no longer get access with a stolen ticket

• Prove identity of APs: Users can prove the identity of APs

• IP spoofing: The authenticators prevent attackers to spoof meaningful trans-

missions

New threats/problems:
• This protocol still has some vulnerabilities, which are being discussed in section

2.3

Figure 2.4: Dialogue 3, the Kerberos 4 protocol

Let us look at the protocol adjustments, message by message. The protocol is shown
in figure 2.4. First, the client needs to authenticate himself to the AS in the authen-
tication service exchange part. This way, the client can obtain a TGT. In message



2.2. Kerberos 4 13

(1), the client requests access to the TGS, the same way as in figure 2.3. One extra
element is added, TS1, to verify that the client’s clock is synchronized with the
clock of the AS. Message (2) introduces also some new elements. The first is the
session key KC,TGS, that permits secure exchange between the TGS and the client.
The other elements, IDTGS , TS2 and LT2, are used to provide the client with in-
formation about the TGT, such as the identity of the TGS, when the ticket was
issued and when it expires.

Now that the client has a TGT and a session key, he can obtain an application ticket
in the ticket-granting service exchange part. In message (3), the client requests for
a service, almost the same way as in figure 2.3. But instead of sending his identity,
he sends a so-called authenticator. The authenticator prevents replay attacks to the
TGS. It is encrypted with the session key of C and the TGS, so that only these two
parties can read it. It contains the identity of C, the network address of C and a
timestamp, to inform when the authenticator was created. The TGS sends a ticket
to the client in message (4), which has been constructed similarly as the TGT.
Again, the client is provided with a session key (this time for the client and the
AP), and information about the application ticket (the identity of AP, timestamp
when the ticket was issued and expiration time).

That brings us to the final part of the protocol, the client/server authentication
exchange. In message (5), the client requests for a service, comparable with message
(5) in dialogue 2, but again the identity of C is replaced by an authenticator. This
time the authenticator is encrypted with the session key of C and the AP. Message
(6) is added to permit mutual authentication.

The replay attack problem is solved by using a session key EKC,T GS
, a secret piece

of information shared by the client and the TGS, that is provided by the AS in
message (2). The session key can only be read by the AS and the client, because
it is encrypted with EKC

, the secret key between C and AS. With this session
key the client can prove its identity to the TGS, by encrypting an authenticator
with the session key, proving that he is the only principal who could have made it.
The authenticator contains information that verifies the identity of the client. The
TGS is able to decrypt the authenticator, because the session key is also provided
in the ticket. The second problem, that AP can’t prove its identity to the user,
is solved by message (6). The AP sends back the timestamp of the authenticator,
incremented by 1, encrypted with the session key EKC,AP

. The encryption assures
that the incremented timestamp could only have been created by the application
server.

2.2.3 Realms

Now we have described the Kerberos 4 version, we can identify its components:

• Clients
Entities on the network that can get tickets from Kerberos, in order to use
Kerberized programs on application servers.

• Kerberos server
The Kerberos server consists of an AS, which checks the service access per-
missions for clients and issues the TGTs, and a TGS, which issues the tickets
for the desired services.



14 2. The Kerberos Protocol

Figure 2.5: Interaction between the components of Kerberos

• Application servers
The servers where the Kerberized applications run.

These three components form a complete Kerberos environment, called a realm.
Usually an organization operates within one realm. But these days, cross-organizational
operations are quite common. That means that a user in organization A can have
access to certain permissions in organization B. But with the Kerberos protocol
discussed so far, this user cannot authenticate himself in a different realm, and
thus cannot access the services in that realm. Kerberos provides support for this
cross-realm authentication, by sharing a secret key between the two servers in the
inter-operating realm. Therefore, the two Kerberos servers must trust each other
to authenticate users, and the application servers must trust the Kerberos server
in the other realm. This is visually described in 2.5. If we deal with inter-operating
realms, some new messages must be introduced to the protocol. Instead of request-
ing for an application ticket, the client asks the TGS for a remote TGT, that can
be used in the other realm. With this remote TGT, the client can request a remote
application ticket. The changed protocol is shown in figure 2.6, with R referring to
the cooperating realm.

2.3 Limitations of Kerberos 4

Kerberos 4 was originally developed for use by Project Athena only. However, it
became a popular authentication system that reached world wide use. A first proto-
type version of Kerberos 4 was released in September of 1986. But limitations and
problems were identified in the following three years, which leaded to the develop-
ment of a new Kerberos version. Work on Kerberos 5 started in 1989. This version



2.3. Limitations of Kerberos 4 15

Authentication Service
(1) C → AS : IDC + IDTGS + TS1

(2) AS → C : EKC
[KC,TGS + IDTGS + TS2 + LT2 + TGT ]

Remote Access Service
(3) C → TGS : IDTGSR

+ TGTR + AuthC,TGS

(4) TGS → C : EKC,T GS
[KC,TGTR

+ IDTGTR
+ TS4 + TGTR]

Ticket-granting Service
(3) C → TGSR : IDAPR

+ TGTR + AuthC,TGSR

(4) TGSR → C : EKC,T GSR
[KC,APR

+ IDAPR
+ TS6 + T icketR]

Client/Server Service
(5) C → AP : T icket + AuthC,APR

(6) AP → C : EKC,AP
[TS6 + 1]

with

TGT = EKT GS
[KC,TGS + IDC + NAC + IDTGS + TS2 + LT2]

T icket = EKAP
[KC,AP + IDC + NAC + IDAP + TS4 + LT4]

AuthC,TGS = EKC,T GS
[IDC + NAC + TS3]

AuthC,TGSR
= EKC,T GSR

[IDC + NAC + TS5]
AuthC,APR

= EKC,APR
[IDC + NAC + TS6]

Introduced:
• Cross-realm authentication

Figure 2.6: Dialogue 4, the Kerberos 4 protocol with cross-realm authentication

has been adapted in many systems as well, for example in the Windows operating
system (since Windows NT).

The limitations of Kerberos 4 can be addressed in two areas: environmental short-
comings and technical deficiencies [Koh91]. Bear in mind, that there are differences
between the security of the protocol itself and its implementation. In the next two
subsections, security weaknesses in both areas are addressed. However, in the section
about Kerberos 5, the focus will be back at protocol level.

2.3.1 Environmental shortcomings

Kerberos 4 was developed for use by Project Athena, and did not fully address the
need to be of general purpose. This caused some environmental shortcomings:

• Encryption system dependence
Kerberos 4 uses only DES to encrypt messages. First of all, the export of DES
from the USA was restricted until the year 2000. Second, the strength of the
DES algorithm raises concerns as the DES computations can now be resolved
in reasonable time. To avoid these problems in the future, Kerberos 5 tags
the cipher text with an encryption type identifier. Any type of encryption
can be used, or replaced when needed. This way, providing sufficient integrity
protection is the responsibility of the encryption technique.

• Internet protocol dependence
Kerberos 4 requires the use of IP addresses, but nowadays different address



16 2. The Kerberos Protocol

types are used, such as the ISO network address. Kerberos 5 solves this the
same way as with the encryption dependence problem: network addresses are
tagged with type and length.

• Message byte ordering
In Kerberos 4, the sender of a message chooses its own byte ordering and tags
the message to indicate if the least or most significant byte is in the lowest
address. The receiver must then convert this byte order to its own native or-
der. This simplifies the communication between two hosts with the same byte
order. However, the protocol does not follow established conventions. In Ker-
beros 5, all message structures are defined using Abstract Syntact Notation
One (ASN.1) and Basic Encoding Rules (BER). With these standards, byte
ordering is no longer ambiguous.

• Ticket lifetime
The lifetime of a ticket in Kerberos 4 could not exceed 21 1

3
hours, which may

not be enough in some environments. The lifetime was encoded by a UNIX
timestamp for the issue date and an 8-bit quantity in units of five minutes for

the lifespan ( 2
8
∗5

60
= 21 1

3
). In Kerberos 5, tickets contain an explicit start and

end time, so tickets can have lifetimes without restriction on time.
• Authentication forwarding

Kerberos 4 is not allowing credentials issued to a client for a certain host to be
forwarded to a different host and used by another client. But this functionality
could be useful if an intermediate principal needs access to a particular service
with the rights of the client. Kerberos 5 supports this functionality.

• Principal naming
In Kerberos 4, principals have three components: name, instance, and realm.
They each can have a maximum length of 39 characters, which seems to be
insufficient in some environments. Also, because of implementation reasons,
the period (.), which sometimes is used in account names, was excluded from
the character set. Also, Kerberos 4 assumed that the account name match the
name portion of the principal identifier, which is not acceptable in environ-
ments that accept non-unique account names. These problems are solved in
Kerberos 5.

• Cross-realm authentication
As we have seen, Kerberos 4 provides cross-realm authentication by letting
the inter-operating Kerberos servers sharing a secret key. The key exchange
simplifies the implementation of inter-realm ticket requests and verification,
but the number of key exchanges grows exponentially (O(n2)). In Kerberos
5, support for cross-realm authentication is implemented, which lowers the
number of key exchanges to O(log(n)).

2.3.2 Technical deficiencies

Next to the environmental shortcomings, some technical limitations of the Kerberos
4 protocol have been identified:

• Double encryption
Within message (2) and (4) in figure 2.4, tickets that are provided to the client
are encrypted twice: once with the key known by the target server, and once
with the key known to the client. Because the ticket is already encrypted once,
the integrity of the ticket can’t be breached. The second encryption does not



2.4. Kerberos 5 17

provide extra security, and thus is unnecessary. [Mer90]
• PCBC encryption

Kerberos 4 makes use of plain- and cipher-block-chaining (PCBC) DES. This
mode tries to provide data encryption and integrity in one operation. But
it has been demonstrated that an opponent can modify a message without
the recipient being able to detect it [Koh89]. Kerberos 5 uses explicit in-
tegrity mechanisms, together with the standard cipher-block-chaining (CBC)
encryption.

• Authenticators and replay detection
Timestamps in Kerberos 4 are used to verify the freshness of messages, in order
to prevent replay attacks. A version 4 authenticator has a short lifetime, to
counter replay attacks and may only be used once. However, a list of unexpired
authenticators which have already been used is not maintained in Kerberos 4,
so that replay attacks remain a threat. This is an implementation deficiency,
rather than a limitation of the protocol. The threat is rather limited, because
of the short lifetime of the authenticators.

• Password attacks
Passwords cannot be sniffed in Kerberos 4, but anyone can make an authen-
tication request. Message (1) can be copied and replayed to the AS. The
opponent gets a message back, encrypted with a key based on the password
of the client. Now, he can try infinitly many passwords to decrypt it. When
the message is decrypted correctly, the content will make sense. Nobody is log-
ging the number of tries to decrypt the message. In Kerberos 5, a mechanism
called pre-authentication is provided which makes this attack more difficult,
but does not prevent it. This mechanism will be described in chapter 3.

• Session keys
Tickets include a session key that enables the client to encrypt the authen-
ticator. The session key can also be used to protect the messages during a
session. Since clients may use a ticket multiple times during a user’s session,
it is possible for an attacker to replay messages from a previous connection to
clients or servers (if they do not protect themselves properly). With Kerberos
5 it is possible for clients and servers to negotiate a subsession key, which is
used for one connection only. When a client tries to access the server again,
a new subsession key is needed.

• Cryptographic checksum
If the basic encryption algorithm itself does not provide for integrity protec-
tion (like DES in PCBC mode), then some form of verifiable MAC or checksum
must be included. The cryptographic checksum used in Kerberos 4 is based on
the quadratic algorithm, is not performed as described by Jueneman, Matyas
and Meyer [Jue85]. The Kerberos version 4 checksum is not proven suitable,
and that can be considered as an implementation deficiency. This is corrected
in Kerberos 5.

2.4 Kerberos 5

Kerberos 5 has been developed to address the limitations and weaknesses of version
4. This has resulted in changes in the protocol and in the tickets. First, the ticket
changes will be discussed. After that, the protocol will be described.



18 2. The Kerberos Protocol

2.4.1 Ticket flags

The major change in tickets is that it contains a set of flags, to indicate certain
attributes of that ticket.

INITIAL
The INITIAL flag indicates that a ticket was issued using the AS request and not
issued by the TGS. It represents a TGT obtained from the AS. A server may require
that this flag is set, for example with the password changing protocol (see section
2.4.3) wants to know if the password was recently used.

HW-AUTHENT
The HW-AUTHENT flag indicates if a hardware device was used to alter the en-
cryption key. For example, a smart card that transforms the user’s password, so
that actually arbitrary passwords are used to alter the key shared by the client and
the AS. This prevents an attack on easy passwords.

PRE-AUTHENT
If the pre-authentication flag is set, the AS will require the client to be authen-
ticated before issuing a ticket. This should make password guessing attacks more
complicated. The exact form is left unspecified.

INVALID
The INVALID flag indicates that a ticket is invalid. When this flag is set, servers
must reject access to the clients. Tickets with the INVALID flag set, can be validated
by Kerberos. The client must send a request with the option VALIDATE (message
(3), figure 2.7). Only if the start time of the ticket has passed, the ticket will be
validated. This check assures that tickets that have been stolen before their start
time will be marked invalid permanently through a hotlist mechanism.

RENEWABLE
Some applications desire to hold tickets which can be valid for quite a long period.
But this raises a problem of potential credential theft, and the stolen ticket can be
used until this long lifetime ticket expires. With the RENEWABLE flag set, the
normal “short lived” ticket can be replaced by a new one, without the client having
to store the password (remember that the authentication was already taken care
of in message (1) and (2) of figure 2.4). Therefore, renewable tickets need to hold
two expiration times. The client can renew his ticket by presenting the ticket to
Kerberos until the final expiration time has been reached, together with the option
RENEW.

POSTDATED
Sometimes client applications need to obtain tickets that they can use later on. For
example, a batch submission system would like to have a valid ticket at the time a
batch job is serviced. However, holding a valid ticket for a longer time is more prone
to theft. Postdated tickets support such functionality, without the extra risk of theft.
Postdated tickets have also the INVALID flag set. When the batch job is serviced,
the postdated ticket is activated and validated by Kerberos. With this approach,
the client does not have to repeatedly use its TGT to obtain an application ticket.

MAY-POSTDATE
A client with a ticket with the MAY-POSTDATE flag set, can request a ticket that



2.4. Kerberos 5 19

is POSTDATED and INVALID.

PROXIABLE
Sometimes a client wants to allow a service to perform an action on its behalf. This
means that the services must be able to take the identity of the client, but only for
a particular purpose. This is possible if the client grants the service a proxy. This
is allowed, if the PROXIABLE flag is set. This option is only interpreted by the
TGS, and this functionality can thus only be used for application tickets. With this
ticket, the service can request a ticket with a different network address.

PROXY
When a service requests an application ticket on behalf of the client, this ticket will
have the PROXY flag set.

FORWARDABLE
The forwardable concept is an unlimited version of the proxy case. With this flag
set, also TGTs can be issued with different network addresses.

FORWARDED
The FORWARDED flag is set if a principal presented a FORWARDABLE ticket.

2.4.2 Protocol description

In figure 2.7 we see the (simplified) protocol for Kerberos 5. However, not all el-
ements are shown in this figure. The figure would become too complex. The new
elements and the most important elements not shown will be discussed. The de-
tailed information is provided by RFC 1510, The Kerberos Network Authentication
Service (V5) [Koh93]. However, the protocol is still based on the same ideas which
where used to design Kerberos 4.

These are the new elements shown in figure 2.7.

• Options
The option field can be used to request tickets where certain flags are set.
Generally, the name of the option can be the same as that of the ticket flag, so
if you need a FORWARDABLE ticket, you set the FORWARDABLE option.
Some other options are needed to provide information about when to use the
pre-authentication and authorization data.

• Client name and realm
Just as in Kerberos 4, the identifier of the client is included. Extra information
about the realm of the client is added, to support inter-realm authentication.

• Service name
Also like in Kerberos 4, the identifier of the service is included. In the AS
request, the service name is that of the TGS.

• Times
Instead of a timestamp, more information about the request time can be
stored, such as a skew in which the request is valid, and a field to be able to
request a ‘renew until’ time.

• Nonce
A nonce is added to indicate that the request is fresh.

The following elements are not shown in figure 2.7, but are part of the Kerberos 5



20 2. The Kerberos Protocol

protocol:

• Protocol version number
This field speficies the protocol version number. In this case it will indicate
version 5.

• Message type
The structures of the AS request and the TGS request have a lot in common.
That’s why the structure is being reused. The message type indicates if the
message is involved in the AS request or the TGS request.

• Pre-authentication data
If the client requests a ticket with pre-authentication, this field is used to
store the necessary information to execute pre-authentication. It can be used
against password guessing attacks.

• Encryption type
This field is added to indicate which encryption has been used.

• Addresses
If a proxy ticket is requested, this fields can hold the addresses that are allowed
to use the ticket.

The client receives a TGT in message (2). The structure of the AS reply again
looks like that of the TGS reply. Also this time, the structure contains an element
message type to indicate if the reply came from the AS or from the TGS. This
message also has a protocol version number, room for pre-authentication data and
the realm and identity of the client. Furthermore, it consists of the TGT and an
encrypted part to detect replay attacks. The ticket has been extracted from the
encrypted part, to overcome the problem of double encryption. A part of the ticket
is revealed to simplify inter-realm authentication. The version number, the realm
for who the ticket was issued for and the identity of the client are shown in plain
text. The rest of the ticket is encrypted and contains the flags, the session key, the
realm, network address and identity of the client, some information about time,
authorization data and a field that lists the Kerberos realms that took part in
authenticating the user. The encrypted part (not part of the TGT) also contains
the session key. Furthermore it holds the last request by the user, a response nonce,
the key expiration time and some elements that are also in the encrypted part of
the ticket. This information can be helpful to the user to verify that the element
matches the intended request and to assist in proper ticket caching. These elements
can also be helpful to detect credential theft.

Now let us look at the changes in the ticket-granting service exchange. The TGS
request in message (3) has the same elements as the AS request. Only the iden-
tifier and the realm of the client are left out here. They are only needed at the
authentication request. One extra field is used, called Authorization data. This en-
crypted field is added if services have to be accessed by other principals on behalf
of the owner of the ticket. The actual TGT and the authenticator are placed in the
pre-authentication data field. Furthermore, a field ‘Additional tickets’, which is left
empty in the AS request, is used. In this field, additional tickets can be stored to
configure the dialogue. For example, a session key stored in an additional ticket can
be used, instead of the session key provided by the server.

The TGT reply has the same structure as the AS reply, and the application ticket
is built the same way as the TGT. The flags indicate if it is a ticket-granting ticket



2.4. Kerberos 5 21

or a service-granting ticket. The only part that is still unclear in this part of the
protocol is the authenticator. But this is essentially the same as the authenticator
used in Kerberos 4. Instead of the network address, the realm of the client is stored
and again the protocol version number is added.

Finally, we can look at the client/server authentication exchange. The AP request
in message (5) also contains the protocol version number and a message type. Also
in this request, the client can set some options, to indicate which key has been used
to encrypt the application ticket and if mutual authentication is required. Of course,
the ticket and the authenticator is also sent. This time, the authenticator has two
extra fields: a subkey, to be used only this application session and a sequence num-
ber to provide mutual authentication. In message (6), the service can authenticate
himself presenting the timestamp and the subkey issued. The sequence number can
be used to track messages in long communications between the client and AP.

Authentication Service
(1) C → AS : Options + IDC + RealmC + IDTGS + T imes + Nonce1

(2) AS → C : IDC + RealmC + TGT + EKC
[KC,TGS + IDTGS + RealmTGS +

T imes + Nonce1]
Ticket-granting Service
(3) C → TGS : Options + IDAP + T imes + Nonce2 + TGT + AuthC,TGS

(4) TGS → C : IDC +RealmC +T icket+EKC,TGS
[KC,AP +IDAP +RealmAP +

T imes + Nonce2]
Client/Server Service
(5) C → AP : Options + T icket + AuthC,AP

(6) AP → C : EKC,AP
[TS2 + Subkey + Seq]

with

TGT = EKT GS
[KC,TGS + F lags + IDC + RealmC + NAC + T imes]

T icket = EKAP
[KC,AP + F lags + IDC + RealmC + NAC + T imes]

AuthC,TGS = EKC,T GS
[IDC + RealmC + TS1]

AuthC,AP = EKC,AP
[IDC + RealmC + TS2 + Subkey + Seq]

Threats/problems prevented:
• Fixes the most of the discussed limitations of version 4

New threats/problems:
• This protocol still has vulnerabilities [Koh91]

Figure 2.7: Dialogue 5, the Kerberos 5 protocol

2.4.3 Side protocols

We have now seen the main Kerberos protocol, but there are more protocols neces-
sary in order to work wit Kerberos. For example, there should be an administration
protocol to add new principals or change principal’s credentials. This is done using
a protocol between the client and a third Kerberos server, the Kerberos Administra-
tion Server (KADM). Note that the first Kerberos server is the AS and the second
Kerberos server is the TGS. Furthermore, there are specific messages between the



22 2. The Kerberos Protocol

client and an AP for detecting modifications, providing confidentiality or for trans-
ferring Kerberos credentials. However, in this study these additional protocols are
not being discussed.

2.4.4 Compatibility support for Kerberos 4

To facilitate the upgrade from Kerberos 4 to 5, backward compatibility is supported
in version 5. This means that existing Kerberos applications should be able to
interoperate with the new implementation. The new Kerberos server may have a
compatibility mode enabled, to be able to accept version 4 format requests and
respond with version 4 format tickets and messages, next to the version 5 tickets
and messages. This allows programmers to upgrade the Kerberos installation very
slowly. However, with the backward compatibility mode enabled, the problems that
occurred in version 4 will remain. That is why this mode should be turned off after
some period of time. In 2000, MIT announced in a news group that support for
Kerberos version 4 stopped, so they can fully concentrate on the development of
version 5.



Chapter 3

Kerberos services

Now that we have seen a not so short introduction to the Kerberos protocol, we can
look at the services that Kerberos provides. In the first section, a list of these services
will be given and described. Next, the protocol elements of the previous chapter are
being related to the services. It should clarify which elements are necessary to
provide a certain service. This means that we need to look at the protocol from a
different point of view. Each element of the protocol will be observed more carefully.
This will introduce some new elements.

3.1 List of Services

We have seen the Kerberos protocol in detail, now we can look at a list of services
and security aspects that are provided by Kerberos 5. First, let us look at the
services:

sso Single Sign On
Single Sign On refers to a single identity that is shared across multiple systems.
In Kerberos, a client will only have to authenticate himself once, and can make
use of all Kerberized applications, without filling in his password again (for a
certain amount of time).

cro Cross-organizational authentication
With the introduction of Kerberos realms, cross-organizational authentication
is possible, so that users from one organization can use services from another
organization.

mut Mutual authentication
Because Kerberos provides a secure communication between two principals,
the two parties involved might like to ensure that the other principal is also
authorized. This means that not only the client should authenticate himself,
also the service principal should authenticate himself to the client (if neces-
sary). Kerberos provides mutual authentication, the process of two principals
proving their identities to each other.

u2u User-to-user authentication
Until now, we have seen Kerberos using only user-to-host authentication: The
user makes a request for its credentials, and will eventually receive an ap-
plication ticket to access a particular service. This will only work on small,
managed work environments. When users configure their desktop servers with

23



24 3. Kerberos services

a long-lived key, this long-lived key becomes a very attractive target for theft.
So, this type of authentication cannot be used on public workstations. Those
workstations are vulnerable to privacy attacks and hence cannot securely hold
a long-lived secret. User-to-user authentication provides support for the use
of Kerberos on public workstations. With this approach, the service principal
and the client principal will share a secret. Because the public workstation’s
secret could be compromised when unattended, the secret should have a short
lifetime. A session key would be a good secret. The service principal can re-
quest a TGT, with the session key stored in it. It gives his TGT to the client
principal and he can provide it as an additional ticket when requesting a ser-
vice ticket, requesting the service ticket should be encrypted with the session
key in the additional ticket. For more information on this subject you can
read [Dav89].

bat Support batch jobs
Kerberos tickets usually may not have a long lifetime, because that enlarges
the threat of credential theft. This makes running batch jobs harder. Fortu-
nately, Kerberos 5 provides mechanisms to facilitate these actions.

lon Support jobs with long lifetime
The same problem occurs for jobs that take a long time to execute. Also these
kind of jobs are supported by Kerberos 5.

fwd Authentication forwarding
Sometimes it is necessary for a principal to allow a service to perform an ac-
tion on its behalf. But normally, tickets are only valid from network addresses
that are included in the ticket, because of security reasons. Kerberos 5 pro-
vides functionality that allows you to forward your authenticated identity to
a different network address.

Kerberos deals with a couple of stakeholders. Clients would like to make sure that
their credentials are safe. Also, they don’t want that the application could tamper
with the client’s assets (stored on the client’s machine). Furthermore they assume
that the Kerberos system is always available. Application servers would like to make
sure that only authorized clients can access their services, and that no one could
tamper with the assets on their server. Also these stakeholders would like to see that
their credentials are safe. Also the owner of the Kerberos server is a stakeholder.
The system may not have access to its personal data or storage.

An attacker could be someone outside the system, trying to gain access to assets for
which he has no authorization. But the attacker could also be a principal or even the
owner of the Kerberos server. However, Kerberos was intended to be used in small,
manageable environments, so in this case it is not very likely that an administrator
or authorized user has bad intentions. Therefore I shall only look at possible attacks
from an opponents that have no administrator rights and are no valid users.

pwd Password attacks
Kerberos has implemented various ways that make password attacks more
difficult. For example, Kerberos will not send the password over the network,
so it cannot be eavesdropped. However, if an opponent receives a TGT, he
can try a password attack to decode the password-based key. One measure
against this attack in version 5 is pre-authentication (optional), where the
client (or opponent) does not receive a TGT before he is authenticated.



3.2. The necessary elements 25

net Network attacks
The protocol is designed in such a way, that the network does not have to
be trusted. Messages could be eavesdropped, changed or stolen. Therefore, all
sensitive data in the protocol must be encrypted and may not leak.

rep Replay attacks
One special case of network attacks is a replay attack. When an intruder was
able to eavesdrop or alter a message, he could try to perform a replay attack.
This way, he can try to obtain authentication credentials, and to gain access
to services that he was not authorized for. Making the Kerberos system time
critical, replay attacks should be more difficult.

cre Credential theft
A replay attack could already be considered credential theft. An attacker tries
to capture someone’s authentication credentials. When performing a replay
attack, the attacker would usually not be able to read sensitive data. An-
other form of credential theft can occur by breaking the confidentiality of the
messages.

mal Distribution of malicious Kerberos services
When a client finally has gained access to a particular service, he must be able
to verify the identity of the service. If this is not possible, an attacker could
imitate a service and try to intercept some credentials. With the introduction
of mutual authentication, this attack should not be possible anymore.

3.2 The necessary elements

The Kerberos dialogue consists of three parts, as shown in figure 2.7. All elements
will be related to services or security properties (to counter a threat). These services
or security properties are listed in the previous section. In the following subsections,
we describe each element in short and show the relation with the service.

3.2.1 The authentication part

The first message

In the first message of the protocol as shown in figure 2.7, the client wishes to
obtain authentication credentials. He generates a request to the AS. This request
consists of a protocol version number, a message type which in this case indicates
the request is an authentication request, possibly some pre-authentication data and
a request body. Let us look at each element more precisely.

The protocol version number is added for compatibility reasons. Recall that
Kerberos 5 was compatible with Kerberos 4. The version number determines
which actions should be taken, and how the response should look like.

The message type is included because of efficiency reasons. In the previous
chapter we saw that the structure of the authentication request looks a lot
like the ticket-granting request, so the same structure for both requests is
used. The message type and the protocol version number are both elements
that can be considered unnecessary for any provided service or to counter an
attack. Both are introduced to facilitate the implementation.



26 3. Kerberos services

The pre-authentication data field is left empty in most authentication requests.
It may contain information needed to initially verify the client’s identity be-
fore a response is given. The field can also be used to help the AS or client to
select the key needed for generating or decrypting the response. This form of
pre-authentication data is useful for supporting the use of hardware, such as
smart cards. These uses of the pre-authentication data make it more difficult
(although not impossible) to do password guessing attacks. A user now first
has to perform authentication, before the TGT will be handed to him. How-
ever, this mechanism is left open and can be implemented in many different
ways [Koh93].

The request body contains many elements: some options, the name and realm of
the client, the identity of the TGS, some time fields, a nonce, a field that indicates
which encryption is used for the private parts of the message, and a list of addresses
from where the requested TGT can be used. Let us first look at which options can
be set. Note that there is a difference between options and flags. Options occur in
requests, to configure the requested ticket. Flags are set in the requested tickets,
depending on which options were set.

The POSTDATED option is used to obtain a POSTDATED ticket. With a
POSTDATED ticket, no services can be accessed yet. The ticket will also
have the flag INVALID set. A POSTDATED ticket also contains a start time
(in the future), that indicates when the service should be accessed. The POST-
DATED ticket must be validated (with the option VALIDATE, described in
the next subsection) before use by presenting it to the TGS after the start
time has been reached. The POSTDATED option supports executing batch
jobs. It is possible to obtain a POSTDATED TGT, but this option is more
useful for service tickets.

The ALLOW-POSTDATE option is used to obtain a MAY-POSTDATE ticket.
This option can only be set on the initial request (to the AS), or in a request
to the TGS if the TGT has its MAY-POSTDATE flag set. This flag is only
interpreted by the TGS. It tells the TGS that POSTDATED tickets may be
issued. Without a MAY-POSTDATE TGT, no POSTDATED service tickets
can be issued, so this option also contributes to the support of executing batch
jobs.

The RENEWABLE option can be used to obtain a RENEWABLE ticket. Ker-
beros tickets with a long lifetime are more vulnerable to theft. But sometimes
a service needs to be accessed for a long time. To support this functionality
without increasing the possibility of ticket theft, RENEWABLE tickets can
be used. the RENEWABLE flag is only interpreted by the TGS and can be
used to obtain a replacement ticket that expires at a later date. With such a
ticket, you can access a server for a longer time, but also can renew a TGT
for more than a day.

The RENEWABLE-OK option can be set to indicate that a RENEWABLE
ticket will be accepted if the requested ticket lifetime cannot be provided. It
works exactly like the RENEWABLE option, but with this option the client
does not prefer such a ticket. If this option is not set and the client requests a
ticket with an expiration time too far in the future, the maximum expiration
time for tickets is used instead.

The PROXIABLE option can be set to obtain a PROXIABLE ticket. It may
only be set in the initial request or in a request to the TGS when presenting



3.2. The necessary elements 27

a PROXIABLE ticket. A PROXIABLE flag is only interpreted by the TGS
and allows a principal to issue service tickets from a different network address.
Therefore, the PROXY option must be set in the following request (to the
TGS). The valid network addresses are included in the TGT. Now, a service
can perform an action on behalf of the principal.

The FORWARDABLE option is used to obtain a FORWARDABLE ticket.
It also may only be set in the initial request or in a request to the TGS
when presenting a FORWARDABLE ticket. A FORWARDABLE flag is only
interpreted by the TGS and allows a principal to issue tickets from a different
network address. There is a slight difference with the PROXIABLE flag, which
is used to forward only service tickets. With the FORWARDED option in
the request to the TGS, you can transfer your whole identity to a different
machine.

Not all options have been explained yet. Some options can only be used when
granting service tickets, so we don’t have to bother about them yet. They will
be described in the next subsection. First, we still need to look at the remaining
elements of the request body.

The name of the client is submitted to show the AS which user is requesting
a TGT. The name of the client is defined as a principal name and consists
of two fields, a type and a name. The type indicates if the principal is a
user or a service. There are some more types defined, indicating a special or
unique principal. However, because this subfield will probably be left out in
the future [Koh93], we shall not discuss these. The second subfield, the name,
is a string which holds the actual name of the client.

The realm of the client forms the principal identifier together with the principal
name. It is encoded as a string. Although you can technically choose any name
for a realm, interoperability across realm boundaries requires agreement on
how realm names are to be assigned, and what information they imply. There
are currently two important styles of realm names: domain names and X.500
names. Other realm names fall into the category ‘other’ or ‘reserved’. Reserved
names are unlikely to be used, unless there is a very strong argument for not
using the ‘other’ category.

The name of the requested service, in this case the name of the TGS. Since a
ticket can only be issued within its own realm, the realm name of the TGS is
the same of the client and it is not necessary to include it twice. The AS can
determine the identity of the TGS and can select the correct key to encrypt
the TGT.

The above three elements contribute to the TGT generation. Remember that with
the introduction of ticket-granting, Single Sign On becomes possible. The three
elements just listed contribute to this functionality.

The start time is an optional field to request some time settings in the TGT.
This field indicates the desired start time for the requested ticket. If the start
time is invalid (for example it is in the past or has the wrong structure), the
ticket’s start time is set to the current time of the AS. If the requested start
time is in the future, but the POSTDATED option is not set, an error is
returned. Time fields in tickets are important because they make it harder to
steal tickets. However, the configuration of these time fields are introduced
for usability. Tickets can be configured easier for long or batch jobs.



28 3. Kerberos services

The expiration time is used to set the desired expiration time of the TGT. If the
requested expiration time minus the start time is less than some determined
minimum lifetime, the AS returns an error. If no (valid) expiration time has
been issued, the ticket’s expiration time will be set to the start time added
with the maximum lifetime associated with the client, the server or the policy
file. The policy file will be used if no maximum lifetimes are associated with
the client and the server.

The renewal time is an optional field which sets the renewal time of the ticket if
the RENEWABLE (and sometimes the RENEWABLE-OK) option has been
set. The ticket’s renewal time will be the requested value. If this is an invalid
value, the start time plus the renewal time associated with the principal or
with the policy file is used.

A nonce, which holds a random number generated by the client, is added to assure
that the response will be fresh. The same number (encrypted) is included in
the response.

The encryption type specifies the desired encryption algorithm to be used in
the response. There are a few encryption algorithms provided. If the client
chooses another encryption type, an error is returned. This field facilitates
the choice of encryption being used. However, it is the actual encryption that
contributes to the security of the protocol.

A list of network addresses is included in the initial request. It specifies the
addresses from which the requested ticket is to be considered valid. Normally
it contains only the addresses associated with the client’s host. If a PROXY
is requested, this field will also contain other addresses.

We have now described every element of the first message of the protocol that is
shown in figure 2.7. These are related to a service or a way to counter an attack.
These relations are summarized in Table 3.1. The second, third and fourth column
depict the provided services. The fifth column shows how the element is denotated
in figure 2.7.

The second message

If all checks have succeeded, the AS will generate a response, which includes the
requested TGT, some encrypted elements and some unencrypted elements. We shall
describe the TGT first.

The ticket version number can be compared with the protocol version number.
It just determines which ticket format is used. In this case it will contain the
number 5. This element will also not contribute to any service or to counter
an attack, but rather for efficiency reasons.

The realm is included to specify for which realm the ticket has been issued. It
also serves to identify the realm part of the identity of the principal. Note
that it will have the same values as the realm of the client in the first line of
the protocol.

The name of the TGS, together with the realm, completes the identity of the
TGS. The client needs to verify that its identity is the same as in the request.
Before decrypting the encrypted part of the message (not the TGT), he can
assume that he received the ticket he requested, by verifying the identity of
the TGS.



3.2. The necessary elements 29

Elements from message (1)
Element Service Attack Other Notation
Protocol version number - - Efficiency reasons -
Message type - - Efficiency reasons -
Pre-authentication data - pwd - -
Option POSTDATED bat - - Options

Option MAY-POSTDATE bat - - Options

Option RENEWABLE lon - - Options

Option RENEWABLE-OK lon - - Options

Option PROXIABLE fwd - - Options

Option FORWARDABLE fwd - - Options

Name of the client sso - - IDC

Realm of the client sso - - RealmC

Name of the TGS sso - - IDTGS

Start time field sso - - T imes

Expiration time field lon - - T imes

Renewal time field lon - - T imes

Nonce - rep - Nonce1

Encryption type - - Efficiency reasons -
List of network addresses fwd - - -

Table 3.1: Elements from message (1) of the Kerberos 5 protocol

Because the realm and the name of the TGS also come back in the encrypted
part of the message, this information might seem redundant. But these elements
do have a significant meaning in a later stage of the protocol. To support user-to-
user authentication, it is possible that the TGS encrypts the service ticket with a
provided session key (that is shared between the TGS and AP). With cross-realm
authentication, the AP could be registered in multiple realms, with different keys in
each. The unencrypted realm field specifies which key it should use to decrypt the
ticket. With the name of the TGS, the server can decide if the party is trustworthy.

The TGT also has an encrypted part. Its elements will be described next.

Flags are used to indicate how the ticket has been configured. There are eleven
different flags: FORWARDABLE, FORWARDED, PROXIABLE, PROXY,
MAY-POSTDATE, POSTDATED, INVALID, RENEWABLE, INITIAL, PRE-
AUTHENT and HW-AUTHENT. These flags have already been explained in
the previous chapter and most of them have an obvious link with the options.
For example, it is easy to see that the RENEWABLE flag is set by the RE-
NEWABLE option in the request. One extra note on the INVALID flag has
to be mentioned: It is clear that the flag is set when a POSTDATED ticket is
requested. So it contributes to support executing batch jobs. But also when
a check by the AS or the TGS fails, this flag will be set. A check fails if the
ticket has some unexpected behavior, for example an expired lifetime, or an
invalid network address. This could be the cause of an opponent requesting
unauthorized access to a service. Thus the INVALID flag also helps against
credential theft attacks.

The session key is included to provide a secure communication between the
client and the TGS. With this key, the TGS can verify that the encrypted



30 3. Kerberos services

part of the message could only be generated by the client. We shall see that
the session key is also a measure against replay attacks, because it encrypts
the authenticator. I shall elaborate on that in section 3.2.2.

The identity of the client, which consists of the realm and the name of the
client, is included. This way, the TGS can verify that the ticket really belongs
to the person who presented it, without prompting the client for his password.

The list of the client’s addresses is copied from the initial request. With this
list, the TGS can verify if the ticket is used from a valid location. If this field
is empty, the ticket can be used from anywhere. Normally, the client’s host
address will be in this field. Kerberos can be configured in such a way that an
empty list of addresses may be refused. Using an address policy reduces the
risk that an attacker can successfully use a stolen ticket.

The transited field is used when the client performs cross-realm authentication.
In some cases, where there are many realms, it is inefficient to register each
realm in every other realm, so a different hierarchy is used. This means that
in order to contact a service in another realm, it is sometimes necessary to
contact the remote TGS in one or more intermediate realms. These realms are
called the transited realms, and their names are recorded in this field. This is
to make sure that the end service knows all of the intermediate realms that
were transited, in order to decide whether or not to accept the authentication
(e.g. if all realms are trustworthy).

The authentication time indicates the time of initial authentication for the
specified principal. It is included in the ticket to provide additional infor-
mation to the end service. An end service could refuse tickets for which the
authentication time is too far in the past, which might point out credential
theft or a replay attack.

The start time indicates from when the ticket is valid. If this field is empty, the
authentication time is considered the start time.

The expiration time indicates when a ticket loses its validity. Together with the
start time, it forms the lifetime of the ticket. Sometimes services may have
their own limits on the ticket’s lifetime. Therefore this field is actually an
upper bound of the expiration time.

The renew until time is only present when we deal with a RENEWABLE ticket.
This indicates the maximum end time, including all the renewals. When a
ticket is renewed, this field is copied into the new ticket.

Authorization data is the data passed through by the client. This can only
happen in the TGS request. It can be used to facilitate proxy services, as we
shall see in the subsequent request.

Additional tickets may be provided to request for renewal, proxy or forwarded
cases. This field will hold for example the ticket to be renewed. Also a TGT
of the service principal could be stored in this field, to support user-to-user
authentication.

Besides the TGT, the AS will give the client some more information. The client will
see some unencrypted elements, for example his identity. He verifies that this is the
same as in his request. This can be compared with the address on an envelope: If
the address is incorrect, you don’t open the envelope. If any pre-authentication data
is set, they may be used to derive the proper secret key to decrypt the message.
Also the message will contain a protocol version number and message type again.
The encrypted elements are however more interesting to look at.



3.2. The necessary elements 31

The identity of the TGS is used to verify if the requested ticket is for the
correct service.

A session key is also included outside the TGT to provide a secure communica-
tion between the client and the TGS. The TGT cannot be read by the client,
so it is necessary to add the session key in the TGT, as well in the encrypted
part of the message.

A time field indicating the client’s last request is added to aid the user in
discovering unauthorized use of its identity.

The nonce is returned, so the client can be assured of the freshness of the message.

A key-expiration field is included to indicate how long the client’s secret key is
still valid. Expiration might be the result of password aging. This will strongly
recommend the user to change or renew its password. This field does nothing
else than showing information, but because it causes the client to change
or renew its password, it can be seen as a countermeasure against password
attacks.

The flags, authentication time, start time, expiration time, renew until
time and the list of the client’s network addresses are duplicates of
those in the TGT, provided so the client may verify they match the intended
request.

Now we have discussed all elements of the second message of the protocol. Their
relations with provided services or countering attacks are summarized in Table 3.2.

3.2.2 Granting tickets

The third message

At this point, we have discussed many elements already. But from this part on it only
gets better, because the request and the reply in the third and fourth message have
almost the same structure as the ones in message 1 and 2. We can skip the following
elements, because they have no different purpose in the third message: Protocol ver-
sion number, message type, the options POSTDATED, ALLOW-POSTDATE, RE-
NEWABLE, RENEWABLE-OK, PROXIABLE, FORWARDABLE, the time fields
start time, expiration time, renewal time, the nonce, the encryption type and the
list of network addresses. Also, the service ticket will have exactly the same elements
as the TGT. The only difference is that it has not its INITIAL flag set. The name
and realm of the client will also not be needed in this request, since they are already
stored in the TGT. And instead of requesting a ticket for the TGS, the client now
provides the name of the service to request a service ticket.

Let us now look at the new options that can be set in this request:

The PROXY option can be set to obtain a PROXY service ticket. Together
with a PROXIABLE ticket-granting ticket, it allows a principal to request a
service from a different network address.

The FORWARDED option can be used set to obtain a FORWARDED service
ticket. Together with a FORWARDABLE ticket-granting ticket, it allows a
principal to request a service from a different network address. A client can
also request a FORWARDED ticket-granting ticket, so that he can transfer
its whole identity to a different machine.



32 3. Kerberos services

Elements from message (2)
Elements Service Attack Other Notation
Protocol version number - - Efficiency reasons -
Message type - - Efficiency reasons -
Pre-authentication data - pwd - -
Name of the client - - Verification IDC

Realm of the client - - Verification RealmC

Ticket-granting ticket sso - - TGT

Encrypted part - net - EKC
[...]

Encrypted part elements Service Attack Other Notation
Name of the TGS - - Verification IDTGS

Realm of the TGS - - Verification RealmTGS

Session key - net, rep - KC,TGS

Last request - cre - -
Nonce - rep - Nonce1

Key-expiration field - pwd Notification -
Flags - - Verification -
Authentication time - - Verification T imes

Start time - - Verification T imes

Expiration time - - Verification TImes

Renew until time - - Verification T imes

List of client’s addresses - - Verification -
Ticket elements Service Attack Other Notation
Ticket version number - - Efficiency reasons -
Realm of the TGS u2u - - -
Name of the TGS u2u - - -
Encrypted ticket elements Service Attack Other Notation
INITIAL flag - - Efficiency reasons F lags

HW-AUTHENT flag - pwd - F lags

PRE-AUTHENT flag - pwd - F lags

INVALID flag bat rep, cre - F lags

RENEWABLE flag lon - - F lags

POSTDATED flag bat - - F lags

MAY-POSTDATE flag bat - - F lags

PROXIABLE flag fwd - - F lags

PROXY flag fwd - - F lags

FORWARDABLE flag fwd - - F lags

FORWARDED flag fwd - - F lags

Session key - net, rep - KC,TGS

Name of the client sso - - IDC

Realm of the client sso - - RealmC

List of client’s addresses fwd rep, cre - NAC

Transited field cro - - -
Authentication time - rep, cre - T imes

Start time bat rep, cre - T imes

Expiration time bat, lon rep, cre - T imes

Renew until time lon - - T imes

Authorization data fwd - - -
Additional tickets bat, lon, fwd, u2u - - -

Table 3.2: Elements from message (2) of the Kerberos 5 protocol



3.2. The necessary elements 33

The RENEW option can be used in a request to the TGS to renew a ticket. The
ticket must have its RENEWABLE flag set and its renew until not expired.

The VALIDATE option indicates that the client wants to validate a POST-
DATED ticket. The request is only honoured if the ticket has its POST-
DATED and INVALID flag set. Also, a ticket cannot be validated before its
starttime.

The ENC-TKT-IN-SKEY option points out that the service ticket should be
encrypted in the session key from the additional ticket provided. This option
supports user-to-user authentication.

The pre-authentication data field is now used to store the authenticator and
the ticket. The field is constructed in such a way that it can provide different
functionalities. In the first message it makes password guessing attacks harder.
In the third message it facilitates the ticket request and authentication to the
TGS.

Authorization data is specific to the end service and must be encrypted with
the subsession key (provided in the authenticator). If the subsession key is not
present, it should be encrypted with the session key shared between the client
and the TGS. It is expected that the field will contain the names of service
specific objects. Authorization data from the principal can be passed through
using the ticket field ‘Authorization data’. It can be used to issue a proxy that
is valid for a specific purpose. Consider the following example: A client wishes
print a file from a certain server. The printer however is on a different server.
By specifying the file name in the authorization data, the server that holds
the file knows that the print server can only use the client’s credentials when
accessing the particular file to be printed. The print server cannot access other
files. So, the authorization data field can be used to facilitate proxy services.

The pre-authentication field contains the authenticator and the TGT. The TGS can
verify if the TGT is addressed to him (think of the envelope again). The authen-
ticator is used to prevent replay attacks. With the authenticator, the client shows
that he knows the encryption key in the ticket. It contains the following elements:

Authentication version number to identify which authenticator version is used.
In this case it will hold the value 5.

Identity of the client to check if it matches with the identity provided in the
ticket and that of the sender.

A timestamp when the authenticator was generated, a timestamp is used because
it must have a short lifetime. If the timestamp is too far in the past, probably
it is being replayed and the TGS can refuse the request.

A subsession key may be included to use an alternative encryption key. Each
ticket contains a session key that is used by the client to encrypt the au-
thenticator. The session key may be used subsequently during that session.
This means that the same ticket may be used repeatedly to gain service from
a particular server. This leads to the risk that an opponent will replay the
messages from an old session to the client or the server. A subsession key can
be used only for that one connection. A new access will lead to the use of a
new subsession key.

A sequence number may be included as a way to counter replay attacks. The
sequence numbers should be random and non-repeating to be successive.

A checksum of the data may be used if the AP is still suspicious about the request.



34 3. Kerberos services

Elements from message (3)
Elements Service Attack Other Notation
Name of the service sso - - IDAP

Pre-authentication data - - Efficiency reasons -
Ticket-granting ticket sso - - TGT

Authenticator - rep - AuthC,TGS/AP

Option PROXY fwd - - Options

Option FORWARDED fwd - - Options

Option RENEW lon - - Options

Option VALIDATE bat - - Options

Option ENC-TKT-IN-SKEY u2u - - Options

Authenticator elements Service Attack Other Notation
Authentication version number - - Efficiency reasons -
Name of the client - rep - IDC

Realm of the client - rep - RealmC

Timestamp - rep - TS1/2

Subsession key - net, rep, - Subkey

Sequence number - rep - Seq

Checksum - rep - -
Elements from message (4)
Element Service Attack Other Notation
Service ticket sso - - T icket

Table 3.3: Elements from message (3) and (4) of the Kerberos 5 protocol

Since it is infeasible to find two plaintexts that have the same checksum, the
server can verify that the service ticket really belongs to this client.

The fourth message

The fourth message in the protocol uses exactly the same structure as the second
message. No new elements are introduced. Instead of receiving a TGT, the client
will receive a service ticket. Sometimes the client will receive a TGT from the TGS,
if a request for another realm was made. The client will provide the remote TGT
to the TGS in the corresponding realm. The service ticket will also contribute to
Single Sign On. It has a shorter lifetime than the TGT, but thanks to the TGT,
a new service ticket can be requested within the lifetime of the TGT. The service
tickets are the last link of the Single Sign On process.

All new elements of message (3) and (4) are listed in Table 3.3.

3.2.3 Accessing the application

The fifth message

The last elements are introduced in accessing the AP. In the fifth message, some
new options can be set. Furthermore, the service ticket and authenticator, which
we already have described, are provided. Also this message contains fields for the
version number and the message type.



3.2. The necessary elements 35

Elements from message (5)
Elements Service Attack Other Notation
Option USE-SESSION-KEY u2u - - Options

Option MUTUAL-REQUIRED mut mal - Options

Elements from message (6)
Timestamp mut mal - TS1/2

Subsession key - net, rep - Subkey

Sequence number - rep - Seq

Table 3.4: Elements from message (5) and (6) of the Kerberos 5 protocol

The USE-SESSION-KEY option can be set to let the AP know that the appli-
cation ticket is encrypted with the session key from the APs TGT. Normally
the ticket is encrypted with the service’s secret key, but when the client re-
quested the TGS an application ticket with the ENC-TKT-IN-SKEY option
set, the TGS will use the session key that was stored in the additional ticket.
With this option, the client can let the AP know that the request is part of
the user-to-user authentication.

The MUTUAL-REQUIRED option can be set if the client also wants to
authenticate the AP. Because only the AP could decrypt the application ticket
containing the session key (shared between the client and AP), the client can
be sure of the identity of the AP.

The sixth message

The sixth message is only sent if in the fifth message the MUTUAL-REQUIRED
option was set. The service will send back a message containing the protocol version
number, the message type and an encrypted part which is required to support
mutual authentication. This part consists of the following elements:

A timestamp is included to show to the client that it has the identical value
of the timestamp in the authenticator. This way, the client can verify the
identity of the AP.

The subsession key may be included if the AP desires to negotiate a different
subkey.

The sequence number is an optional field that can be used by the server for
messages sent to the client during this session. Messages are than sequenced
numbered and hinders replay attacks.

All elements of the last two messages are listed in Table 3.4.





Chapter 4

Kerberos limitations

In the previous chapter we have looked at the services and security aspects of
Kerberos 5 and which elements of the protocol contribute to these services. This
gives us a good picture of what Kerberos is capable of. In this chapter, we shall
see which vulnerabilities Kerberos 5 still has, and how they can be improved. Most
of the problems have also been discussed in [Bel91]. Other problems were already
known at MIT, and are considered assumptions [Koh93]. This thesis will end with
some suggestions for further improvement of Kerberos and a short overview of what
was presented.

4.1 Kerberos vulnerabilities

4.1.1 Kerberos assumptions

The following vulnerabilities are known to the developers of Kerberos. Denial of
service (DOS) attacks, for example, are not solved with Kerberos. In the protocol, an
intruder can prevent an application from participating in the proper authentication
steps, by intercepting the messages (with a man-in-the-middle attack). Because this
is possible, the requirement that the system should always be available is not entirely
met. Password guessing attacks are also not solved with Kerberos. The system does
provide ways to make these attacks more difficult, but this still does not make offline
guessing attacks impossible. Also, there is no mechanism that prevents the user to
choose a poor password.

Furthermore, Kerberos makes no provisions for host security. It assumes that it is
running on trusted hosts with an untrusted network. Although this is not a protocol
weakness, it is important to mention. If your host security is compromised, then
Kerberos is compromised as well. The impact depends on the compromised host.
All tickets stored on that machine can be used by the attacker to gain access to
services, but only until those tickets expire. However, if the attacker could intercept
the password, he could impersonate the user at any time for all services.

Another assumption is that the Kerberos server, that holds all the principals pass-
words in that realm, can be trusted. If this host security is compromised, the entire
realm is also compromised.

37



38 4. Kerberos limitations

4.1.2 Replay attacks

According to Bellovin and Merrit [Bel91], Kerberos is not as resistant to penetration
as it should be. The authenticator for instance, is not sufficient enough to prevent
replay attacks. In Kerberos 4 the problem with authenticators was the lifetime
of the object. The assumption was that replays are unlikely to be made within
the lifetime of the authenticator (about five minutes). Together with the included
network address in the ticket and authenticator, it would be able to prevent replay
attacks. Morris described an attack based on the slow increment rate of the initial
sequence number counter in some TCP implementations [Mor85]. This made it
possible to spoof one half of a pre-authenticated TCP connection without ever
seeing any responses from the targeted host. This attack would work in Kerberos if
the opponent is accompanied with a stolen authenticator (that is used within the
correct time skew).

In Kerberos 5, a list of used authenticators is maintained. However, Bellovin and
Merrit state that caching authenticators could not solve this problem. This is be-
cause there are problems to store authenticators at TCP-based servers. UDP-based
servers have problems with retransmissions of the client’s request if the answer was
lost, because UDP does not provide guaranteed delivery.

4.1.3 Time attacks

We have seen that authenticators rely on machines’ clocks being synchronized. If a
host can be misled about the correct time, such an authenticator can be replayed
easily. An alternative approach could be considered by replacing the authenticator
by a challenge/response mechanism. In this situation, the client would present a
ticket, but no authenticator. Instead, the server responds with a nonce encrypted
with the session key shared between the server and the client. The client can respond
the challenge, proving that he knows the right session key. If the server has validated
the response, he provides the client with the requested service (or a service ticket,
in case of the TGS).

A time attack would not be possible anymore, but does increase the protocol costs.
While making requests to the TGS and different APs, more messages must be
exchanged. Also it brings new problems along with respect to UDP-based query
servers able to retain state in order to complete the authentication process [Bel91].

4.1.4 Scope of tickets

Kerberos 5 introduces ticket-forwarding, but this introduces a new problem of cas-
cading trust. A host may be willing to trust an intermediary host, and this inter-
mediary host trusts the end host, but the initial host may not be willing to accept
tickets originally created on the end host, because it believes it is insecure. Kerberos
sets a flag to indicate that a ticket was forwarded, but does not include the original
source.

However, to include the network address is not so useful. Given the assumption
that the network is insecure, no extra security is gained by relying on the network
address.



4.2. Overview 39

4.2 Overview

In this thesis I presented what Kerberos is capable of, and how these services were
achieved. Primary functionalities are Single Sign On, cross-organizational authen-
tication and mutual authentication. Kerberos was implemented with in mind that
the network cannot be trusted. This has its consequences for the protocol. With
the use of tickets and authenticators, eavesdropping and replay attacks should be
countered. Unfortunately, some forms of replay attacks are still possible, according
to Bellovin and Merrit [Bel91]. Also, some more problems and limitations have been
discovered.

In the eighties, Kerberos 4 became a popular system, but still had some vulnera-
bilities and limitations. That is why Kerberos 5 was developed. It provided better
security and more functionality, such as executing batch jobs and long jobs, user-to-
user authentication and forwarding credentials. However, some security problems
remained and the functionality introduced some new problems. At this moment,
Kerberos is still a good SSO authentication system, that prevents many network
attacks. But considering the attacks that are still possible, it is not ready for use in
large, public networks.





Bibliography

[Bel91] Bellovin, S. and Merritt, M. Limitations of the Kerberos Authentication
System. In USENIX Conference Proceedings, pages 253–267, Dallas, TX,
Winter 1991. USENIX.

[Bry88] Bryant, B. Designing an Authentication System: a Dialogue in Four Scenes,
february 1988.

[Dav89] Davis D. and Swick, R. Workstation Services and Kerberos Authentication
at Project Athena. Technical report, MIT, march 1989.

[Den81] Denning, D. and Sacco, G. Timestamps in Key Distributed Protocols.
Communication of the ACM, 24(8):533–536, 1981.

[Jue85] Jueneman, R. and Matyas, S. and Meyer, C. Message Authentication.
IEEE Communications Magazine, 23(9):29–40, september 1985.

[Koh89] Kohl, J. The use of encryption in Kerberos for network authentication. In
Proceedings, Crypto ’89. Springer-Verlag, 1989.

[Koh91] Kohl, J. and Neuman, C. and Ts’o, Y. The Evolution of the Kerberos
Authentication Service. In Proceedings of the Spring 1991 EurOpen Con-

ference, 1991.
[Koh93] Kohl, J. and Neuman, C. The Kerberos Network Authentication Service

(V5). Technical report, ISI, september 1993.
[Mer90] Merkle, R. Fast Software Encryption Functions. In Crypto ’90 COnference

Proceedings, Santa Barbara, CA, August 1990.
[Mil89] Mills, D. Network Time Protocol (NTP). Network Working Group Request

for Comments: 958, 1989.
[Mor85] Morris, R. A weakness in the 4.2BSD UNIX TCP/IP Software. In Comput-

ing Science Technical Report No. 117, Murray Hill, New Jersey, February
1985.

[Nee78] Needham, R. and Schroeder, M. Using Encryption for Authentication in
Large Networks of Computers. Communications of the ACM, 21(12):993–
999, december 1978.

[Sta03] Stallings, W. Network Security Essentials: Applications and Standards,
chapter 4: Authentication Applications, pages 88–105. Alan R. Apt, second
edition, 2003.

41


